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The Consensus Problem

•n processes, some of which may be faulty
•each correct process “proposes” a value
• in finite time, we want
• termination: each correct process decides on a value
• agreement: all correct processes decide on the same 

value
• validity: the agreed-on value was proposed by one of the 

correct processes



The FLP Result

•Michael Fischer, Nancy Lynch, and Michael 
Paterson, “Impossibility of Consensus with One 
Faulty Process,” JACM, Apr. 1985
• Assuming asynchronous (arbitrary delay) messages, we 

can’t achieve consensus even if all initial votes are either 
‘0’ or ‘1’, all messages are eventually delivered, and faulty 
processes are fail-stop.
•More complex proposals, unreliable messages, or 

Byzantine behavior would only make things worse.



Aside: Byzantine Generals [Lamport, 1982]

•Related problem, but with a notion of “leader,” and 
all correct processes have to decide on the leader’s 
proposal.
• “Standard” consensus and Byzantine Generals are 

equally difficult (reductions in both directions—not 
shown here :-) 



But we achieve consensus every day!

•Only by compromising on the goals
• arrange for crashed processes to recover and continue
• assume a perfect failure detector (declare a process dead 

if you don’t hear from it for too long)
• randomize (make the possibility of indefinite indecision 

arbitrarily low)



•Credit: presentation here borrows heavily from 
Henry Robinson

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/



System Model

•A configuration captures the current state of every 
process and the set of in-flight messages.
• Initially all processes are in the same state except 

for their initial proposal and their id, and they run 
the same code.
• In each time step, some process receives a message 

(or starts from initial state), optionally sends a 
message, and updates its internal state.
•At most one process may fail, by stopping.



Proof Structure

• Lemma 1: commutativity of schedules
• Lemma 2: order of message receipt matters
• Lemma 3: pumping (bulk of the proof)
•Main result follows



Lemma 1: commutativity of schedules

• If we’re in configuration C and two messages are 
receivable, one by process p and another by 
process q ≠ p, then receiving the messages in either 
order leads to the same configuration.
•Proof: straightforward.  Every process is 

deterministic based on local state and content of 
incoming message.  Configuration is just the union 
of local states & in-flight messages.



Lemma 2: receipt order matters

• I.e., execution isn’t determined solely by initial 
conditions.  Proof:
• Suppose the contrary: everything is predetermined.
• Consider all possible initial configurations.  List these in Grey-

code order of set of initial proposals.
• Each configuration differs from neighbors in the list in only one 

process.
• 0...0 must decide 0.  1...1 must decide 1.  Somewhere in the list 

there are neighbors with different decisions.
• But the one process that differs in these neighbors can fail!



Lemma 3: pumping
• Call a configuration 0-valent if it must decide 0;
1-valent if it must decide 1; bivalent if it could go either 
way.
• Suppose we start in a bivalent configuration C, in which 

e might be sent.  Consider all chains of configurations 
starting in C and ending w/ receipt of e.  Let ! be the 
set of ending configurations of those chains.  Claim: !
contains a bivalent config.
• That is: if we can delay e arbitrarily long, we can 

guarantee the existence of an execution in which e is 
received in a bivalent config → indefinite delay.



Proof

•Suppose the contrary: no bivalent configurations in 
!.  Let " be the set of configurations reachable from 
C w/out receiving e. (Note that every config in ! is 
reached by receiving e when in some config in ".)
•Claim 3a: there must be both 0-valent and 1-valent 

configurations in !.
• Consider 0-valency first.  Clearly there is a 0-valent 

configuration E0 reachable from C, since C is bivalent.  
Reaching it might or might not entail receiving e.



• E0 is univalent, and 
must exist, since C is 
bivalent

• Fix F0 in !: must also 
be univalent, by 
assumption

• F0 and E0 must have 
same valency (0); 
whichever comes first, 
the other exists

• Same argument works 
for 1-valent case.



•Claim 3b: there is a pair of configs C0, C1 in ! s.t.
• receiving e in C0 takes you to a 0-valent config D0 in "
• receiving e in C1 takes you to a 1-valent config D1 in "
• C0 and C1 are neighbors: you get to one of them by 

receiving some message e’ when in the other.  WLOG, say 
C0 → e’ → C1 (can easily enumerate the other case).

• To see this, assume the contrary.  Then (by logic similar to 
the proof of Lemma 2) on every chain from the initial 
configuration C, receiving e in any config takes you to 
uniformly 0-valent or 1-valent configs.  But the root is in all 
chains, at it’s supposed to be bivalent!



Taking Stock

•Assuming that there are no bivalent configs in !, know 
that
• There are both 0-valent & 1-valent configs in !
• There are neighbors C0 and C1 that go to ! configs D0 and D1, 

of different valency, on e
•Note that in D1 we have received e’ but in D0 we 

haven’t.
•Want a contradiction with no further assumptions.
• Two cases: e and e’ are received by different or same 

processes.



• Case 1: e and e’ have 
different recipients

• D0 and D1 have
different univalencies

• By Lemma 2, e’ must
take us from D0 to D1,
a contradiction



• Case 2: e and e’ have 
same recipient, p

• Consider finite deciding 
run from C0, in which p 
takes no steps (has to 
exist, because p might 
fail); say this ends in A

• Take same sequence
of message receipts 
and run from D0 & D1
(has to make sense, since 
D0 and D1 differ from C0 
only in the state of p)



• (continued) config E0, 
reached from D0, must 
be 0-valent; config E1, 
reached from D1, must 
be 1-valent

• But by Lemma 2,
A → e → E0 and 
A → e’ → e → E1

• This means A is
bivalent, contradicting 
assumption that it ends a 
deciding run



Back to Main Theorem

• Lemma 2 says there’s a bivalent starting config.
• Lemma 3 says we can receive a nonzero number of 

messages from that config and end up in another 
bivalent config.  We can repeat this inductively and 
get a non-deciding chain of arbitrary length.
•Note that we used the possibility of a (single) failure 

twice in the proof.


