
DESIGN AND IMPLEMENTATION OF
A DISTRIBUTED SYSTEMS LANGUAGE

by

Michael Lee Scott

Computer Sciences Technical Report #596

May 1985

DESIGN AND IMPLEMENTATION OF
A DISTRIBUTED SYSTEMS LANGUAGE

by

MICHAEL LEE SCOTT

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

1985

© Copyright by Michael Lee Scon 1985

All rights reserved

ii

ABSTRACT

In a distributed environment, processes interact solely through the

exchange of messages. Safe, convenient, and emcient communication is of vital

importance, not only for th\! tightly-coupled components of parallel algorithms,

hut also for more loosely-coupled us\!rs '01' distrihuwd resources. Server

processes in particular must b\! ablt to communicate effectively with clients writ­

ten at widely varying times and displaying largely unpredictable behavior. Such

communication requires high-level language support.

Interprocess communication can be supported by augmenting a conven­

tional sequential language with direct calls to operating system primitives, but the

result is both cumbersome and dangerous. Convenience and safety are offered

by the many distributed languages proposed to date, but in a form too innexible

to support loosely-coupled applications. A new language known as LYNX over­

comes the disadvantages of both these previous approaches.

The name of the language is a play on its use of duplex communical1on

links. Links are a mechanism for the naming, protection, and abstraction of dis­

tributed resources. They allow the connections between processes to be

inspected and altered dynamically. Additional language features support the divi­

sion of processes IOto mUltiple threads of contro\. The interaction of threads and

links facilitates the construction of servers.

Experience with L YN X indicates that the language IS a significant improve­

ment over existing notations for interprocess communicallon. An implementation

on top of the Charlotte distributed operallng system presented several interesting

problems and yielded unexpected insights into the nature of the

language/operating system interface. A paper design of an implementation for

iii

the SODA distributed operating system was in some ways considerably simpler,

The Charlotte implementation is complete and performs well.

iv

ACKNOWLEDGMENTS

Many people can contribute 10 the success of a document with only one

name on the title page. This section serves to acknowledge my debt to all those

many others.

The most personal thanks are of course non-technIcaL The contributions

of my parents, Dorothy SCOll and Peter Lee SCOll, 10 my education, values, and

general well-being are beyond estimation. Equally great is the debt to my dear

wife Kelly Flynn, who taught me that the important things in life have nothing to

do with computer science.

Credit for much of the work described herein belongs to my tireless advi­

sor, Associate Professor Raphael Finkel. If I ever learn 10 think off-line as well

as Raphael does in real lime, I'll be doing very well. Close behind Raphael

comes his colleague, Marvin Solomon. As a principal investigator for the Char-

10lle project and as the teacher of several of my formative courses, Marvin has

had a major role in shaping my ideas. Members of my final committee deserve

thanks, 100, for their patience and constructive criticism: Bart Miller, Udi

Manber, Terry Millar, Mary Vernon, and Larry Landwe.ber.

Behind the Charlotte and Crystal projeclS stands a brave and motley crew.

Yeshayahu Artsy and Hung-Yang Chang built the current Charlolle kernel.

Cui-qing Yang maintains the servers. Nancy Hall put in long hours on the vir­

tual terminal package and the modula compiler, Tom Virgilio built our com­

munications driver and Bob Gerber built its buddy Of! the hoslS. Prasun Dewan,

Aaron Gordon, and Mike Litzkow shared my hapless tour of duty as initial users

of a untried operating system. Bill Kalsow and Bryan Rosenburg were the pro­

jects' knights-errant, keeping us all on our lOes. Bryan also built several of the

v

original servers and Bill saved me countless hours of effort by suggesting that my

compiler generate C as an "intermediate language."

Generous financial support for my work came from the Wisconsin Alumni

Research Foundation (by way of the UW graduate fellowships ornce), the Gen­

eral Electric Corporation (through their "forgivable loan" program), the

National Science Foundation (grant number MCS-8J05904), the Defense

Advanced Research Projects Agency (contract number NOOI4/82/C/2087), and

AT&T Bell Lahoratories (through their doctoral scholarship program).

Chapter I was originally wrillen for an independent study course supervised

by Raphael FinkeL Intermediate drafts benefited from the wrillen comments of

Marvin Solomon and Prasun Dewan. A version very similar to the one included

here was published as UW Technical Report #563.

CONTENTS

ABSTRACT

ACKNOWLEDGMENTS

Introduction

Chapter I: A Survey of Existing Distributed Languages

I. Introduction .. .

2. The Framework

2.1. Processes and Modules

2.2. Communication Paths

2.3. Naming

2.4. Synchronization .. .

2.5. Implicit and Explicit Message Receipt

2.6. Details of the Receive Operation

2.6.1. Message Screening .. .

2.6.2. Multiple Rendezvous .. .

2.7. Side Issues .. .

3. Several Languages .. .

3.1. Path ExpressIOns

3.2. Monitor Languages .. .

3.3. Extended POP-2

3.4. Communicating Sequential Processes

3.5. Distribuled Processes

3.6. Gypsy .. :

3.7. PUTS and ZENO

3.8. EXlended CLU and Argus .. .

3.9. Communication Port .. .

3.10. Edison

3.11. StarMod

3.12. ITP

3.13. Ada

3.14. Synchronizing Resources

3.15. Linda .. .

vi

ii
iv

IO

IO

11

12

13

16

17

19

20
21

23
24
27
27
29
34

35

37

38

39

40
41

42

43

44
45

46
48

3.16. NIL

4. Related Notions

4.1. Concurrent Languages .. .

4.2. Nelson's Remote Procedure Call

4.3. Distributed Operating Systems

4.3.1. Links .. .

4.3.2. SODA

5. Conclusion

Chapter 2: An Overview of LYNX

I. Introduction

2. Main Concepts

3. Links .. .

4. Sending Messages

5. Receiving Messages Explicitly

6. Entries

7. Exceptions

8. Blocking Statements

9. Examples

9.1. Producer and Consumer

9.2. Bounded Buffer

9.3. Priority Scheduler

9.4. Readers and Writers .. .

Chapter 3: Rationale .. .

I. Introduction

2. Major Decisions

2.1. Links

2.2. Threads of Control

3. Minor Decisions

3.1. Synchronization

3.2. Explicit and Implicit Message Receipt

3.3. Syntax

3:4. Exceplions .. .

4. Experience

vii

49

50

50

51

52
52
53

55

56

56

57

58

59

59

60
62
63

64

64

65
67

69

73

73

73

74
80
83

83

85

91

92
94

Chapter 4: Implementation

1. Introduction .. .

2. Overview of Charlolte

3. The Charlotte Implementation

3.1. Threads of Control

3.2. Communication .. .

3.3. Type Checking

3.4. Exceptions .. .

4. Problems

4.1. Unwanted Messages

4.2. Moving Multiple Links

4.3. Seman lie Complications .. .

5. A Paper Implementation for SODA

5.1. A Review of the SODA Primitives

5.2. A Different Approach to Links

5.3. Comparison to Charlolle

6. Measurements

6.1. Size

6.2. Threads of Control .. .

6.3. Communicalion :

6.4. Predicted Values for SODA

Conclusion

Directions for Future Research

Appendix: LYNX Reference Manual

I. Lexical Conventions

2. Types .. .

2.1. Pre-defined Types

2.2. Enumerations .. .

2.3. Subranges .. .

2.4. Array Types .. .

2.5. Record Types

2.6. Set Types

3. Declarations .. .

3.1. Types

viii

96
96

96

98
98
99

100
103
104
104
108
III

112
112
113
117
120

120
121
123
125

128
130

134

134
137

137

138

138
139
139

141
141
142

3.2. Constants

3.3. Variables .. .

3.4. Exceptions

3.5. Subroutines

3.6. Entries

3.7. Modules .. .

4. Scope .. .

5. Expressions

5.1. Atoms

5.2. Set Expressions .. .

5.3. Function Calls

5.4. Operators

5.4.1. Operator Precedence .. .

5.4.2. Operator Semantics .. .

6. Statements

6.1. Assignment Statement

6.2. Procedure Call

6.3. If Statement

6.4. Case Statement

6.5. Loop Statements

6.5.1. Forever Loop

6.5.2. While Loop

6.5.3. Repeat Loop , .. .

6.5.4. roreach Loop .. .

6.6. Exit Stalement .. .

().7. Return Statement .. .

(loll. Wilh Statement

6.9 .. Bind and Unbind Statemenls

6.10. Awail Stalemenl .. .

6.11. Compound Statemenl

6.12. Raise Stalemenl

6.13. Input/Output Stalements

6.14. Communication Stalements

6.14.1. Connect and Call Stalements

6.14.2. Accept Stalemenl

ix

142
142
143
143
145
146
146
i48

148

149

150
150

151
151
154

155
156
156
157

158
158

158
158

159

160
161
161
162
162
163
164
164

165

165
166

x

6.14.3. Reply Stalement 167

6.14.4. Send Statement 167

6.14.S. Receive Statement 168

6.14.(). Communicalion Rules 169

6.14.7. Enclosures ... 169

7. Execution.. 170

7.1. Blocking Statements .. 173

7.2. Exception Handling .. 174

7.3. Message TYr;e Checking ... 177

8. Pre-defined Identiliers ... 178

9. Collected Syntax .. 179

REFERENCES 184

Introduction

The first task of an introduction is to establish definitions. I begin with the

words in my title.

I use the adjective distributed to describe any hardwan: or software involv­

ing interacting computations on processors that share no physical memory. Dis­

tributed algorithms usually entail concurrency, thac is, they require the simul­

taneous eXistence of more than one thread of control. If these threads can exe­

cute simultaneOUSly we say they proceed in parallel.

The subject area of distributed computing is exceedingly broad. Distributed

hardware always consists of nodes connected by a communication medium.

but beyond that very little is I1xed. The nodes may be homogeneous or hetero­

geneous. They may be uniprocessors or multiprocessors. The communication

medium can be almost anything, so long as it remains connected. To stay within

the realm of feasibility. this dissertation addresses a very narrow subject: a sys­

tems programming language for a multicomputer,

As discussed here. a multicomputer is a connected network of homogene­

ous uniprocessors. used as a single machine.

A multicomputer is an allractive hardware option· for any organization whose

computing load is easily divided into a large number of independent jobs.

Interactive timesharing is an obvious example. So long as there are enough jobs

to keep its nodes busy. a multicomputer timesharing system offers the advantages

2

of low response-time variance. graceful degradation in the event of failures.

incremental upgrades, and essentially linear gains in throughput with increasing

cost.

A multicomputer requires a distributed operating system. Several such

operating systems have been built or are under construction

[1,2,25,30.41,69.92,94,101.102,109]. Most employ a relatively small ker­

nel, replicated on each node. that cooperates with the hardware to provide the

most basic services: communication, low-level device control. and protection.

Such traditional operating system functions as resource and device management.

routing and directory maintenance. and medium- and long-term scheduling can

be provided by server processes that run in the same environment as user pro-

grams.

There are several reasons for separating servers from the kernel. To the

extent that the kernel provides mechallisms while the servers set policy [120].

separation yields the traditional advantages of clarity, ease of maintenance. and

the avoidance of mistakes. In addition. considerable amounts of memory can be

saved by installing servers on a relatively small number of nodes. finally. a

server responsible for the management of an entire neighborhood of nodes can

often make beller decisions on the basis of regional information than it could with

purely local data.

Together, the kernel and servers constitute the operating system of the mul­

ticomputer. They are systems programs in the sense that they exist to make the

system useful. The kernel runs on a bare machine and implements a new.

abstract machine that is safer and easier to use. The servers run on the kernels

and tie their machines together. The kernels live in the familiar world of devices

3

and interrupts on a uniprocessoL They can be written in a conventional systems

language. The servers, however, pose new and different problems.

! I applicatloll' I servers I ;:=. ===========:
~~'''''' J
00000···0

The design of servers is a complicated issue. How many nodes should be

covered by a single server? How should the servers In separate neighborhoods

interact? How do we balance reliability agai!1st redundancy? Such questions are

beyond the scope of this dissertation. For my purposes, it suffices to note that

the systems programs for a multicomputer will be critically dependent on safe,

convenient, efficient, and reliable facilities for interprocess communication.

Both servers and utilities (command interpreters, . compilers, loaders, and so

forth) can be expected to rely on complicated protocols for interprocess commun­

ication. Moreover, they must cope With a complicated web of connections to

other processes, a web whose topology changes frequently at run time.

One can consider the interconnections among processes on a multicom­

puter to be a generalization of files. In fact, files themselves may be represented

by connections. Where a traditional operating system provides iile operations as

primitive services, a distributed operating system will provide communication

primitives instead. The primitives of existing systems vary quite a bit, particu­

larly with regard to naming, addressing, and error semantics. All, however,

allow a user program to request that a message be sent or to wait for a message to

4

arrive.

It is tempting to suppose that a systems language for a multicomputer could

provide communication facilities that translate as directly into operating system

primitives as do the file operations of traditional languages. While such a trans­

lation might be possible for processes whose communication is limited to file-like

operations, it is not possible for processes in general or for servers in particulaL

The extra compiexity of interprocess communication can be allributed to several

issues.

(I) Convenience and Safetyl

Interprocess communication is more structured than are file operallons.

The remote requests of servers and multi-process user programs resemble

procedure calls more than they resemble the transfer of uninterpreted

streams of bytes. Processes need 10 send and receive arbitrary collections

of program variables, including those with structured types, without sacrif­

icing type checking and without explicitly packing and unpacking buffers.

{2l Error Handling and Protection 1

Interprocess communication is more error-prone than arc file operations.

Both hardware and software may fail. Software is a particular problem,

since communicating processes cannot in general trust each otheL A tradi­

tional tile is, at least logically, a passive entity whose behaVior is determined

by the operations performed on il. A connection 10 an arbitrary process is

much more non-deterministic.

1 Safety involves detecting invalid actions on the part of a single process.
Protection means preventing the actIOns of one process from damaging anotheL

5

FaulHolerant algorithms may allow a server to recover from many kinds of

failures. The server must he able to detect those failures at the language

level. It must not he vulnerable to erroneous or malicious behavior on the

part of clients. Errors in communication with anyone particular client

must not affect the service provided to others.

(31 Concurrent Conversations

While a conventional sequential program typically has nothing interesting to

do while waiting for a fill: operation to complete, a server usually does have

other work to do while waiting for communication to complete. Certainly,

a server must never be blocked indelinilely while waiting for action on the

parl of an untrustworthy client. As described ~y Liskov, Herlihy. and Gil­

hert (81.83], and discussed in chapter 3, it IS often easiest to structure a

server as a dynamic set of tasks, one for each uncompleted request. Effi­

ciency constraints preclude scheduling these tasks in the kernel. Unfor­

tunately, a straightforward translation of the communication primitives pro­

vided by most operating systems will include operations that block the cal­

ling process, in this case the entire server.

Practical experience testifies to the importance of these issut.:s. The Char­

lotte distributed operating systt.:m (7.41] is a case in point. As a member of the

Charlotte group I have had the opportunity to study the construction of servers

firsthand: a process and memory manager (the sWrterj. a command interpreter. a

process inter-connector. two kinds of lIIe servers. a name server' (the switch­

board). and a terminal driver. Until recently, all were wrillen in a conventional

sequential language (40] peppered with calls to the operating system kernel. As

work progrt.:ssed. serious problems arose. The problems can be attributed to the

issues just described.

•

It

Charlotte servers devote a considerable amount of effort to packing and

unpacking message buffers. The standard technique uses type casts to

overlay a record structure on an array of bytes. Program variables are

assigned to or copied from appropriate fields of the record. The code is

awkward at best and depends for correctness on programming conventions

that are not enforced by the compiler. Errors due to incorrect interpreta­

tion of messages have been relatively few, but very hard to find.

Every Charlotte kernel call returns a status variable whose value indicates

whether the requested operation succet.:ded or failed. Different sorts of

failures result in different values. A well-written program must inspect

every status variable and be prepared to deal appropriately with every possi­

ble value. It is not unusual for 25 or 30% of a carefully-written server to

be devoted to error checking and handling.

Conversations between servers and clients often require a long series of

messages. A typical conversation with a file server. for exampll:. hegins

with a request to open a lIIe, continues with an arbitrary sequence of read.

write, and seek requests. and ends with a request to close the lilt.:. Tht.:

flow of control for a singll: conversation could bt.: descriht.:d by simple.

straight-line code except for the fact that the servt.:r cannot afford to wait In

tht.: middle of that code for a message to bt.: ddivered. The explicit inter­

leaving of separate conversations is very hard to read and understand.

The last problem is probably the most serious. In ordt.:r 10 maximize con­

currency and protect themselves from recalcitrant clients, Charlotte servers break

the code thal manages a conversation into many small pieces, separated by

requests for communication. The servers invoke the pieces individually so thai

7

conversations interleave. Every Charlotte server shares the following overall

structure:

begin
mitialize
loop

wait for a communication requestto.complete
determine the conversation to which it applies
case requesl.lype of

A:

B:

restore state of conversation
compute
start new requesl
save state

end case
end loop

end.

The now of control for a typical conversation is hidden by the global loop. Sav-

ing and restoflng state serves two purposes: it preserves the data structures asso­

ciated with the conversation and it keeps track of the current point of execution in

what would ideally be straight-line code. Both these tasks would be handled

implicitly if the conversation were managed by an independent thread of control.

Data structures would be placed in local variables and the progress of the conver­

sation would be rellected by its program counter.

The complexity of mterprocess communication has motivated the design of

a large number of distributed programming languages. Many of these languages

are described in chapter 1. Most of the designs are convenient and safe. Their

communication statements refer directly to program variables and they insist on

type security for messages. Many provide special mechanisms for error handling

and recovery. Several allow a process to be subdivided into more than one

8

th read of control.

Unfortunately, none of the languages surveyed was designed with servers in

mind. Most were intended to support communication within a single distributed

program, nOI between separate programs. The issue of protection is never

addressed. The network of interconnections is often statically deciared. More­

over, without exception, each language proposal either ignores the question of

implementation entirely, or else assumes thai everything running on the machine

will be written in one common language and that the language implementor will

have complete control of that machine down to the hardware level.

For servers, a language must maintain the flexibility of explicit kernel calls

while providing extensive features to make those calls safer and more convenient.

A language that accomplishes these aims is introduced in chapter 2. Known as

L YN X, the language is specifically intended for the loosely-coupled processes

supported by the kernel of a distributed operating system. The name of the

language is derived from its use of communication channels called links.

Links are provided as a built-in data type. A link is used to represent a

resource. The ends of links can be moved from one process to anotheL Type

security is enforced on a message-by-message basis. Servers are free to rear­

range their interconnections in order to meet the needs of a changing user com­

munity and in order to control access to the resources they prOVide. Multiple

conversations are supported by integrating the communication facilities with the

mechanism for creating new threads of control.

The thesis of this dissertation is two-fold: first, that the LYNX program-

ming language is a significant Improvement over existing notations for certain

9

kinds of distributed computing; and second, that II can be effectively implemented

on top of an existing operating system. The first half of the thesis is defended in

chapter 3. Example programs demonstrate the use of L YN X for problems not

solvable with existing distributed languages. Comparisons to equivalent sequen­

tial code with direct calls to operating system primit~yes show that L YN X is safer,

easier to use, and easier to read.

The second claim is defended in chapter 4. Two implementations of LYNX

arc described, one for Charlotte and one for a system called SODA [69]. The

implementation effort encountered several interesting problems and yielded some

unexpected insights into the nature of the language/operating system interface.

Though the design of L YN X was based largely on the primitives provided by

Charlotte, the SODA implementation is in some respects considerably simpler.

The SODA implementation exists on paper only: the one for Charlolle is in

actual use.

10

Chapter 1

A Survey of Existing Distributed Languages

1. Introduction

II has been recognized for some time that certain algorithms (operating sys­

tems in particular) are most elegantly expressed by concurrent programs in

which there are several independent and, at least in theory, simultaneously active

threads of control. On the assumption that the threads interact by accessing

shared data, a whole body of research has evolved around methods for synchron­

izing that access (19,20,28,35,36,52,56,57]. Even on a conventional unipro­

cessor, effective synchronization is crucial in the face of context switches caused

by interrupts.

With the development of multicomputers it has become practical to distri­

bute computations across multiple machines. This prospect has lent a new

urgency to the study of distributed programs - concurrent programs in which

separate threads of control may run on separate physical machines. There are

two reasons for the urgency:

(I) On a mulucomputer, a distributed program may solve a problem substan­

tially faster than could its sequenual counterpart.

(2) The systems programs lor a multicomputer must by their very nature be

distributed.

Unfortunately, there is no general consensus as to what language features

are most appropriate for the expression of distributed algorithms. Shared data is

no longer the obvious approach, since the underlying hardware supports message

11

passing instead. The alternatives proposed to date show a remarkable degree of

diversity. This survey attempts to deal with that diversity by developing a frame­

work for the study of distributed programming languages. The framework allows

existing languages to be compared for semantic (as opposed to purely cosmetic)

differences. It also facilitates the exploration of new and genuinely different pos-

sibilities.

Section 2 presents the framework. Section 3 uses that framework to

describe a number of existing languages. No attempt is made to survey tech­

niques for managing shared data. (Good surveys have appeared elsewhere 16].)

The evaluations are intentionally biased towards languages that lend themselves to

implementation on top of a distributed operating system, where message passing

is the only means of process interaction.

2. The Framework

This section discusses major issues in distributed language design:

processes and modules
communication paths and naming

- synchronization
implicit and explicit message receipt
message screening and multiple rendezvous

- miscellany: shared data, asynchronous receipt, timeout, reliability

The list is Incomplete. The intent is to focus on those Issues that have the most

profound effects on the flavor of a language or about which there is the most

controversy in the current literature.

12

2.1. Processes and Modules

A process is a logical thread of control. It is the working of a processor,

the execution of a block of code. A process is described by a state vector that

specilies its' position in its code, the values of its data, and the status of its inter­

faces to the rest of the world.

A module is a syntactic construct that encapsulates data and procedures. A

module is a closed scope. It presents a limited interface to the outside world and

hides the details of its internal operation.

In a sense, a module is a logical computer and a process is what that com­

puter does. Several language designers have chosen to associate exactly one pro­

cess with each module, confusing the difference between the two. It is possible

to design languages in which there may be more than one process within a

module, or in which a process may travel between modules. Such languages

may pretend that the processes within a module execute concurrently, or they

may acknowledge that the processes take turns. In the lalter case the language

semantics must specify the circumstanc:es under which execution switches from

one process to another. In the former case the language must provide some

other mechanism for synchronizing access to shared data.

Modules are static objects in that they are defined when a program is writ­

ten. Some languages permit them to be nested like Algol blocks; others inSist

they be disjoint. In some cases, it may be possible to create new instances of a

module at run time. Separate instances have separate sets of data.

Some languages insist that the number of processes in a program be fixed

at compile time. Others allow new processes to be created during execution.

Some languages insist that a program's processes form a hierarchy. Special

13

rules may govern the relationships between a process and its descendants. In

other languages. all processes are independent equals. A process may be permit­

ted to terminate itself. and perhaps to terminate others as well. It will usually

terminate automatically if it reaches the end of its code.

2.2. Communication Paths

The most important questions about a distrihuted language revolve around

the facilities it provides for exchanging messages. For want of a beller term. I

define a communication path to be something with one end into which senders

may insert messages and another end from which receivers may extract them.

This definition is intentionally vague. It is meant to encompass a wide variety of

language designs.

Communication paths establish an equivalence relation on messages.

Senders assign messages to classes by naming particular paths (see section 2.3).

Receivers accept messages according to class by selecting particular paths (see

section 2.6.1). Messages sent on a common path enjoy a special relationship.

Most languages insert Ihem in a queue and guarantee receipt in the order they

were sent. Some languages allow the queue to be reordered.

One important question is most easily explored in terms of the abstract

nOllon of paths: how many processes may be attached to each end? There are

four principal options: 2

2 These four options correspond. respectively. to the distributed operatmg
system concepts of input ports. output ports. free port;, and bound ports. I have
avoided this nomenclature because of the conflicting uses of the word "port" by
various language designs.

14

(1) Many Senders, One Receiver

This is by far the most common approach. It mirrors the client/server rela­

tionship found in many useful algorithms: a server (receiver) is willing to

handle requests from any client (sender). A single server caters to a whole

community of clients. Of course, a server may provide more than one ser­

vice; it may be on the receiving end of more than one path. Separate paths

into a receiver are commonly called entry points. In theory, one could get

by with a single entry point per server. The advantage of multiple entries is

that they facilitate message screening (see section 2.b.ll and allow for strict

type checking on each of several different message formats. From an

implementor's point of view. multiple entry points into a single receiver are

handled in much the same way as multiple senders on a single communica­

tion path.

(2) One Sender, Many Receivers

This approach is symmetric to that in (Ii. It is seldom used. however.

because il does not reflect the structure of common algorithms.

(3) Many Senders. Many Receivers

This is the most general approach. In its purest form it is very dimcult to

implement. The problem has to do with the maintenance of bookkeeping

information for the path. In the one-receiver approach. information is con-

veniently stored at the receiving end. In the one-sender approach. it is kept

at the sending end. With more than one process at each end of the path.

there is no obvious location. If all information about the status of the path

is stored on a single processor, then all messages will end up going through

that intermediary. doubling the total message traffic. If the information is

distributed instead. there will be situations in which either a) a sender must

15

(at least implicitly) query all possible receivers to see if they wanl its mes­

sage, or b) a receiver must query all possible senders to see if they have

messages to send.

Neither option is particularly desirable. Protocols exist whose communica­

tion requirements arc linear in the number of possible pairs of

processes! 12, 26], but this is generally too costly. One way out is to res­

trict the model by insisting that mulLiple processes on one end of a path

reSide on a single physiCal machine. This approach is taken by several

languages: messages are sent to modules, not processes, and any process

within the module may handle a message when it arrives.

(4) One Sender, One Receiver

This approach is the easiest to implement, but is acceptable only in a

language that allows programmers to refer conveniently to arbitrary sets of

paths. In effect, such a language allows the programmer to "tie" a

number of paths together, imitating one of the approaches above.

The preceding descriptions arc based on the assumption that each individual

message has exactly one sender and exactly one receiver, no maller how many

processes are attached to each end of the communication path. For some appli­

cations, it may be desirable to provide a broadcast facility that allows a sender to

address a message to a/lthe receivers on a path, with a single operation. Several

modern network architectures support broadcast in hardware 1104]. U nfor­

tunately, they do not all guarantee reliability. Br,oadcast will be complex and

slow whenever acknowledgments must be returned by each individual receiver.

Several language and operating system designers have attempted to imple­

ment send and receive as symmetric operallons (see in particular sections 3.4 and

16

4.3.2). Despite their efforts, there remains an inherent asymmetry in the

sender/receiver relationship: data flows one way and not the other. This asym­

metry accounts for the rdative uselessness of one-many paths as compared to

many-one. It also accounts for the fact that no one even discusses the symmetric

opposite of hroadcast: a mechanism in which a receiver accepts identical copies

of a message from all the senders on a path at once.

2.3. Naming

In order to communicate, processes need to be able 10 name each other, or

at least to name the communication paths thaI connect them. Names may be

established at compile time, or It may he necessary to create them dynamically.

Naming is closely related to processes, modules, and communication paths.

Several comments should be made:

• In the typical case of many senders/one receiver, it is common for the

sender to name the receiver explicitly, possibly naming a specil1c path

len try) Into the receiver if there is more than one. Meanwhile the receiver

specifies only the entry point. It accepts a message from anyone on the

other end of the path.

Compiled-in names can only distinguish among things that arc distinct at

compile time. Multiple instanllations of a single block of code will require

dynamically-created names.

In languages where messages are sent to modules, it may be possible for

names 101' module entry points) to be established at compile time, even

when the processes that handle messages sent to the module are dynami­

cally created. Processes within a module may be permilled to communicate

17

with each other via shared data.

Several naming strategies appropriate for use among independent programs

on a distributed operating system arc nOl generally found in programming

language proposals. Finkel [43] suggests thai processes may refer lO each other

by capabilities, by reference lO the facilities they provide, or by mention of names

known lO the operating system. The link mechanism described in chaptcr 2 is a

similar approach [100]. It is intended lO support communication between

processes thai arc designed, compiled, and loaded at widely disparate limes. It

allows much later binding than one would usually need for the pieces of a single

program.

2.4. Synchronization

Since all interprocess interaction on a multicomputer is achieved by means

of messages, it is neither necessary nor even desirable for a language to provide

synchronization primitives other than those inherent in the facilities for commun­

ication. The whole question of synchronization can be treated as a sub-issue of

the semantics of the send operation !29, 43,79]. There are three principal possi­

bilities:)

(1) No-Wait Send

In this approach the sender of a message continues execution immediately,

even as the message is hegmning the journey to wherever it is going. The

operating system or run-time support paCkage must buffer messages and

J In any particular implementation; the process of sending a message will re­
quire a large number of mdividual steps. Conceivably, the sender could be un­
blocked after anyone of those steps. In terms of programming language seman­
tics. however. the only steps that matter arc the ones that are visible to the user­
level program.

18

apply back-pressure against processes that produce messages too quickly. If

a communication error occurs (for example, the intended recipient has ter­

minated), it may be difficull to return an error code to the sender, since

execution may have proceeded an arbitrary distance beyond the point where

the send was performed.

(2) Synchronization Send

In this approach the sender of a message waits until that message has been

received before continuing execution. Message tramc may increase, since

the implementation must return confirmation of receipt to the sender of

each message. Overall concurrency may decline. On the other hand, it is

easy to return error codes in the event of failed transmission. Further­

more, there is no need for buffering or back-pressure (though messages

from separate processes may still need lO be queued on each communica-

tion path 1.

(3) Remote-Invocation Send

In this approach the sender of a message waits until it receives an explicit

reply from the message's recipient. The name "remote invocation" is

meant to suggest an analogy to calling a procedure: the sender transmits a

message (input parameters) lO a remote process that performs some opera­

tion and returns a message (output parameters) to the sender, who may then

continue execution. The period of time during which the sender is

suspended is referred lO as a rendezvous. For applications in which it

mirrors the natural structure of the algorithm, remote-invocation send is

both clear and efficient. Both the original message and the (non-blocking)

reply carry useful information; no unnecessary confirmations arc involved.

As Liskov (791 points out. however, many useful algorithms cannot be

19

expressed in a natural way with remote invocation.

The choice of synchronization semantics is one of the prinCipal areas of

disagreement among recent language proposals. Section 3 includes examples of

all th ree strategies.

2.5. Implicit and Explicit Message Receipt

Lauer and Needham [75] and Cashin [29] discuss a duality between

"message-oriented" and "procedure-oriented" interprocess communication.

Rather than semantic duals, I maintain that the two approaches are merely vary­

ing syntax for the same underlying functionality. What is at issue is whether

message receipt is an explicit or an implicit operation.

In the former case, an active process may deliberately receive a message,

much as it might perform any other operation. In the latter case, a procedure­

like body of code is activated automatically by the arrival of an appropriate mes­

sage. Either approach may be paired with any Of the three synchronization

methods.

Implicit receipt is most appropriate when the functions of a module are

externally driven. An incoming message triggers the creation of a new process 10

handle the message. After the necessary operations have been performed, the

new process dies. Alternatively, one may think of the message as awakening a

sleeping process that performs its operations and then goes back to sleep, pending

arrival of another message. There may be one such "sleeping process" for each

of the module's entry procedures, or it may be more convenient 10 imagine a sin­

gle sleeper capable of executing any of the entries. If remote-invocation send is

used, il may be intuitive 10 think of the' \soul" of a sender as traveling along

20

with its message. This soul then animates the receiving block of code, eventually

returning to its original location (along with the reply message), and leaving that

code as lifeless as before. Each of these options suggests a different implementa-

tion.

Implicit receipt is a natural syntax for the client/server model. It is beller

suited than the explicit approach to situations in which requests may arrive at

unpredictable times or in which there is no obvious way 10 tell when the last mes­

sage has arrived. Explicit receipt, on the other hand, is more appropriate for

situations that lack the client/server asymmetry. It is useful for expressing com­

munication among aCl1ve, cooperating peers, where both parties have useful work

to do between interactions. An obvious example is a producer/consumer pair in

which both the creation of new data and the consumption of old are time­

consuming operations. (See section 9,1 of chapter 2.)

The choice of syntax for message receipt is a second major area of

disagreement among recent language proposals. (Synchronization was the first.)

StarMod (section 3.11) and NIL lsection 3.16) provide both implicll and explicit

receipt. Most languages, however, provide a single option only.

2.0. Details of the ReceIve Operation

As noted above, most languages permit multiple senders but only one

receiver on each communication path. In addition, they typically allow a process

to be non-deterministic in choosing which entry point to serve next; instead of

having to specify a particular path, a receiver is free to accept messages from any

of a variety of paths on which they may be presenl. 4 With remote-invocation

4 Among the languages discussed in section 3, CSP/SO alone 104] provides a
similar degree of flexibility for senders. Though it permits only a single sender

21

send, a receiver may even accept new messages before replying to old. This sec­

lion discusses techniques for choosing between available messages and for

managing more than one concurrent rendezvous.

2.0.1. Message Screening

Assume for the moment that a process may form the receiving end of

several communication paths. Further, assume that each of these paths may

carry a variety of messages from a variety of senders. In a completely non­

deterministic situation, a receiver might be expected to cope with any message

from any process on any path. This burden is usually unacceptable. A process

needs to be able to exercise control over the sorts ·of messages it is willing to

accept at any particular time. It needs to qualify its non-deterministic options

with guards that specify which options are open and which arc currently closed.

Semantics

There is a wide range of options for message screening semantics. Every

language provides some means of deciding which message should be received

next. The fundamental question IS: what factors may be considered in reaching

the decision? The simplest approach is to "hard-code" a list of open paths. In

effect, this approach allows the decision to be made at compile time. Most

languages, however, allow at least part of the decision to be made at run time.

Usually, the programmer will specify a Booleafl condition that must evaluate to

"true" before a particular message will be accepted. The question now

and receiver on each communication path, the language allows both senders and
receivers to choose among several alternative paths, depending on whether any­
one is listening on the other end. This added flexibility entails implementation
problems similar to those discussed in section 2.2 (3). For a more complete dis­
cussion of CSP, see section 3.4.

22

becomes: on what may the condition depend'! It is not difficult to implement

guards involving only the local variables of the receiver. Complications arise

when a process tries to base its choice on the contents of the incoming messages.

In most languages, messages arriving on a particular communication path are

ordered by a queue. In a few cases, it may be possible to reorder the queues. In

any case, a simple implementation is still possible if path selection or queue ord­

ering depends on some particular well-known slot of the incoming message.

PUTS and ZENO for example, allow a process to screen messages by sender

name (path) and transaction slot (see section 3.7).

In the most general case, a language may permit a receiver to insist on

predicates involving arbitrary fields of an incoming message. The implementa­

tion has no choice but to go ahead and receive a message sight unseen, then look

at its contents to see if it really should have done so. Unless unwanted messages

can be returned to their sender, the receiver may require an arbitrary amount of

buffer space.

Syntax of Guards

The precise way in which guards are specilied depends largely on the

choice between implicit and explicit message receipt. With implicit receipt, there

are two basic options:

(1) The language may allow the execution of an entry procedure to be

suspended until an arbitrary Boolean expression becomes true.

(2) The language may allow th" procedure to be suspended on a condition

queue or semaphore, with the assumption that action in some other pro­

cedure will release it when it is safe to continue.

23

The first approach is the more general of the two. The second is easier to

implement and is generally more efficient. Brinch Hansen discusses the trade­

oils involved ([23], pp. 15-21). Both approaches assume that execution of an

entry procedure can be suspended afler examining an incoming message. Since

messages will differ from one instance of the procedure to the next, separate

activallon records will be required for each suspe[1ded entry. Campbell and

Habermann [28] suggest the simpler (and more restrictive) approach of allowing

guards to involve local data only, and of insisung they occur at the very begin­

nmg of their entry procedures. A language that took such an approach would be

able to avoid the separate activation records. It would also be less expressive.

Guards are more straightforward with explicit receipt. The most common

approach looks something like a Pascal case statement, with separate clauses for

each possible communication path. Each clause may be preceded by a guard.

The physical separation of clauses allows messages of different types to be

received into different local variables. In a languilge with looser message typing

(for example PUTS and ZENO, of secuon 3.7), there may be a statement that

specifies receipt into a single variable from any of a set of open paths. An ordi­

nary sequenual case statement then branches. on some Held of the message just

received.

2.6.2. Multiple Rendezvous

In a language using remote-invocation send, it'is often useful for a receiver

to be in rendezvous with more than one sender at a time. One ingenious applica­

tion involves a process scheduler [22,87]. The scheduler has two entry points:

schedule..me and /'TrLdone. Every process with work to do calls schedule..me.

The scheduler remains in rendezvous with all of these callers but one. While

24

that caller works, the scheduler figures out which process P has the next-highest

priority. When the worker calls I'TrLdone, the scheduler ends its rendezvous

with P.

In a language with both remote-invocation send and implicit message

receipt, a module may bt! in rendezvous with several senders at one time. If each

entry procedure runs until it blocks, then the module is a monitor [57J. If the

implementation timt!-slices among t!ntrit!s, or if it employs a multiprocessor with

common store, then tht! languagt! must provide additional mechanisms for con­

trolling access to tht! module's common data.

Multiple rendezvous is also possible with explicit message receipt. Several

languages require the receive and reply statements to he paired syntactically, but

allow the pairs to nest. in such languages the senders in rendezvous with a sin­

gle receiver must be released in LIFO order. If senders are to be released in

arbitrary order, then the reply (or disconnect) statemt!nt must be able to specify

which rendezvous to end. Mutual t!xclusion among the senders is not an issue,

since only one process is involved on the receiving t!nd. Mao and Yt!h [87] note

that careful location of a disconnect statemt!nt can minimize the amount of time a

sending proct!ss waits, leading to higher concurrt!ncy and hettt!r performance.

Similar tuning is not generally possible with implicit receipt; senders are released

implicitly at the t!nd of entry procedures. It would be possihle to provide an

explicit discollnecT with implicit receipt (I do so in chapter 2), but it would tend to

violate the analogy to sequential procedure calls.

2.7. Side Issues

The issues discussed in this section are less fundamental than those

addressed above. They fall into the category of convt!nient "extra ft!atures"-

25

things that mayor may not be added to a language after the basic core has been

designed.

(I) Shared Data

In order to permit reasonahle implementations on a multicomputer. a distri­

buted language must in general insist that interaction among processes be

achieved by means of messages. For the sake of efficiency. however. a

language may provide for shared access to common variables by processes

guaranteed to reside on the same physical machine. It may be necessary to

provide additional machinery (semaphores. monitors. critical regions. etc.)

to control "simultaneous" access.

(2) Asynchronous Receipt

Several communication schemes place 'no pound on the length of time that

can pass before a message is noticed at the receiving end of its communica­

tion path. There is certain Iy no such bound for explicit receipt. There are

times. however. when it is desirable to receive data as soon as it becomes

available. One solution is to equip a receiving module with so-called

immediate procedures [43 J - special ent~y. procedures that guarantee

prompt execution. Immediate procedures imply the existence of shared

data. since multiple processes may he active in the same module and since

execution may switch from one process to another at unpredictable times.

(3) Timeout and Related Issues

In most proposals employing synchronization or remote-invocation send,

the sender of a message may he suspended indefinitely if no one is willing

to listen to it. Likewise a process that attempts to receive a message may

have to wait forever if no one sends it anything. Such delays may be

26

acceptable in a distributed program where communication patterns are care­

fully defined and each process is able to assume the correctness of the oth­

ers. In certain real-time applicallons. however. and in language systems

that attempt to provide for reliability under various sorts of hardware

failure. it may be desirable to provide a mechanism whereby a process that

waits "too long" times out and is able to take some sort of corrective

action.

One particular sort of timeout is especially useful, and may be provided

even in cases where the more general facility is not. By specifying a

timeout of zero. a process can express its desire to send or receive a mes­

sage only when such a request can be satisfied immediately. that is when

some other process has already expressed its willingness to form the other

end of the InteraCllon.

(4) Robustness

When persistent hardware failures are a serious possibility. or when a pro­

gram is expected to respond in a reasonable fashion to unpredictable real­

time events. it may not be possible to hide all errors from the application

layer. Programming languages may need to provide special mechanisms

for high-level recovery. Liskov's Extended CLU and Argus (section 3.8)

are noteworthy examples. The problems involved in providing for reliabil­

ity in distributed programs have not been adequately investigated. Like

many researchers. I ignore them.

(5) Unreliable Send

In certain applications. particularly in the processing of real-time data,

speed may be more important than reliability. It may be more appropriate

27

to send new dat.a than to resend messages that fail. For such applications, a

language may provide fast but unreliable messages. Unreliable broadcast

is particularly interesting, since it can be provided on some architectures at

no more cost than point-to-point communication.

3. Several Languages

This section surveys more than two dozen distributed language proposals.

For each, it describes how the language fits. into the framework of section 2 and

then mentions any features that are particularly worthy of note. Languages are

considered in approximate order of their publication. For those without the pati­

ence of a saint, I particularly recommend the sections on monitor languages,

CSP, Distributed Processes, Argus, and Ada.

3.1. Path Expressions

Path Expressions (28,53] are more of a mechanism than a language. They

were invented by Campbell and Habermann in the early 1970's to overcome the

disadvant.ages of semaphores for the protection of shared dat.a. Rather than trust

programmers to insert P and V operations in their code whenever necessary, the

designers of path expressions chose to make synchronization rules a part of the

declaration of each shared object.

The path expression proposal makes no ~ention of modules, nor does it say

much about the nature of processes. It speciJ1es only that processes run asyn­

chronously, and that they interact solely by invoking the operations provided by

shared objects. Like the monitors described below, path expressions can be

forced into a distributed framework by considering a shared object to be a passive

entity that accepts requests and returns replies. Under this model, the proposal

28

uses remote-invocation send with implicit message receipt. Communication paths

are many-one. There may be several identical Objects. Processes name both the

object and the operation when making a request.

The declaration of a shared ohject specifies three things: the internal struc­

ture of the object, the operations that may be invoked from outside and that are

permitted to access the internal structure, and the path expressions that govern

the synchronization of invocations of those operations. There is no convenient

way to specify an operation that works on more than one object at a time.

A path expression describes the set of legal sequences in which an object's

operations may be executed. Synt.actically, a path expression resembles a regular

expression. "(A, B); {C}; 0", for example, is a path expression that permits a

single execution of either A or B (hut not both), followed by one or more simul­

t.aneous executions of C, followed in turn by a single execution of D. There is

no restriction on which executions may be performed on behalf of which

processes. Reference (28) includes a proof that path expressions and semaphores

are equally powerful; each can be used to implement the other.

Path expression solutions to such problems as access control for readers

and writers [33] can be surprisingly subtle and complex. Robert and Verjus [95]

have suggested an alternative synt.ax. Like Camphell and Habermann, they dis­

like scauering synchronization rules throughout the rest of the code. They prefer

10 group the rules together in a control module thai authorizes the executions of

~ set of operations. Their synchronization rules are predicates on the number

)1" executions of various operations that have been requested, authorized, and/or

~ompleted since the module was initialized. Their solutions to popular problems

ire both straightforward and highly intuitive.

29

3.2. Monitor Languages

Monitors were suggested by Dijkstra 136). developed by Brinch Han­

sen [20]. and formalized by Hoare [57] in the early 1970s. Like path expres­

sions. monitors were intended to regularize ,the access to shared data structures

by simultaneously active processes. The first languages to incorporate monitors

were Concurrent Pascal [21]. developed by Brinch Hansen, and SIMONE [67].

designed by Hoare and his associates at Queen's University, Belfasl. Others

include SB-Mod 113]. Concurrent SP/k [59, tiO], Mesa [74,89], Extended

BCPL 186], Pascal-Plus 1112], and Modula [115]. Of the bunch, Concurrent

Pascal. Modula, and Mesa have been by far the most influential. SIMONE and

C-SP/k are strictly pedagogical languages. Pascal-Plus is a successor to

SIMONE. SB-Mod is a dialect 01" Modula. C-SP/k has been succeeded by a

production-quality language called Concurrent Euclid 161].

In all the languages, a monitor is a shared objecl Wilh operalions, internal

state, and a number of condition queues. Only one operation of a given monilor

may be active at a given point in time. A process that calls a busy monitor is

delayed until the monitor is free. On behalf of its calling process, any operation

may suspend itself by wailing on a queue. An operation may also signal a

queue, in which case one of the waiting processes is resumed, usually the one

that waited I1rsl. Several languages extend the mechanism by allowing condition

queues to be ordered on the basis of priorities passed to the wail operation.

Mesa has an even more elaborate priority scheme for the processes themselves.

Monitors were originally designed for implementation on a conventional

uniprocessor. They can, however, be worked into a distributed framework by

considering processes as active entities capable of sending messages, and by con-

30

sidering monitors as passive entities capable of receiving messages, handling

them, and returning a reply. This model agrees well with the semantics of Con­

current Pascal and SIMONE, where monitors provide the only form of shared

data. It does not agree as well with other languages, where the use of monitors

is optional. Distributed implementations would be complicated considerably by

the need to provide for arbitrary data sharin g.

Concurrent Pascal, SI MON E, E-BCPL, and C-SP/k have no modules. In

the other four languages surveyed here, monitors are a special kind of module.

Modules may nest. In Modula and SB-Mod. the number of modules is I1xed at

compile time. In Pascal-Plus and Mesa. new instances may be created dynami­

cally. Pascal-Plus modules are called envelopes. They have an unusually

powerful mechanism for initialization and I1nalization. Modules in SB-Mod are

declared in hierarchical levels. Inter-module procedure calls are not permilted

from higher to lower levels. SIMONE, C-SP/k. and Pascal-Plus provide built-in

mechanisms for simulation and the manipulalion of pseudo-time.

Concurrent Pascal and C-SP/k programs contain a lIxed number of

processes. Neither language allows process declarations to nest, but Concurrent

Pascal requires a hierarchical ordering (a DAG) in which each parent process

lists explicitly the monitors to which its children are permilled access. In the six

other languages, new processes can be created at run time. Process declarations

may be nested in Pascal-Plus. The nesting del1nes an execution order: each

parent process starts all its children al once and waits for lhem to lin ish before

proceeding. In Mesa, process instances are created by forking procedures.

Mesa compounds the problems of shared data by allowing arbitrary variables to

be passed to a process by reference. Nothing prevents an inner procedure from

passing a local variable and then relurning immediately, deallocating the variable

31

and turning the reference into a dangling pointer.

Under the distributed model described above, monitor languages use

remote-invocation send with implicit receipt. Communication paths are many­

one. In languages thal permit multiple monitors with identical entries (Con­

current Pascal, Pascal-Plus, and Mesa), the sender must name both the monitor

and entry. It also names both in SIMONE, but only because the bare entry

names are not visible under Pascal rules for lexical scope. In E-BCPL the

sender calls the monitor as a procedure, passing it the name of the operation it

wishes to invoke.

The precise semantics of mutual exclusion in monitors are the subject of

considerable dispute [6,54,62,68,71,85,91,114]. Hoare's original propo­

sal [57] remains the clearest and most carefully described. It specifies two book­

keeping queues for each monitor: an entry queue and an urgent queue. When

a process executes a signal operation from within a monitor, it waits in the

monitor's urgent queue and the first process on the .appropriate condition queue

obtains control of the monitoL When a process leaves a monitor it unblocks the

first process on the urgent queue or, if the urgent queue is empty, it unblocks the

first process on the entry queue instead.

These rules have two unfortunate consequences:

tl) A process that calls one monitor from within another and then waits on a

condition leaves the outer monitor locked. If the necessary signal operation

can only be reached by a similar nested call, then deadlock will result.

(2) Forcing the signaler to release control to some other waiting process may

result in a prohibitive number of context switches. It may also lead to

situations in which the signaler wakes up to find that its view of the world

32

has been altered unacceptably.

One solution to the first problem is to release the locks on the outer moni­

tors of a nested wait. This approach requires a means of restoring the locks

when the waiting process is finally resumed. Since other processes may have

entered the outer monitors in the intervening time, those locks might not be

available. On a uniprocessor, the problem can be solved by requiring all opera­

tions of all monitors to exclude one another in time. Outer monitors will thus be

empty when an inner process is resumed. Most of the languages mentioned here

use global monitor exclusion. The exceptions are Concurrent Pascal, Mesa, and

SB-Mod.

Concurrent Pascal and Mesa provide a separate lock for each monitor

instance. Nested calls leave the outer monitors locked. SB-Mod provides a lock

for each set of monitors whose data are disjoint. There arc two forms of inter­

monitor calls. One leaves the calling monitor locked, the other leaves it

unlocked. Neither affects monitors higher up the chain. A process that returns

from a nested monitor call is delayed if the calling monitor is busy.

The second problem above can be addressed in several ways.

Modula [116], SB-Mod, E-BCPL, and C-SP/k all reduce the number of context

switches by eliminating the urgent queue(s). Careful scheduling of the unipro­

cessor takes the place of mutual exclusion. In general, process switches occur

only' at wait and signal operations, and not at module exit.:; When the current

5 E-BCPL timeslices among the runnable processes. Clock interrupts are
disabled inside monitor routines. SB-Mod reschedules processes in response to
hardware interrupts, but the interrupts are masked at all levels below that of the
current process. Interrupted processes are resumed when the current process at­
tempts to return to a lower interrupt level.

33

process signals, execution moves to the first process on the appropriate condition

queue. When the current process waits, execution may move to any other pro­

cess that is not also waiting. 6 A process that would have been on one of Hoare's

entry queues may well be allowed to proceed before a process on the correspond­

ing urgent queue.

Signal operations in Concurrent Pascal cause an automatic return from

monitor routines. There is thus no need for an urgent queue. To simplify the

implementation, Concurrent Pascal allows only one process at a time to wait on a

given condition. Mesa relaxes these restrictions by saying that a signal is only a

hint. The signaler does not relinquish control. Any process suspended on a con­

dition queue must explicitly double-check its surrou?dings when it wakes up; it

may find it cannot proceed after all, and has to wait again. Wettstein [114] notes

that if signals are only hints then it is indeed feasible to release exclusion on all

the monitors involved in a nested wait (though Mesa does not do SO). Before

continuing, a signalled process could re-join each of the entry queues, one by

one. After regaining the locks it would check the condition again.

Kessels [71J suggests a different approach to the semantics of conditions. If

every queue is associated with a prt:-declared Boolean expression, then the signal

operation can be dispensed with altogether. When a process leaves a monitor,

the run-time support package can re-evaluate the Boolean expressions to deter­

mine which process to run next.

o The next process to run after a wait is al.ways the next runnable process on
a circular list. All processes stay on the list in Modula, SB-Mod, and E-BCPL.
Their order is I1xed. Process switches are slowed unnecessarily by the need to
skip over waiting processes. Waiters in C-SP/k are removed from the list, even­
tually to be re-inserted behind their signaler.

34

SB-Mod expands on Kessel's proposal. The Boolean expressions for condi­

tion queues are optional. Wait suspends the caller if the expression is false or

was not provided. Send (signal) transfers control to the first process on the queue

if the expression is true or was not provided. A new operation called "mark"

sets a flag in the I1rst process on the queue. When the current process leaves its

monitor. the queue is re-examined. If the expression is true or was not provided.

then the marked process is moved to the ready queue. No process switch occurs.

Of all the languages surveyed, SIMONE is truest to Hoare. It does not

provide separate entry queues for every monitor, but it does provide an urgent

stack. with processes resumed in LIFO order.

3.3. Extended POP-2

Kahn and MacQueen (66] have implemented a small but elegant language

based on a generalization of coroutines. Their language has much in common

with CSP (section 3.4, below) but was developed independently.

Process declarations in Extended POP-2 look very much like procedures.

The~e are no modules. Processes share no data. They are instantiated With a

cobegin construct called" doco." The doco statement uses a series of channels

to connect input and output ports in the newly-created processes.

Once running, processes can communicate by means of put and get opera­

tions on ports. Given the binding to channels achieved by doco, communication

paths are one-one. Send is non-blocking and buffered. Receive is explicit, and

names a single port. There is no provision for non-deterministic or selective

receipt. Processes with a single input and a single output port may be instan­

tiated with a special functional syntax.

35

3.4. Communicating Sequential Processes

CSP [58] is not a full-scale language. Rather, it is an ingenious proposal

by C. A. R. Hoare for the syntactic expression of non-determinism and interpro­

cess communication. CSP/80 [64], Extended CSP [8], occam [88], and a name­

less language by Roper and Barter [96] are all allempts to expand Hoare's syntax

into a usable language. I will refer to Extended CSp'as E-CSP and to Roper and

Barter's language as RB-CSP.

Processes are the central entities in CSP. There are no modules. Regular

CSP, E-CSP, occam, and RB-CSP all allow new processes to be created at run

time with a modified cobegill construct. CSP/SO provides for a fixed number of

independent processes, statically defined. Subprocesses in E-CSP and RB-CSP

are not visible to their parent's peers. Messages from outside are addressed to

the parent. The parent redirects them to the appropriate child. To avoid ambi­

guity, the E-CSP compiler guarantees that no two subprocesses ever communi­

cate with the same outsider. RB-CSP performs the equivalent checks at run

time. None of the CSP languages supports recursion.

Disjoint processes in CSP do not share data; all interaction is by means of a

generalization of the traditional concepts of input and output. In regular CSP,

and in CSP/80 and occam, the result is equivalent to explicit receipt and syn­

chronization send. E-CSP provides both synchronization and no-wait send.

RB-CSP uses only no-wait send.

Communication paths in CSP are one-one; both sender and receiver name

the process at the other end. Forcing the receiver to name the sender prevents

the modeling of common ciientlserver algorithms. It also precludes the use of

libraries. The four implementations mentioned here address the problem in dif-

36

ferent ways. CSP/80 lets processes send and receive through ports. Sender

ports and receiver ports are bound together in a special linking stage. Occam

processes send and receive messages through channels. Any process can use

any channel that is visible under the rules of lexical scope. E-CSP and RB-CSP

provide processname variables. An E-CSP receiver still specifies a sender, but

the name it uses can be computed at run time. An RB-CSP receiver does not

specify the sender at all. It specifies a message type and must be willing to

receive from any sender with a matching type.

Communication is typeless in regular CSP and in occam. Types are associ­

ated with ports in CSP/80. They are associated with individual communication

statements in E-CSP. Individual input and output commands match only if their

types agree. RB-CSP provides a special type constructor called message with

named slots, much like those of PUTS (section 3.7). A given process need only

be aware of the slots it may actually use.

CSP incorporates Dijkstra's non-deterministic guarded commands [37]. A

special kind of guard, called an input guard, evaluates to true only if a specified

input command can proceed immediately. In regular CSP, and in E-CSP and

RB-CSP, there is no corresponding output guard to test whether a process is wait­

ing to receive. Hoare notes that the lack of output guards makes it impossible to

translate certain parallel programs into equivalent, sequential versions. CSP with

input guards alone can be implemented by the usual strategy for many-one com­

munication paths (see section 2.2): information is stored at the receiving end.

The provision of output guards as well leads to the usual problems of many-many

paths. (For a discussion, see the appendix of Mao and Yeh's paper on commun­

ication ports [87].) Moreover, as noted by the designers of CSP/80, the

indiscriminate use of both types of guards can lead to implementation-dependent

37

deadlock. Nonetheless, CSP/SO does provide both ifjput and output guards. The

linker prevents deadlock by refusing to connect a sender with output guards to a

receiver with input guards.

3.5. Distributed Processes

In the design of Distributed Processes [22], Brinch Hansen has unified the

concepts of processes and modules and has adapted the monitor concept for use

on distributed hardware.

A Distributed Processes program consists of a fixed number of modules

residing on separate logical machines. Each module contains a single process.

Modules do not nest. Processes communicate by calling entry procedures (called

common procedures) defined in other modules. Communication is thus by

means of implicit receipt and remote-invoc;ation send. Data can be shared

between entry procedures, but not across module boundaries.

An entry procedure is free to block itself on an arbitrary Boolean condition.

The main body of code for a process may do likewise. Each process alternates

between executing its main code and serving exter,nal requests. It jumps from

one body of code to another only when a blocking statement is encountered. The

executions of entry procedures thus exclude each other in time, much as they do

in a monitor. Nested calls block the outer modules; a process remains idle while

waiLing for its remote requests to complete. There is a certain amount of imple­

mentation cost in the repeated evaluation of blocking conditions. Brinch Hansen

argues that the cost is acceptable, particularly if every module resides on a

separate physical machine.

38

3.6. Gypsy

Gypsy [51] was designed from the start with formal proofs in mind. Pro­

grams in Gypsy are meant to be verified routinely, with automatic tools.

Much of Gypsy, including its block structure. is borrowed from Pas­

cal [65]. There is no notion of modules. New processes are started with a cobe­

gin construct. The clauses of the cobegin are all procedure calls. The pro­

cedures execute in parallel. They communicate by means of buffer variables,

passed to them by reference. Since buffers may be accessible to more than one

process, communication paths are many-many. Sharing of anything other than

buffers is forbidden. There is no global data, and no objects other than buffers

can be passed by reference to more than one process in a cobegin.

Buffers are bounded FIFO queues. Semantically, they are defined by his­

tory sequences that facilitate formal proofs. Send and receive are buffer opera­

tions. Send adds an object to a buffer. Receive removes an object from a buffer.

Send blocks if the buffer is full. Receive blocks if the buffer is empty. In the

nomenclature of section 2, Gypsy uses no-wait send and explicit receipt, with the

exception that back-pressure against prolific senders is part of the language defin­

ition. Declared buffer lengths allow the synchronization semantics to be

independent from implementation details.

A variation of Dijkstra's guarded commands [37] allows a process to exe­

cute exactly one of a number of sends or receives. The await statement contains a

series of clauses. each of which is guarded by a send or receive command. If

none of the commands can be executed immediately. then the await statement

Jiocks until a buffer operation in some other process allows it to proceed. If

110re than one of the commands can be executed, a candidate is chosen at ran-

39

dom. There is no general mechanism for guarding clauses with Boolean expres-

sions.

3.7. PUTS and ZENO

PUTS [39] is an acronym for "Programming Language in the Sky," an

ambitious attempt at advanced language design. In the area of distributed com­

puting, it envisions a framework in which a' computation may involve processes

written in multiple languages, executing on heterogeneous machines. ZENO [9]

is a single language based heavily on the PUTS design. lIS syntax is borrowed

from Euclid [73].

A ZENO program consists of a collection of ~odules that may be instan­

tiated to create processes. Processes are assigned names at the time of their crea­

tion. They are independent equals. A process dies when it reaches the end of ilS

code. It may die earlier if it wishes, but it cannot be killed from oulSide. There

is no shared data. Receive is explicit. Send is non-blocking and buffered. There

is only one path into each process, but each message includes a special trans­

action slot to help in selective receipt. A sender names the receiver explicitly.

The receiver lists the senders and transaction numbers of the messages it is wil­

ling to receive. There is no other means of message screening - no other form

of guards. As in CSP (section 3.4), forcing receivers to name senders makes it

difficult to write servers. A "pending" function allows a process to determine

whether messages from a particular sender, about a particular transaction, are

waiting to be received.

The most unusual feature of PUTS/ZENO is the structure of its messages.

In contrast to most proposals, there is no strong typing of interprocess communi­

cation. Messages are constructed much like the property lists of USP [93].

40

They consist of name/value pairs. A process is free to examine the message slolS

that interest it. It is oblivious to the existence of others.

In keeping with its multi-language, multi-hardware approach, PUTS prohi­

bits the transmission of all but simple types. ZENO is more flexible.

Recent extensions to PUTS [38] are designed to simplify the organization

of large distributed systems and to increase their reliability. Cooperating

processes are tagged as members of a single activity. A given process may

belong to more than one activity. It enjoys a special relationship with ilS peers: it

may respond automatically to changes in their Status. Activities are supported by

built-in atomic transactions, much like those of Argus (section 3.8).

3.8. Extended CLU and Argus

Extended CLU [79,80] is designed to be suitable for use on a long-haul

network. It includes extensive features for ensuring reliability in the face of

hardware failures, and provides for the transmission of abstract data types

between heterogeneous machines [55]. The language makes no assumptions

about the integrity of communications or the order in which messages arrive.

The fundamental units of an Extended CLU program are called guardians.

A guardian is a module; it resides on a single machine. A guardian may contain

any number of processes. Guardians do not nest. Processes within the same

guardian may share data. They use monitors for synchronization. All interac­

tion among processes in separate guardians is by means of message passing.

Receive is explicit. Send is non-blocking and buffered. Each guardian pro­

vides ports to which its peers may address messages. New instances of a guard­

ian may be created at run time. New port names are created for each instance.

41

The sender of a message specifies a port by name. It may also provide a reply

port if it expects to receive a response. The (epiy port name is really just part of

the message, but is marked by special syntax to enhance the readability of pro­

grams. Within a guardian, any process may handle the messages off any port;

processes are anonymous providers of services. A facility is provided for non­

deterministic receipt, but there are no guards; a rect:!iver simply lists the accept­

able ports. In keeping with the support of reliability in the face of communica­

tion failure, a timeout facility is provided.

Argus [82,84] is the successor to Extended CLU, Argus uses remote­

invocation send and implicit message receipt. Instead of ports, Argus guardians

provide handlers their peers may invoke. Processes are no longer anonymous

in the sense they were in Extended CLU, Each invocation of a handler causes

the creation of a new process to handle the call. Additional processes may be

created within a guardian with a cobegin-like construct.

Argus programs achieve robustness in the face of hardware failures with

stable storage and an elaborate action mechanism. Actions are atomic; they

either commit or abort. If they commit. all their effects appear to occur instan­

taneously. If they abort, they have no effect at all. Actions may nest. A remote

procedure call is a nested action. Built-in atomic objects [110] support low­

level actions. and may be used within a guardian to synchronize Its processes.

3.9. Communication Port

Like CSP and Distributed Processes, Communication Port [87] is less a

full-scale language than a concept on which a language might be based. A Com­

munication Port program consists of a fixed collection of processes. There are

no modules. There is no shared data. Processes communicate with remote-

42

invocation send and explicit message receipt.

Each process provides a variety of ports to which any other process may

send messages. Ports provide strict type checking. Senders name both the

r.eceiver and its ~rt. There may thus be several receivers with the same internal

structure. The receive statement is non-deterministic. Guards may be placed on

its options. The guards must refer to local data only. Receiving a message and

returning a reply are independent operations; it is possible for a receiver to be in

rendezvous with several senders at one time. The senders may be released in

any order. Careful placement of release statements is a useful tuning technique

that can be used to minimize the length of rendezvous and increase concurrency.

3.10. Edison

Edison [23,24] is a remarkable language in a number of ways. Based

loosely on Pascal, Concurrent Pascal, and Modula. it is a considerably smaller

language than any of the three. It seems to be an experiment in minimal

language design.

Processes in Edison are created dynamically with cobegin. Modules are

used for data hiding. Communication is by means of shared data, and mutual

exclusion is achieved through critical regions. There are no separate classes of

critical regions; the effect is the same as would be achieved by use of a single,

system-wide semaphore. Entry to critical regions may be controlled by arbitrary

Boolean guards. It is possible to follow a programming strategy in which all

shared data is protected by monitors created out of critical regions and modules.

It is equally possible to avoid such rules.

43

Despite its title ("a multiprocessor language" l, I question the suitability of

Edison for use on multiple processors. The use of critical regions that all

exclude each other could periodically halt all processors save one. On a multi­

computer, shared data is an additional problem. Unless a careful programming

style is imposed above and beyond the rules of the language itself, Edison does

not fit into the framework of section 2.

3.11. StarMod

StarMod [31,32] is an extension to Modula that attempts to incorporate

some of the novel ideas of Distributed Processes. It provides additional features

of its own. Modules and processes are distinct. Modules may nest. There may

be arbitrarily many processes within a module. Processes may be created

dynamically; they are independent equals. Processes within the same processor

module may share data. The programmer may influence their relative rates of
,

progress by the assignment of priorities.

StarMod provides both explicit and implicit message receipt and both syn­

chronization and remote-invocation send. The four resulting combinations

employ a common syntax on the sending end. Communication paths are many­

one. A sender names both the receiving module and its entry point. Entries may

be called either as procedures or as functions. A procedural send allows the

sender to continue as soon as its message is received. A jimcIiollal send blocks

the sender until its value is returned. Remote-invocation send is thus limited to

returning a single value.

On the receiving end, a module may mix its two options, using explicit
".

receipt on some of its communication paths and implicit receipt on the others.

The sender has no way of knowing which is empioyed. A receiver can be

44

changed· from one approach to the other without any change to the sender.

Libraries can be changed without invalidating the programs that use them.

When a message arrives at a implicit entry point, a new process is created to

handle the call. When a message arrives at a explicit entry point, it waits until

some existing process in the module performs a receive on the corresponding

port. There is no mutual exclusion among processes in a module; they proceed

in (simulated) parallel. They may arrange their own synchronization by waiting

on semaphores. The explicit receive is non-deterministic, but there are no

guards on its options. A single receiver can be in rendezvous with more than

one sender at a time, but it must release them in LIFO order. Separate calls to

the same implicit port will create separate, possibly parallel, processes. Separate

processes in a module may receive from the same explicit port.

StarMod was designed for dedicated real-time applications. The StarMod

kernel behaves like a miniature operating system, highly emcient and tuned to

the needs of a single type of user-level program. Simplicity is gained at the

expense of requiring every program to specify the interconnection topology of its

network. Direct communication is permitted only between modules that are

neighbors in that network. The programmer is thus responsible for routing.

3.12. ITP

The Input Tool Process model lUll is an extensIOn of van den Bos's Input

Tool Method [17], an unconventional language for input-driven programs.

An ITP program consists of a collection of processes. There are no

modules. Processes do not nest. They share no data. Each process consists of a

hierarchical collection of tools. A tool looks something like a procedure. It is

made available for activation by appearing in the input rule of a higher-level

45

tool. (The root tools are always available.) A tool is actually activated by the

completion of lower-level tools appearing in its own input rule. Leaf tools are

activated in response to inputs from other processes, or from the user.

Input rules allow message screening. They resemble path expressions (sec­

tion 3.1). They specify the orders in which io:ver-Ievcl tools may be activated.

Unwanted inputs can be disallowed at any layer of the hierarchy.

ITP uses synchronization send with implicit message receipt. Within a pro­

cess. any tool can send data to any other process. The naming mechanism is

extremely flexible. At their most general, the communication paths are many­

many. A sender can specify the name of the receiving process. the receiving

tool, both, or neither. It can also specify broadcast to all the members of a pro­

cess set. A receiver <leaf tool) can accept a message from anyone. or it can

specify a particular sender or group of senders. A global communication arbiter

coordinates the pairing of appropriate senders and receivers.

The current ITP implementation runs on multiple processors. but does not

allow the most general many-many communication paths. Syntax for the sequen­

tial part of the language is borrowed from C [70].

3.13. Ada

The adoption of Ada! 108] by the U. S. Department of Defense is likely to

make it the standard against which concurrent languages are compared in future

years.

Processes in Ada are known as tasks. Tasks may be statically declared.

They may also be created at run time. The code associated with a task is a spe­

cial kind of module. Since modules may nest. it is possible for one task to be

46

declared inside another. This nesting imposes a strict hierarchical structure on a

program's tasks. No task is permitted to leave a lexical scope until all that

scope's nested tasks have terminated. A task can be aborted from outside. Tasks

may share data. They may also pass messages.

Ada uses remote-invocation send. The sender names both the receiver and

its entry point. Dynamically-created tasks are addressed through pointers. Com­

munication paths are many-one. Receive is explicit. Guards (depending on both

local and global variables) are permitted on each clause. The choice between

open clauses is non-deterministic. A receiver may be in rendezvous with more

than one sender at a time. but must release them in LIFO order. There is no

special mechanism for asynchronous receipt; the same effect may be achieved

through the use of shared data. Ada provides sophisticated facilities for timed

pauses in execution and for communication timeout. Communication errors

raise the TASKING_ERROR exception. A programmer may provide for error

recovery by handling this exception.

Since data may be shared at. all levels of lexical nesting, it may be necessary

for separate tasks to share (logical) activation records. That may be difficult

across machine boundaries. More subtle problems arise from the implicit rela­

tionships among relatives in the process tree. For example. it is possible for a

task to enter a loop in which it repeatedly receives messages until all of its peers

have terminated or are in similar loops. The implementation must detect this

situation in order to provide for normal termination of all the tasks involved.

3.14. Synchronizing Resources

SR [4,5] is an attempt to generalize and unify a number of earlier propo­

sals. It appears to have grown out of work on extensions to monitors [3].

47

An SR program consists of a collection of modules called resources. A

resource may contain one or more processes, and may export operations those

processes define. Operations arc similar to ports in Extended CLU and entries in

Ada. The processes within a resource share data. Neither resources nor

processes may nest. There is special syntax for declaring arrays of identical

resources, processes, and operations. A procedure is abbreviated syntax for a

process that sits in an infinite loop with a receive statement at the top and a send

at the bottom.

Receil'e IS explicit. Its syntax is based on Dijkstra's guarded com­

mands [37]. Input guards have complete access to the contents of potential mes­

sages. Moreover, messages need not be received in the order sent. A receiver

may specify that the queue associated with an operation should be ordered on the

basis of an arbitrarily complicated formula involving the contents of the messages

themselves. It is possible for a process to be in rendezvous with more than one

sender at a time. It must release them in LIFO order.

SR provides both no-walt and remote-invocation send. Messages are sent to

specific operations of specific resources. Thus each communication path has a

single receiving resource and, potentially, multiple senders. Operations can be

named explicitly. They can also be referenced through capability variables. A

capability variable is similar to a record; it consists of several fields, each of

which points to an operation of a specific type. Within a resource, a particular

operation must be served by only one process.

There are no facilities for asynchronous receipt or timeout. Each opera­

tion, however, has an associated function that returns the current length of its

queue. This function may be used to simulate a receive with timeout zero: the

41)

receiver simply checks the queue length before waiting.

3.15. Linda

Linda [47,48,49] provides the full generality of many-many communica­

lion paths. Processes interact in Linda by inserting and removing tuples from a

distributed, global tuple space (TS).7 Tuple space functions as an associative

memory; tuples are accessed by referring to the patterns they contain.

Published papers on Linda do not dwell on the language syntax. It seems

to resemble C [70]. Processes are created with a cobegin-like construct and can

share data in addition to TS. The data can be protected with some sort of mutual

exclusion mechanism. There is no mention of modules.

Linda combines no-wait send with explicit message receipt. Tuples are

added to TS with the non-blocking outO command. They are removed with the

inO command. A readO command (originally called in*{)) allows tuples to be

read without removing them from TS. All three commands take an arbitrary list

of arguments. The first is required to be an actual value of type name. The rest

may be actuals or "formals." An in() command succeeds when it finds a tuple

in TS that matches all its actuals and provides actuals for all its formals. In outO

commands, formals serve as "don't care" flags; they match any actual. In inO

commands, formals are slots for incoming data.

The matching of tuples according to arbitrary patterns of actuals provides a

very powerful mechanism for message screening. It also leads to serious imple­

mentation problems. Much of the work on Linda involves finding tractable algo­

rithms for managing TS. The language was originally intended for the Stony

7 also called structured memory (STM) in early papers.

51

execute one at a time. New processes are created by a built-in procedure that

accepts a procedure name and an array to be used as stack space and returns the

id of a neWly-created process. There is no preemption; a given process contin­

ues to run until it explicitly relinquishes control and names the process to be run

in its stead.

One goal of Modula-2 is to permit a large variety of process-scheduling

strategies to be implemented as library packages. By hiding all coroutine

transfers in a library, the programmer can imitate virtually any other concurrent

language. The imitations can be straightforward and highly efficient. For a

uniprocessor, Modula-2 provides the richness of expression of multiple threads of

control at very liltle cost.

4.2. Nelson's Remote Procedure Call

Nelson's thesis [90] is devoted to the development of a transparent mechan­

ism for remote procedure calls. A remote procedure call combines remote­

invocation send with implicit message receipt. Transparency is defined to mean

that remote and local procedure calls appear to be the same; they share the same

- atomicity semantics,
naming and conl1guration,

- type checking,
- parameter passing, and
- exception handling.

Nelson describes a mechanism. called Emissary, for implementing remote

procedure calls. Emissary attempts to satisfy all five of the "essential properties"

listed above, together with one "pleasant property": efficiency, The attempt at

transparency is almost entirely successful, an'd the performance results are quite

impressive.

52

Emissary falls short of true transparency in the area of parameter passing.

Not all data types are meaningful when moved to a different address space.

Unless one is willing to incur the cost of remote memory accesses, pointers and

other machine-specific data cannot be passed to remote procedures. Moreover,

in/oUi parameters must be passed by value/result, not by reference. In the pres­

ence of aliasing and other side effects, remote procedures cannot behave the

same as their local counterparts. So long as programmers insist on pointers and

reference parameters, it is unrealistic to propose a truly transparent mechanism.

4.3. Distributed Operating Systems

The borderline between programming languages and operating systems is

very fuzzy, especially in hypothetical systems. Interprocess communication lies

very near the border. It is often difficult to tell whether a particular mechanism

is really part of the language or part of the underlying system. Much depends on

the degree to which the mechanism is integrated with other language features:

type checking, variable names, scope rules, protection, exception handling, con­

currency, and so forth. The mechanisms described in this section, at least in

their current form, are fairly clearly on the operating system side of the line.

This dissertation is a first attempt at incorporating them into the language level.

4.3.1. ,Links

Links were introduced in the Demos [10] operating system. They have

been adopted, in one form or another, by several descendant systems: Arachne

(Roscoe) [44, 102], Charlotte [7,41], and DEMOS/MP [92].

Links are a naming and protection mechanism. In Demos, and in Arachne

and DEMOS/MP. a link is a capability to an input port. It connects an arbitrary

49

Brook microcomputer Network, a wrapped-around grid (torus) architecture.

3.16. NIL

NIL [27, 105] is a language under development at IBM's T, J. Watson

Research Center. It is intended for use on a variety of distributed hardware.

The current implementation runs on a single IBM 370. Processes are the funda­

mental program units; there is no separate module concept. There is no shared

data; processes communicate only by message passing. The designers of NIL

suggest that a compiler might divide a process into parallel pieces if more than

one CPU were available to execute il.

Communication paths are many-one. They are created dynamically by con­

necting output ports to an appropriate input port. Any process can use the

publish command to create capabilities that point to its input ports. It may then

pass the capabilities in messages to other processes that can use them in connect

commands. All type checking on ports is performed at compile time.

NIL provides both no-wait and remote-invocation send. Remote-invocation

sends may be forwarded. The process receiving a forwarded message is respon­

sible for releasing the sender. No-wait sends are buffered and deslruclive; vari­

ables sent in messages assume an uninitialized "typestate" and can no longer be

inspected.

Receive in NIL is explicil. It has two varieties, one to correspond to each

type of Sella. Exceptions are used to recover from communication errors.

There are elaborate rules for propagating exceptions when a process terminates.

50

4. Related Notions

Each of the proposals described in section 3 has been described in the

literature (at least in pan) as a high-level language for distributed computing.

For one reason or another, the proposals in this section have nol. They all con­

tain useful ideas, however, and are worth conSidering in any discussion of inter­

process communication and concurrency.

The survey in section 3 is meant to be reasonably complete. No such claim

is made for this section. I have used by own personal tastes in deciding what to

include.

4.1. Concurrent Languages

Several early high-level languages, notably Algol-68 (106], PilI (11), and

SIMULA (14], provided some sort of support for concurrent processes, or at

least coroutines. These languages relied on shared data for interprocess interac­

tion. They were intended primarily for uniprocessors, and may have been suit­

able for multiprocessors as well, but they were certainly not designed for imple­

mentation on multicomputers. Recently, Modula-2 [117, 118J has re-awakened

interest in coroutines as a practical programming tool. In designing Modula-2,

Wirth has recognized that even on a uniprocessor, and even in the absence of

interrupts, there are still algorithms that are most elegantly expressed as a collec­

tion of cooperating threads of control.

Modula-2 is more closely related to Pascal [(5) than to the Modula of sec­

tion 3.2. For the purposes of this survey, the principal difference between the

Modulas is that the newer language incorporates a much simpler and more prim­

itive form of concurrency. Processes in Modula-2 are actually coroutines; they

53

number of holders to an owner. The owner can receive messages from the

link. It owns the input port. A holder can send messages to the link. II holds

the capability. A holder can create copies of its capability. and can send them in

messages on other links. The owner can exercise control over the distribution of

capabilities and the rights that they confer.

Where Demos links are many-one, Charlotte links are one-one. Their

ends are symmetric. Each process can send and receive. There is no notion of

owner and holder. Only one process can access a given end of a given link at a

given point in lime.

The protection properties of links make them useful for applications that are

somewhat loosely coupled - applications in which processes are developed

independently and cannot assume that their partners are correct. Typically, a

link is used to represent a resource. (In a timesharing system, a link might

represent a file.) Since a single process may implement a whole collection of

resources, and since a single resource may be supported by an arbitrary number

of operations, links provide a granularity of naming somewhere in between pro­

cess names and operation names.

4.3.2. SODA

SODA [69] is an acronym for a "Simplified Operating system for Distri­

buted Applications." It might better be des~ribed as a communications protocol

for use on a broadcast medium with a very 'Iarge number of heterogeneous

nodes.

Each node on a SODA network consists of two processors: a client proces­

sor, and an associated kernel processor. The kernel processors are all alike.

They are connected to the network and communicate with their client processors

54

through shared memory and interrupts. Nodes are expected to be more

numerous than processes, so client processors are not multi-programmed.

Communication paths in SODA are many-one, but there is a mechanism by

which a process can broadcast a request for server names that match a certain

pattern. All communication statements are non-blocking. Processes are

informed of interesting events by means of software interrupts. Interrupts can be

masked.

From the point of view of this survey, the most interesting aspect of the

SODA protocol is the way in which it decoutJles control !low and data !low. In

all the languages in section 3. message transfers are initiated by the sender. In

SODA, the process that initiates an interaction can arrange to send data, receive

data, both, or neither. The four options are termed, respectively, put, get,

exchange, and signal. Synchronization in SODA falls outside the classification

system described in section 2.4.

Every interaction between a pair of processes has a requester and a

server _ The server feels a software interrupt whenever a requester attempts to

initiate a transfer. The interrupt handler is provided with a (short) description of

the request. At its convenience, the server can accept a request that triggered its

handler at some point in the past. When it does so, the transfer actually occurs.

and the requester is notified by an interrupt of its own. The programmer is

responsible for writing handlers and for keeping track of outstanding requests in

both the server and requester. In simple cases, the bookkeeping may be

managed by library routines.

55

5. Conclusion

There is no doubt that the best way to evaluate a language is to use it. A

certain amount of armchair philosophizing may be justified (this chapter has cer­

tainly done its share!), but the real test of a language is practical experience. It

will be some time before most of the languages in section 3 have received enough

use to make definitive judgments possible.

One very useful tool would be a representative sample of the world's more

difficult distributed problems. To evaluate a language, one could make a very

good start by coding up solutions to these problems and comparing the results to

those obtained with various other methods. Much of the success of any language

will depend on the elegance of its syntax - on whether it is pleasant and natural

to use. But even the best of syntax cannot make up for a fundamentally unsound

design.

Section 2 has discussed some major open questions. The two most impor­

tant appear to be the choice of synchronization semantics for the send operation

and the choice between implicit and explicit message receipt. I have argued else­

where [98] that a reasonable language needs to provide a variety of options. Just

as a sequential language benelits from the presence of several similar loop con­

structs, so can a distributed language benelit from the presence of several similar

constructs for inlerprocess communication. It is worth noting that thirty years of

effort have failed to produce an ideal sequential language. It is unlikely that the

next thirty will see an ideal distributed language, either.

56

Chapter 2

An Overview of LYNX

1. Introduction

This chapter introduces a new distributed programming langu:.ge. It pro­

vides an overview of concepts discussed in considerably more detail in the follow­

ing chapter and in the appendix. The language, known as LYNX, was specifi­

cally designed for systems programs for a multicomputer. It differs from the

languages of chapter I in three of the major areas covered by that survey:

Processes and Modules

Processes and modules in LYNX reflect the structure of a multicomputer.

Modules may nest, but only within a machine; no module can cross the

boundaries between machines. Each outermost module is inhabited by a

single process. Processes share no memory. They are managed by the

operating-system kernel and execute in parallel. Multiple threads of control

within a process are managed by the language run-time system, but there is

no pretense of parallelism among them.

Communication Paths and Naming

L YN X derives its name from links. Links are pairs of one-one, movable

communication paths. The programmer has complete run-time control

over the binding of links to processes and names to links. The resulting

flexibility allows links to be used for reconfigurable, type-checked connec­

tions between very loosely-coupled processes - processes written and

loaded at widely disparate times.

57

Syntax for Message Receipt

Messages in LYNX may be received both expliciLly and implicitly.

Processes can decide at run time which approach(es) to use when, and on

which links.

2. Main Concepts

The three most important concepts in L YN X are the process. the link. and

the thread of control. Processes are supported by the operating system. They

execute in parallel and interact by exchanging messages on two-way communica­

tion links.

Each process begins with a single thread of control. executing the initializa­

tion code of its outermost module. It can create new threads itself or can arrange

for them to be created automatically in response to incoming messages. Separate

threads do nor execute in parallel; the process continues [0 execute a single

'thread until it blocks. It then takes up some other thread where it last left off. If

no thread is runnable. the process waits until one is. In a sense. the threads are

coroutines, but the details of control transfer are hidden in the run-time support

package. Blocking statements are discussed in section 8.

Lexical scope in LYNX is defined as in Modula [115]. New threads of

control may created at any level of lexical nesting. Non-global data may there­

fore be shared by more than one thread. The activation records accessible at any

given time will form a tree, with a separate thread corresponding to each leaf.

When a thread enters a scope in which a module is declared. it executes the

module's initialization code before proceeding. A thread is not allowed to leave a

given scope until all its descendants still active in that scope have completed.

58

The sequential features of LYNX are Algol-like. I will not discuss them

here. A full description of the language can be found in the appendix.

3. Links

A link is a two-ended communication channel. Since all data is encapsu­

lated in modules. and since each outermost module corresponds to a single pro­

cess, it follows that links an: the only means of interprocess interaction. The

language provides a primitive type called "link." A link variable accesses one

end of a link. much as a pointer accesses an Object in Pascal [65]. The dis­

tinguished value "nolink" is the only link constant.

New values for link variables may be created by calling the built-in func-

tion "newlink":

endA : = newlink (endB) ;

One end of the new link is returned as the function value; the other is returned

through a result parameter. This asymmetry is useful for nesting calls to new­

link inside the various communication statements (see below). In practice. calls

to newlink seldom appear anywhere clse.

Links may be destroyed by calling the built-in procedure "destroy";

destroy (myend) ;

Destroy is similar to "dispose" in Pascal. All link variables accessing either end

of the link become unusable (i.e. dangling). An attempt to destroy a nil or dan­

gling link is a no-op.

Arbitrary data structures can be sent in messages. If a transmitted data

structure contains variables of type Link., then the lin k ends referenced by those

59

variables are moved from the sending process to the receiver. The semantics of

this feature are somewhat subtle. Suppose process A has a link variable X that

accesses the "green" end of link L. Now suppose A sends X to process B,

which receives it into link variable y, Once the transfer has occurred, Y will be

the only variable anywhere that accesses the green end of L. Loosely speaking,

the sender of a link variable loses access to the end of the link involved. This

rule ensures that a given end of a given link belongs to only one process at a

time.

It is an error to send a link end that is bound to a entry (see below), or on

which there are outstanding sends or receives.

4. Sending Messages

Message transmission looks like a remote invocation:

connect opname I expr_list I var_list) on linkname ;

Run-time support routines package the operation name and expression list into a

message and send it out on the link. The current thread in the sender is blocked

until it receives a reply message containing values for the variable list.

5. Receiving Messages Explicitly

Any thread of control can receive a message by executing the accept and

reply statements:

accept opname (vaclisI) on linkname ;

reply (expr_list) ;

AccepI blocks the thread until a message is available. Reply causes the expression

60

list to be packaged into a second message and returned to the sender. The com­

piler enforces the pairing of accepts and replies.

6. Entries

An entry looks much like a procedure. II is used for receiving messages

implicitly. Entry headers are templates for messages.

entry opname (irLargs) : oULtypes;
begin

end opname;

All arguments are passed by value. The header may be followed by the keyword

forward or remote instead of a begin ... end block. Remote has the same meaning

as forward, except that an eventual appearance of the entry body is not required.

Source file inciusion can therefore be used to insert the same entry declarations

in both the delining and invoking modules.

Any process may bind its link ends to entries:

bind linLlist to entry_list;

After binding, an incoming request on any of the mentioned link ends may cause

the creation of a new thread to execute one of the mentioned entries, with param­

eters taken from the message. An entry unblocks the sender of the message that

created it by executing a reply statement (without a matching accept).

A link end may be bound to more than one entry. The bindings need not

be created at the same time. A bound end can even be used in subsequent accept

statements. These provisions make it possible for separate threads to carryon

independent conversations on the same link at more or less the same time.

When all of a process's threads are blocked, the run-time support routines

61

auempt to receive a message on any of the links for which there are outstanding

accepts or bindings. The operation name contained in the message is matched

against those of the accepts and the bound cntrics in order to decide which thread

to create or resume. If the name differs from those of all the outstanding accepts

and bindings. then the message is discarded and an exception IS raised in the

sender (see below for a discussion of exceptions).

Bindings may be broken:

unbind linLlist from elllry_list;

An auempt to break a non-existent binding is a no-op.

Entries visible under the usual scope rules can be used to create new

threads directly. without links or bindings:

call entryname (expr_list I var_list) ;

The built-in function "curlink" returns a reference to the link on which

the request message arrived for the closest lexically-enclosing entry. If there is

no enclosing entry, or if the closest enclosing entry was called locally. then cur­

link returns nolink. In the examples at the end of this chapter. curlink is used in

entries to make and break bindings for the link on which the current request

arrived.

In order to facilitate type checking, the operation names and message for­

mats of connect and accept statements must be del1ned by entry declarations.

The entries can of course be declared remote.

62

7. Exceptions

The language incorporates an exception handling mechanism in order to 1)

cope with exceptional conditions that arise in the course of message passing, and

2) allow one thread to interrupt another. The mechanism is intended to be as

simple as possible. It does not provide the power or generality of Ada [108] or

PLII [11].

Exception handlers may be attached to any begin ... end block. Such blocks

comprise the bodies of procedures, entries, and modules, and may also be

inserted anywhere a statement is allowed. The syntax is

begin

when exceptiorLiist do

when exCeptio/Llist do

end;

A handler (when clause) is executed in place of the ponion of its begin ... end

block that had yet to be executed when the exception occurred.

•

..
•

Built-in exceptions are provided for a number of conditions:

Failure of the operation name of a message to match an accept or binding

on the far end of the link.

l)pe clash between the sender and receiver of a message .

Termination of a receiving thread that has not yet replied.

• Destruction of the link.

Links can be destroyed explicitly by threads on either end. They are also des­

troyed in the event of hardware failures and at process termination.

63

A built-in exception is raised in the block in which it occurs. If that block

has no handler, the exception is raised in the 'next scope on the dynamic chain.

This propagation halts at the scope in which the current thread began. If the

exception is not handled at that level, the thread is aborted. If the propagation of

an exception escapes the scope of an accept statem:!1,t, or if an exception is not

handled at the outermost scope of an entry that h.as not yet replied, then an

exception is raised in the appropriate thread in the sending process. If the propa­

gation escapes a scope in whIch nested threads are still active. those threads are

aborted recursively.

User-defined exceptions are raised by the statement

raise exception_name;

A user-defined exception is felt by all and only those threads that have declared a

handler for it in some scope on their current dynamic chain (this mayor may not

include the current thread>. Since the handlers refer to it by name, the exception

must be declared in a scope visible to all the threads that usc it. The coroutine

semantics guarantee that threads feel exceptions only when blocked. User­

defined exceptions are useful for interrupting a thread that is waiting for some-

thing that will never happen.

8. Blocking Statements

As suggested earlier. connec!, accep!, and reply may cause a context switch

by blocking the thread that uses them. A context switch will also occur when

control reaches the end of a scope in which nested threads are still active or in

which bindings still exist.

64

There is one additional way to cause a context switch:

await condition;

will guarantee that execution of the current thread will not continue until the

(arbitrarily complex) Boolean condition is true.

9. Examples

The sample programs in this section are small and unexciting. They serve

as an introduction to the syntax of L YN X.

9.1. Producer and Consumer

The consumer demonstrates explicit receipt of requests. The producer

feeds it a continuous stream of data.

module producer (consumer: link);

type data = whatever;
entry transfer (info: data); remote;

function produce : data;
begin

- - whaIever
end produce;

begin -- - producer
loop

connect transfer (produce I l on consumer;
end;

end producer.

module consumer (producer: link);

type data = whatever;
entry transfer !info: data); remote;

procedure consume (info: data);
begin

whalever
end consume;

var buffer: data;

begin -. - consumer
loop

accept transfer (buffer) on producer; reply;
consume (buffer);

end;
end consumer.

9.2. Bounded Buffer

65

Everyone's favorite example, the bounded buffer smooths out fluctuations

in the relative speeds of producers and consumers. It demonstrates implicit

receipt of requests.

module buffer (producer, consumer: link);
const

size = whatever;
type

data = whatever;
var

buf: array [I .. size] of data;
l1rstfree, lastfree : [l..size];

entry put <info: data);
begin

await firsd'ree < > lastfree;
bufll1rstfree] : = info;

""'j<

firstfree := firstfree mod size + I;
reply;

end put;

entry get: data;
begin

await Oastfree mod size + I} < > firstfree;
lastfree : = lastfree mod size + 1;
reply (buf[lastfree]);

end get;

begin
ilrsd'ree : = 1;
lastfree : = size;
bind producer to put;
bind consumer to get;

end buffer.

66

To use the code above, a producer and consumer must actively request the

service of the buffer. Such requests are appropriate if both parties know that an

intermediary exists. The buffer may be thought of as a "mail-drop." II gen­

eralizes easily to serve an arbitrary number of producers and consumers. If the

buffer IS optional, however, or if it is to be spliced into the connection between

an unsuspecting producer/consumer pair, then a different approach is needed.

The version below is compatible with the code in section 9. I. The version above

was not.

module buffer (producer, consumer: link);
const

size = whatever;
type

data = whatever;
var

bur: array [1. .size] of data;
firstfree, lastfree : [I. .size];

entry transfer (info: data);
begin

await firstfree < > lastfree;
buf[firstfree] : = info;
firstfree := firstfree mod size + 1;
reply;

end transfer;

begin
fi rstfree : = 1 ;
lastfree : = size;
bind producer to transfer;
loop

await Oastfree mod size + 1) < > flrstfree;
connect transfer (buf[lastfree] I) on consumer;
lastfree : = lastfree mod size + 1;

end;
end buffer.

9.3. Priority Scheduler

67

The priority scheduler was described in section 2.0.2 of chapter 1. It

schedules a resource among a community of clients, highest priority first. Each

client calls schedule..me to obtain access to the resource. It calls 1m_done to make

the resource available to others. For the sake of simplicity, I assume that the

priorities of separate clients are distinc!. The progr~m is overly simplistic in that

68

it incorporates no mechanism to recover the resource if a client terminates while

holding il.

module scheduler (creator, resource: link);

type priority = whatever;
var available: Boolean;

module priority_queue;
import

priority;
export

insert, delete, top;

procedure insert (level: priority);
begin

. add new level to queue
end insert;

procedure delete (level: priority);
begin

.. rel7Wve old level from queue
end delete;

function top: priority;
begin

- - return highest priority ill queue
end top;

begin .. - prIOrity queue
- - illilia lize queue to e mp ty

end priority_queue:

entry im_done (returned: link); forward;

entry schedule_me (level: priority) : link;
begin

insert (level);
await available and level = top;
available := false;
unbind curlink from schedule_me;
bind curlink to im_done;
reply (resource);
delete (level);

end schedule_me;

entry im_done; - - (returned: link);
begin

unbind curlink from im_done;
bind curlink to schedule_me;
available := true;
resou rce : = retu rned;
reply;

end im_done;

entry newelienl (elient : link);
begin

reply;
bind elient to schedule_me;

end newelient;

begin
bind creator to newciient;
avaiiable : = true;

end scheduler.

9.4. Readers and Writers

69

The readers/writers problem is well-known and has many variants [33].

The solution presemed here avoids starvation of either readers or writers.

module readwrite (creator: link);

const maxwriters = whatever;
type ticket = [O .. maxwritersj;
var

free, current: ticket;
- -- wmers Ulke tickets like the ones at a bakery.
-- -- free is the next available number;
- -- current is the one now being served.

readers, writers, waitingreaders, waitingwriters : integer;
- - writers is always 0 or 1_

entry doread; --- - should have argumellts
begin

-- -- whatever;
end doread;

entry dowrite; - - should have arguments
begin

-- - whatever;
end dowrile;

entry startread; forward; entry startwrite; forward;
entry endread; forward; entry endwrilC; forward;

entry startread;
begin

if waitingwriters = 0 and writers = 0 then
readers : = readers + 1;

else
waitin greaders : = waitin greaders + 1;
await waitingreaders = 0;

end;
unbind curlink from startwrite, startread;
bind curlink to doread, endread;
reply;

end startread;

70

entry slartwnte;
var

turn: ticket;
begin

if readers = 0 and writers = 0 then
writers := writers + 1;

else
waitingwrilers := waitingwriters + I;
turn := free; free := free mod maxwrilers + 1;
await current = turn;

end;
unbind curlink from slarlread. SlarLWrile;
bind curlink to doread. dowrite. endwrite;
reply;

end Slartwrilc;

entry endread;
begin

unbind curlink from doread, endread;
bind curlink 10 slartread, Slarlwrite;
readers: = readers -- 1;
if readers = 0 then

if wailingwrilers < > 0 then
writers: = 1;
wailingwriters := wailingwrilers - 1;
current := currenl mod maxwrilers + 1;

end;
end;
reply;

end endread;

71

entry endwrile;
begin

unbind curlink from doread. dowrite. endwriLe;
bind curlink to slarlread. Slarlwrile;
writers: = wrilers - 1;
if waitingreaders < > 0 then

readers: = wailingreaders;
waitingreaders : = 0;

elsif wallingwrilers < > 0 then
wnters:= 1;
wailingwrilers := waitingwriters -- 1;
current:= currenl mod maxwrilers + 1;

end;
reply;

end endwrile;

entry newclient (client: link);
begin

reply;
bind client to slartread. SlarLWrile;

end newclienl;

begin - -- initialization
readers: = 0; writers: = 0;
wailingreaders := 0; wailingwritcrs := 0;
current:= 0; free:= 1;
bind creator to newclient;

end readwrite.

72

73

Chapter 3

Rationale

1. Introduction

The preceding chapter sketched an overview of L YN X. This chapter

explains the rationale behind the design. Some of the features of LYNX are

unique; others were chosen from among the possibilities presented by existing

languages. Unique features are the result of major design decisions. They are

discussed in section 2. Minor decisions are discussed in section 3. The con­

cluding section describes practical experience building servers with LYNX.

2. Major Decisions

Every language is heavily influenced by the perspective of its designer(s).

The languages of chapter 1 grew out of efforts to generalize existing sequential

languages, first to multiple processes, then to multiple processors. LYNX was

approached from an entirely different direction. It began with the distributed

processes and worked to increase their effectiveness through high-level language

support.

Previous languages introduced new models for distributed computation.

Aiming for elegance, they attempted to guess which small set of concepts would

prove to be fundamental. In so doing they 0ften unified concepts that are beller

kept distinct. By contrast, L YN X captures a model that was already in use. It

supports the concepts that proved fundamentai in the construction of servers for

Charlotte. The most important of these concepts are the process, the link, and

74

lh e th read of con trol.

Processes are central; they are what makes distributed programs special.

Discussion of LYNX divides naturally into two sUbtopics: features that support

interaction between processes and features that support computation within

processes. Links are the key to the former topic; threads of control are the key to

the latter.

2.1. Links

Links are a tool for representing distributed resources. A resource is a

fundamental concept. It is an abstractIOn, defined by lhe semantics of its external

interface and approached conceptually as a single entity. The definition of a

resource is entirely in lhe hands of the programmer who creates it. Examples of

resources include open files, query processors, physical devices, data streams,

and available blocks of memory. The interface to a resource may include an

arbitrary number of remote operations. An open file, for example, may be

defined by the semantics of read, write, seek, and close operations.

Recent sequential languages have provided explicit support for data abstrac­

tion .. Modula moduks [115], Ada packages [108], and Clu clusters [78] are

obvious examples. Sequential mechanisms for abstraction, however, do not gen­

eralize easily to the distributed case. They are complicated by the need to share

resources among more than one loosely-coupled process. Several issues are

involved.

• Reconf1guration

Resources move. It must be possible to pass a resource from one process

to another and to change the implementation of a resource without the

•

•

•

75

knowledge of the processes that use it.

Naming

A resource needs a single name that is independent of its implementation.

Process names cannot be used because a single process may implement an

arbitrary number of resources. Operation names cannot be used because a

single resource may provide an arbitrary number of operations in its exter­

nal interface.

Type Checking

Operations on resources are at least as complicated as procedure calls. In

fact, since resources change location at run time, their operations are as

complicated as calls to formal procedures. Type checking is crucial. It

guarantees that a resource and its users never misinterpret one another.

Protection

Even if processes interpret each other correctly, they still cannot trust each

other. Neither the process that implements a resource nor the process that

uses it can afford to be damaged by the other's bad behavior.

In light of these issues, links appear Ideally suited to representing distri­

buted resources. As first-class objects they are easily created, destroyed. stored

in data structures, passed to subroutines, or moved from one process to another.

Their names are independent both of the processes that implement them and the

operations they supporl. A client may hold a link to one of a community of

servers. The servers may cooperate to implement a· resource. They may pass

their end of the client's link around among themseI~~s in order to balance their

workload or to connect the client to the member of their group most appropriate

for serving its requests at a particular point in time. The client need not even be

76

aware of such goings on.

Names for links are uniform in the sense that there is no need to differen-

tiate, as one must in Ada, between communication paths that are statically

declared and those that are accessed through pointers. Moreover. links are one­

one paths; a server is free to choose the clients with which it is willing to com­

municate at any particular time. It is free to consider clients as a group by gath­

ering their links together in a set and by binding them to the same entries. II is

never forced, however, to accept a request from a arbitrary source thai happens

to know its address.

Dynamic binding of links to entries is a simple but effective means of pro­

viding protection. As demonstrated in the priority scheduler and readers/writers

examples of chapter 2 (sections 9.3 and 9.4), bindings can be used to control the

access of particular clients to particular operations. With many-one paths no

such control is possible. Ada. for example, can only enforce a solution to the

readers/writers problem by resorting to a system of keys [I J 3]. 8

The protection afforded by links is nOI, of course. complete. In particular.

though a process can make or break bindings on a link-by-link basis. it has no

way of knowing which process is attached to the far end of any link. It is not

even informed when an end moves. In one sense. a link is like a capability: it

allows its holder to request operations on a resource. In another sense. it is a

coarser mechanism that requires access lists for tine-grained protection. The

rights to specific operations are controlled by servers through bindings; they are

8 The "solution" in reference 163J (page J I-Ill limits each process to one
read or write operation per protected session. II does not generalize to applica­
tions in which processes gain access, perform a series of operations, and then
release the resource.

77

not a property of links. Links also differ from capabilities in that they can never

be copied and can always be moved.

Protection could be increased by distinguishing between the server end

and the elient end of a link. The inability of a server to tell when far ends move

is after all a direct consequence of link symmetry. If links were asymmetric one

could allow the server ends to move without notice, yet require permission (or at

least provide notification) when client ends move. Such a scheme has several

disadvantages. Foremost among them is its complexity. Two different types of

link variable would be required, one to access each type of end. Connect would

require a link to a server. Accept, bind, and unbind would require a link to a

client. Newlink would return one link of each type. Destroy would take an argu­

ment of either type. The semantics of enclosures would depend on which end

was enclosed; special rules would apply to the movement of links that connected

to servers. Finally, communication between peers (who often make requests of

each other) would suddenly require pairs of links, one for each direction.

Symmetric links strike a compromise between absolute protection on the

one hand and simplicity and flexibility on the other. They provide a process with

complete run-time control over its connections to the. rest of the world, but limit

its knowledge about the world to what it hears in messages. A process can con­

found its peers by restricting the types of requests iUs willing to accept, but the

consequences are far from catastrophic. Exceptions are the most serious result,

and exceptions can be caught. Even an uncaught exception kills only the thread

that ignores itY

9 Admilledly, a malicious process can serve requests and provide erroneous
results. No language can prevent it from doing so.

78

To a large extent, links are an exercise in late binding. Since the links in

communication statements are variables, requests are not bound to communica-

tion paths until the moment they are sent. Since the far end of a link can be

moved, requests are not bound to receiving processes until the moment they are

rect:!ived. Since the set of valid operations depends on outstanding bindings and

accepts, requests are not bound to receiving threads of control until after they

have been examined by the receiving process. Only after a thread has been

chosen can a request be bound to the types it must contain. Checks must be per­

formed on a message-by-message basis. (Low-cost techniques are discussed in

chapter 4, section 3.3.)

Several of the languages in chapter 1 provide late binding for communica-

tion paths. Ada [108], Argus [82,84], and Mesa [74,89] provide variables that

hold a reference to a process. NIL [27, 105] provides variables that hold a refer­

ence to a single operation. SR [4,5] provides capabilities that hold references to

a set of operations, perhaps in different processes. Each of these languages

allows references to be passed in messages. Each checks its types at compile

time. To permit such checking, each assigns types to the variables that access

communication paths. Variables of different types have incompatible values. By

contrast, the dynamic type checking of L YN X has two major advantages:

(1) A process can hold a large number of links without being aware of the

types of messages they may eventually carry. A name server, for example,

can keep a link to each registered process, even though many such

processes will have been created long after the name server was compiled

and placed in operation.

79

(2) A process can use the same link for different types of messages at different

times, or even at the same time. A server capable of responding to several

radically different types of requests need not create an artilkial. and highly

complicated, variant record type in order to describe the message it expects

to receive.

LYNX type checking also differs from that of previous languages in its use

of structural equivalence ([50], p. 92). The alternative, name equivalence,

requires the compiler to maintain a global name space for types. Beyond the

traditional advantages and disadvantages of each approach [107], two specifically

distribul£d concerns motivated the adoption of structural equivalence for LYNX.

(1) A global name space requires a substantial amount of bookkeeping, particu-

larly if it is to be maintained on more than one machine. While the task is

certainly not impossible. the relative scarcity of compilers that enforce

name equivalence across compilation units suggests that it is not trivial,

either,

(2) Compilers that do enforce name equivalence across compilation units usu­

ally do so by affixing time stamps to files of declarations [89. 108. 117]. A

change or addition to one declaration in a file appears to modify the others.

A global name space for distributed programs can be expected to devote a

f1Ie to the interface for each distributed resource. Mechanisms can be dev­

ised to allow simple eXl£llsions to an interface [76], but certain enhance­

ments will inevitably invalidate all the users of a resource. In a tightly­

coupled program, enhancements to one. compilation unit may force the

unnecessary recompilation of others. In a loosely-coupled system.

enhancements to a process like the file server may force the recompilation

80

of every program in existence.

The Charlotte implementation of LYNX, described in the following

chapter, uses name equivalence for types wlthin eacb process. The decision to do

so was based primarily on expediency: name equivalence was easier to imple­

ment. For the issues that L YN X addresses. the intra-process type checking

mechanism is more or less irrelevant.

2.2. Threads of Control

Even on a single machine many processes can most easily be written as a

collection of largely independent threads of control. Language designers have

recognized this fact for many years (see chapter I, section 4.1 J. and have often

allowed more than one thread to operate inside a single module and share that

module's data. The threads have been designed to operate in Simulated parallel,

that is, as if they wen: running simultaneously on separate processors with access

to a common store.

In Argus [82,84], StarMod [31,32], and SR [4. 5J a resource is an isolated

module. SR calls such modules resources; Argus calls them guardians and

StarMod calls them processor modules. Each module is implemented by one

or more processes. Semantics specify that the processes execute in parallel, but

implementation considerations preclude their assignment to separate physical

machines. In effect, the "processes" of Argus. SR. and StarMod are the

threads of control of L YN X. Guardians. resources. and processor modules

correspond to LYNX processes.

Ada allows data to be shared by arbitrary processes (called tasks). It has

no notion of modules that are inherently disjoint. An Ada implementation must

81

either simulate shared data across machine b~undaries or else specify that only

processes that share no data can be placed on separate machines. In either case,

language semantics specify that processes execute in parallel.

While simulated parallelism may be aesthetically pleasing, it does not reflect

the nature of the underlying hardware. On a single machine, only one thread of

control can execute at a time. There is no inherent need for synchronization of

simple operations on shared data. By pretending that separate threads can exe­

cute in parallel, language designers introduce race conditions that should not

even exist; they force the programmer to provide explicit synchronization for

even the most basic operations.

In Extended CLU ([79,80], the predecessor to Argus) and in StarMod,

monitors and semaphores are used to protect shared data. These mechanisms are

provided in addition to those already needed for inter-module interaction. They

lead to two very different forms of synchronization in almost every program.

In Ada and SR, processes with access to common data synchronize their

operations with the same message-passing primitives used for inter-module

interaction. Small-grain protection of simple variables is therefore rather costly.

Argus sidesteps the whole question of concurrent access with a powerful

(and complicated) transaction mechanism that serializes even large-grain opera­

tions. Programmers have complete control over the exact meaning of atomicity

for individual data types [110, Ill]. Such an approach may prove ideal for the

on-line transaction systems that Argus is intended to support. II is not appropri­

ate for the comparatively low-level operations of operating system servers.

Servers might choose to implement a transaction mechanism for processes that

want one. They must, however, be prepared to interact with arbitrary clients. In

82

an environment where transactions are not a fundamental concept, servers cannO!

afford to rely on transactions themselves.

A much more attractive approach to intra-module concurrency can be seen

in the semantics of Brinch Hansen's Distributed Processes [22]. Instead of pre­

tending that entry procedures can execute concurrently, the DP proposal provides

for each module to contain a single process. The process jumps back and forth

between its initialization code and the various entry procedures only when

blocked by a Boolean guard. Race conditions are impossible. The comparatively

simple await statement suffices to order the executions of entry procedures.

There is no need for monitors, semaphores, atomic data, or expensive message

passing.

An important goal of L YN X is to provide safe and convenient mechanisms

that accurately reflect the structure of the underlying system. In keeping with

this goal, L YN X adopts the semantics of entry procedures in Distributed

Processes, with six extensions:

(1) Messages can be received explicitly, as well as implicitly.

(2) Entry procedures can reply before terminating.

(3) New threads of control can be created locally, as well as remotely.

(4) Blocked threads can be interrupted by exceptions.

(5) A process can accept external requests while waiting for the reply to a

request of its own.

(6) Modules and procedures can nest without restriction.

The last extension is, perhaps, the most controversial. As in Ada, it allows

the sharing of non-local, non-global data. Techniques for managing the neces-

83

sary tree of activation records are well understood [16]. They are discussed

briefly in section 3.1 of chapter 4 and in section 7 of the appendix. Activation

records for any subroutine that may not return before the next context switch

must be allocated from a heap. Even the best storage allocator will require more

time than is devoted to incrementing the stack pointer in more conventional

languages. The allocator will not. however. require more time than is often

devoted to saving line numbers and other debugging information when subrou­

tines are called. The automatic management of stale for independent conversa­

tions is certainly worth at least as much effon as the maintenance of data for

post-mortem dumps.

Admittedly, the mutual exclusion of threads in LYNX prevents race condi­

lions only between context switches. In effect. LYNX code consists of a series of

critical sections. separated by blocking statements. Since context switches can

occur inside subroutines. it is not even immediately obvious where those blocking

statements are. The compiler can be expected to help to some extent by produ­

cing listings in which each (potentially) blocking statement is marked. Experi­

ence to date has not uncovered a serious need for inter-thread synchronization

across blocking statements. For those cases that do, arise. a simple Boolean vari­

able in an await statement performs the work of a semaphore.

3. Minor Decisions

3. I. Synchronization

As described in section 2.4 of chapter I. there are three principal

approaches to message synchronization.

84

(I) No-Wait Send

A sender continues execution immediately. even as its message is beginning

the journey to wherever it is going.

(2) Synchronization Send

The sender waits until the message has been received before continuing

execution.

(3) Remote-Invocation Send

The sender wails until it receives a reply from the receiver.

The principal advantage of the no-wait send is a high degree of con­

currency. The principal disadvantages are the complexity of buffering messages

and the difficulty of reflecting errors back to a sender who may have proceeded

an arbitrary distance past the point of call. For L YN X. the concurrency advan­

tage is not as compelling as it might first appear. since a process can continue

with other threads of control when a given one is blocked. and since node

machines may be mulLiprogrammed anyway. The disadvantage of buffering is

not panicularly compelling either. II makes the run-time suppon package larger

and more complicated. and it necessitates flow control. but solutions do exist.

The deciding factor IS the probiem of error reponing. Unlike traditional ito

(which often is implemented in a no-wait fashion). interprocess message passing

involves type-checked communication with potentially erroneous or even mali­

cious user programs. The likelibood of errors is high. as is the need to detect

and cope with them in a synchronous fashion.

L YN X provides remote-invocation send rather than synchronization send

because it is a more powerful mechanism and because it requires fewer underly­

ing messages in common situations. Synchronization send does overcome the

115

disadvantages of the no-wait send, but it requires a top-level acknowledgment.

The acknowledgment cannot be sent by the operating system because it contains

confirmation of the correctness of types. Given the ubiquity of client/server rela­

tionships, it is reasonable to expect most messages to be requests that need expli­

cit replies. As long as an acknowledgment is being sent anyway, it might as well

carry useful data. Synchronization send is easily simulated with remOle invoca­

tion by sending an immediate reply. Simulating remote invocation with syn­

chronization send requires extra messages.

There is some motivation for providing synchronization send in acklition to .

remote invocation. For messages that need no reply, top-level acknowledgments

can be ·sent by run-time support routines, rather than by the user's program,

allowing the sender to be unblocked after two fewer context switches on the

receiving end. The savings are too small, however, to justify cluttering the

language with a second kind of send.

3.2. Explicit and Implicit Message Receipt

LYNX provides two very different means of receiving messages: the accept

statement and the mechanism of bindings. The former allows messages to be

received explicitly; the latter allows them to be received implicitly. Each has

applications for which it is appropriate and others for which it is awkward and

confusing. A practical language needs both.

Implicit receipt most accurately reflects the externally-driven nature of most

servers:

module server; - - implicit receipt
var client: link;

entry A;
begin

end A;

entry B;
begin

end B;

begin
bind client to A, B;

end server.

Explicit receipt is much less straightforward:

module server; - - explicit receipt
type

message = record
ca se class : whatever of

end;
end;

var
client: link;
m : message;

entry request 1m : message); remote;

116

begin - - server
loop

accept request (m) on client;
case m.class of

{A}

IB}

end;
reply;

end;
end server.

In these examples the explicit approach has several disadvantages:

87

(1) It requires a complicated variant record structure to reneci differences in

arguments between the different entries.

(2) It is misleading. The server module is a passive body of code; it does noth­

ing until called from outside.

(3) IL carries implications about concurrency that may not be appropriate.

The third disadvantage is probably the most important. In the second

example above. the server cannot hegin work on a new request until the previous

one has finished. If a request requires communication with some third party. the

server will be blocked (needlessly) until that communication completes. It is of

course possible within the server to assign a different (active) thread of control to

each type of request. but the server will still be limited to one partially-completed

request of each type. There is in general no way to accommodate an unspecified

number of requests with a fixed number of threads.

Explicit receipt is most useful for the exchange of messages between active.

cooperating peers. Its use was demonstrated by th~ producer and consumer of

chapter 2, section 9.1. In this case the implicit approach is considerably less

attractive:

module producer (consumer: link);

type data = whatever;
entry newstuff (info; data); remote;

function produce: data;
begin

- -- wharever
end produce;

begin - producer
loop

connect newstuff (produce I) on consumer;
end;

end producer.

module consumer (producer: link); - - implicit receipl

type data = whatever;
var

. buffer: data;
consumed. received: Boolean;

entry newstuff (info: data); _. - called by producer
begin

await consumed;
buffer; = info;
received: = true;

end newstuff;

procedure consume (info: data);
begin

-- - wharever
end consume;

88

begin - - consumer
consumed: = true; received: = false;
loop

await received;
consume (buffer);
consumed: = truc;

end;
end consumer.

89

Thc "ncwstutr' entry really belongs in lhe consumer's main loop. Moving it

oUI-or-line results in code that is unnecessarily complicated, asymmetric, and

hard to understand. The dual solution [IS} is equally bad:

module producer (consumcr : link); - impliCit receipt

type data = whatever;
var

buffer: data;
produced, sent; Boolean;

entry oldsluff : data; -. - called by consumer
begin

await produced;
reply (buffer);
sent := true;

end oldstuff;

function produce : data;
begin

- -- whatever
end produce;

begin - - producer
produced: = false; sent: = true;
loop

await sent;
buffer: = produce;
produced: = true;

end;
end producer.

module consumer (producer: link);

type data = whatcver;
entry oldstuff : data; remote;

pr9cedure consume (info: data);
begin

wharever
end consume;

var buffer: data;

begin consumer
loop

connect oldstuff (buffer) on producer;
consume (buffer);

end;
end consumer

90

Some existing languages, notably StarMod [31,32], already provide both

explicit and implicit receipt. L YN X goes one step farther by allowing a process

to decide al run lime which formts) LO use when, and on which links.

91

3.3. Syntax

The accept statement in LYNX is designed to be as simple as possible. It

does not, for example. define a nested scope the way it does in Ada. There is no

need to copy message parameters into variables that would remain visible after

the scope was closed. In addition. instead of declaring parameter types at each

accept statement, LYNX allows accepts at more than one place in the code to

share declarations. Since entry headers already declare parameter types for

implicit receipt. it seems reasonable to use them for explicit receipt as well. An

operation that is served both explicitly and implicitly need only be declared once.

An operation that is only served explicitly can be declared with an entry whose

body is remote.

Entry headers segregate their request parameters and reply types. An obvi­

ous alternative would use a single parameter. list. with names for all parameters.

Request, reply. and request/reply parameters could appear in any order. Unfor­

tunately. the resulting syntax would not reflect the structure of accept statements.

It would also tend to hide the underlying request and reply messages, messages

that I prefer to keep visible.

Unlike most proposed languages with explicit receipt, LYNX does not pro­

vide a mechanism for accepting a message on anyone of a set of links. Applica­

tions examined to date appear to need such non-determinism only in cases where

implicit receipt is the more appropriate approach. A non-deterministic version of

explicit receipt would be a fairly straightforward addition to the language. should

it prove necessary.

92

3.4. Exceptions

I am aware of no precedent for the semantics of user-defined exceptions in

LYNX. Since built-in exceptions were needed anyway. the addition of the user­

defined variety allowed one thread to interrupt another with lillie extra syntax.

Interruptions are useful in protocols where one thread may discover that the

communication for which another thread is waiting is no longer appropriate (or

possible). One example is a stream-based f1ie server. The code below sketches

the form that such a server might take.

The file server begins life with a single link to the switchboard. a name

server that introduces clients to various other servers. When the switchboard

sends the file server a link to a new client (line 49), the f1ie server binds that link

to an entry procedure for each of the services it provides. One of those entries,

for opening f1ies, is shown in the code below (lines 3-48).

Open files are represented by links. Within the server, each file link is

managed by a separate thread of control. New threads are created in response to

open requests. After verifying that its physical Iile exists (line 24), each thread

creates a new link (line 25) and returns one end to its client. It then binds the

other end to appropriate sub-entries. Among these sub-entries, context is main­

tained automatically from one request to the next. As suggested by Black [15],

bulk data transfers are initiated by the producer (with connect) and accepted by

the consumer. When a l1Ie is opened for writing the server plays the role of con­

sumer. When a l1Ie is opened for reading the seryer plays the roie of producer.

Seek requests are handled by raising an exception (line 21, caught at line 37) in

the file-server thread that is allempting to send data out over the link. Clients

close their files by destroying the corresponding links.

1
2

3
4
5
o

7
8
9

10

II
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

27
28
29
30

module fileserver (switchboard: link);
type string = whatever; bytes = whatever;

entry open (f1lename : string; readflag. writel1ag. seckl1ag : Boolean)
: link;

var f1leink : link; rcadplr, writeptr : integer;
exception seeking;

procedure put (data: bytes; f1lename : string; writeptr : integer);
external;

function get (filename: string; readptr : integer) : bytes; external;
fUllction available (f1lename : string) :. Boolean; external;

entry writeseek (iileptr : integer);
begin

writeptr := fileptr; reply;
end writeseek;

entry stream (data; bytes);
begin .

put (data, f1lename, writeptr); writeptr : = writeptr + I; reply;
end stream;

entry readseek (newptr: integer);
begin

readptr := newptr; raise seeking; reply;
end readseek;

begin - - open
if available (filename) then

reply Inewlink (f1lelnk»; - relf/rue client
readplr : = 0; writeptr : = 0;

if writeflag then
if seekl1ag then bind f1lelnk to writeseek; end;
bind filelnk to stream;

end;

93

31
32
33
34
35
30
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52

53
54
55

if readf1ag then
if seekf1ag then bind f1lelnk to readseek; end;

loop
begin

connect stream (get (f1lename, readptr) I) on f1lelnk;

readptr : = readptr + I;
when seeking do

- - nothing; continue loop
when f1lelnk REMOTE-DESTROYED do

exit; - - leave loop
end;

end; - - loop
end; - - if readflag

else -'- not available
reply (Oolink); - - release client

end;
_ _ control will Iwt leave 'open' until nested entries have died

end open;

entry newclient (client: link);

begin
bind client to open; reply;

end newclient;

begin - - main
bind switchboard to newclient;

end t1leserver.

4. Experience

94

Original implementations of the Charlotte servers were written in Modula

([40]. sequential features only) with direct calls to the Charlotte primitives.

Work is underway to re-build the servers in LYNX. As of this writing, the file

server is I1nished and the memory manager (the starter) is well under way. The

first version of the terminal driver la new server) is being written in L YN X as

well.

•

•

•

95

Several preliminary conclusions can be drawn.

L YN X programs are considerably easier to write than their sequential

counterparts. The Modula liieserver 'was written and re-wriuen several

times over a period of about two years. It has been a constant source of

trouble. The LYNX fileserver was written in two weeks. It would have

required even less time had the L YN X run-time package already been

debugged.

The source for L YN X programs IS considerdbly shorter than equivalent

sequential code. The new fijeserver is just over 300 lines long. Tbe origi­

nal is just under 1000 lines. 10

LYNX programs are considerably easier to read than their sequential coun­

terparts. While this is a highly subjective measure. it appears to reflect the

consensus of programmers who have examined both versions.

10 Object code from L YN X is somewhat longer than its sequential counter­
part. See section 6.1 of chapter 4.

96

Chapter 4

Implementation

1. Introduction

This chapter describes two implementations of L YN X. The first. for the

Charlotte distributed operating system, was actually buill. The second, for an

operating system called SODA, was designed on paper only,

The Charlolle implementation took just under two years of part-time work

by a single programmer. It required the development of several interesting tech­

niques, particularly for type checking and for moving large numbers of links. It

also encountered unexpected problems with the Charlotte kernel interface.

Surprisingly. though the design of LYNX was based largely on the primitives

provided by Charlotte, the SODA implementa~ion is in some ways considerably

simpler.

2. Overview of Charlotte

Charlotte [7.41] runs on the Crystal multicomputer (341, a collection of 20

VAX 11/750 node machines cOllnected by a 10-Mbitlsecond token ring from

Proteon Corporation. Each node has two or three megabytes of memory. Some

nodes have disks. Several larger V AXen are used for program developmenl.

They run UNIX and are included in the ring.

The Charlotte kernel is replicated on each node. It provides direct support

for both processes and links. Its most important system calls are the following.

97

MakeLink (var end1, end2 : link)

Create a link and return references to its ends.

Destroy (myend : link)

Destroy the link with a given end.

Send (L : link; buffer: address; length: integer; enclosure: link)

Start a send activity on a given link end, optionally enclosing one

end of some other link.

Receive (L : link; buffer: address; length: integer)

Start a receive activity on a given link end.

Cancel (L : link; d : direction)

Attempt to cancel a previously-started send or receive activity.

Wait (var e : description)

Wail for an activity to complete, and return its description (link end,

direction, length, enclosure).

All calls return a status code. All but Waie arc guaranteed to complete in a

bounded amount of lime. Wait blocks the caller until an activity completes.

The kernel matches send and receive activities. It allows only one out­

standing activily in each direction on a given end of a link. Completion must be

reported by Waie before another similar activity can be started. Buffers are

managed by user processes, in user address space. Results arc unpredictable if a

process uses a buffer between the starting of an activity and the notification of its

completion.

98

3. The Charlotte Implementation

The Charlotte L YN X compiler consists of about 13000 lines of Pascal

source and about 400 lines of C. (The C code includes initialized data struc­

tures, UNIX 110, and logical operations on bit fields.) The run-time system for

L YN X consists of about 5000 lines of C and 200 lines of assembler. The com­

piler uses a table-driven scanner and LL(1) parser, with FMQ [45] syntactic

error correction. It generates error-free C source code peppered with escapes to

assembly language. The standard C compiler is a second pass. The result is a

friendly but slow-running utility that produces code of acceptable quality. The

appendix contains a thorough description of the implemented language.

3. l. Threads of Control

Lexical nesting of entries implies the sharing of non-local, non-global data

among multiple threads of control and precludes stack-based storage allocation

for routines that may cause context switches. For the sake of efficiency, the

compiler notices any routines that cannot cause context switches and allocates

their activation records on a stack. For the rest of the routines, the storage allo­

cator uses a naive first-fit algorithm on a heap. A production-quality implemen­

tation would probably requIre experimentation with other allocators.

The L YN X implementation uses a static chain instead of a display. The

only context that must be saved when control switches from one thread to another

is the contents of ten of the VAX's general registers and the value of a global

pointer to the context block of the current thread. Each context block contains

several Boolean flags, links for the queue on which its thread resides, and room

for a subroutine-call stack mark. A thread yields control by putting itself on an

appropriate queue, aiming the stack pointer at its context block, and calling a

99

procedure known as the dispatcher. The subroutine call instruction saves the

appropriate registers.

The dispatcher maintains queues of threads that are blocked for various rea­

sons. When called, it decides which thread to run next, aims the VAX frame

pointer at the thread's context block, and executes a return-from-subroutine

instruction.

The threads hlocked at await statements reside on a single circular queue.

Each time It is called, the dispatcher returns control to the next thread on that

queue. The resumed thread re-evaluates its Boolean condition and returns

immediately to the dispatcher if that condition is not true. If the dispatcher dis-

covers that it has come all the way around the queue without finding a true con­

dition. then it executes a Wait system call to obtain notification of a completed

activity from the Charlotte kernel. The Boolean expressions in every await state­

ment are therefore re-evaluated every time a message is sent or received. The

cost involved is discussed in section 6.2.

3.2. Communication

The run-time system uses Charlotte links to implement the links of LYNX.

Link variables are indices into a table invisible to the user. For each link end.

the table contains

•

•
•

head pointers for the queues of threads waiting to send and receive mes-

sages on the link,

the size and address of the buffer of the outstanding receive activity (if any).

a sequence counter for connect statements (used to detect unwanted reply

messages). and

100

• a small amount of status information .

For a connect statement. the run-time system starts a send activity with the

kernel. When that activity completes. it starts a receive activity. Run-time rou­

tines also start send activities for reply statements and receive activities for accept

statements and bindings.

There are two basIC kinds of messages: requests and replies. Requests

are caused by connect statements. Replies are caused by reply statements. Each

message includes several bytes of self-description. For requests. this information

consists of the name of the remote operation. the identity of the thread (the

client) that executed the connect statement. a sequence number. and a code word

for type-checking. For replies. only the sequence number and client thread are

specified. They are copied from the request message.

The operation name is used to direct an incoming request to an appropriate

thread of control (a server). The identity of the client is used to direct an incom­

ing reply. Sequence numbers allow the dispatcher to detect replies for clients

that have felt exceptions and are no longer waiting. The type-checking informa­

tion is discussed in the following section.

3.3. Type Checking

As explained in chapter 3. message type-checking in L YN X is based on

structural equivalence. Equivalent types have the same canonical description.

In the absence of pointers. these descriptions can mimic ordinary type declara­

tions. with the SUbtypes expanded in-line. Canonical descriptions for messages

can then be built from the descriptions of their parameters.

105

0---...::.L---@
requesl

-- ------- -------_ .. --- --------~

A thread in B receives the request and begins serving the operation. A now

expects a reply on L and posts a Receive with the kernel. Now suppose some

other thread in B requests an operation on L. A will receive B's request before

the reply II wanted. Since A may not be willing to serve requests on L at this

point, B is not able to assume that ilS request is being served simply because A

received it.

A similar problem arises if A binds L to a number of entries and then

breaks the bindings before all its threads are blocked. In the interests of con­

currency, the run-time support routines will have posted a Receive with the ker­

nel as soon as the first binding was made. When the last one is broken, they will

attempt to cancel the Receive. If B has requested an operation in the meantIme,

the Cancel will fail. The next time A calls Wait, it will receive notification of the

message from B, a message it does not wanl. Delaying the start of receive activi­

ties until all threads are blocked does not help. A must still start activities for all

the messages it would be willing to receive. It will continue execution after one

of them completes. Before waiting for a second, it may change the set of mes­

sages it is willing to receive.

The first problem arises because Charlotte provides no way to screen mes­

sages within a single link. The second problem arises because Charlotte provides

no way for the user program to say "please receive exactly one request, on any

one of the following set of link ends." The second problem would be more obvi­

ous if LYNX provided a non-deterministic version of explicit receipt, in the style

106

)fCSP or Ada (see chapter I, section 2.6.1, and chapter 3, section 3.3).

In both cases it is tempting to let A buffer unwanted messages until it is

again willing to receive from B, but such a solution is impossible for two rea­

sons. First, a user-defined exception may arise in B, causing it to attempt to can­

cel the Send on L. Since A does not yet want the message, the Cancel should

succeed, but cannot. Second, the scenario in which A receives a request but

wants a reply can be repeated an arbitrary number of times, and A cannot be

expected to provide an arbitrary amount of buffer space.

A must return unwanted messages to B. In addition to the request and

reply messages needed in simple situations, we now introduce the retry message.

Retry is a negative acknowledgment. In the second scenario above, when A has

broken all its bindings, a re-sent message from B will be delayed by the kernel,

since A will have no Receive outstanding. To prevent arbitrary numbers of

retransmissions in the first scenario (since A will keep a Receive posted for the

reply it wants), we also introduce the forbid and allow messages. Forbid denies

a process the right to send requests. (It is still free to send replies.) Allow

restores that right. Retry is equivalent to forbid followed by allow. Both forbid

and retry return any link end that was enclosed in the unwanted message. A pro­

cess that has received a forbid message keeps a Receive posted on the link in

hopes of receiving an allow message. 1 1 A process that has sent a forbid message

remembers that it has done so and sends an allow message as soon as it is either

willing to receive requests or else has no Receive outstanding (so the kernel will

delay all messages).

11 ThiS of course makes it vulnerable to receiving unwanted messages itself.

101

The size of the description of a message depends on the number of parame­

ters and on the complexity of their types. Rather than enclose the description

itself in every message, the L YN X implementation uses a hash function to

reduce canonical descriptions to a single word. An obvious hash function treats

a string of symbols as an integer base N, where N is the size of the symbol set.

Suppose <a> = a" -1 all -2 a" _) ... ao is a string of symbols. Let

If <a> is the canonical description of a type A, we say

hashval(Ai =hash«a>l and hash/en(Al =n.

In the Charlolle L YN X implementation, N is 37 and p is

232 -- 5 = 4294967291. Symbols are represented by the values]-37. No sym­

bol has value 0, since prepending a zero-value symbol to a string would not

change its hash code. The lack of a zero-value symbol allows N to be used for

the value of the final symbol without introducing ambiguity.

In addition to simplicity, this hash function has the advantage of incremen­

tal computation. It obviates the need 10 store explicit canonical descriptions. The

compiler remembers the hash code and length of each type's canonical descrip­

tion, but not the description itself. When a composite type is declared, its hash

code and description length can be calculated from those of its constituent types.

Suppose, for example. we are given the following declarations:

A = [l .. lOJ;
B = record

i, j : integer;
end;

C = nray A of B;

We would like the hash code for C to be the same as the "ash code for

C' = array [1 ..]OJ of record
i, j : integer;

end;

This is precisely the result we obtain by letting

hash val (C i = [a x N''''·'''''''' (A) + hash val (A)] X N""x"'"" (11) + hash val (B) .

hashlen(C) =] +hashlen(A) + hashlen(B) ,

102

where a is the value of the symbol "array" as an N-ary digit. All arithmetic is

carried out in the ring of integers mod p.

As currently defined. L YN X provides no pointers. If it did, the hashing

technique would need 10 be changed. The problem stems from the need for for­

ward references in defining circular structures. When a given type is first

encountered we might not know the nature of its paris. We could still derive a

canonical deSCription and hash code for each type, but we could not do it incre­

mentally the way we could above.

At the end of each declaration section all existing types will be fully

defined. Well-known techniques can be used to determine which are structurally

distinct and which equivalent [72J. Symbol-table entries for equivalent types can

be coalesced. We can then use the string-of-symbols notation. augmented with

backpointers, to construct canonical descriptions for the types that remain. We

expand each declaration recursively until we encounter a cycle. We then insert a

backpointer to tht: point where the cycle began. For example, the type

sequence record

end;

item integer;
next: -sequence;

might be represented by the string "record integer pointer - 3 end."

103

In a language with external compilation, the hashing of type descriptions

provides a simple mechanism for type checking across compilation units with

ordinary linkage editors [99]. For messages, it reduces the overhead of run-time

type checking to a simple one-word comparison. The only disadvantage .)f the

scheme is its lack of absolute security. With a reasonable word size, however,

the range of the hash function will inClude enough values to make errors

extremely unlikely.

In the Charlotte L YN X implementation, ope. :lIion names are also hashed

for inclusion in the self-descriptive part of messages. The hash function is the

same as for types. The letters, digits, and underscore are assigned the values I­

N. The compiler checks to make sure that no process uses the same hash code

for more than one accept statt:ment or non-remote entry.

3.4. Exceptions

The routines that manage exceptions treat <:ach group of when clauses as a

single handler. Each scope keeps the address of its innermost handler group in

its stack frame. When an exception occurs, the stack of the affected thread is

searched until a handler is found. The compikr inserts a dummy handler at the

end of every entry, so the search never proceeds back through a fork in the run­

time environment tree. The code for a group 01' when clauses simply re-raises

104

exccptions it is not supposed to handle.

Built-in exceptions are raised in a single thread. User-defined exceptions

may be raised in many threads at oncc. Every user-defined exception has an

associated list of threads with appropriate handlers. Threads insert and remove

themselves from the list as they enter and leave scopes in which the handlers are

defined.

Each scope also keeps a list of nested threads. These threads are aborted if

an exce;:>tion escapes the scope when it has no handler.

The run-time package includes exception handlers for each of the commun­

ication routines. These handlers are responsible for cleaning up unfinished com­

munication when an exception occurs. Among other things, they often deallo­

cate unused buffers and move their thread from one queue to another.

4. Problems

Despite the fact that much of the design of L YN X was motivated by the

primitives of Charlone, the actual process of Implementation proved to be quite

difficult. Most of the difficulty stemmed from two sources: the arrival of

unwanted messages and tht: enclosure of ends of more than one link.

4.1. Unwanted Messages

For the vast majority of operations, only two Charlone messages will be

used: one for the request and one for the reply. Unfortunately, complications

arise in a number of special cases.

Suppose that a thread in process A requests a remote operation on link L.

107

Further complications arise when the hutTer supplied to Receive IS too small

to hold the message that arrives. This can happen whenever a process is

interested in more than one kind of message on a given link. If the messages

require dillerent size buffers, the run-time support routines may post a Receive

with the kernel lor the smaller siZe message befon: learning that the largt!r one

exists. The larger message may arrive hefore the Receive can he cancelled and

restarted with a larger huller.

fortunately, Charlone informs hoth the sender and the receiver when over­

flow occurs. The sender's communicallon roullne can retransmit the message

on the assumption that the new buffer will be larger. It need only retransmit

once; the receiver will not he nOlilied of the overflow until it blocks, and hy then

it will know the size of the largest valid message. Whl.:n it posts a second Receive

its buller will rellect that size.

If a reply message overllows (wice in succession (hen thl.: server thread can

bl.: sure that thl.: client thread has felt an I.:xcl.:ption and died. The server can con­

(inul.:. If a request message overllows twice in a row, however, the client cannot

make a similar assumption. It must wait for a message from the server. If the

serVer is only willing to receive replies, it returns a forhid message. If it is wil­

ling to receive requests (hut only small ones, presumahlYI. it instructs the client

to raise an excepllon of class INVALlD_OP in (ill.: thread that sent the request.

A n:ceiver saves the enclosure from a message that overllows. It

rt!members that enclosure when it receives the n:transmission (retransmissions

can be recognized by their self-descriptive information J. Since a client thread

may feel an exception and die befort! sending a retransmission, the receiver must

destroy the saved enclosure if it receives an original (non-retransmiut!d) message

lOS

firsl. In the ahsence of exceptions, each sender guarantees that the original and

retransmiued Vl.!rsions of a message make consecutive use of their link, with

nothing in he(ween.

4.2. Moving Multiple Links

Most data can be transmilled from one machinl.: to another as a simple

stream of byll.:s. Links cannol. Two problems arise. First, since a considerahle

amount of state information is associated with a link. and since rules forbid mov­

ing an active end, the run-time system must be aware of all the rcfen:nces to

links contained in a given message. Second, since Charlone permits only one

link end to be enclosed in each message supplied to the kernel, the run-time sys­

tem must packetize its higher-level messages.

To minimize the size of ohject liles, the Charlotte LYNX compiler leaves

all the work of message passing to run-time support routines. At compile time, it

constructs descriptors for the request and reply messages of each entry. These

descriptors list the offsets within the messages at which refert!nccs to links may

he found. For the following entry,

.entry foo (a, h ; integer, I : link; c : char) : link, link;

the request descriptor would be <S> (integers are four hytes long). Tht! reply

descri ptor wou Id be < 0, 4>.

Complications arise for sets of links, for arrays containing links, and for

variant records. Sets are handled by preceding thcir offscts with a nag.

set offset

109

Arrays are handled by embedding a loop in the descriptor.

loop, offsetl, offset2, ... , offsetN endloop, count, add, backup

Loop and endloop are flags. Count is the number of elements in the array. Add

is the size of a single element. Backup is the distance back to the loop flag.

The offsets between the loop and endloop flags give the localions of links in the

tirst element of the array. Later elements are handled by adding multiples of

add to those offsets.

Arrays can nest. The routine that interprets message descriptors counts the

number of times it has gone around the loop for each level of nesting. It also

keeps track of the cumulative add correction for offsets. At the end of each

array it reduces that correction by count limes add.

Variant records are handled by embedding an if SUllement in the descriptor.

if, offset, singlelOn, value, [offset, ... , j
range, lvalue, hvalue, (offset, ... ,j
singleton, value, range, lvalue, hvalue, (offsel, ... ,j
... , endif

The offset following the if flag gives the location oC the tag of the variant. The

lists of singletons and ranges give the valid tag values for the arms of the variant.

Each arm may contain nested arrays or other variants.

The value of a link variable is an index into a process-specitlc table. When

enclosed in a message, the value must tle changed. Before transmitting a mes­

sage buffer, the run-time routines change invalid links to nolink. Valid links are

left alone. 12 On the receiving end, the oid values are used to 1) distinguish valid

12 It is possible of course that an uninitialized link variable or an old link
variable whose value has been reused will be interpreted as a valid reference.
This is the standard problem with dangling references.

110

links from nolink, and 2) detect duplicates. Once the receiver has examined the

butTer, both processes can tell how many distinct, valid links were meant to be

enclosed.

A request or reply that contains more than one enclosure must be broken

into several Charlotte messages. The tirst packet contains the message buffer and

the tlrst enclosure. Additional enclosures are passed in empty enc messages (see

tlgure 4.1). For requests, the receiver must return an explicit goahead message

after the tirst packet so the sender can tell the request is wanted. No goahead is

needed for requests with zero or one enclosures, and none is needed for replies,

GY------~l~_------GV
simple case

connect - -- --- ------~<:q~~~~--- --- -----

_ ----- ------!.;:p!y---- ------ ---

multiple enclosures

accept
compute
reply

con nect ____________ I~<;.ql!<:~l _________ --.... accept
.... ________ .. g2~~~£l~I _____ ____ _

enc .. --_ ---_ .. ---- -- --_ .. --_ ---~

enc .. _ _______ .. __ .. __ _ .. ________ 000

compute
____________ !!!P!L- __________ - reply

enc
~- .. -_ .. -_ ... ---_ .. -_ .. -- -- ------_ .. -

4---- __ .. __ ~!}f .. ____ .. 00 .. ----

figure 4.1: link enclosure protocol

III

since a reply is always wanted.

4.3. Semantic Complications

In two instances, the problems described above forced me to do what a

"real-life" implementor could not: change the semantics of the language.

(J) I had hoped to allow exceptions to abort unstarted communication as if it

had never been requested. This proved impossible, because enclosures

may be lost. Consider the following chain of events.

a) Process A sends a request to process B, enclosing a link end.

b) B receives the request unintentionally; it only wanted a reply,

c) A feels a local. user-defined exception, aborting the request.

d) B crashes before it can send the enclosure back to A in a forbid mes-

sage.

The enclosure is lost, though the semantics of LYNX say the communica­

tion never started. Thus the rule: all link ends contained in a message are

lost as soon as the communication is requested, whether it finishes or not.

(2) Exceptions of class EXC_REPL Yare raised at connect statements when

server threads die during rendezvous. I had hoped 10 define a similar

exception class to be raised at reply statements when clients die during ren­

dezvous. In Charlotte, however, that would have required an explicit, top­

level aCknowledgement from client to server when a reply message was suc­

cessfully received. The reSUlting 50% increase in underlying message

tramc for typical cases would have been an unacceptable burden. Thus the

rule: if a reply statement completes successfully, the server thread can

assume the reply was delivered only if the clien! thread was still alive.

Il2

5. A Paper Implementation for SODA

It is worth considering whether the complexity of the implementation Just

described is the fault of Charlotte or of L YN X. For purposes of comparison, this

section describes an implementation of LYNX for SODA, a "Simplified Operat­

ing system for Distributed Applications." SODA was designed by Jonathan

Kepecs as a part of his Ph. D. research [69}.

5.1. A Review of the SODA Primitives

SODA was described in section 4.3.2 of chapter 1. Features needed by the

L YN X implementation are summarized here.

Every SODA process has a unique id. II also advertises a collection of

names to which it is willing to respond. There is a kernel call to generate new

names, unique over space and time. The discover kernel call uses unreliable

broadcast in an attempt to find a process that has advertised a given name.

Processes do not necessarily send messages, rather they request the

transfer of data. A process that is interested in communication specitles a name,

a process id. a small amount of out-of-band information, the number of bytes it

would like to send and the number it is willing to receive. Since either of the last

two numbers can be zero, a process can request to send data. receive data, nei­

ther. or both. The four varieties of request are termed put. get, signal. and

exchange, respectiVely,

Processes are informed of interesting events by means of software inter­

rupts. Each process establishes a single handler which it can close temporarily

when it needs to mask out interrupts. A process feels a software interrupt when

its id and one of its advertised names are specified in a request from some other

113

process. The handler is provided with the id of the requester and the arguments

of the request, including the out-of-band information. The interrupted process is

free to save the information for future reference.

At any time, a process can accept a request that was made of it at some

time in the past. When it does so, the request is completed (data is transferred in

hoth directions simultaneously), and the requester feels a software interrupt

informing it of the completion and providing it with a small amount of out-of­

band information from the accepter. Like the requester, the accepter specifies

buffer sizes. The amount of data transferred in each direction is the smaller of

the specified amounts.

Completion interrupts are queued when a handler is busy or closed.

Requests are delayed; the requesting kernel retries periodically in an attempt to

get through (the requesting user can proceed). If a process dies before accepting

a request, the requester feels an interrupt that informs it of the crash.

5.2. A Ditl'erent Approach to Links

A link in SODA can be represented by a pair of unique names, one for

each end. A process Ihat owns an end of a link advertises the associated name.

The following algorithm can be used to keep track of Ihe location of links and to

move their ends from one process 10 another.

Every process knows the names of the ,link ends it owns. Every process

keeps a hint as to the current location of the far end of each of its links. The

hints can be wrong, but are expected to work most o~ the time.

A process that wants to send a L YN X mcssag~~ either a request or a reply,

initiates a SODA put to the process it thinks is on ~he other end of the link. A

114

process moves link ends hy enclosing their names in a message. When the mes­

sage is SODA-accepted hy the receiver, the ends are understood to have moved.

Processes on the fixed ends of moved links will have incorrect hints.

A process that wants to receive a L YN X message, either a request or a

reply, initiates a SODA signal to the process it thinks is on the other end of the

link. The purpose of the signal is allow the aspiring receiver to tell if its link is

destroyed or if its chosen sender dies. In the laller case, the receiver will fee! an

interrupt informing it of the crash. In the former case, we require a process that

destroys a link to accept any previously-posted status signal on its end, mention­

ing the destruction in tl'.~ out-of-band information. We also require it to accept

any outstanding put request, but with a zerO-length buffer, and again mentioning

the destruction in the out-of-band information. After clearing the signals and

puts, the process can unadvertise the name of the end and forget that it ever

existed.

Suppose now that process A has a link L to process B and that it sends its

end to process C

Q messa"e Gi) ___ ~_c ______ _

(9
Q (§)

~ before

(9

Q-----Gi) y
<£)

after

115

If C wants LO send or receive on L, but B terminates after receiving L from A,

then C must be informed of the terminalion so it knows that L has been des­

troyed. C will have had a SODA request posted with A. A must accept this

request so that C knows to watch B instead. We therefore adopt the rule that a

process that moves a link end must accept any pr~viously-posted SODA request

from the other end, just as it must when it destroys the link. It specifies a zero­

length buffer and uses the out-of-band information to tell the other process where

it moved its end. In the above example, C will rt:!-start its request with B instead

of A.

Thl' amount of work involved in moving a link end is very small, since

accepting a request does nOI even block the accepter. More than one link can be

enclosed in the same message with no more difficulty than a single end. If the

fixed end of a moving link is not in active use, there IS no expense involved at

all. In the above example, if C receives a SODA request from B, it will know

that L has moved.

The only real problems occur when an end of a dormant link is moved. If

our example, if L is first used by C after, it is moved, C will make a SODA

request of A, not B, since its hint is out-of-date. There must be a way to fix the

hint. If each process keeps a cache of links it h~s known about recently, and

keeps the names of those links advertised, then A may remembt:!r it sent L 10 B,

and can tell C where it went. If A has forgottt:!n, C can use the discover com­

mand in an attempt to find a process that knows about the far end of L.

A process that is unable to find the far end of a link must assume it has

been destroyed. If L exists, the heuristics of caching and broadcast should suf­

fice to find it in the vast majority of cases. If the faiiure rate is comparable to

116

that of other "acceptable" errors, such as garbled messages with "valid" check­

sums, then the heuristics may indeed be all we ever need.

Without an actual implementation to measure, and without reasonable

assumptions about the reliability of SODA broadcasts, it is impossible to predict

the success rate of the heuristics. The SODA discover primitive might be espe­

cially strained by node crashes, since they would tend to precipitate a large

number of broadcast searches for lost links. If the heuristics failed too often, a

fall-back mechanism would be needed.

Several absolute algorithms can be devised for finding missing links.

Perhaps the simplest looks like this:

•

•

"

Every process advertises a freeze name. When C discovers its hint for L is

bad, it posts a SODA request on the freeze name of every process currently

in existence (SODA makes it easy to guess their ids). It includes the name

of L in the request.

Each process accepts a freeze request immediately, ceases execution of

everying but its own searches (if any), increments a counter, and posts an

unfreeze request with C. If it has a hint for L, it includes that hint in the

freeze accept or the unfreeze request.

When C obtains a nt:!w hint or has unsuccessfully qut:!ried everyone it

accepts the unfrt:!eze requests. When a frozt:!n process ft:!els an interrupt

indicating that its unfreeze request has been accepted or that C has crashed,

it decrements its counter. If the counter hits zero, it continues execution.

The existence of the counter permits multiplt:! concurrent searches.

This algorithm has the considerable disadvantage of bringing every LYNX pro­

ct:!ss in existence to a temporary halt. On the other hand, it is simple, and should

117

only be needed when a node crashes or a destroyed link goes unused for so long

that everyone has forgotten about it.

5.3. Comparison to Charlotte

The SODA implementation avoids the major prohlems of Chariotte. II

moves multiple links in a single message. It receives no unwanted messages. II

always knows what size buffer to allocate. It needs no retry, forbid, or allow

messages. It does not require the semantic compromises of section 4.3.

In all fairness, however, there are potential problems that bear mentioning.

To begin with, SODA limits the maximum size of messages to some (relatively

large) network-dependent constant. In all lik.e1ihood, the limit could be respected

by L YN X without packetizing messages and without seriously inconveniencing

the programmer. After all, most language implementations place limits on all

sorts of things: the length of variable names, the maximum depth of procedure

nesting, the size of the run-time stack, and so forth ..

A much stricter (and again unspecified) lim\! applies to the out-of-band

information for request and accept. If all the self-descriptive information included

in messages under Charlolle were to be provided out-of-band, a minimum of

about 48 bits would be needed. With fewer bits available, some information

would have to be included in the messages themselves, as in Charlotte.

The most serious problem with SODA involves a third unspecified constant:

the permissible number of outstanding requests between a given pair of

processes. The implementation described in the previous section would work

easily if the limit were large enough to accommpdate three requests for every link

between the processes (a LYNX-request put, a LYNX-reply put, and a status sig-

118

nail. Since reply messages are always wanted (or can at least be discarded if

unwanted), the implementation could make do with two outstanding requests per

link and a single extra for replies. Too small a limit on outstanding requests

would leave the possibility of deadlock when many links connect the same pair of

processes. In practice, a limit of a half a dozen or so is unlikely to be exceeded

(it implies an improbable concentration of simultaneously-active resources in a

single' process), but there is no way to rellect the limit to the user in a

semantically-meaningful way. Correctness would start to depend on global

characteristics of the process-interconnection grapb.

None of these problems is a serious condemnation of the SODA design. At

most, SODA would need only minor modifications to support a considerably

simpler L YN X implementation than does Charlolle. There are at least three

important lessons to be gained from this fact.

Lesson one: Hints can be beller than absolutes.

The maintenance of absolute, up-to-date, consistent, distributed information

can be more trouble than it is worth. It may be considerably easier to rely

on a system of hints, so long as they usually work, and so long as we can

tell when they fail.

The Charlotte kernel admits that a link end has been moved only when all

three parties agree. The protocol for obtaining such agreement was a

major source of problems in the kernel, particularly in the presence of

failures and simultaneously-moving ends [7]. The implementation of links

on top of SODA was comparatively easy.

Lesson two: Screening belongs in the application layer.

Every reliable protocol needs top-level acknowledgments. A distributed

119

operating system can auemptto circumvent this rule by allowing a user pro­

gram to describe in advance the sorts of messages it would be willing to ack­

nowledge if they arrived. The kernel can then issue acknowledgments on

the user's behalf. The shortcut only works. if failures do not occur between

the user and the kernel, and if the descriptive facilities in the kernel inter­

face are sufficiently rich to specify precisely which messages are wanted.

For implementing LYNX, the descrip~ive mechanisms of Charlotte were

simply not rich enough.

SODA provides a very general mechanism for, screening messages. Instead

of asking the user to describe its screening .function, SODA allows it to pro­

vide thaI function itself. In effect, it replaces a static description of desired

messages with a formal subroutine that can be called when a message

arrives.

Lesson three: Simple primitives are best.

From the point of view of the language implementor. the "ideal operating

system" probably lies at one of two extremes: it either provides everything

the language needs, or else provides almost nothing, but in a flexible and

efficient form. A kernel that provides some of what the language needs,

but not all, is likely to be both awkward and slow: awkward because il has

sacrificed the flexibility of Ihe more primitive system, slow because it has

sacrificed its simplicity. Clearly, Charloue could be modified to support all

that LYNX requires. The changes, however, would not be trivial. More­

over, they would probably make Charlotte significantly larger and slower,

and would undoubtedly leave out something that some other language

would want. The beauty of SODA is that it provides mechanisms flexible

enough to support a wide range of programming languages and styles.

120

Among the languages of chapter 1, existing implementations have all

assumed a homogeneous environment. Implementors have felt free to

adopt the first extreme, addressing themselves to the needs of a single

language and often eliminating any real distinction between the operating

system and the run-time support for the language itself. Such an approach

will prove inadequate for general-purpose computing, when a machine like

a multicomputer must be shared by dissimilar users. For such an environ­

ment. the kernel interface will need to be relatively primitive. The fact that

LYNX can be implemented easily on something as simple as SODA speaks

well of its appropriateness for writing general-purpose servers.

6. Measurements

6.1. Size

Object files produced by the Charlotte L YN X compiler tend to be about

50% larger than object files for comparable C programs. The difference can be

attributed to a number of sources: default exception handlers, descriptive infor­

mation for entries and messages, initialization, management of the environment

tree, and run-time checks on subranges, sets, case statements, and function

returns. In addition to the increase in basic code size, every LYNX program is

linked to a substantial amount of run-time support code: the dispatcher, the com­

munication routines, and code 10 manage exceptions and threads.

The run-time support consists of 23. 7K bytes of object code. Of this lotal,

3.0K supports sets and run-lime checks. II can legilimately be regarded as

correcting deficiencies in C. rather than supporting the features of LYNX. The

remaining 20.7K can be allributed to the following goals:

121

support for multiple threads of control '19'ji, 3.9K

basic communication 29% 5.9K
multiple-link transfers 30% 6.IK

exception bookkeeping 11% 2.2K
exception handlers 12% .2.oK

The support for multiple-link transfers is divided more or less equally

between t1nding links buried in data structures and packetizing messages. Some­

what less than half of the support for basic communication is devoted to forbid,

allow, and retry messages, and to undersize buffers. I would expect the run-time

support for SODA to be about 4K smaller than that for Charlolle, Both might be

reduced further by careful programming.

6.2. Threads of Control

With a single thread of control, the following loop executes in just over 8.5

seconds:

foreach i in [1 .. 100000] do
await true;

end;

A loop with a call to an empty subroutine takes 3.8 seconds.

procedure null;
begin end null;

foreach i in [I .. 100000] do
null;

end;

The loop overhead itself takes 0.6 seconds.

foreach i in (I .. 100000] do
nothing

end;

122

By implication, a context switch between threads of control requires a minimum

of 85- b= 79 microseconds, or approximately two and a half times as long as a

call to an ~mpty subroutine with no arguments (38- 6= 32 microseconds).

Since the Boolean conditions in await statements can refer to arbitrary vari­

ables, the context of a thread must be restored before a condition can be checked.

If there are many threads blocked at await statements, and if their Boolean condi­

tions are reiatively complicated (and therefore take some time to evaluate), it may

ta!;e considerably longer than 79 microseconds to switch to a new rcady task.

Moreover, as pointed out in section 3.1, the run-time support routines must cycle

through all tasks blocked at await statements before waiting for each external

event.

Only extensive experience with LYNX will reveal whether the repeated

evaluation of awaited conditions constitutes an unacceptable burden. It does not

appear to be unacceptable in the applications written to date, mainly because

await statements are infrequently used. Most threads block for communication,

not local conditions.

taken:

•

•

If await statements should prove to be a burden, several steps could be

A more intelligent compiler could notice when threads are waiting on a

simple Boolean variable, could keep those threads on a single queue, and

could check the variable only once, without changing contexts.

The language could be extended to allow Boolean expressions to be associ­

ated with named condition variables, as proposed by Kessels PI] for use

.,

123

in monitors. Run-time routines could then check even complicated condi­

tions exactly once when the current thread bl~cks, again without changing

contexts.

The language could be extended to include semaphores or signals, requir­

ing threads to unblock each other explicitly.

6.3. Communication

The facilities of L YN X are not without cost. Even the simplest remote

request must gather and scatter parameters, manage queues of sending and

receiving threads, establish default exception handlers, enforce flow control,

check operation names and types, guard against buffer overflow, look for

enclosed links, and make sure the links are valid.

The following table summarizes timing information for two simple opera­

tions. The first half of the table gives times for a remote operation with no

request or reply parameters. The second half gives times for an operation with

1000 bytes of data transfer in each direction. In each row, times for LYNX pro­

grams are compared against times for C programs that execute the same system

calls in the same order but without the checks described above. The figures were

obtained by timing a pair of processes in tight IOOO-iteration loops, one with an

embedded connect statement, the other with an accept sk'ltement. 13 The 6

microsecond loop overhead is insignificant.

I J Tests were carried out over a period of several days under a variety of net­
work loads. Tests that demonstrated high variance were repeated more often than
those that seemed more stable. No test was repeated fewer than five times. The
:±: figures give the most significant digit of tbe standard deviation.

Empty request, reply
intra-machine
inter-machine

IK request, reply
ir.tra-machine
inter-machine

124

explicit receipt
LYNX C

45.6:t 0.1 ms 39.4:t 0.3 ms
56.9:t 0.8 ms 54.7 -t 0.7 ms

49.7:±: 0.1 ms 41.1:±: 0.1 ms
65.1 :t 0.1 ms 60.1:±: 0.1 ms

The gap between L YN X and C programs is smaller across machines

because parts of the run-time support can execute in parallel. The gap between

the times in the first and second halves of the table is due in part to the copying

of buffers. A timing test similar to the one for context switches reveals that copy­

ing a 1000 byte buffer requires approximately 360 microseconds. The LYNX

program requires 4 such copies for gathering and scattering, for a total of 1.4

milliseconds. The rest of the gap is consumed by the Charlotte kernel.

Similar figures have been obtained for implicit message receipt:

Empty request, reply
intra-machine
inter-machine

IK request, reply
intra-machine
inter-machine

implicit receipt
LYNX C

46.8 ± 0.1 ms
60.2 :t 0.1 ms

50.3:': 0.1 ms
69.5:!: 0.1 ms

39.5 ± 0.3 ms
55.2 :t 0.2 ms

41.1 ± 0.2 ms
63.3 ± 0.3 ms

Differences from the first table are due to two factors. First, the L YN X server in

the second table incurs overhead for the creation and destruction of a separate

thread of control for each request. Second, the speed of the kernel itself is

affected by the order in which system calls are made. With implicit receipt, the

125

run-time system posts a new Receive as soon as the old one completes.

server with server with
explicit receipt im plicit receipt

Receive Receive

Wait (receive) Wait (receive)
Send Receive

Wait (send) Send
Receive Wait (send)

Wait (receive) Wait (receive)
Send Receive

Wait (send) Send
Receive Wait (send)

Because of Charlotte's sensitivity to the ordering of events. the figures

above are suggestive, not definitive. The speed of messages in practice will

depend not only on the actions of the sender and receiver, but equally well on all

events that are noticed by the kernel.

6.4. Predicted Values for SODA

The SODA L YN X implementation, as described in section 5.3. would be

considerably simpler than the one for Charlotte. Most of the difference, how­

ever, would be seen only in unusual cases: the transfer of messages with multiple

enclosed links. the receipt of unwanted requests. Typical message traffic would

require about as much run-time support as it currently does in Charlotte. It

might. however. require considerably less kernel support.

It is difficult to compare message transmission times in Charlotte and

SODA. Charlotte has a considerable hardware advantage: the only implementa-

126

tion of SODA ran on a collection of PDP-iI/23's with a I-Mbilfsecond CSMA

bus. SODA, however, probably has a software advantage: it was much simpler

and easier to implement. The Charlotte group made a deliberate decision to

sacril1ce efficiency in order to keep the project manageable.

With these reservations in mind. it appears reasonable to t:xpect consider­

ably beller performance from SODA. Experimental figures reveal that for small

messages SODA was three times as fast as Charlotte. 14 Much of the difference

can be attributed to the Lack of features in the kernel. By providing a simpler

interface, SODA avoids duplicating functions that are provided at a higher level.

To a large extent, the differences between Charlotte and SODA can be cast

in tile context of a more general class of end-to-end arguments [97]. End-to­

end arguments provide a rationale for simplifying the lower levels of a layered

software system. Among other things. they question the wisdom of providing too

many functions in levels that are shared by several applications. Any facility that

is not used by a given application will extract a performance penalty that could be

avoided by moving it up into the higher levels that use il.

One of the easiest targets for end-to-end arguments is the detection of

errors in communication protocols. A lower protocol level can only eliminate

errors that can be described in the context of its interface to the level above.

Overall reliability must be ensured at the application level. Since end-to-end

checks generally catch aIL errors. low-level checks are redundant. They are jus­

tified only if errors occur frequently enough to make early detection essential.

14 The difference is less dramatic for larger messages; SODA's slow network
extracted a heavy toll. The figures break even somewhere between lK and 2K
bytes.

127

The run-time system for LYNX never passes Charlotte an invalid link end.

It never specifies an impossible buffer address' or length. It never tries to send

on a moving end or enclose an end on itself. To a certain extent it provides its

own LOp-level acknowledgments, in the form of goahead, retry, and forbid mes­

sages, and in the confirmation of operation names and types implied by a reply

message. It would provide additional acknowledgments for reply messages (sec­

tion 4.3, paragraph 2) if they were not so expensive. For the users of LYNX,

Charlotte wastes time by checking these things itself.

Wi

Conclusion

This dissertation makes at least five important contributions to computer sci·

ence.

(1) It enumerates the language needs of multicomputer systems programs.

(2) It presents a framework for the discussion of distributed languages and a

survey of previous proposals.

(3) It develops a new language ideally suited to meeting the needs in I!).

(4) It demonstrates the feasibility of implementing that language (and by impli·

cation languages in general) on a distributed operating system.

(5) It derives useful insights inlo Ihe nalure of the language/operating system

interface.

In comparison to a sequential language that performs communication

through library routines or through direct calls to operating system primitives,

LYNX supports

- direct use of program variables in communication statements
-- secure Iype checking
- thorough error checking, with exception handlers outside

the normal flow of control
-- automatic management of concurrent conversations

In comparison to previous distributed languages, L Y N X obtains these benefits

without sacrificing the flexibility needed for loosely-coupled applications. LYNX

supports

dynamic binding of links to processes
- dynamic binding of types to links
- abstraction of distributed resources
- protection from errors in other processes

129

In addition, L YN X reflects the structure of an underlying multicomputer by dif­

ferentiating between processes, which execute in parallel and pass messages, and

threads of control, which share memory and execute in mutual exclusion.

The languages of chapter 1 were designed primarily to support communica­

tion between pieces of a single distributed program. Even for this limited

domain, L YN X offers some advantages over most previous proposals. By provid­

ing both explicit and implicit receipt, L YN X admits a wide range of communica­

tion styles. By allowing dynamic binding of links to entry procedures, LYNX

provides access control for such applications as the readers/writers problem. By

integrating implicit receipt with the creation of threads, L YN X supports com­

munication between processes and management of context within processes with

an economy of syntax.

Support for tightly-coupled programs, however, is not central to the thesis.

The real significance of the work at hand lies in problems unaddressed by previ­

ous research. LYNX is not another language in the mold of chapter 1. It meets

the needs of loosely-coupled applications for which other languages were never

intended. I feel no need to claim that LYNX is better than other languages for

general-purpose use, only that it is more appropriate for writing servers on a

multicomputer operating system.

Since the arguments for LYNX rest on practical (as opposed to theoretical)

concerns, they are strengthened considerably by the existence of a compiler and

a working run-time system. The implementation Jor Charlotte, as described in

chapter 4, is important in several respects. It permitted the construction of

usable programs. II verified that the language could be implemented efficiently,

with a reasonable amount of effort. It spurred the development of novel tech-

130

niques for checking types and moving links. In concert with the paper design for

SODA, it produced the lessons of section 5.3 (hints can be better than absolutes;

screening belongs in the application layer; simple primitives are best). Finally, it

resulted in a product of continuing value to the larger Charlotte project.

Directions for Future Research

The material in this dissertation suggests several avenues for future work.

The most obvious of these would explore extensions and improvements to L YN X.

Some extensions could be motivated by efforts to adapt the language to additional

problem domains. Substantial changes might be needed, for example, if L YN X

were to be used on a multiprocessor architecture, where memory could be shared

by more than one CPU. Other extensions might prove useful even in the

language's original domain. Possibilities include:

•

•

A cobegin construct for dividing a thread into subthreads

Such a construct WOUld, for example, allow a thread to request operations

on IwO different links when order is unimportant. As currently defined,

L YN X requires the thread to specify an arbitrary order, or else creale sub­

threads through calls to entries that are separated lexically from the princi­

pal flow of control.

A mechanism for forwarding requests

In some algorithms a server passes a request on 10 a peer, waits for a reply,

and passes the reply back to the client. Communication could be reduced if

the second server repiied to the client directly. It is nOl immediately obvi­

ous how such a facililY would work in LYNX, where all communication is

c:onstrained to flow through links.

•

•

131

"Exception handlers" for bindings

A link that is bound to entries but is not in usc by any active thread can be

destroyed at either end. LYNX specifics that the bindings are broken, but

provides no "nook" for programmer-det1ned recovery. The language

could allow a link to be bound to a cleanup entry that would be executed

automatically when the link was destroyed.

Asynchronous receipt

As currently defined, L YN X provides no mechanism for coping with asyn­

chronous external events. Both incoming and outgoing messages go unno­

ticed until all threads in a process are blocked. Real-time device control

cannot he programmed in L YN X, nor can any algorithm in which incom­

ing messages must interrupr the execution of lower-priority "background"

computation [42,46]. To support such algorithms, LYNX would need con­

siderably more elahorate facilities than it currently provides for synchroniz­

ing threads.

Beyond mere changes to the language, work on LYNX points to several

related subjects. Efliciency is one of these, particularly the relationship of effi-

ciency to layers in a communication protocol. Previous work on high-speed

mechanisms for interprocess communication [77,90, 103] suggests that layers

extract an enormous price in communication overhead. Nevertheless, layers arc

certainly useful. Their modular structure makes them easier than integrated sys­

tems to build, debug, maintain, and understand. They also promote flexibility by

allowing different upper layers to run simultaneously on the same underlying

system. Research to date has produced neither a really fast layered protocol nor

a convincing explanation of why such a protocol cannot exist.

132

Assuming that layers will continue to exist, at least to the extent that

languages will be built on top of distributed operating systems, it is very much

worthwhile to investigate the interface between the layers. The results in chapter

4 suggest that the interface delined by the Charlotte kernel is inappropriate: too

low-level to be used conveniently "as is," yet too inflexible to support a straight­

forward implementation of LYNX. The search for an "ideal" interface would

benet1t substantially from formal criteria for evaluating particular proposals.

Finally, there is at least some reason to be suspect of any programmmg

language that places "too many" parameters outside the control of the individual

programmer. Niklaus Wirth, in his 1984 Turing Award Lecture, proposed that

"Systems programming requires an efficient compiler generating efficient code

that operates without a fixed, hidden, and large so-called run-time pack­

age." [119] L YN X does not meet this standard by any stretch of the imagina­

tion. lis run-time package is fixed, hidden, and large, for the simple reason that

it cannot itself be written in LYNX. The package relies on knowledge of the

compiler's storage-allocation strategy. It also uses symbol-table data generated by

the compiler but invisible to the user. If the necessary information were made

an explicit part of the language, much of the run-time package could be moved

into library routines. Pieces that proved inappropriate for particular applications

could be quickly and easily replaced. The modified language might be consider­

ably more flexible than the current version. II might also be more amenable to

formal analysis !lhough its library routines might not!).

The design of LYNX was very much an exercise in practical problcm­

solving. As such, it must be judged on the basis of the solutions it provides.

Only long-term experience can support a final verdict. New problems will

133

undoubtedly arise and will in turn provide the impetus for additional research.

At present. however. the evidence suggests thai LYNX is a success.

134

Appendix

LYNX Reference Manual

Caveat: this reference manual is nOI a formal document. II describes the

CharlollelV AX implementation of L YN X at a level of detail suitable for program-

mers.

1. Lexical Conventions

A L YN X program is a sequence of characters from the Ascii character set.

Characters are scanned by the compiler from left to right and are grouped

together in tokens. Some tokens are valid prefixes of longer tokens. In such

cases. the compiler finds tokens of maximal length. Tokens can be separated by

white space (spaces. tabs (\t), and newlines (\n». While space has no other

meaning.

Many tokens are simple symbols:

(.

<
+

<= >=
:;:

> <>

«
->

»

Others are more complicated. All can be defined by regular expressions.

In the following, italics are used for intermediate definitions. Parentheses

are used for grouping. Vertical bars are used for alternation. Other adjacent

symbols are meant to he concatenated. The function NOT indicates complemen­

tation with respect to the Ascii character scI.

Comments in L YN X begin with' - - ' and extend through end-of-line.

COMMENT =

- - (NOT (\n)) '"

Comments are treated like while space.

Numeric constants can he expressed in oClal, decimal, or hexadecimal.

NUMBER =

o (0 I ocuiig!!) * I
decdigit I 0 I decdig!t) * I
/I (0 I hexdigit) *

where
ocuiigit = '1' . .' 7'
decdigit = '1' .. '9'
hexdigit = '1' . .'9', 'A' . .'F', 'a' . .'P

13S

Character and string constants are delimited by single and double quotes,

respectively. Non-printing characters may be indicated by the single-letter

backslash-escapcs of C (\b, \n, \r, \l), or by numbers (as defined above) delim­

ited by a pair of backslashes (as in \/171'\ for the delete character). Single quotes

in character constants and double quotes in string constants are indicated by"

and \", respectively. Backslashes are indicated by·\\. Backslashes not accounted

for by any of the preceding rules are ignored.!5

15 These conventions agree with C except in the form of numeric escapes.

CHARCONST =
, (

NOT (, , \ , \n , nonprinI) I
\ NOT (/I , 0 , decdigiI, \n , nonprinI) I
\ number \

) ,

STRINGCONST =
" (

NOT (" , \ , \n , 1l0nprilll) I
\ NOT (/I , 0 , decdigit, \n , Ilonprillt) I
\ number \

) * "
where

136

Ilonprinrindicates the Ascii characters with codes 1..8,11..31, and 127
decdigit is as above
number is as defined for the token' 'number"

Keywords are:

ACCEPT AND ARRAY AWAIT

BEGIN BIND CALL CASE

CONNECT CONST DO ELSE

ELSIF END ENTRY EXCEPTION

EXIT EXPORT EXTERNAL FOREACH

FORWARD FROM FUNCTION IF

IMPORT IN LOOP HOD

MODULE NOT OF ON

OR OTHERWISE PROCEDURE RAISE

READ RECEIVE RECORD REMOTE

REPEAT REPLY RETURN REVERSE

SEND SET THEN TO

TYPE UNBIND UNTIL VAR

WHEN WHILE WITH WRITE

After excluding keywords, identifiers are strings of letters, digits, and

underscores that do not begin with a digit and do not end with an underscore.

Case is not significant in identifiers, except when significance is imposed from

outside by .associating names in the language with external objects.

IDENTIFIER =

leller I (

where

(letter I _)
(letter I _ , digit) *
(leiter I digit)

letter = 'A' .. 'z" ~a' .. 4 Z '

digit = '0' . .'9'

2. Types

137

A type is a set of values and a mapping from those values to representations

in memory, Types are useful for restricting the values that can be used in vari­

ous contexts. Several types are pre-defined. Others are created by type con-

structors.

type ::= IDENTIFIER
:: = en urn_type
:: = subr_type
:: = array_type
: : = record....type
:: = seLtype

2. 1. Pre-defined Types

integer

char

consists of as many distinct values as can be1represented in a single word.

Its values lie in a contiguous range centered' approximately at the origin

(-2147483648 through 2147483647 on the VAX).

consists of the Ascii characters. Char variables occupy one byte on the

VAX.

138

Boolean

link

consists of the truth values. True and false are pre-defined constants of type

Boolean. Boolean vanables occupy one byte on the VAX.

consists of references to the ends of communication channels. Link values

are created at run time. A given end of a given link is accessible to only

one process at a time. Links are discussed in detail below.

Nolink is a pre-defined constant of type link. The value nolink can be

assigned into or compared against the contents of a link variable, but is

usable for nothing else. Link variables occupy two bytes on the VAX.

2.2. Enumerations

The values of an enumeration type have a one-one correspondence with the

first few non-negative integers.

en urn_type
idenLlist
id....IiSLtail

:: = (idenLiist)
- IDENTIFIER id....lisLtail

, idenLiist

The identifiers in the list name the values of the lype. Enumeration variables

occupy four bytes on the VAX.

2.3. Subranges

A type can be declared to be a subrange of any existing scalar type. The

existing type is called the parent type of the subrange. Scalar types are integers,

chars, Booleans, enumerations, and subranges.

139

:: = [expr .. expr]

Subrange variables occupy one, two, or four bytes on the VAX, depending on

whether or not their bounds fall in the ranges -128 .. 127, - 32768 .. 32767, or

-- 2147483648 .. 2147483647, respectively.

2.4. Array Types

The values of an array type are ordered lists of values of the array's ele­

ment type. The length of each list is the number of distinct values of the array's

index type.

:: = ARRAY type OF type

The type that follows the word ARRAY is the index type. The second type is the

element type. The index type must be scalar.

A variable of an array type thus consists of many smaller variables, called

the elements of the array. The element variables have names: if expr is an

expression whose type is the index type of array "foo" and whose value is II,

then "foo {expr]" is a name for the nth element of foo.

The elements of an array are stored in consecutive locations in memory.

The location of the first element is the same as the location of the array. There

is no special syntax for multi-dimensional arrays. The programmer can of

course declare arrays of arrays and access their elements as "name {row]

[column]. "

2.5. Record Types

A record is a list of named fields. The values of a record type are lists of

values of the types of the fields.

recor<Ltype
fiel<LlisLopt

field

vnLlisLopt

variant
componenLlist
comp-lisLiail

component
componenLtail

:: = RECORD fielcLlisLopt EN D
:: = field fiel<LlisLoPI

:: = idenLlist : lype ;

140

:: = CASE IDENTIFIER: type OF vnLlisLopt END;
..- ,

:: = variant vnLlisLopt

:: = { componenLlist } fielcLlisLopt
:: = component comp-lisLtail
:: = , component comp-lisLtail

:: = expr componenLtail
.. expr

A variable of a record type thus consists of a collection of smaller variables,

one for each field of the record. Each of these smaller variables has a name.

The name is created by appending a period and the name of the field to the name

of the record variable.

The word CASE introduces a variant portion of a record. All variants have

the same location. Only one variant is valid at a time.

The identifier following the word CASE is the name of a special field called

the tag of the variant portion of the record. The tag must have a scalar type. It

determines which variant is valid at a particular point in time. The component

list of each variant lists the values of the tag for which the variant is valid. The

lists must be disjoint. Their component expressions must have values that can be

determined at compile time. They cannot involve function calls.

On the VAX, records have the same representation in memory as C structs

and unions.

141

2.6. Set Types

The values of a set type are unordered sets of values of the set's COID-

ponent type.

seLlype :: = SET OF type

The component type must be scalar or link.

On the VAX, every set variable occupies 16 bytes. The component type of

a set (if other than link), must have no more than 128 elements. For sets of

subranges of integers, the subrange bounds must lie between 0 and 127,

inclusive.

J. Declarations

Identifiers denote types, constants, variables, exceptions, exception classes,

subroutines, and entries. Several identifiers are pre-defined; all others must be

declared by the programmer, Identifiers exported from a module (sections 3.7

and 4) appear in the export list before they are declared. All other identifiers

must be declared before they are used.

deept

declaration

:: = declaration dec_pt

::= CONST consLdec consLdectaii
:: = TYPE type_dec type-dectail
:: = VAR vaL dec vaLdectail
:: = EXCEPTION idenLlist ;
:: = subroutine;
:: = entry;
::= module;

Declaration sections can appear in any order, an arbitrary number of times.

142

3.1. Types

A type may have any number of names. There are four built-in types.

They all have names. Each It:xical occurrence of a type constructor introduces a

new type. A type declaration introduces a new name for the type on its right

hand side. A constructed type that appears on the right-hand side of a variablt:

declaration has no name. Once declared, the name of a type can be used any­

where a type constructor could be used, but without introducing a new type.

tyre-dec :: = IDENTIFIER = type ;
.. - ~

J.2. Constants

Constant declarations introduce names for string constants or for values of

pre-defined scalar types.

consLdec .. - IDENTIFIER = expr;

consLdeetail :: = consLdec consLdeetail

The expression must have a value that can be determined at compile time. It

cannot involve function calls. If the expression is a string constant, then the

deciared constant has the new and nameless type .. ARRAY [O .. n] of char,"

where n is the number of characters in the string. Byte n is a null (Ascii 0).

3.3. Variables

Variable declarations reserve memory locations and introduce names for

those locations.

143

:: = idenLlist : type ;
•• - l

The name of a variable refers either to the localion of the variable or to the value

stored at that location /its contents), depending on context. The type of a vari­

able restricts the values that can be stored at its location. It is a programming

error to refer to the contents of a variable before storing a value at its location.

3.4. Exceptions

Every link value has several exceptions associated with it. Names for these

exceptions consist of an expression of type link (with the appropriate value) fol­

lowed by the name of a built-in exception class.

Additional exceptions are introduced by exception declarations. Each iden­

tHier in the identifier list of an exception declaration is the (only) name for a new

exception.

Programmer-defined exceptions have different semantics from the excep­

tions associated with links (see section 7.2). Both kinds of exceptions are used

only in when clauses (section 6.11) and raise statements (section 6.12).

3.5. Subroutines

Subroutines are parameterized sequences of statements.

subroutine

ar~lisLopt

mode

formal
fun_type_opt

body

PROCEDURE IDENTIFIER ar[;-lisLopt; body
FUNCTION IDENTIFIER ar[i-lisLopt
fun_type_opt ; body
(mode formal more_m_formals)

; mode formal mor~m_formais

VAR
CONST

:: = idenLlist . IDENTIFIER
:: = : IDENTIFIER

:: = deept compouncLstmt IDENTIFIER
.. FORWARD
:: = EXTERNAL

144

The name of the subroutine follows the keyword PROCEDU RE or FU NCTION.

The identifier at the end of a non-trivial subroutine body must match the name of

the subroutine.

The argument list specifies formal parameters for the subroutine,

together with the modes and type names of those parameters. Within the com­

pound statement of a subroutine body, parameters may be used as if they were

variables. V AR parameters are passed by reference. Plain parameters are

passed by value. The contents of CONST parameters cannot be modified.

CONST parameters are passed by reference on the VAX.

Functions yield a value whose type name follows the argument list. Pro­

cedures do not yield II value.

A FORWARD subroutine body indicates that the subroutine will be

declared again later in the same scope, with a non-trivial body. The second

declaration must omit the argument list and function type.

145

An EXTERNAL subroutine body indicates that the subroutine is external to

LYNX and must be found by the linkt!f Case is significant in the names of

external subroutines.

3.6. Entries

An entry resemblt!s a proc\!dure.

entry

formaLtail

OULtypes-opt

::= ENTRY IDENTIFIER in_args-optoULtypes-opt:
body

:: = (formal formaLtail)

: formal formaLtail

: idenLiist

The name of the entry follows the keyword ENTRY As with subroutines, the

identifier at the end of a non-trivial body must match the name of the entry.

An entry cannot be declared EXTERNAL, but it can be declared

REMOTE.

body ::= REMOTE

A REMOTE body indicates that the entry may de declared again (minus in argu­

ments and out types. but with non-trivial body) in the same scope. Unlike FOR­

WARD, REMOTE does not require the later declaration.

The in arguments and out types of an entry an: templates for the request

and reply messages of a remote operation. Within the statements of the body of

the entry. the in arguments can be used as if they were variables. Through the

use of the bind statement (section 6.9), the programmer can arrange for an entry

to be executed in response to incoming requests.

146

3.7. Modules

Modules are an encupsulation mechanism for structuring programs and for

limiting the scope of identifiers.

module

imporLpl

exporLpt

cpcLstmLopt

MODULE IDENTIFIER: imporLpt exporLpt
deept cpcLstmLopt IDENTIFIER
IMPORT idenLiist ;

EXPORT idenLlist ;

:: = compoun<Lstmt
::= END

The compound statement of a module. if it has one. is called the module's

initialization code. For consistency with the terms for subroutines and entries,

it is occasionally called the module's body as well. The purpose of import and

export lists is explained below.

4. Scope

Declaration sections appear near the beginning of every block. Blocks are

subroutines, entries, and modules.

Declarations introduce meanings for identil1ers. Identillers can have dif­

ferent meanings at different places in a program. The portion of a program in

which a particular meaning holds is called that m\!aning's scope. The scope of a

m\!aning extends from the declaration of its identifier to the end of the block in

which that declaration appears, with three exceptions:

(l) If a nested block contains a declaration of the same identil1er, or if a with

statement or labeled statement introduces a new meaning for the identifier

(see sections 6.5.4, 6.6, and 6.8), then the scope of the outer meaning

147

does not include the scope of the inner meaning.

(2) A meaning does not extend into any nested module unless its identifier is

explicitly im ported.

(3) If a module expliCllly exports an identifier, then the meaning of that iden­

tifier extends from its declaration inside the module to the end of the ellc/os-

ing block [subject to exceptions II) and (2».

Identifiers can he imported or exported repeatedly in a nested chain of modules.

For the purpose of defining scopes, the formal parameters of subroutines

and entries are considered to be part of the declaration section immediately fol­

lowing their argument list. They are not visible in as large a scope as is the

name of their subroutine or entry.

Two record types visible at the same point in a program can have fields with

the same name. Otherwise, declarations of the same identifier must have disjoint

scopes. In particular, simultaneously visible enumeration types cannot have

values wilh the same name.

The environment of a particular thread of control at run time is a mapping

from names to their current meanings. New meanings appear whenever control

enters the initialization code of a module or the body of a subroutine or entry.

The affected identifiers are those declared in the immediately preceding declara­

tion section. For a subroutine or entry, the meanings disappear with the comple­

tion of the body of the block. For a module, the meanings disappear with the

completion of the closest enclosing subroutine or entry. They may not be visible

outside the module, unless they are exported. For any particular thread, the

appearance and disappearance of meanings occurs in LIFO order. (The same is

not true of a process as a whole, as discusscd· in section 7.)

148

5. Expressions

An expression evaluates to a value at run time. Every expression has a

type. Expressions are composed of atoms, parentheses, function calls, and

operators.

expr
expr_tail

term
term_tail

factor

selector
selector_tail

5.1. Atoms

:: = term expLtaii
: : = reLop term expLtail

: : = factor term_tail
:: = otheLop factor tcrm_tail

:: = NOT factor
:: = - factor
:: = constant
:: = set
:: = (expr)
:: = selector seLfactail
.. IDENTIFIER selector_tail

. IDENTIFIER selector_tail

An atom is an explicit constant, or the name of a constant or variable.

constant

changeover

designator_tail

::= NUMBER
::= CHARCONST
::= STRINGCONST
:: = changeover

.. - [expr J designator_tail

.. : IDENTIFIER designatoLtail

.. - . IDENTIFIER designatoLtail
:: = changeover

149

A number or character constant is an expression with an obvious value and

type. A string constant has the new and nameless type "ARRAY [0 .. n] of

char," where n is the number of characters in the string.

The name of a constant or variable is an expression whose value is the

value of the constant or the contents of the variable and whose type is the type of

the constant or variable. Within a name, a period indicates selection of a field of

a record. Brackets indicate selection of an element of an array. A colon indi-

cates a type cast.

Type casts are allowed only on variables. A variable name followed by a

type cast is the name of an imaginary variable whose type is specified by the cast,

whose location is the same as that of the original .variable, and whose value is

determined by interpreting the data at that location . That value may be garbage.

5.2. Set Expressions

A set expression evaluates to a value of type "SET OF componenLtype,"

where corllPOnenLtype is a subrange whose bounds are the lowest and highest

possible values of any of the component expressions or ranges. The set type is

new and nameless. It is provisional in the sense that it may be coerced to

another type if context requires it.

set
comp-lisLopt

:: = { comp-lisLopt }
:: = componen Llist

The value of the set contains the value of each component expression and all

values in each component range.

150

5.3. Function Calls

The type of a function call is specified in the declaration of the function.

The value is obtained by involdng the function at run time.

seLfac_tail
expLlist
expr _lisLtail

:: = (expLlist)
:: = expr expr _iisLtail
.. ,expLlist

The expressions in the argument list are called actual parameters. They must

agree in order and number with the formal parameters of the function. Their

types must be compatible with the types of the formals. Type compatibility is

discussed under assignment statements (section 6.1). A function call with no

parameters looks like an atom.

The values of the actual parameters are used as initial values for the formal

parameters of the function. Actual parameters corresponding to VAR or CONST

formal parameters must be variables. The contents of actual parameters

corresponding to V AR formal parameters may be changed by invoking the func­

tion. The contents of actual parameters corresponding to value or CONST for­

mal parameters are not changed.

5.4. Operators

All operators are pre-denned. They are represented by the following

tokens:

+
<

NOT
<=
AND

*
>=
OR

>
IN MOD

->
<>

NOT is a unary operator. It has one operand, the expression to its right. The

151

minus sign (-) can also be a unary operator, if there is no expression to its

immediate left. Otherwise, it is a binary operator, Binary operators have two

operands: the expressions to their left and fight. The rest of the operators in the

above list are binary,

5.4.1. Opera lor Precedence

In the absence of parentheses, operands and o~rators arc grouped together

according to the following levels of precedence.

Loosest grouping

OR
AND

< <= >= > <>
+ -- (binary)

'" MOD I
NOT - (unary)

Tightest grouping

Operators of equal precedence associate from left to right.

5.4.2. Operator Semantics

For the purposes of this section, define the base of any type except a

subrange to be the type itself. Define the base of a subrange to be the base 01 the

subrange's parent type.

NOT

is a unary operator whose operand must have, base type Boolean. "NOT

expr" is an expression of type Boolean whose value is the negation of the

value of expr.

152

AND and OR

are binary operators whose operands must have base type Boolean. "exprl

AND expr2" and "exprJ OR expr2" are expressions of type Boolean

whose values are the logical and and or, respectively, of the values of their

operands.

(Unary) -

is an operator whose operand must have base type integer." expr" is an

expression of type integer whose value is the additive inverse of the value of

expr.

+, - , and '"

are binary operators whose operands must be sets, or else of base type

integer. If exprl and expr2 are of base type integer, then "exprJ +

expr2," "exprl _. expr2," and "exprl ,', expr2" are expressions of type

integer whose values are the sum, difference, and product, respectively, of

the values of their operands. The VAX implementation performs these

operations in two's complement arithmetic with no checks for overOow,

If expr J and expr2 are sets, then "expr 1 + expr2," "expr 1 - expr2," and

"exprl ,', expr2" are expressions whose values are the union, difference,

and intersection, respectively, of the values of the operands. If neither

operand has a provisional type, then the types must be the same, and the

type of the expression will be the same as well. If exactly one operand has

a provisional type, then it is coerced to the type of the other operand, if pos­

sible. The coercion is not permilled if 1) the two operands have different

component base types, or 2) the bounds of the component type of the provi­

sional operand do not lie within the bounds of the component type of the

153

other operand. If both operands have provisi~nal types, then the bases of

their component types must be the same, and the expression has a new pro­

visional type. The component type of the expression has the same base as

the component types of the operands, and its bounds are the minimum and

maximum of the bounds of the components of the operands.

I and MOD

are binary operalors whose operands must have base type integer. .. exprl !

expr2" and "exprJ MOD expr2" are expressions of type integer whose

values arc the quotient and remainder, respectively. obtained in dividing

exprl by expr2. The remainder has the sa'lle sign as the dividend (in this

case exprJ J.

<, <=, >=, and>

are binary operators whose operands must either be sets or else have scalar

base types. If the operands arc sets, then the type rules described under

.. +, -, and'"" apply. "setl op sel2" is an, expression of type Boolean

whose value reflects the relationship belWee,n the two sets. In the order of
,"

the heading above, tht; operators delermine wh~ther setl is a proper subset,

subset, superset, or proper supersel of sel2.

If the operands are scalars, then Iheir base types must be the same, and

.. exprl op expr2" is an expression of lype Boolean whose value indicales

whether exprJ is less than, less than or equal to, greater lhan, or grealer

than or equal to expr2.

= and <>

are binary operators whose operands must,eilher be sets, be of type link, or

have scalar base types. If the operands are sets, then the Iype rules

154

described under "+, -, and ,," apply. If the operands are scalars, then

their base types must be the ·same. In al\ cases, .. exprl op expr2" is an

expression of type Boolean whose value indicates whether expr 1 and expr2

have the same value.

is a binary operator whose operands must have type link. "exprl­

expr2" (read" exprl is similar to expr2") is an expression of Iype Boolean

'whose value indicates whether the values of exprJ and expr2 arc references

to opposite ends of the same link. Checking for similarity is not supported

by the Charlotte implementation.

_ > is a binary operator whose lef! operand muse have type link and whose righl

operand must be the name of an entry. "expr - > entryname" is an

expression of type Boolean whose value indicates whether the link end

referenced by expr is bound to entryname. (Bindings are discussed in sec­

tion b.9.)

IN is a binary operator whose right operand must be a set whose component

base type is the same as the base type of the lef! operand. •• expr 1 IN

expr2" is an expression of type Boolean whose value indicates whether the

value of the left operand is a component of the value of the right operand.

6. Statements

Statements accomplish the work of a program. They change the contents of

variables, send messages, and produce OUlpUI data on the basis of internal calcu­

lations, incoming messages, and input data.

stmt

otheLstmt

labeled-stmt

::== reply
:: == otheLstmt
:: == labeLopt labeled-stmt
:: == communication
::== io
:: = hind-stmt
::== unbind-stml
::== iLstmt
:: == case_stmt
:: == exiLstmt
:: == wilh_stmt
:: == retu rn_stmt
:: == awaiLstmt
:: == raise_stmt
:: == selector seLstmLtail

:: == loop-stmt
:: == compound-stmt

6.1. Assignment Statement

An assignment statement changes the contents· of a variable.

seLstmLtail
firstchange

::== firstchange:== expr
:: == changeover

155

The left-hand side of the assignment precedes the : == sign. It must be the

name of a variable. The type of the expression on the right-hand side must be

compatible with the typeo!" the left-hand side.

Every type is compatible with itself (compatibility is renexive). A subrange

and its parent type are compatible with each other. Two subranges are compati­

ble with each other if their parent types are compatible and if their sets of values

intersect. (Run time checks may be necessary to guarantee that assignments pro­

duce valid values for the left-hand side.) A string constant is compatible with any

array whose clements have base type chaL A long string may be truncated to fill

156

a small array. A short string may be extended with garbage to fill a large array.

A provisional set type is compatible with any type it could be coerced to match

(run time checks may again be necessary). Types not covered by these rules are

not compatible.

6.2. Procedure Call

Like a function call, a procedure call provides a set of actual parameters

to be used for the initial values of the formal parameters of the subroutine.

Unlike a function, a procedure yields no value.

seLstmLtail
Lar~opt

::== Lar~opt
.. (expr_lisl)

Actual parameters must agree in order and number with the formal parameters of

the procedure. Their types must be compatible with the types of the formals.

Actual parameters corresponding to VAR or CONST formal parameters must be

variables. The contents of actual parameters corresponding to V AR formal

parameters may be changed by calling the procedure. The contents of actual

parameters corresponding to value or CONST formal parameters are not

changed.

6.3. If Statement

An if statement contains one or more lists of statements, at most one of

which is executed. The choice between the lists is based on the values of one or

more Boolean expressions.

iLstmt

elsiLiisLopt

stmLiisLopt

:: = IF expr TH EN stmLiisLopt elsiLiisLopt els~opt
END

:: = ELSIF expr THEN stmLiisLopt elsiLiisLopt

:: = ELSE stmLiisLopt

:: = stmt ; stmLiisLopt

157

The first statement list is executed if the first Boolean is true. the second if the

second Boolean is true, and so forth. The last list. if present. is executed if none

of the Booleans are true.

6.4. Case Statement

Like an if statement. a case statement contains multiple lists of statements.

It is intended for the commonly-occurring situation in whICh the choice between

lists is based on the value of a single variable.

cas~stmt

case_lisLopt

defaulLopt

:: = CASE expr OF cas~lisLopt defaulLopt END
.. {componenLiist ~ stmLiisLopt case_iisLopt

OTHERWISE stmLiisLopt

The expression following the word CASE must be a scalar. The beginning of

each arm of the case statement has the same syntax as a set expression. The

component lists must be disjoint. The expressions they contain must have values

that can be determined at compile time. They cannot involve function calls.

Exactly one of the statement lists must be executed. If the value of the

scalar expression is found in one of the component lists. then the immediately

following statement list is executed. If the value is not found. then the statement

list following the word OTH ERW ISE (if present) is executed instead. If the

158

value is not found and the OTHERWISE clause is missing, then an error has

occurred and execution must halt.

6.5. Loop Statements

Loop statements cause repetitive execution of a nested list of statements.

loop-stml

6.5.1. Forever Loop

:: = [oreveLloop
:: = wh ile_loop
: : = repeaLioop
: : = foreach_loop

Execution can only leave a forever loop by means of an exit statement, a

return statement. or an exception.

forever_loop LOOP slmLiisLopt EN D

6.5.2. While Loop

The header of a while loop contains a Boolean expression.

::= WHILE expr DO stmLiisLopt END

The expression is evaluated before every iteration of the loop. If its value is true,

the statements inside the loop are executed. If it is false. execution continues

with the next statement following the loop. If the value of the Boolean expression

is false the first time it is examined, then the loop is skipped in its entirety.

C..S.3. Repeat Loop

The footer of a repeat loop contains a Boolean expression.

159

repeaLioop :: = REPEAT stmLlisLopt UNTIL expr

The expression is evaluated after every iterati<;>n of the loop. If its value is false,

the statements inside the loop are executed again. If it is true, execution contin­

ues with the next statement following the loop. The statements inside a repeat

loop are always executed at least once.

6.5.4. Foreaeh Loop

The header of a foreach loop introduces a new variable called the index of

the loop.

generator

reversiblc_gen

FOR EACH IDENTIFIER IN generator DO
stmLlisLopt END
[expr .. expr 1

.. set
:: = selector firstchange
.. REVERSE reversible_gen

i expr .. expr 1
selector

The scope of the index is the statement list inside the loop. The type of the index

is determined by the loop's generator. A generator can be a range of values, a

set expression, a name of a set variable, or a name of a scalar type.

The generator produces a sequence of values for the index. The statements

inside the foreach loop are executed once for each value. If the generator is a

range of values, then the type of the indcx will be the base type of the bounds of

the range (the bounds must have the same base type). The indcx takes on thc

values in the range in ascending or descending order, depending on whether the

word REVERSE appears in the loop header. The range may be empty, in which

case the loop is skipped in its entirety.

160

If the generator is a set expression or a variable of a set type, then the type

of the index is the base type of the components of the set. The index takes on the

values of the set in arbitrary ordeL

If the generator is the name of a scalar type, then that type is the type of the

index. The index takes on the values of the type in ascending or descending

order, depending on whether the word REVERSE appears in the loop header.

The value of the index can be examined but not changed by the statements

in the loop. It cannot appear on the left-hand side of an assignment, nor can it

be passed as a VAR parameter to any procedure or function, nor can it appear

among the request parameters of an accept statement or the reply parameters of a

connect, call, or receive statement.

6.6. Exit Statement

A exit statement can only appear inside a loop or inner compound statement

(not the body of a subroutine, module, or entry). An exit statement causes con­

trol to jump to the statement immediately following the loop or compound state-

menlo

exiLstmt
idenLopt

EXIT idenLopt
IDENTIFIER

Any loop statement or compound statement can be preceded by a label.

labeLopt < < IDENTIFIER> >

The scope of the identifier in a labe! is the statement list inside the immediately

following loop or compound statemenlo The identifier in an exit statement must

'lave been introduced in a label. Control jumps to the statement immediately

161

following the labeled statement. If the identifier in ihe exit statement is missing,

then control jumps to the statement immediately lollowing the closest enclosing

loop or compound statement.

6.7. Return Statement

A return statement can only appear inside a subroutine.

relurn_slml
expr_opt

:: = RETU RN expLopl
::= expr

If the subroutine is a function, the type, of the return expression must be

compatible with the type of the function. The function yields the value of the

expression, and control returns to the evalualion of the expression in which the

funclion call appeared. If control reaches the end of the body of a function

without encountering a return statement, then an error has occurred and execu-

tion must halt.

If the subroutine is a procedure, then the return expression must be miss­

ing. Control continues with tne statement immediatt:ly following the procedure

call. There is an implicit return statement at the end of the body of every pro-

cedurt:.

6.g, With Statement

A with statement makt:s it easier and more emcient 10 access the fields of a

record.

with_stmt
designator

:: = WITH designator DO stmLlisLopt EN D
:: = seleclOr lirstchange

The designator must be the name of a record variablt:. Within the statement list

162

of the with statement, the fields of the record can be named directly, without

preceding them with the designalOr and a period. The with statement constitutes

a nested scope; any existing meanings for the names of the l1elds will be hidden.

6.9. Bind and Unbind Statements

The bind statement associates link ends with entries. The unbind statement

undoes associations.

bind...slmt
unbind...Slmt

BIND expLlisl TO idenLiist
UNBIND expr_list FROM idenLiist

Each expression in the expression lisl must either be of type link or else be a set

of component base type link. Each identifier in the identilier list must be the

name of an entry. Each mentioned link end is bound (unbound} to (from) each

mentioned entry. If any of the link values are not valid, then an error has

occurred and execution must hall.

Binding and unbinding are idempotent operations when performed by a sin­

gle thread of control; a thread does no harm by making the same binding twice,

or by auempting to break a non-existent binding. Connicting bindings are a

run-time error, If two threads auempt to bind the same link end to different

instances of Ihe same entry (same entry lexically, but different environments), or

if one or more threads auempt to bind the same link end to different entries with

tht: same name, then an error has occurred and execution must hall.

The purpose of bindings is discussed under execution (section 7) below.

6.10. Await Statement

The await statement is used to suspend ext:cution of the current thread of

control until a given ccndition holds.

163

awaiLstmt ::= AWAIT expr

The expression must be of type Boolean. The current thread will not continue

until the expression is true. If it is false when first encountered, it must be

changed by a different thread.

6.11. Compound Statement

A compound statement is a delimited list of statements with an optional set

of exception handlers.

compoun<Lstml
han<LlisLopt

when_clause
morc-whens

morc-handlers

exception

:: = BEGIN stmLlisLop han<LlisLopt END
:: = when_clause morc-handlers

WHEN exception morc-whens DO stmLlisLopt
, exception morc-whens

:: = when_clause more_handlers

:: = expr iden Lopt

Compound statements comprise the bodies of subroutines, modules, and entries.

They may also be nested anywhere a statement can occur.

Each exception handler consists of a series of when clauses and a statement

list. As mentioned in section 3.4, an exception is either an expression of type

link followed by the name of a buill-in exception class, or a name introduced in

an exception declaration. The exceptions in the when clauses of a given com­

pound statement need not be distinct. When an exception arises, the first clause

that matches the exception will be used. Exceptions are discussed in more detail

in section 7.2.

164

6.12. Raise Statement

Some exceptions occur spontaneously in the course of communication on

links. Others arc caused by execution of the raise statement.

:: = RAISE exception

An exception associated with a link end is raised in the current thread of control.

An exception introduced by an exception declaration is raised in each thread with

an active handler for it.

6.13. Input/Output Statements

Input and output statements read and write Ascii data on the standard input

and output streams. In the Charlotte implementation, these streams connect to

the (possibly virtual) console terminal of the local node.

io

deLlisLopt

designator-list
des_IisLtail

WRITE (expr-list)
READ (expr des_lisLopt)
designator-list

:: = designator des_IisLtail
, designator des_IisLtail

The parameters of read and write have the same format as those of the scallfand

prillt[routines in C. The first argument must be a string constant or an array

whose clements have base type char. The rest of the arguments must be scalars

or strings. The second and subsequent arguments to read are automatically

passed by reference.

165

6.14. Communication Statements

Communication slatements use links to exchange messages with remote

processes.

communication :: = connecLstmt
:: = calLstmt
:: = accepLstmt
.. sencLstml

receive-stmt

6.14.1. Connect and Call Statements

The connect slatement requests a remote operation. The call slatement

invokes a local operation.

connecLstmt
calLstmt
cal Largs_opl

calLargs

.. CONNECT IDENTIFIER calLargs_opt ON expr
::= CALL IDENTIFIER calLargs_opt
:: = (calLargs)

:: = expT-list I des_lisLopt
:: = I designatoLlisl

The identifier following the word CON N ECT or CALL must he the name of an

entry. The final expression of a connect slalement must have type link.

The thread of control that executes a connect or call slatement is called a

client. The client creates a request message from the actual parameters of the

expression list. sends the message. and waits for a reply message. The reply will

con lain new values for the actual parameters in the designator list. The request

actual parameters must agree in number and order with the formal parameters of

the entry whose name follows the word CONNECT or CALL. Their types must

be compatible with those of the formals. The reply'actual parameters must be the

names of variables. They must agree in number and order, and be compatible.

166

with the reply types of the entry.

6.]4.2. Accept Statement

The accept Slatement allows a thread of control to serve a request from

some other process for a remote operation.

accepLstmt

cLar~opt

reply

:: = ACCEPT IDENTIFIER cLar~opl ON expr ;
o_LlisLopt reply

:: = otheLstmt ; O_LIiSLopt

(designatoLlist)

REPLY e-ar~opt

The identifier following the word ACCEPT must be the name of an entry. The

expression following the word ON must have type link.

The thread of control that executes an accept slatement is called a server.

The server waits for a request message from a client on the other end of the

referenced link. When such a message arrives. it will con lain new values for the

actual parameters in the designator list. The parameters in that list must agree in

number and order, and be compatible, with the parameters of the entry whose

name follows the word ACCEPT.

The server executes the Slatemenl list and returns a reply message 10 the

client. The actual parameters following the word REPLY musl agree in number

and order, and be compatible, with the reply types of the entry whose name fol­

lows the word ACCEPT. The actuals are packaged together to form the reply

message. They are returned to the client on the link specified after the word

ON - the same link on which the request message arrived.

167

The syntax of the portion of an accept statement beginning with the word

REPL Y is a valid statement in and of itself; therefore the statements inside the

accept cannot include a reply.

0.14.3. Reply Statement

Accept statements provide for the explicit receipt of requests for remote

operations. Entries provide for implicit receipt. Within the body of an entry,

the reply portion of an accept statement can appear by itself. IL actual parame­

ters must agree in number and order, and be -ompatible, with the return types of

the entry in which the reply statement occurs. The reply message is returned to

the client on the same link on which the request message arrived.

If control reaches the end of an entry without replying, or if the thread of

control executing the entry attempts to reply more than once, then an error has

occurred and execution must halt.

6.14.4. Send Statement

The send statement allows a thread to escape the normal checking of opera­

tion names and message types.

sencLstmt
length_opt

enclosu re-opt

SEND designator length_opt enclosure-opt ON expr
< term>

WITH expr

The designator following the word SEND must be the name of a variable. The

expression following the word ON must have type link. A sequence of bytes,

beginning at the location of the variable, are sent on the referenced link. The

length option indicates the number of bytes to be sent. If missing, the size of the

16K

variable is assumed (and the bytes that are sent are precisely the contents of the

variable). No interpretation is implied for the transferred bytes; in particular,

link variables that happen to lie among them do !lor cause the link ends they

reference to be moved. In the Charlotte implementation, a single enclosure can

be attached to the message by means of an optional with clause.

The thread of control that executes a send statement blocks until the mes­

sage is received by some thread in the process on the other end of the link. It

does /lOr wait for a reply message.

6.14.5. Receive Statement

The receive statement is the counterpart of the send statement. It allows a

thread to escape the normal checking on messages.

RECEIVE designator length_opt enclosure_opt
ON expr

The designator following the word RECEIVE must be the name of a variable.

The expression following the word ON must have type link. A sequence of bytes

is received on the referenced link and stored in memory beginning at the location

of the variable. The length option indicates the number of bytes to be received.

If missing, the size of the variable is assumed (and the bytes that are received

constitute new contents for the variable). The enclosure option is provided for

the benefit of the Charlotte implementation. It must be the name of a variable of

type link. The contents of the link variable are changed to reference the link end

that was enclosed in the message. If no end was enclosed, the contents of the

link variable are changed to nolink.

The thread of control that executes a receive statement blocks until a mes-

sage arrives.

]69

6.14.6. Communication Rules

Messages sent in the same direction on the same link are guaranteed to

arrive in order. Messages sent on different links are not. even if they involve the

same pair of processes. Similarly. the cleanup of the far end of a link that is des­

troyed locally may occur in arbitrary order with respect to the destruction or

arrival of messages on other links.

If any of the following rules is broken, then an error has occurred and exe­

cution must hall.

(l) For all communication statements. the value of the expression that follows

the word ON must reference a valid link.

(2) A link end that is bound to an entry, or that is being used in a connect,

accept, or reply statement may not simultaneously be enclosed in a mes-

sage.

(3) A link end that is bound to an entry, or that is being used in a connect,

accept, or reply statement may not simultaneously be used in a send or

receive statement.

Rule 3 is not enforced correctly c, the Charlotte implementation. There

are (unlikely) circumstances under which invalid communication will be allowed

or valid communication forbidden. In general, a program is safe if it avoids

using send and receive on links that may occasionally have threads executing con­

nect statements on both ends simultaneously.

6.14.7. Enclosures

There are no limitations on the data types that can appear in the argument

lists of connect, accept, and reply statements. In particular, references to links

]70

and data structures that contain references to links can be transferred from one

process to another.

If a link variable that references a valid link is enclosed in a request or

reply message, then the end of the link that it references is moved to the receiving

process. The contents of the link variable are changed in the receiving process to

be a valid reference to the moved end of the link. A single link variable can also

be enclosed in a send statement, but only by means of the with clause (section

6.14.4).

A link end that is enclosed in a message becomes inaccessible in the send­

ing process, even if communication is interrupted by an exception. Link vari­

ables that referenced the end are now dangling references; their contents are no

longer valid.

A process can own both ends of a link. If it sends a message to itself on

that link, references to any enclosures still become invalid, just as if they had

been sent to another process. Link variables that refer to enclosures in call state­

ments or in replies from called entries do not become dangling; they remain

valid.

7. Execution

A L YN X program is a collection of modules. Modules nest. The syntax

for outermost modules differs slightly from that of other modules. Each outer­

most 1]10dule is inhabited by a single process.

process

:: = process> process-list

MODULE IDENTIFIER in_args_opt;
deept cpcLstmLopt IDENTIFIER

171

An outermost module has no import and export lists. Its arguments must have

built-in types. Links in the argument list provide the means for a process to

communicate with the rest of the world.

A process begins execution with a single thread of control. The task (,f that

thread is to execute the initialization code of the process's outermost module.

Before doing so, the thread recursively executes the initialization code of any

nested modules. In general, a thread of controi executes the initialization code of

a module immediately before executing the body of the subroutine, module, or

entry in which that module is declared.

New threads of control are created by instantiating entries. Entries are

instantiated by call statements and by the arrival of messages on link ends bound

to entries.

The threads in a process do nOl execute in parallel. A process continues

with a given thread until it blocks. (Blocking statements are listed in section

7.1.) It then switches context to another thread. If no other thread is runnable,

the process walts for an event. An event is the completion of an outstanding

connect or reply statement, or the arrival of a request on a link end that is bound

to an entry or for which tht:re are outstanding accept statements. If no events are

expected, then deadlock has occurred and execution must halt. Events only com­

plete when ail threads are blocked.

The completion of an event always allows some thread to continue execu­

tion. Only one event completes at a time. The 'nature of the event determines

which thread runs next. If a cor.nect or reply statement has completed, the

thread that executed that statement can continue. If a request arrives on a link

end for which there are outstanding accept statements or bindings to entries, then

172

the contents of the request are examined.

If the requested operation matches the name of an entry in one of the

accept statements, then the thread that executed that accept statement can con­

tinue. If the requested operation matches the name of an entry in one of the

bindings, then a new thread of control is created. That thread begins execution

in the appropriate entry with mitial values for its parameters taken from the mes­

sage. If outstanding accept statements or bindings exist, but the requested opera­

tion matches none of them, then a built-in exception of class INVALlD_OP is

raised at the connect statement on the other end of the link and the local process

waits for another event.

As mentioned in section 4, the meanings of identifiers visible to a given

thread of control come and go in LIFO order. Likewise, the management of

storage for the variables accessible to the thread can be performed in LIFO

order. Variables declared in an outermost module are created when their process

is created. Parameters and variables declared local to a subroutine or entry are

created when control enters the body of their block. Variables declared immedi­

ately inside a non-outermost module are created when control enters the body of

the closest enclosing subroutine, entry, or outermost module. Different instan­

tiations of the same subroutine or entry do not share local variables.

Since a process may have many suspended threads of control at a given

point in time, the variables of a process as a whole cannot be managed on a

stack. The creation of a new thread of control in an entry creates a new branch

in a run-time environment tree. The environment of a thread created with a call

statement is similar to that of a procedure; in addition to (new) local variables, it

shares the variables in enclosing blocks with its caller. The environment of a

173

thread created in response to a message on a bound link is the same as it would

have heen if the entry in question had been called locally at the point the bind

statement was executed.

Control is not allowed to return from a subroutine whose local variables are

still accessihle to other threads of control or to potential threads that might be

created in response to incoming messages. Similarly, a thread does not terminate

when it reaches the end of the body of its entry; it too waits for nested threads to

Hnish. A process terminates only after all its threads have finished. A thread

that is waiting for nested threads does so at the very bottom of the block, after the

word END. Exception handlers for the block are no longer active.

7.1. Blocking Statements

The absence of asynchronous context switches allows the programmer to

assume that data structures remain consistent until the current thread of control

blocks. A context switch between the threads of a process can occur

(1) at every connect, call, accept, and reply statement,

(2) at every await stalement,

(3) whenever the current thread terminates, and

(4) whenever control reaches the end of' a subroutine, entry, or outermost

module whose local variahles remain acc~ssihle 10 other threads or potential

threads.

In the absence of exceptions. a thread that res~mes execution after a con­

text switch continues with the statement immediately following the statement Ihal

blocked. Functions must not contain blocking state~ents or calls to subroutines

whose execution may lead to a blocking statemenl.

174

7.2. Exception Handling

Exceptions interrupt the normal now of control. They come In two

varieties.

Built-in exceptions are associated with links. In the process of communica­

tion on link end L, the following exceptions may arise:

A remote operation was requested, but it was not among those for which

there were accepts or bindings in the process on the far end of L.

L TYPE-CLASH

A remote operation was requested, and the process on the far end of L was

willing to serve it, but the two processes disagreed on the number, order,

or types of the request or reply parameters.

L LOCAL-DESTROYED

The link end referenced by L was destroyed by a thread of control in the

local process.

L REMOTE-DESTROYED

The other end of the link referenced by L was destroyed by a thread in the

process that owned it.

L EXCREPLY

A remote operation had started, bUI the thread of control that was serving it

felt an exception that prevented it from replying. 16

16 There is no corresponding exception for a server whose client feels a
10cally-deHned exception before it can receive its reply. When a reply statement
completes without exception, a server can assume that Ihe reply message was
successfully delivered if and only if the client thread was still alive within the pro­
cess on the far end of the link. The server can he sure that Ihe client's process

175

L LENGTH_CLASH

An unchecked serul or receive was attempted, but the receiver wanted fewer

bytes than the sender sen!. The built-in function ACTUALLENGTH will

return the number of bytes successfully transferred. This number will be

the smaller of the lengths expected by the two processes.

Excepuons occur only when all threads arc blocked. Built-in exceptions

are raised in the thread in which they arise. The handlers of the closest enclos­

ing compound statement are examined in order to see if one of them matches the

exception that arose. If one docs, then the thread is moved to the beginning of

the matching handler and is ready to continue. The handler will be executed in

place of the portion of the compound statement that had yet to be executed when

the exception occurred.

If the closesl enclosing compound statement has no handlers, or if none of

them matches the exception, then the exception propagates to the handlers of

the nest enclosing compound statement. If the propagation reaches the com­

pound statement comprising the body of a subroutine, then the exception is raised

at the subroutine's point of call, and propagarion continues. Any nested threads

that still have access to the local variables of the subroutine are aborted (recur­

sively). Likewise any bindings that might create such threads are broken.

The propagation of an exception stops when' an. ,appropriate handler is found

or when the body of an entry or outermost module .is reached. A thread with no

appropriate handler is aborted. If propagation escapes the scope of an accept

statement, or if an exception remains unhandled in the body of an entry that has

not yet replied, then a built-in exception of class EXC_REPL Y is raised at the

was alivc and that the link between them was still inlac!.

176

corresponding connect statement in the process on the other end of the link.

In the absence of exceptions, when all threads are blocked, the occurrence

of an event allows exactly one thread to continue. With exceptions, however,

more than one thread may be unblocked at once. When a link is destroyed, for

example, all threads waiting for the completion of communication on the same

end of that link arc moved to the beginning of their handlers simultaneously, and

an arbitrary one is chosen to continue first.

Both built-in and programmer-defined exceptions can arise from use of the

raise statement. A built-m exception is raised as if it had occurred in communi­

cation in the current thread of control. By contrast, a programmer-defined

exception is raised in all and Dilly those threads that have an active handler for il.

Once raised in a thread, a programmer-defined exception propagates like a built­

in exception. The only difference is that the propagation will always encounter

an appropriate handler by the time it reaches the compound statement in which

the thread originated,

When a connect, accept, or reply statement is interrupted by a

programmer-defined exception, the language makes no guarantee about whether

or not the requested communication will have occurred. Any of the following

conditions may hold.

connect

J) The operation may not have started. The process at the other end of the

link does not know anything has happened. 2) The request may have been

received by thc process at the far end of the link. It is now being served.

The reply message will be discarded when it arrives. 3) The operation may

have completed. The reply message will have been discarded.

177

accept

reply

I) The operallon may not have started. The process at the other end of the

link does not know anything has happened. 2) A request may have been

received. The connected thread (if it still exists) in the process at the other

end of the link will feel a built-in exception of class EXC_REPL Y.

I) The operation may not have completed. The connected thread (if it still

exists) in the process at the other end of the link will feel a built-in excep­

tion of class EXC_REPLY, If the server thread attempts to reply again,

then an error has occurred and execution must stop. 2) The operation may

have completed. The process at the other end of the link does not know

anything has happened.

In tbe case of connect and reply, link ends that were enclosed (or were to have

been enclosed) are no longer accessible to the sending process.

7.3. Message Type Checking

Since the client and server involved in a remote operation will in general be

in different processes, they will share no declarations. Run-time checking is

necessary to assure that they agree on the number, order, and structural

equivalence of request and reply parameters.

Structural equivalence is a weaker check than the notion of compatible

types used in the rest of the language. The built-in types are of course equivalent

in every process. Enumeration types are equivalent if they have the same

number of values. Subrange types are equivalent if they have the same bounds

and the same (built-in) base type. Array types are equivalent if they have

178

equivalent index and element types. Record types are equivalent if their fields

have equivalent types and occur in the same order.

If a client requests an operation that the process on the other end of the link

is willing to serve, but the server would disagree about the number, order, or

structure of the parameters of the request or reply messages, then a built-in

exception of class TYPE_CLASH is raised in the client. The server continues to

wait for a valid, matching request.

8. Pre-defined Identifiers

The fOllowing identifiers are pre-defined.

types: Boolean. integer, char. link
constants: true. false, nolink
exception classes: TYPE-CLASH, INVALlD_OP. LENGTH_CLASH.

EXCREPL Y, LOCALDESTROYED,
REM OTE-DESTROYED

functions: newlink. valid, curlink, ACTUALLENGTH
procedures: destroy

The types, constants, and exception classes have been discussed elsewhere.

The function "newiink" takes a single reference parameter of type link and

yields a value of type link. The parameter and function value return references

to the two ends of a new link, created as a side effect.

The function "valid" takes a single value parameter of type link and yields

a value of type Boolean. The value indicates whether the parameter accesses an

end of a currently valid link til at can be used in communication or bindings.

The function "curlink" takes no parameters. It returns a value of type

link. The value is a reference 10 the link on which the request message arrived

for the closest lexically-enclosing entry (not the original entry for the current

179

thread of control). If there is no enclosing entry, or if the closest enclosing entry

was invoked locally with a call statement, then curlink yields nolink.

The function "ACTU ALLENGTH" takes no parameters. It returns a

value of type integer. If ACTUALLENGTH is called before the first context

switch after the completion of a send or receive statement, then the value is the

number of bytes actually transferred·. In other circumstances,

ACTUALLENGTH returns garbage. ACTUALLENGTH is intended for use

in code immediately following a receive statement or in handlers for

LENGTH_CLASH exceptions.

The procedure "destroy" takes a single value parameter of type link. It

destroys the corresponding link. Variables referetiCing either end of the link (in

any process) become invalid. An attempt to destroy a nil or dangling link is a

no-op.

9. Collected Syntax

The following is an LL(I) grammar for L YN X. Process-list is the start

symbol. The notation

A

is shorthand for

A

BIC

::= B
::= C

Epsilon IE) denotes the empty string.

accepLstmt

arg.JisLopt

:: = ACCEPT IDENTIFIER cLar!5-opl ON expr ;
o_LlisLopt reply

.. (mode formal more-m_formals) I E

array_type
awaiLstmt
bincLstmt

body

calLargs
calLargLopt
calLstmt
case_lisLopt
case_stmt
chan;.,;eover

communication

comr-lisLopt
comp_lisLtail
component
componenLiist
componenLtail
compouncLstmt
connecLstmt
consLdec
consLdeetail
constant
cpcLstmLopt
cLar!5-opt
deept
declaration

defaulLopt
des_lisLoPI
deLlisLtail
designator
designaLOLlist
designatoLtail

::= ARRAY type OF type
:: = AWAIT expr
::= BIND expr_list TO idenLiist
::= UNBIND expLiist FROM idenLiist
:: = deept compouncLstmt IDENTIFIER
::= FORWARD I EXTERNAL I REMOTE
:: = expLlist I deLlisLopt I I designaLOLlist
:: = (calLargs) I E

::= CALL IDENTIFIER calLargLopt
:: = { componenLiist } stmLlisLopt case_lisLopt I E

:: = CASE expr OF case_JisLopt defaulLopt EN D
:: = l expr J designatoLtail
:: = : IDENTIFIER designatoLtail
:: = connecLstmt I calLstmt I accepLstmt
:: = sencLstmt I receive_stmt
:: = componenLiist I E

:: = , component comr-lisLtail I E

:: = expr componenLtaii
:: = component comp_lisLtail
:: = .. expr I E

::= BEGIN stmLlisLopt hancLlisLopt END
:: = CONNECT IDENTIFIER calLargLopt ON expr
::=IDENTIFIER=expr; I;
::= consLdec consLdeetail I E

:: = CHARCONST I STRINGCONST I NUMBER
:: = compouncLstmt I END
:: = (designaLOLlist) I E

: : = declaration deept I E

:: = CONST consLdec consLdeetail
:: = TYPE type_dec type_deetail
:: = V AR variable_dec vaLdec_tail
:: = EXCEPTION idenLiist ;
:: = subroutine; I entry; I module;
::= OTHERWISE stmLlisLopt I E

:: = designaLOLiist I E

:: = , designator deLlisLtail I E

:: = selector firstchange
:: = designator des_lisLtail
:: = . IDENTIFIER designatoLtail
:: = changeover I E

.. I expr_list) I E

ISO

else....opt
elsiLiisLopt
enclosu re_opt
entry
enum_type
exception
exiLsunt
exporLpt
expr
expLlist
expr _lisLlail
expLopt
expLtail
factor

field

field-lisLopt
firstchange
foreacLloop

foreveLloop
formal
formaLtail
fun_type_opt
generator

hand-liSLopt
id-lisLtail
idenLiist
idenLopt
iLstmt
imporLpt
in_argLopt
io

labeLopt
labeled-stmt
length_opt
loop-stmt

:: = ELSE stmLlisLopt I E

:: = ELSI F expr TH EN stmLliSLopt elsiLiisLopt I E

:: = WITH expr I E

181

:: = ENTRY IDENTIFIER' in-.:argLopt oULtypeLOpt ; body
:: = (idenLiist)
:: = expr idenLopt
:: = EX IT idenLopt
:: = EXPORT idenLiist; I E

:: = term expLtail
:: = expr expLliSLtail
:: = ,expLlist I E

:: = expr I E

:: = reLop term expLtail I E

:: = NOT factor I - factor I constant
:: = set I (expr) I selector seLfactail
:: == idenLiist : type: I ;
::= CASE IDENTIFIER: type OF vnLlisLopt END;
:: = l1e1d field-lisLopt I E

:: = changeover I €

::= FOR EACH IDENTIFIER IN generator DO
stmLlisLopt EN D

:: = LOOP stmLlisLopt EN D
.. idenLiiSl: IDENTIFIER
:: = ; formal formaLtail I E

::= : IDENTIFIER I E

:: = [expr .. expr 1 I selector firstchange
:: = set I REVERSE revcrsible_gen
:: = when_clause more....handlers I E

" ,idenLiist I E

::= IDENTIFIER id-lisLtail
:: = IDENTIFIER 1 E

:: = IF expr TH EN stmLlisLopt elsiLiisLopt else....opt EN D
::= IMPORTidenLiist; I €

:: = (formal formaLtail) i €

:: = WRITE (expLiist)
:: = READ (expr deLlisLopt)
::= «IDENTIFIER» I €

:: = loop-sunt I compound-stmt
: : = < term > I E

:: = while_loop I foreach_loop
:: = repeaLioop I foreveLloop

mode
module

more_handlers
more_m_formals
more_whens
o_LlisLopt
otheLop
otheLstmt

oULlypeS_opt
process

procesLlist
raise_stmt
receive_stmt
record-type
reLop

repeaLioop
reply
return_stmt
reversibie....gen
seLfactail
seLstmLtail
selector
selector_tail
send-stmt
set
seLlype
sunt
stmLlisLopt
subLtype
subroutine

term
term_tail
type

::= VAR I CONST I €

::= MODULE IDENTIFIER; imporLpt exporLpt
deepl cp<LstmLopt IDENTIFIER

:: = when_clause more_handlers I E

:: = : mode formal more_m_formals I E

:: = , exception more....whens I E

:;= other_stmt; o_LlisLopt I €

::= OR I AND I + I I * I / I MOD
:: = labeLopl labeled-stml I communication I io
:: = bind-stmt I iLstmt I case_stmt I exiLstmt
:: = with_stmt I return_stmt I awaiLstmt I raise_stmt
:; = selector seLstmLtail I €

" : idenLiist I E

::= MODULE IDENTIFIER in_args_opt;
dec_pt cp<LstmLopt IDENTIFIER

:: = process, process_list ! E

::= RAISE exception

182

:: = RECEIVE designator length_opt enclosure_opt ON expr
:: = RECORD field-lisLopl EN D
::= IN I - I - >
::= = I <> I < I <= I > I >=
:: = REPEAT stmLlisLopt U NTI L expr
:: = REPLY e....ar!1-opt
;: = RETU RN eXpLopt
:: = [expr " expr 1 I selector
:: = changeover I (expr_list 1 I E

:: = lirstchange : = expr I c-ar!1-0pt
:: = IDENTIFIER selectoLtail
:: = , IDENTIFIER selector_tail I E

:: = SEND designator length_opt enclosure....opt ON expr
:: = { comp-lisLopt }
;: = SET OF type
:: = reply I otheLslmt
:: = sunt ; stmLlisLopt I €

:: = [expr .. expr 1
;:= PROCEDURE IDENTIFIER ar!1-lisLopt; body
:: = FUNCTION IDENTIFIER ar!1-lisLopt fun_type....opt

: body
:: = factor term_tail
:: = otheLop factor term_tail I €

.. IDENTIFIER I enum_type I subuype

type_dec
type-dec_tail
vaLdec_tail
variable_dec
variant
vnLlisLopt
when_clause
while-loop
with_stmt

:: = array_type I recorcLtype I seLlype
::= IDENTIFIER = type; I ;
:: = type_dec type-dee-taii I E

:: = variable_dec vaLdee-taill ,t'o

:: = idenLiist : type; I ;
:: = 1 componenLiist } ficlcLlisL~Pt
:: = variant vnLlisLopt I E

::= WHEN exception more_whens DO stmLliSLopt
::= WHILE expr DO stmLlisLopt END
:: = WITH designator DO stmLlisLopt EN D

183 184

REFERENCES

[I J Allchin, J. E. and M. S. McKendry, "Synchronization and Recovery of
Actions." ACM Operating Systems Review 19: 1 (January 1985), pp. 32-45.
Originally presented at the Second ACM SIGACT/SIGOPS Symposium
on Principles of Distributed Computing, Montreal, Quebec, Canada, i 7-
19 August, 1983.

[2] Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe, "The Eden
System: A Technical Review," Technical Report 83-10-05, Department of
Computer Science, University of Washington, October 1983.

[3] Andrews, G. R. and J. R. McGraw, "Language Features for Process
Interaction," Proceedings of an ACM Conferellce on Language Desigll for
Reliable Software, 28-30 March 1977, pp. i14-127. In ACM SIGPLAN
Notices 12:3 (March 1977).

[41 Andrews, G. R., "Synchronizing Resources," ACM TOPLAS 3:4
(October 1981), pp. 405-430.

[5] Andrcws, G. R., "The Distributed Programming Language SR -
Mechanisms, Design and Implementation," Software - Practice and
Experience 12 (1982), pp. 719-753.

[6) Andrews, G. R. and F. B. Schneider, "Conccpts and Notations for Con­
current Programming," ACM Computing Surveys 15:1 (March 1983), pp.
3-44.

[7] Artsy, Y., H.-Y, Chang, and R. Finkel, "Charlotte: Design and Imple­
mentation of a Distributed Kernel," Computer Sciences Technical Report
#554, University of Wisconsin - Madison, August 1984.

[8] Baiardi, F., L. Ricci, and M. Vanneschi, "Static Checking of Interpro­
cess Communication in ECSP," Proceedings of the ACM SIGPLAN '84
Symposium on Compiler Construction, 17-22 June 1984, pp. 290-299. In
ACM SIGPLAN Notices 19:6 (June 1984).

[91 Ball, J. E., G. J. Williams, and J. R. Low, "Preliminary ZENO
Languagc Description," ACM SIGPLAN Notices 14:9 (September 1979),
pp. 17-34.

185

PO] Baskett, F., J. H. Howard, and J. T. Montague, "Task Communication
in Demos," Proceedings of the Sixth ACM Symposium on Operating Systems
Pril!Ciples, November 1977, pp. 23-31.

[11] Beech, D., "A Structural View of PUI," Computing Surveys 2: 1 (March
1970), pp. 33-b4.

[12] Bernstein, A. J., "Output Guards and. Nondeterminism in 'Communicat­
ing Sequential Processes'," ACM TOPLAS2:2 (April 1980), pp. 234-238.

(13) Bernstein, A. J. and J. R. Ensor, "A Modula Based Language Support­
ing Hierarchical Development and Verification," Software - Practice and
Experience 11 (1981), pp. 237-255.

[14) Birrwistle, G. M., O.-J. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA
Begin, Auerback Press, Philadelphia, 1973.

[l5] Black, A. P., "An Asymmetric Stream Communication System,"
Proceedings of the Nimh ACM Symposium on Operating Systems Principles,
10-13 October 1983, pp. 4-10. In ACM Operating Systems Review 17:5.

[l6] Bohrow, D. G. and B. Raphael, "New Programming Languages for
Artificial Intelligence Research," Computing Surveys 6: 3 (September
1974), pp. 153-174.

[17] Bos, J. van den, "Input Tools - A New Language for Input-Driven Pro­
grams," Proceedings of the European Conference on Applied Iriformation
Technology, IFIP, 25-28 September 1979, pp. 273-279. Published as
EURO IFIP 79, North-Holland, Amsterdam, 1979.

[18] Bos, J. van den, R. Plasmeijer, and J. Stroet, "Process Communication
Based on Input Specifications," ACM TOPLAS 3:3 (July 1981), pp. 224-
250.

[19] Brinch Hansen, P., "Structured Multi-programming," CACM 15: 7 (July
1972), pp. 574-578.

[20] Brinch Hansen, P., Operating System Principles, Prentice-Hall, 1973.

18b

[21] Brinch Hansen, P., "The Programming Language Concurrent Pascal,"
IEEE Transactions on Software Engineering SE-1:2 (June 1975), pp. 199-
207.

[22] Brinch Hansen, P., "Distributed Processes: A Concurrent Programming
Concept," CACM21:11 (November 1978), pp. 934-941.

f23] Brinch Hansen, P., "The Design of Edison," Technical Report, Univer­
sity of Southern California Computer Science Department, September
1980.

[24] Brinch Hansen, P., "Edison: A Multiprocessor Language," Technical
Report, University of Southern California Computer Science Department,
September 1980.

[25] Browne, J. C., J. E. DUllon, V. Fernandes, A. Palmer, J. Silverman, A.
R. Tripathi, and P.-S. Wang, "Zeus: An Object-Oriented Distributed
Operating System for Reliable Applications," Proceedings of the 1984
ACM Annual Conference, 8-10 October 1984, pp. 179-188.

[26] Buckley, G. N. and A. Silberschatz, "An Effective Implementation for
the Generalized Input-Output Construct of CSP," ACM TOPLAS 5:2
(April 1983), pp. 223-235.

[27] Burger, W. F., N. Halim, J. A. Pershing, F, N. Parr, R. E. Strom, and
S. Yemini, "Draft NIL Reference Manual," RC 9732 (#42993), I.B.M.
T. J. Watson Research Center, December 1982.

[28] Campbell, R. H. and A. N. Habermann, "The Specification of Process
Synchronization by Path Expressions," pp. 89-102 in Operating Systems,
Lecture Notes in Computer Science #16, ed. C. Kaiser, Springer-Verlag,
Berlin, 1974.

[29] Cashin, P., "Inter-Process Communication," Technical Report 8005014,
Bell-Northern Research, 3 June 1980.

[30] Cheriton, D. R. and W. Zwaenepoel, "The Distributed V Kernel and its
Performance for Diskless Workstations," Proceedings of the Ninth ACM
Symposium on Operating Systems Principles, 10-13 October 1983, pp.
128-139, In ACM Operating Systems Review 17:5.

187

[31] Cook, R. P., "*Mod--A Language for Distributed Programming," IEEE
Transactions on Software Engineering SE-6:6 (November 1980), pp. 563-
571.

[32] Cook, R. P., "The StarMod Distributed Programming System," IEEE
COMPCON Fall 1980, September 1980, pp. 729-735.

[33] Courtois, P. J., F. Heymans, and D. L. Parnas, "Concurrent Control
with 'Readers' and 'Writers'," CACM 14:10 (October 1971), pp. 667-
bb8.

[34] DeWitt, D. J., R. Finkel, and M. Solomon, "The CRYSTAL Multicom­
puter: Design and Implementation Experience," Computer Sciences
Technical Report #553, University of Wisconsin - Madison, September
1984.

[35] Dijkstra, E. W., "Co-operating sequential processes," pp. 43-112 in Pro­
gramming Languages, ed. F. Genuys, Academic Press, London, 1968.

[36] Dijkstra, E. W., "Hierarchical Ordering of Sequential Processes," pp.
72-93 in Operating Systems Techniques, A. P. I. C. Studies in Data Pro­
cessing #9, ed. C. A. R. Hoare and R. H. Perrott, Academic Press, Lon­
don, 1972. Also Acta Informatica 1 (1971), pp 115-138.

(37] Dijkstra, E. W., "Guarded Commands, Nondeterminacy and Formal
Derivation of Programs," CACM 18:8 (August 1975), pp. 453-457.

[38] Ellis, c. S., J. A. Feldman, and J. E. HeliOlis, "Language Constructs
and Support Systems for Distributed Computing," Proceedings of the ACM
SIGACT-SlGOPS Symposium on Principles of Distributed Computing, 18-20
August 1982, pp. 1-9.

(39] Feldman, J. A., "High Level Programming for Distributed Computing,"
CACM22:6 (June 1979), pp. 353-368.

[40] Finkel, R., R. Cook, D. DeWitt, N. 'Hall, and L. Landweber, "Wiscon­
sin Modula: Part III of the First Report on the Crystal Project," Com­
puter Sciences Technical Report #501, University of Wisconsin -
Madison, April 1983.

188

[41] Finkel, R., M. Solomon, D. DeWitt, and L. Landweber, "The Charlotte
Distributed Operating System: Part IV of the First Report on the Crystal
Project," Computer Sciences Technical Report #502, University of
Wisconsin - Madison, October 1983.

[42] Finkel, R. and U. Manber, "DIB: A Distributed Implementation of
Backtracking," submitted to the Fifth International Conference on Distri­
buted Computing Systems, September 1984.

[43] Finkel, R. A., "Tools for Parallel Programming," Appendix B of Second
Report, Wisconsin Parallel Array Computer (WISPAC) Research Project,
University of Wisconsin Electrical and Computer Engineering Report
#80-27, August 1980.

[44] Finkel, R. A. and M. H. Solomon, "The Arachne Distributed Operating
System," Computer Sciences Technical Report #439, University of
Wisconsin - Madison, 1981.

[45] Fischer, C. N., D. R. Milton, and S. B. Quiring, "Efficient LL(l) Error
Correction and Recovery Using Only Insertions," Acta Informatica 13:2
(1980), pp. 141-154.

(46] Fishburn, J. P., "An Analysis of Speedup in Parallel Algorithms,"
Ph. D. thesis, Computer Sciences Technical Report #431, University of
Wisconsin - Madison, May 1981.

[47] Gelernler, D. and A. Bernstein, "Distributed Communication via Global
Buffer," Proceedings of the ACM SIGACT-SlGOPS Symposium on Princi­
ples of Distributed Computing, 18-20 August 1982, pp. 10-18.

(48] Gelernter, D., "Dynamic Global Name Spaces on Network Computers,"
Proceedings of the 1984 International Conference on Parallel Processing,
21-24 August, 1984, pp. 25-31.

(49] Gelernter, D., "Generative Communication in Linda," ACM TOPLAS 7: 1
(January 1985), pp. 80-112.

[50] Ghezzi, C. and M. Jazayeri, Programming Language Concepts, John Wiley
and Sons, New York, 1982.

189

[51] Good, D. I., R. M. Cohen, and J. Keeton-Williams, "Principles of Prov­
ing Concurrent Programs in Gypsy," Conference Record of the Sixth
Annual ACM Symposium on Principles of Programming Languages, 29-31
January 1979, pp. 42-52.

[52] Habermann, A. N., "Synchronization of Communicating Processes,"
CACM 15:3 (March 1972), pp. 171-176.

153] Habermann. A. N., "On the Timing Restrictions of Concurrent
Processes," Fourth Annual Texas Conference on Computing Systems, 17-18
November 1975, pp. IA.3.1-IA.3.6. .

[54] Haddon, B. K., "Nested Monitor Calls," ACM Operating Systems Review
11:4 (October 1977), pp. 18-23.

[55] Herlihy, M. and B. Liskov, "Communicating Abstract Values in Mes­
sages," Computation Structures Group Memo 200, Laboratorv for Com-
puter Science, M IT, October 1980. •

[56] Hoare, C. A. R~, "Towards a Theory of Parallel Programming," pp.
61-71 in Operating Systems Techniques, A. P. I. C. Studies in Data Pro­
cessing 119, cd. C. A. R. Hoare and R. H. Perrott, Academic Press. Lon­
don, 1972.

[57] Hoare. C. A. R .• "Monitors: An Operating Systems Structuring Con­
cept," CACM 17:10 (October 1974), pp. 549-557.

[58] Hoare. C. A. R .• "Communicating Sequential Processes," CACM 21:8
(August 1978), pp. 666-677.

[59) Holt. R. c., G. S. Graham, E. D. Lazowska, and M. A. Scott.
"Announcing CONCURRENT SP/k," ACM Operating Systems Review
12:2 (April 1978), pp. 4-7.

[60] Holt, R. c., G. S. Graham, E. D. Lazowska, and M. A. Scott, Structured
Concurrent Programming with Operating Sysiems Applications, Addison­
Wesley. 1978.

190

[61] Holt, R. C., "A Short Introduction to Concurrent Euclid" ACM SIG-
PLAN Notices 17:5 (May 1982), pp. 60-79. '

[62] Howard, J. H., "Signaling in Monitors," Proceedings of the Second Inter­
national Conference on Software Engineering, 13-15 October 1976, pp.
47-52.

[63] Ichbiah, J. D., J. G. P. Barnes, J. C. Heliard, B. Krieg-Brueckner, O.
Ropbme, and B. A. Wichmann, "Rationale for the Design of the ADA
Programming Language," ACM SIGPLAN Notices 14:6 (June 1979).

[64] Jazayeri, M., C. Ghezzi, D. Hoffman. D. Middleton, and M. Smother­
man, "CSP/80: A Language for Communicating Sequential Processes,"
IEEECOMPCON Fall 1980, 23-25 September 1980, pp. 736-740.

[65] Jensen, K. and N. Wirth, Pascal User Manual and RepOrT, Lecture Notes
in Computer Science II 18. Springer-Verlag, Beriin. 1974.

[66] Kahn, G. and D. B. MacQueen, "Coroutines and Networks of Parallel
.Processes." pp. 993-998 in Information Processing 77, cd. B. Gilchrist,
North-Holland, 1977. Proceedings of the 1977 IFIP Congress, Toronto,
8-12 August 1977.

[67] Kaubisch, W. H .• R. H. Perrott. and C. A. R. Hoare, "Quasiparallcl
Programming," Software - Practice and Experience 6 (1976), pp. 341-
356.

[68] Keedy, J. L.. "On Structuring Operating Systems with Monitors," ACM
Operating Systems Review 13: 1 (January 1979), pp. 5-9.

[69] Kepecs, J., "SODA: A Simplified Operating System for Distributed
Applications," Ph. D. Thesis, University of Wisconsin - Madison. Janu­
a~y 1984. Published as Computer Sciences Technical Repon 11527, by J.
Kepecs and M. Solomon.

PO] Kernigt->an. B. W. and D, M. Ritchie, The C Programming Language.
Prentice-Hall, Englewood Cliffs, 1978.

191

[71] Kessels, J. L. W., "An Alternative to Even I Queues for Synchronization
in Monitors," CACM 20:7 (July 1977), pp. 500-503.

172] Kral, J., "The Equivalence of Modes and th~ Equivalence of Finite Auto­
mata," ALGOL Bulletin 35 (March 1973), pp. 34-35.

(73] Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell, and G. J.
Popek, "Report On The Programming Language Euclid," ACM SIGPLAN
Notices 12:2 (February 1977).

(74] Lampson, B. W. and D. D. Redell, "Experience with Processes and
Monitors in Mesa," CACM23:2 (February 1980), pp. 105-117.

(75] Lauer, H. C. and R. M. Needham, "On the Duality of Operating System
Structures," ACM Operating Systems Review 13:2 (April 1979), pp. 3-19.
Originally presented at the Second International Symposium on Operating
Systems, Octoher 1978.

[76] LeBlanc, R. J. and C. N. Fischer, "On Implementing Separate Compila­
tion in Block-Structured Languages," Proceedings of the SIGPLAN Sympo­
sium Oil Compiler Construction, 6-10 August 1979, pp. 139-143. In ACM
SIGPLAN Notices 14:8 (August 1979).

(77] LeBlanc, T J. and R. P. Cook, "An' Analysis of Language Models for
High-Performance Communication in Local-Area Networks," Proceed­
ings of the SIGPLAN '83 Symposium Oil Programming Language Issues in
Software Systems, 27-29 June 1983, pp. 65-72. In ACM SIGPLAN Notices
18:6 (June 1983).

(78] Liskov, B., A. Snyder, R. Atkinson, and C. Schaffert, "Abstraction
Mechanisms in CLU," CACM20 (August 19'77), pp. 564-576.

(79] Liskov, B., "Primitives for Distributed Computing," Proceedings of the
Seventh ACM Symposium on Operattng Systelns Principles, December 1979,
pp. 33-42.

[80] Liskov, B., "Linguistic Support for Distributed Programs: A Status
Report," Computation Structures Group Memo 201, Laboratory for Com­
puter Science, MIT, October 1980.

192

[81] Liskov, B. and M. Herlihy, "Issues in Process and Communication
Structure for Distributed Programs," Proceedings of the Third IEEE Sym­
posium on Reliability ill Distributed Software ana DaUIbase Systems, October
1983, pp. 123-132.

[82] Liskov, B. and R. Scheiner, "Guardians and Actions: Linguistic Support
for Robust, Distributed Programs," ACM TOPLAS 5:3 (July 1983), pp.
381-404.

183] Liskov, B., M. Herlihy, and L. Gilbert, "Limitations of Remote Pro­
cedure Call and Static Process Structure for Distributed Computing,"
Programming Methodology Group Memo 41, Laboratory for Computer
Science, MIT, September 1984.

[84] Liskov, B., "Overview of the Argus Language and System," Program­
ming Methodology Group Memo 40, Laboratory for Computer Science,
MIT, February 1984.

[85] Lister, A., "The Problem of Nested Monitor Calls," ACM Operating Sys­
tems Review 1!:3 (July 1977), pp. 5-7. Relevant correspondence appears
in Volume 12, numbers 1,2,3, and 4.

[86] Lister, A. M. and K. J. Maynard, "An Implementation of Monitors,"
Software- Practice and Experience 6 (1976), pp. 377-385.

187] Mao, T. W, and R. T. Yeh, "Communicalion Port: A Language Concept
for Concurrent Programming," IEEE Transactiolls Oil Software Engineering
SE-6:2 (March 1980), pp. 194-204.

[88] May, D., "OCCAM," ACM SIGPLAN Notices 18:4 (April 1983), pp.
69-79. Relevant correspondence appears in Volume 19, number 2 and
Volume 18, number 11.

[89] Mitchell, J. G., W. Maybury, and R. Sweet, "Mesa Language Manual,
version 5.0," CSL-79-3, Xerox Palo Alto Research Center, April 1979.

[90] Nelson, B. J., "Remote Procedure Call," Ph. D. Thesis, Technical
Report CMU-CS-81-119, Carnegie-Mellon University, 1981.

193

(91] Pamas, D. L., "The Non-Problem of Nested Monitor Calls," ACM
Operating Systems Review 12:1 (January 1978), pp. 12-14. Appears with a
response by A. Lister.

(92) Powell, M. L. and B. P. Miller, "Process Migration in DEMOS/MP,"
Proceedings of the Ninth ACM Symposium 011 Operatillg Systems Principles,
1O-l3 October 1983, pp. 110-118. In ACM Operaling Systems Review
17:5.

(931 Prall, T., Programming Languages: Design and Implementation, Prentice­
Hall, Englewood Cliffs, 1975.

(94] Rashid, R. F. and G. G. Robertson, "Accent: A Communication
Oriented Network Operating System Kernel," Proceedings of the Eighth
ACM Symposium on Operating Systems Principles, 14-16 December 1981,
pp.64-75.

195] Robert, P. and J.-P. Verjus, "Toward Autonomous Descriptions of Syn­
chronization Modules," pp. 981-986 in Information Processing 77, ed. B.
Gilchrist, North-Holland, 1977. Proceedings of the 1977 IFIP Congress,
Toronto, 8-12 August 1977.

196J Roper, T. J. and C. J. Barter, "A Communicating Sequential Process
Language and Implementation," Software ---; Practice and Experience 11
(1981), pp. 1215-1234.

197) Saltzer, J. H., D. P. Reed, and D. D. Clark, "End-To-End Arguments in
System Design," ACM 7'OCS2:4 (November 1984), pp. 277-288.

(98) Scou, M. L., "Messages v. Remote Procedures is a False Dichotomy,"
ACM SIGPLAN Notices 18:5 (May 1983), pp. 57-62.

(99) Scou, M. L. and R. A. Finkel, "A Simple Mechanism for Type Security
Across Compilation Units," Computer Sciences Technical Report tl541,
University of Wisconsin - Madison, May 1984.

1100) Scon, M. L. and R. A. Finkel, "LYNX: A Dynamic Distributed Pro­
gramming Language," Proceedings of the I 984 International Conference
on ParaLLel Processing, 21-24 August, 1984, pp. 395-401.

194

(101] Seitz, C. L., "The Cosmic Cube," CACM28:1 (January 1985), pp. 22-
33.

1102) Solomon, M. H. and R. A. Finkel, "The Roscoe Distributed Operating
System, " Proceedings of the Seventh ACM Symposium on Operating Systems
Principles, December 1979, pp. 108-114.

(1031· Spector, A. Z., "Performing Remote Operations Efficiently on a Local
Computer Network," CACM25:4 (April 1982), pp. 246-260.

1104) Stallings, W., "Local Networks," ACM Computing Surveys 16: I (March
1984), pp. 3-41.

1105) Strom, R. E. and S. Yemini, "NIL; An Integrated Language and System
for Distributed Programming," Proceedings of the SIGPLAN '83 Sympo­
sium on Programming Language Issues in Software Systems, 27-29 June
1983, pp. 73-82. In ACM SIGPLAN Notices 18:6 (June 1983).

[106) Tanenbaum, A. S., "A Tutorial on Algol 68," ACM Computing Surveys
8:2 (June 1976), p. 155.

1107J Tennent, R. D., "Another Look at Type Compatibility In Pascal,"
Software - Practice and Experience 8 (1978), pp. 429-437.

1108] United States Department of Defense, "Reference Manual for the Ada
Programming Language," (ANSI/M IL-STD-1815A-1983), 17 February
1983.

1109) Walker, B., G. Popek, R. English, C. Kline, and G. Thiel, "The
LOCU S Distributed Operating System," Proceedings of the Ninth ACM
Symposium on Operating Systems Principles, 10-13 October 1983, pp. 49-
70. In ACM Operating Systems Review 17:5.

(110) Weihl, W. and B. Liskov, "Specification and Implementation of Resi­
lient, Atomic Data Types," Proceedings of the SIGPLAN '83 Symposium on
Programming Language Issues in Software Systems. 27-29 June 1983, pp.
53-64. In ACM SIGPLAN Notices 18:6 (June 1983).

