
COMPUTER SCIE CES 
DEPARTME T 
University of Wisconsin-= 
Madison 

PARTITIONING FILES FOR HUFFMAN ENCODING 

by 

Michael L. Scott 
Raphael A. Finkel 

Computer Sciences Technical Report #540 

April 1984 



Partitioning Files for Huffman Encoding 

Michael L. Scott 
Raphael A. Finkel 

Department of Computer Sciences 
University of Wisconsin - Madison 

1210 W. Dayton 
Madison, WI 53706 

April 1984 

ABSTRACT 

When the relative frequencies of characters vary significantly within a single file, it may 
be desirable to use a different Huffman code on different phases of the file. This note 
presents an heuristic algorithm for determining the boundaries between phases. 

l. Introduction 

Huffman encoding [3J is a well-known technique for data compression. The "standard" algo­
rithm works off-line. Its first pass assigns each character a bit-string code whose length depends on 
the number of times the character appears. Common characters receive shorter codes. The second 
pass re-writes the data, using the new encoding. 

Gallager [2J has developed an on-line adaptive algorithm. At a given point during execution, 
the coding to be used for the next character is the coding the off-line algorithm would have used for 
the portion of the data seen so far. The code used for the first few characters is less than optimal; on 
the other hand there is no need to prepend a translation table. We have found the on- and off-line 
algorithms to work equally well on almost all disk files. 

The amount of compression achievable from either algorithm depends on the entropy of the data 
as a whole [1 J. Consequently a file composed of several very different phases may not compact 
nearly as well as the individual phases would themselves. An example of such a file is a document in 
English containing large tables of numerical data. 

If we could identify the phases of a file we could use a different encoding for each. Ideally we 
would like an on-line algorithm that determines when the local entropy of a file is significantly lower 
than the global entropy. We present a algorithm that, though theoretically less accurate, nonetheless 
agrees well with our intuitive notion of a phase and performs well in practice. 

2. The Algorithm 

We assign a weight to each byte in our file. The first occurrence of a distinct character C IS 

assigned weight 1, the second weight 2, the third weight 3, and so on. For example 

fik: abccadbce 
weights: 1 1 1 2 2 1 2 3 1 
total weight: 14 

As we read through the file we add up the weights of all the bytes so far. We also add up the 
weights of the most recent Il bytes. From these two totals we compute the average weight per byte 
so far and the average weight of the last Il bytes. When the local average falls below the global 

This work was supported in part by NSF grant number MCS-8105904. by Arpa contract number N0014/821C/2087, and 
by a Bell Telephone Laboratories Doctoral Scholarship. 



2 

average we know that most of the recent characters are not common in the beginning of the file. We 
look back through the last II bytes for a maximum in the global average (it must be falling) and 
announce a phase change at that point. We then re-start the algorithm on the remainder of the file. 

If rN.c is the number of occurrences of the character c in the first N bytes of the file, then the 
global average weight is 

1 
N 

and the local average weight is 

distillct 
ciluructen 

c 

1 + 1 ~ 2 
2 2N £..rN,c 

c 

.!.. (rN ,c+ 1
)._ (rN - Il ,C+ 1

) 
II}: 2 2 

c 

1 + 1 2 2 

2 
-}:rNc-rN-lIc 211 c' , 

We announce a phase change when 

1 2· 1 2 2 
2N }: rN,c > ?;;}: rN,c - rN-Il,c 

c - c 

that is, when 

l~r2 < _1_~r2 
N £.. N,c N- n £.. N-Il,c 

c C 

By way of comparison, a true entropy-measuring algorithm would announce a phase change 
whenever 

3. Practical Considerations 

The "standard" off-line Huffman algorithm is not efficient for small amounts of data, due to the 
size of the prepended translation table. By using the adaptive algorithm on individual phases we can 
minimize the size of the smallest phase worth keeping. We prefix each phase of the compacted file 
with a simple count of the number of bytes it contains. 

We can tune the partitioning algorithm by varying II. We can also vary the number of bytes 
passed over in the beginning of each phase to allow the averages to stabilize. We have obtained good 
results by requiring the global average to involve at least 2n bytes before comparing it to the local 
average. Allowing fewer than 2n bytes tends to result in a large number of very small phases. 
Requiring more than 2n bytes does not seem to change the behavior of the algorithm significantly. 

4. Experimental Results 

We have implemented the partition-compact algorithm under Berkeley UNIX 4.2* on a V AX 
Our program spends less than 20% of its time discovering phases and more than 80% of its time com­
pacting them . 

• UNIX is a trademark of Bell Telephone Laboratories 



3 

It is easy to create files on which the program eliminates 10% more of the original length of the 
file than does the standard algorithm. Results are also impressive for most executable files, with 
additional compactions ranging between 5% and 10%. 

When n is small (say 30 bytes) it is easy to find files on which the partition-compact program 
performs significantly worse than the standard algorithm. When n is as large as 512 such pathologi­
cal behavior disappears. 

Pascal programs show no significant improvement, nor do English documents. We have noticed 
2% or 3% additional compaction for technical papers containing a moderate number of numerical 
tables. 

5. Conclusion 

Given that no one really wants to compress executable files, and given the modest gains for most 
other file types, we would recommend multi-phase compacting for unusual applications only - ones 
in which the relative frequencies of characters vary significantly over time. For such applications the 
partitioning algorithm presented above is a simple, effective, and efficient means of identifying 
phases. 

Acknowledgment 

Our interest in Huffman encoding originated in Sam Bent's seminar on trees. 

References 

[1] Gallager, R. G., III formation Theory and Reliable Communication, Wiley, New York (1968). 

[2] Gallager, R. G., "Variations on a Theme of Huffman," IEEE Transactiom on Information 
Theory IT-24, 6, pp. 668-674 (November 1978). 

[3] Huffman, D. A., "A Method for the Construction of Minimum-Redundancy Codes," 
Proceedings of the IRE 40, 9, pp. 1098-1101 (September 1952). 




