
MPI (Message Passing Interface)

• Developed and maintained by a large consortium of industry, academic, and
government contributors

• De facto message passing standard for parallel computing
• Language bindings for C and Fortran (and formerly C++)

• The C interface can still be used from C++

• Available on virtually all platforms; both proprietary and open source (MPICH,
OpenMPI) versions
• [‘CH’ for Chameleon, the underlying communication library of the original MPICH implementation.]

• Grew out of an earlier message passing system, PVM (Parallel Virtual Machine),
no longer actively maintained.
• MPI-2 subsumed all significant PVM functionality.
• Current version (2023) is MPI-5.

Compiling and Running

• mpiCC –o myprog myprog.cpp

• mpiexec [–n 16] [-configfile foo] ./myprog <args>

• Creates specified number of Unix processes, on nodes listed in the
specified file
• Watch Blackboard for more detailed instructions

MPI Process Creation/Destruction

MPI_Init(int *argc, char ***argv)
Initializes the MPI execution environment.
(Note the extra level of indirection.)

MPI_Finalize(void)
Terminates MPI execution environment. If you forget to make all
processes call this routine, you may leave orphans on the system
(run ps on all nodes to find them).

MPI Process Identification

MPI_Comm_size(comm, &size)
Determines the number of processes

MPI_Comm_rank(comm, &pid)
pid is the process identifier of the caller

(consecutive ints, starting with 0)

comm is typically MPI_COMM_WORLD — all processes in the program.
NB: by default the program dies if any call fails; return values can safely

be ignored in C and C++.

MPI Basic Send

MPI_Send(buf, count, datatype, dest, tag, comm)

buf: address of send buffer
count: number of elements
datatype: data type of send buffer elements

(built-in or user-defined)
dest: process id (rank) of destination process
tag: message tag (ignore for now)
comm: communicator (e.g., MPI_COMM_WORLD)

MPI Basic Receive

MPI_Recv(buf, count, datatype, source, tag, comm,
&status)

buf: address of receive buffer
count: size of receive buffer in elements
datatype: data type of receive buffer elements
source: source process rank or MPI_ANY_SOURCE
tag and comm: ignore for now
status: status object (indicates sender and tag)

MPI Matrix Multiply (initial version, in C)
int me, p; const int N = …
int (*a)[N], (*b)[N], (*c)[N];
int main(int argc, char *argv[])
{

MPI_Init (&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &p);
// malloc space for a, b, and c
// Data distribution ...
// Computation ...
// Result gathering ...
MPI_Finalize();

}

MPI Matrix Multiply (initial version)
/* Data distribution */

if (me == 0) {
for (i = 1; i < p; i++) {

// assume p divides N evenly
MPI_Send(&a[i*N/p][0], N*N/p, MPI_INT, i, 0,

MPI_COMM_WORLD);
// stripe of a, all of b

MPI_Send(b, N*N, MPI_INT, i, 0, MPI_COMM_WORLD);
}

} else {
MPI_Recv(&a[me*N/p][0], N*N/p, MPI_INT, 0, 0,

MPI_COMM_WORLD, 0);
MPI_Recv(b, N*N, MPI_INT, 0, 0, MPI_COMM_WORLD, 0);

}

MPI Matrix Multiply (initial version)

/* Computation */
for (i = me*N/p; i < (me+1)*N/p; i++) {

for (j = 0; j < N; j++) {
c[i][j] = 0;
for (k = 0; k < N; k++) {

c[i][j] += a[i][k] * b[k][j];
}

}
}

MPI Matrix Multiply (initial version)

/* Result gathering */
if (me != 0) {

MPI_Send(&c[me*N/p][0], N*N/p, MPI_INT, 0, 0,
MPI_COMM_WORLD);

} else {
for (i = 1; i < p; i++) {

MPI_Recv(&c[i*N/p][0], N*N/p, MPI_INT, i, 0,
MPI_COMM_WORLD, 0);

}
}

Work Performed by One Process

We don’t send the unused portions of A and C.
Why reserve space for them?

A B C

MPI Matrix Multiply (with index renaming)

/* Data distribution */
 if (me == 0) {
 for (i = 1; i < p; i++) {
 MPI_Send(&a[i*N/p][0], N*N/p, MPI_INT, i, 0,
 MPI_COMM_WORLD);
 MPI_Send(b, N*N, MPI_INT, i, 0, MPI_COMM_WORLD);
 }
 } else {
 MPI_Recv(a, N*N/p, MPI_INT, 0, 0, MPI_COMM_WORLD, 0);
 MPI_Recv(b, N*N, MPI_INT, 0, 0, MPI_COMM_WORLD, 0);
 }

NB: if me != 0, a is malloc-ed
smaller in this example

MPI Matrix Multiply (with index renaming)

/* Computation */
 for (i = 0; i < N/p; i++) {
 for (j = 0; j < N; j++) {
 c[i][j] = 0;
 for (k = 0; k < N; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }

MPI Matrix Multiply (with index renaming)

/* Result gathering */
 if (me != 0) {
 MPI_Send(c, N*N/p, MPI_INT, 0, 0, MPI_COMM_WORLD);
 } else {
 for (i = 1; i < p; i++) {
 MPI_Recv(&c[i*N/p][0], N*N/p, MPI_INT, i, 0,
 MPI_COMM_WORLD, 0);
 }
 }

Global Operations (1 of 2)

• So far, we have only looked at point-to-point or one-to-one message
passing facilities.
• Often, it is useful to have one-to-many or many-to-one message

communication.
• This is what MPI’s global operations do.

Global Operations (2 of 2)

• MPI_Barrier
• MPI_Bcast
• MPI_Scatter
• MPI_Gather

• MPI_Allgather

• MPI_Alltoall

• MPI_Reduce

• MPI_Allreduce

Barrier

MPI_Barrier(comm)

Global barrier synchronization, as with shared memory: all
processes wait until all have arrived.

Broadcast

MPI_Bcast(inbuf, incnt, intype, root, comm)

inbuf: address of input buffer (on root);
 address of output buffer (elsewhere)

incnt: number of elements
intype: type of elements
root: rank of root (sender) process

Before Broadcast

proc0 proc1 proc2 proc3

inbuf

root

After Broadcast

proc0 proc1 proc2 proc3

inbuf

root

Scatter

MPI_Scatter(inbuf, incnt, intype, outbuf,
 outcnt, outtype, root, comm)

inbuf: address of input buffer (on root)
incnt: number of elements sent to each process
intype: type of input elements
outbuf: address of output buffer (on non-root)
outcnt: num. elements received by each process
outtype: type of output elements (usually = intype)
root: rank of root process

Before Scatter

proc0 proc1 proc2 proc3

inbuf

outbuf

root

After Scatter

proc0 proc1 proc2 proc3

inbuf

outbuf

root

Gather

MPI_Gather(inbuf, incnt, intype, outbuf, outcnt,
 outtype, root, comm)

inbuf: address of input buffer
incnt: number of input elements
intype: type of input elements
outbuf: address of output buffer
outcnt: number of output elements
outtype: type of output elements
root: rank of root process

Before Gather

proc0 proc1 proc2 proc3

inbuf
outbuf

root

After Gather

proc0 proc1 proc2 proc3

inbuf
outbuf

root

MPI Matrix Multiply with index renaming and
scatter/gather
main(int argc, char *argv[]) {
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 MPI_Comm_size(MPI_COMM_WORLD, &p);
 MPI_Scatter(a, N*N/p, MPI_INT, a, N*N/p, MPI_INT, 0,
 MPI_COMM_WORLD); // assume N%p == 0
 MPI_Bcast(b, N*N, MPI_INT, 0, MPI_COMM_WORLD);
 ...

MPI Matrix Multiply with index renaming and
scatter/gather

for (i = 0; i < N/p; i++) {
 for (j = 0; j < N; j++) {
 c[i][j] = 0;
 for (k = 0; k < N; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 MPI_Gather(c, N*N/p, MPI_INT, c, N*N/p,
 MPI_INT, 0, MPI_COMM_WORLD);
 MPI_Finalize();
}

Additional Features

• Nonblocking communication
• “One-sided” communication

• Essentially remote reads and writes

• User-defined datatypes
• Nontrivial communicators
• Parallel I/O
• User-Level Fault Mitigation (ULFM) — mechanisms to detect and

recover from individual process failures

