MPI (Message Passing Interface)

* Developed and maintained by a large consortium of industry, academic, and
government contributors

De facto message passing standard for parallel computing

Language bindings for C and Fortran (and formerly C++)
* The Cinterface can still be used from C++

Available on virtually all platforms; both proprietary and open source (MPICH,

OpenMPI) versions
* [‘CH’ for Chameleon, the underlying communication library of the original MPICH implementation.]

Grew out of an earlier message passing system, PVM (Parallel Virtual Machine),
no longer actively maintained.

* MPI-2 subsumed all significant PVM functionality.

* Current version (2023) is MPI-5.

Compiling and Running

*mpl1CC -0 myprog myprog.cpp
*mpiexec [-n 16] [-configfile foo] ./myprog <args>

 Creates specified number of Unix processes, on nodes listed in the
specified file
* Watch Blackboard for more detailed instructions

MPI Process Creation/Destruction

MPI Init(int *argc, char ***argv)
Initializes the MPI execution environment.
(Note the extra level of indirection.)

MPI Finalize (voi1d)

Terminates MPI execution environment. If you forget to make all
processes call this routine, you may leave orphans on the system
(run ps on all nodes to find them).

MPI Process Identification

MPI Comm size (comm, &size)
Determines the number of processes

MPI Comm rank (comm, &pid)
pid is the process identifier of the caller
(consecutive ints, starting with 0)

comm is typically MPT COMM WORLD — all processes in the program.

NB: by default the program dies if any call fails; return values can safely
be ignored in C and C++.

MPI Basic Send

MPI Send (buf, count, datatype, dest, tag, comm)

buf: address of send buffer

count: number of elements

datatype: data type of send buffer elements
(built-in or user-defined)

dest: process id (rank) of destination process

tag: message tag (ignore for now)

comm: communicator (e.g., MPT COMM WORLD)

MPI| Basic Receive

MPI Recv (buf, count, datatype, source, tag, comm,
&status)

buf: address of receive buffer

count: size of receive buffer in elements
datatype: data type of receive buffer elements
source: source process rank or MPTI ANY SOURCE
tag and comm: ignore for now

status: status object (indicates sender and tag)

MPI Matrix Multiply (initial version, in C)

int me, p; const int N = ..
int (*a) [N], (*b)[N], (*c) [N];
int main(int argc, char *argv([])
{
MPI Init (&argc, &argv);
MPI Comm rank (MPI COMM WORLD, é&me);
MPI Comm size (MPI COMM WORLD, &p);
// malloc space for a, b, and c
// Data distribution
// Computation
// Result gathering
MPI Finalize();

MPI Matrix Multiply (initial version)

/* Data distribution */
if (me == 0) {
for (1 = 1; 1 < p; 1i++) |
// assume p divides N evenly
MPI Send(&a[i*N/p][0], N*N/p, MPI INT, i, O,
MPI COMM WORLD) ;
// stripe of a, all of Db
MPI Send (b, N*N, MPI INT, i, 0, MPI COMM WORLD) ;
}
} else {
MPI Recv (&a[me*N/p][0], N*N/p, MPI INT, O, O,
MPI COMM WORLD, 0);
MPI Recv (b, N*N, MPI INT, 0, 0, MPI COMM WORLD, O0);
}

MPI Matrix Multiply (initial version)

/* Computation */
for (i = me*N/p; 1 < (me+l)*N/p; i++) {

for (3 = 0; j < N; J++) {
cli] 3] = 0;
for (k = 0; k < N; k++) {
cli][J] += al1]ll[k] * blk]l[J];

}
}
}

MPI Matrix Multiply (initial version)

/* Result gathering */
if (me !'= 0) {
MPI Send(&c[me*N/p][0], N*N/p, MPI INT, O, O,
MPI COMM WORLD) ;
} else {
for (1 = 1; 1 < p; 1i++) |
MPI Recv (&c[i*N/p][0], N*N/p, MPI INT, i, O,
MPI COMM WORLD, 0);

Work Performed by One Process

B

A B C

We don’t send the unused portions of A and C.
Why reserve space for them?

MPI| Matrix Multiply (with index renaming)

NB: if me != 0, a is malloc-ed
/* Data distribution */ smaller in this example

if (me == 0) {
for (1 = 1; 1 < p; 1i++) |
MPI Send(&a[i*N/p][0], N*N/p, MPI INT, i, O,
MPI COMM WORLD) ;
MPI_Send(b, N*N, MPI INT, i, O, MPI_COMM_WORLD);
}
} else {
MPI Recv(a, N*N/p, MPI INT, 0, 0, MPI COMM WORLD, O0);
MPI Recv (b, N*N, MPI INT, 0, 0, MPI COMM WORLD, O0);
}

MPI| Matrix Multiply (with index renaming)

/* Computation */
for (1 = 0; 1 < N/p; 1i++) {

for (3 = 0; J < N; jJ++) {
cli] 3] = 0;
for (k = 0; k < N; k++) {
c[1i][J] += ali]l[k] * blk]lI[]J];

MPI| Matrix Multiply (with index renaming)

/* Result gathering */
if (me !'= 0) {
MPI Send(c, N*N/p, MPI INT, 0, 0, MPI COMM WORLD) ;
} else {
for (1 = 1; 1 < p; 1i++) |
MPI Recv(&c[i*N/p][0], N*N/p, MPI INT, i, O,
MPI COMM WORLD, 0);

Global Operations (1 of 2)

 So far, we have only looked at point-to-point or one-to-one message
passing facilities.

e Often, it is useful to have one-to-many or many-to-one message
communication.

* This is what MPI’s global operations do.

Global Operations (2 of 2)

* MPI Barrier
* MPI Bcast
*MPI Scatter
* MPI Gather

* MPI Allgather
- MPI Alltoall
* MPI Reduce

* MPI Allreduce

Barrier

MPI Barrier (comm)

Global barrier synchronization, as with shared memory: all
processes wait until all have arrived.

Broadcast

MPI Bcast (inbuf, incnt, intype, root, comm)

inbuf: address of input buffer (on root);
address of output buffer (elsewhere)

incnt: number of elements
intype: type of elements
root: rank of root (sender) process

Before Broadcast

! ! ! !lnbuf

root

After Broadcast

>
>
>

root

Scatter

MPI Scatter (inbuf, incnt, intype, outbuf,
outcnt, outtype, root, comm)

inbuf: address of input buffer (on root)

incnt: number of elements sent to each process
intype: type of input elements

outbuf: address of output buffer (on non-root)
outcnt: num. elements received by each process
outtype: type of output elements (usually = intype)
root: rank of root process

Before Scatter

root

inbuf

outbuf

After Scatter

>
>
>

root

inbuf

outbuf

Gather

MPI Gather (inbuf, 1ncnt, intype, outbuf, outcnt,
outtype, root, comm)

inbuf: address of input buffer
incnt: number of input elements
intype: type of input elements
outbuf: address of output buffer
outcnt: number of output elements
outtype: type of output elements
root: rank of root process

Before Gather

root

inbuf
outbuf

After Gather

inbuf
outbuf

O 444

MPI Matrix Multiply with index renaming and
scatter/gather

main (int argc, char *argv([]) {
MPI Init(&argc, &argv);
MPI Comm rank (MPI COMM WORLD, é&me);
MPI Comm size (MPI COMM WORLD, &p);
MPI Scatter(a, N*N/p, MPI INT, a, N*N/p, MPI INT, O,
MPI COMM WORLD); // assume N$p ==
MPI Bcast (b, N*N, MPI INT, 0, MPI COMM WORLD) ;

MPI Matrix Multiply with index renaming and
scatter/gather

for (1 = 0; i < N/p; i++) {
for (3 = 0; J < N; jJ++) {
c[1][3] = 0;
for (k = 0; k < N; k++) {
i][J] += ali][k] * blk]I[J];

}

}
MPI Gather(c, N*N/p, MPI INT, c, N*N/p,

MPI_INT, 0, MPI_COMM_WORLD);
MPI_Finalize();

}

Additional Features

* Nonblocking communication

e “One-sided” communication
* Essentially remote reads and writes

» User-defined datatypes
* Nontrivial communicators
e Parallel 1/0

e User-Level Fault Mitigation (ULFM) — mechanisms to detect and
recover from individual process failures

