
The Impossibility of
Asynchronous Consensus

An overview of the proof of Fischer, Lynch, and Paterson

Journal of the ACM, April 1985

The Consensus Problem

•n processes, some of which may be faulty
•each correct process “proposes” a value
• in finite time, we want
• termination: each correct process decides on a value
• agreement: all correct processes decide on the same

value
• validity: the agreed-on value was proposed by one of the

correct processes

The FLP Result

•Michael Fischer, Nancy Lynch, and Michael
Paterson, “Impossibility of Consensus with One
Faulty Process,” JACM, Apr. 1985
• Assuming asynchronous (arbitrary delay) messages, we

can’t achieve consensus even if all initial votes are either
‘0’ or ‘1’, all messages are eventually delivered, and faulty
processes are fail-stop.
•More complex proposals, unreliable messages, or

Byzantine behavior would only make things worse.

Aside: Byzantine Generals [Lamport, 1982]

•Related problem, but with a notion of “leader,” and
all correct processes have to decide on the leader’s
proposal.
• “Standard” consensus and Byzantine Generals are

equally difficult (reductions in both directions—not
shown here :-)

But we achieve consensus every day!

•Only by compromising on the goals
• arrange for crashed processes to recover and continue
• assume a perfect failure detector (declare a process dead

if you don’t hear from it for too long)
• randomize (make the possibility of indefinite indecision

arbitrarily low)

•Credit: presentation here borrows heavily from
Henry Robinson

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/

System Model

•A configuration captures the current state of every
process and the set of in-flight messages.
• Initially all processes are in the same state except

for their initial proposal and their id, and they run
the same code.
• In each time step, some process receives a message

(or starts from initial state), optionally sends a
message, and updates its internal state.
•At most one process may fail, by stopping.

Proof Structure

• Lemma 1: commutativity of schedules
• Lemma 2: order of message receipt matters
• Lemma 3: pumping (bulk of the proof)
•Main result follows

Lemma 1: commutativity of schedules

• If we’re in configuration C and two messages are
receivable, one by process p and another by
process q ≠ p, then receiving the messages in either
order leads to the same configuration.
•Proof: straightforward. Every process is

deterministic based on local state and content of
incoming message. Configuration is just the union
of local states & in-flight messages.

Lemma 2: receipt order matters

• I.e., execution isn’t determined solely by initial
conditions. Proof:
• Suppose the contrary: everything is predetermined.
• Consider all possible initial configurations. List these in Grey-

code order of set of initial proposals.
• Each configuration differs from neighbors in the list in only one

process.
• 0...0 must decide 0. 1...1 must decide 1. Somewhere in the list

there are neighbors with different decisions.
• But the one process that differs in these neighbors can fail!

Lemma 3: pumping
• Call a configuration 0-valent if it must decide 0;
1-valent if it must decide 1; bivalent if it could go either
way.
• Suppose we start in a bivalent configuration C, in which

e might be sent. Consider all chains of configurations
starting in C and ending w/ receipt of e. Let ! be the
set of ending configurations of those chains. Claim: !
contains a bivalent config.
• That is: if we can delay e arbitrarily long, we can

guarantee the existence of an execution in which e is
received in a bivalent config → indefinite delay.

Proof

•Suppose the contrary: no bivalent configurations in
!. Let " be the set of configurations reachable from
C w/out receiving e. (Note that every config in ! is
reached by receiving e when in some config in ".)
•Claim 3a: there must be both 0-valent and 1-valent

configurations in !.
• Consider 0-valency first. Clearly there is a 0-valent

configuration E0 reachable from C, since C is bivalent.
Reaching it might or might not entail receiving e.

• E0 is univalent, and
must exist, since C is
bivalent

• Fix F0 in !: must also
be univalent, by
assumption

• F0 and E0 must have
same valency (0);
whichever comes first,
the other exists

• Same argument works
for 1-valent case.

•Claim 3b: there is a pair of configs C0, C1 in ! s.t.
• receiving e in C0 takes you to a 0-valent config D0 in "
• receiving e in C1 takes you to a 1-valent config D1 in "
• C0 and C1 are neighbors: you get to one of them by

receiving some message e’ when in the other. WLOG, say
C0 → e’ → C1 (can easily enumerate the other case).

• To see this, assume the contrary. Then (by logic similar to
the proof of Lemma 2) on every chain from the initial
configuration C, receiving e in any config takes you to
uniformly 0-valent or 1-valent configs. But the root is in all
chains, at it’s supposed to be bivalent!

Taking Stock

•Assuming that there are no bivalent configs in !, know
that
• There are both 0-valent & 1-valent configs in !
• There are neighbors C0 and C1 that go to ! configs D0 and D1,

of different valency, on e
•Note that in D1 we have received e’ but in D0 we

haven’t.
•Want a contradiction with no further assumptions.
• Two cases: e and e’ are received by different or same

processes.

• Case 1: e and e’ have
different recipients

• D0 and D1 have
different univalencies

• By Lemma 2, e’ must
take us from D0 to D1,
a contradiction

• Case 2: e and e’ have
same recipient, p

• Consider finite deciding
run from C0, in which p
takes no steps (has to
exist, because p might
fail); say this ends in A

• Take same sequence
of message receipts
and run from D0 & D1
(has to make sense, since
D0 and D1 differ from C0
only in the state of p)

• (continued) config E0,
reached from D0, must
be 0-valent; config E1,
reached from D1, must
be 1-valent

• But by Lemma 2,
A → e → E0 and
A → e’ → e → E1

• This means A is
bivalent, contradicting
assumption that it ends a
deciding run

Back to Main Theorem

• Lemma 2 says there’s a bivalent starting config.
• Lemma 3 says we can receive a nonzero number of

messages from that config and end up in another
bivalent config. We can repeat this inductively and
get a non-deciding chain of arbitrary length.
•Note that we used the possibility of a (single) failure

twice in the proof.

