The Impossibility of Asynchronous Consensus

An overview of the proof of Fischer, Lynch, and Paterson

Journal of the ACM, April 1985

The Consensus Problem

- n processes, some of which may be faulty
-each correct process "proposes" a value
- in finite time, we want
- termination: each correct process decides on a value
- agreement: all correct processes decide on the same value
- validity: the agreed-on value was proposed by one of the correct processes

The FLP Result

- Michael Fischer, Nancy Lynch, and Michael Paterson, "Impossibility of Consensus with One Faulty Process," JACM, Apr. 1985
- Assuming asynchronous (arbitrary delay) messages, we can't achieve consensus even if all initial votes are either ' 0 ' or ' 1 ', all messages are eventually delivered, and faulty processes are fail-stop.
- More complex proposals, unreliable messages, or Byzantine behavior would only make things worse.

Aside: Byzantine Generals [Lamport, 1982]

- Related problem, but with a notion of "leader," and all correct processes have to decide on the leader's proposal.
- "Standard" consensus and Byzantine Generals are equally difficult (reductions in both directions-not shown here :-)

But we achieve consensus every day!

- Only by compromising on the goals
- arrange for crashed processes to recover and continue
- assume a perfect failure detector (declare a process dead if you don't hear from it for too long)
- randomize (make the possibility of indefinite indecision arbitrarily low)
- Credit: presentation here borrows heavily from Henry Robinson
http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/

System Model

- A configuration captures the current state of every process and the set of in-flight messages.
- Initially all processes are in the same state except for their initial proposal and their id, and they run the same code.
- In each time step, some process receives a message (or starts from initial state), optionally sends a message, and updates its internal state.
- At most one process may fail, by stopping.

Proof Structure

- Lemma 1: commutativity of schedules
- Lemma 2: order of message receipt matters
- Lemma 3: pumping (bulk of the proof)
- Main result follows

Lemma 1: commutativity of schedules

- If we're in configuration C and two messages are receivable, one by process p and another by process $q \neq p$, then receiving the messages in either order leads to the same configuration.
- Proof: straightforward. Every process is deterministic based on local state and content of incoming message. Configuration is just the union of local states \& in-flight messages.

Lemma 2: receipt order matters

- I.e., execution isn't determined solely by initial conditions. Proof:
- Suppose the contrary: everything is predetermined.
- Consider all possible initial configurations. List these in Greycode order of set of initial proposals.
- Each configuration differs from neighbors in the list in only one process.
- $0 . . .0$ must decide 0. 1... 1 must decide 1. Somewhere in the list there are neighbors with different decisions.
- But the one process that differs in these neighbors can fail!

Lemma 3: pumping

- Call a configuration 0 -valent if it must decide 0 ; 1-valent if it must decide 1; bivalent if it could go either way.
- Suppose we start in a bivalent configuration C, in which e might be sent. Consider all chains of configurations starting in C and ending w/ receipt of e. Let \mathcal{D} be the set of ending configurations of those chains. Claim: \mathcal{D} contains a bivalent config.
- That is: if we can delay e arbitrarily long, we can guarantee the existence of an execution in which e is received in a bivalent config \rightarrow indefinite delay.

Proof

- Suppose the contrary: no bivalent configurations in \mathcal{D}. Let \mathcal{C} be the set of configurations reachable from C w/out receiving e. (Note that every config in \mathcal{D} is reached by receiving e when in some config in $\boldsymbol{\mathcal { C }}$.)
- Claim 3a: there must be both 0 -valent and 1 -valent configurations in \mathcal{D}.
- Consider 0 -valency first. Clearly there is a 0 -valent configuration EO reachable from C , since C is bivalent. Reaching it might or might not entail receiving e.
- EO is univalent, and must exist, since C is bivalent
- Fix FO in \mathcal{D} : must also be univalent, by assumption
- FO and EO must have same valency (0); whichever comes first, the other exists
- Same argument works for 1-valent case.

- Claim 3b: there is a pair of configs $\mathrm{C0}, \mathrm{C} 1$ in \mathcal{C} s.t.
- receiving e in CO takes you to a 0-valent config DO in \mathcal{D}
- receiving e in C1 takes you to a 1-valent config D1 in \mathcal{D}
- C0 and C1 are neighbors: you get to one of them by receiving some message e^{\prime} when in the other. WLOG, say $\mathrm{CO} \rightarrow \mathrm{e}^{\prime} \rightarrow \mathrm{C} 1$ (can easily enumerate the other case).
- To see this, assume the contrary. Then (by logic similar to the proof of Lemma 2) on every chain from the initial configuration C , receiving e in any config takes you to uniformly 0 -valent or 1 -valent configs. But the root is in all chains, at it's supposed to be bivalent!

Taking Stock

- Assuming that there are no bivalent configs in \mathcal{D}, know that
- There are both 0 -valent \& 1 -valent configs in \mathcal{D}
- There are neighbors C0 and C1 that go to \mathcal{D} configs D0 and D1, of different valency, on e
- Note that in D1 we have received e' but in D0 we haven't.
- Want a contradiction with no further assumptions.
- Two cases: e and e' are received by different or same processes.
- Case 1: e and e' have different recipients
- D0 and D1 have different univalencies
- By Lemma 2, é must take us from D0 to D1, a contradiction

- Case 2: e and e' have same recipient, p
- Consider finite deciding run from C0, in which p takes no steps (has to exist, because p might fail); say this ends in A
- Take same sequence of message receipts and run from D0 \& D1 (has to make sense, since D0 and D1 differ from C0 only in the state of p)

- (continued) config EO, reached from DO, must be 0-valent; config E1, reached from D1, must be 1-valent
- But by Lemma 2, $A \rightarrow e \rightarrow E 0$ and
$A \rightarrow e^{\prime} \rightarrow e \rightarrow E 1$
- This means A is bivalent, contradicting assumption that it ends a deciding run

Back to Main Theorem

- Lemma 2 says there's a bivalent starting config.
- Lemma 3 says we can receive a nonzero number of messages from that config and end up in another bivalent config. We can repeat this inductively and get a non-deciding chain of arbitrary length.
- Note that we used the possibility of a (single) failure twice in the proof.

