Asynchro

ne |

00SSibil

'

ous Co

ity of

NSensus

An overview of the proof of Fischer, Lynch, and Paterson

Journal of the ACM, April 1985



The Consensus Problem

*n processes, some of which may be faulty
* each correct process “proposes” a value

*in finite time, we want

e termination: each correct process decides on a value

* agreement: all correct processes decide on the same
value

* validity: the agreed-on value was proposed by one of the
correct processes



The FLP Result

* Michael Fischer, Nancy Lynch, and Michael
Paterson, “Impossibility of Consensus with One
Faulty Process,” JACM, Apr. 1985

e Assuming asynchronous (arbitrary delay) messages, we
can’t achieve consensus even if all initial votes are either
‘0" or ‘1’, all messages are eventually delivered, and faulty
processes are fail-stop.

* More complex proposals, unreliable messages, or
Byzantine behavior would only make things worse.



Aside: Byzantine Generals [Lamport, 1982]

* Related problem, but with a notion of “leader,” and
all correct processes have to decide on the leader’s
proposal.

e “Standard” consensus and Byzantine Generals are
equally difficult (reductions in both directions—not
shown here :-)



But we achieve consensus every day!

* Only by compromising on the goals
* arrange for crashed processes to recover and continue

e assume a perfect failure detector (declare a process dead
if you don’t hear from it for too long)

* randomize (make the possibility of indefinite indecision
arbitrarily low)



* Credit: presentation here borrows heavily from
Henry Robinson
http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/



System Model

* A configuration captures the current state of every
process and the set of in-flight messages.

* Initially all processes are in the same state except
for their initial proposal and their id, and they run
the same code.

*In each time step, some process receives a message
(or starts from initial state), optionally sends a
message, and updates its internal state.

* At most one process may fail, by stopping.



Proof Structure

* Lemma 1: commutativity of schedules
*Lemma 2: order of message receipt matters

* Lemma 3: pumping (bulk of the proof)
* Main result follows



Lemma 1: commutativity of schedules

*If we're in configuration C and two messages are
receivable, one by process p and another by
process g # p, then receiving the messages in either
order leads to the same configuration.

* Proof: straightforward. Every process is
deterministic based on local state and content of
incoming message. Configuration is just the union
of local states & in-flight messages.



Lemma 2: receipt order matters

* |.e., execution isn’t determined solely by initial
conditions. Proof:
* Suppose the contrary: everything is predetermined.

* Consider all possible initial configurations. List these in Grey-
code order of set of initial proposals.

 Each configuration differs from neighbors in the list in only one
process.

* 0...0 must decide 0. 1...1 must decide 1. Somewhere in the list
there are neighbors with different decisions.

* But the one process that differs in these neighbors can fail!



Lemma 3: pumping

e Call a configuration 0-valent if it must decide O;
1-valent if it must decide 1; bivalent if it could go either
way.

* Suppose we start in a bivalent configuration C, in which
e might be sent. Consider all chains of configurations
starting in C and ending w/ receipt of e. Let D be the
set of ending configurations of those chains. Claim: D
contains a bivalent config.

* That is: if we can delay e arbitrarily long, we can
guarantee the existence of an execution in which e is
received in a bivalent config = indefinite delay.



Proof

e Suppose the contrary: no bivalent configurations in
D. Let C be the set of configurations reachable from
C w/out receiving e. (Note that every config in D is
reached by receiving e when in some configin C.)

e Claim 3a: there must be both 0-valent and 1-valent
configurations in D.

* Consider O-valency first. Clearly there is a O-valent
configuration EO reachable from C, since C is bivalent.
Reaching it might or might not entail receiving e.



EO is univalent, and
must exist, since Cis
bivalent

Fix FO in D: must also
be univalent, by
assumption

FO and EO must have
same valency (0);
whichever comes first,
the other exists

Same argument works
for 1-valent case.

7

Computation without
receipt of e

C - all configurations
reachable from C

ED where e has not been
received

Receipt of e

Computation with
receipt of

-

Y
D - all configurations
reachable from C

° where & has been
received

M

@

Computation without
receipt of e

Y




* Claim 3b: there is a pair of configs CO, C1 in C s.t.

* receiving e in CO takes you to a 0-valent config DO in D
* receiving e in C1 takes you to a 1-valent config D1 in D

* CO and C1 are neighbors: you get to one of them by
receiving some message €’ when in the other. WLOG, say
CO - e’ - C1 (can easily enumerate the other case).

* To see this, assume the contrary. Then (by logic similar to
the proof of Lemma 2) on every chain from the initial
configuration C, receiving e in any config takes you to
uniformly 0-valent or 1-valent configs. But the root is in all
chains, at it’s supposed to be bivalent!



Taking Stock

* Assuming that there are no bivalent configs in D, know
that

* There are both 0-valent & 1-valent configs in D

* There are neighbors CO and C1 that go to D configs DO and D1,
of different valency, on e

* Note that in D1 we have received e’ but in DO we
haven't.

* Want a contradiction with no further assumptions.

* Two cases: e and e’ are received by different or same
processes.



e Case 1:e and e’ have o
different recipients
Receipt of e’

e DO and D1 have

different univalencies @

, Receipt of e
* BylLemma 2, e must
take us from DO to D1, |
. . Receipt of e
a contradiction '
Y
D - all configurations
reachable from C
where e has been
v\ received K

Rece_ipt of e’



 Case 2:eand e’ have
same recipient, p

e Consider finite deciding
run from CO, in which p
takes no steps (has to
exist, because p might
fail); say this ends in A

Receipt of '
Receipt of e

Deciding run A
where p takes

no steps (therefore
Receipt of e e not received)

O\

* Take same sequence
of message receipts
and run from DO & D1

D - all configurations
reachable from C
where e has been

received

(has to make sense, since
DO and D1 differ from CO
only in the state of p)

é

Rece|pl of Receipt of e .
e'and e

>




* (continued) config EO,
reached from DO, must
be 0-valent; config E1,
reached from D1, must
be 1-valent

 ButbylLemma 2,

A—> e - EOand

Receipt of '

Receipt of e

Q\

Deciding run A
where p takes

no steps (therefore
Receipt of e e not received)

A->e >e—>El
 Thismeans Ais
bivalent, contradicting

D - all configurations
reachable from C
where e has been

received

°4

assumption that it ends a
deciding run

Rece|pl of Receipt of e
e'and e




Back to Main Theorem

* Lemma 2 says there’s a bivalent starting config.

* Lemma 3 says we can receive a nonzero number of
messages from that config and end up in another
bivalent config. We can repeat this inductively and
get a non-deciding chain of arbitrary length.

* Note that we used the possibility of a (single) failure
twice in the proof.



