

iv

ACKNOWLEDGMENTS

Many people can contribute 10 the success of a document with only one

name on the title page. This section serves to acknowledge my debt to all those

many others.

The most personal thanks are of course non-technIcaL The contributions

of my parents, Dorothy SCOll and Peter Lee SCOll, 10 my education, values, and

general well-being are beyond estimation. Equally great is the debt to my dear

wife Kelly Flynn, who taught me that the important things in life have nothing to

do with computer science.

Credit for much of the work described herein belongs to my tireless advi­

sor, Associate Professor Raphael Finkel. If I ever learn 10 think off-line as well

as Raphael does in real lime, I'll be doing very well. Close behind Raphael

comes his colleague, Marvin Solomon. As a principal investigator for the Char-

10lle project and as the teacher of several of my formative courses, Marvin has

had a major role in shaping my ideas. Members of my final committee deserve

thanks, 100, for their patience and constructive criticism: Bart Miller, Udi

Manber, Terry Millar, Mary Vernon, and Larry Landwe.ber.

Behind the Charlotte and Crystal projeclS stands a brave and motley crew.

Yeshayahu Artsy and Hung-Yang Chang built the current Charlolle kernel.

Cui-qing Yang maintains the servers. Nancy Hall put in long hours on the vir­

tual terminal package and the modula compiler, Tom Virgilio built our com­

munications driver and Bob Gerber built its buddy Of! the hoslS. Prasun Dewan,

Aaron Gordon, and Mike Litzkow shared my hapless tour of duty as initial users

of a untried operating system. Bill Kalsow and Bryan Rosenburg were the pro­

jects' knights-errant, keeping us all on our lOes. Bryan also built several of the

v

original servers and Bill saved me countless hours of effort by suggesting that my

compiler generate C as an "intermediate language."

Generous financial support for my work came from the Wisconsin Alumni

Research Foundation (by way of the UW graduate fellowships ornce), the Gen­

eral Electric Corporation (through their "forgivable loan" program), the

National Science Foundation (grant number MCS-8J05904), the Defense

Advanced Research Projects Agency (contract number NOOI4/82/C/2087), and

AT&T Bell Lahoratories (through their doctoral scholarship program).

Chapter I was originally wrillen for an independent study course supervised

by Raphael FinkeL Intermediate drafts benefited from the wrillen comments of

Marvin Solomon and Prasun Dewan. A version very similar to the one included

here was published as UW Technical Report #563.

11

passing instead. The alternatives proposed to date show a remarkable degree of

diversity. This survey attempts to deal with that diversity by developing a frame­

work for the study of distributed programming languages. The framework allows

existing languages to be compared for semantic (as opposed to purely cosmetic)

differences. It also facilitates the exploration of new and genuinely different pos-

sibilities.

Section 2 presents the framework. Section 3 uses that framework to

describe a number of existing languages. No attempt is made to survey tech­

niques for managing shared data. (Good surveys have appeared elsewhere 16].)

The evaluations are intentionally biased towards languages that lend themselves to

implementation on top of a distributed operating system, where message passing

is the only means of process interaction.

2. The Framework

This section discusses major issues in distributed language design:

processes and modules
communication paths and naming

- synchronization
implicit and explicit message receipt
message screening and multiple rendezvous

- miscellany: shared data, asynchronous receipt, timeout, reliability

The list is Incomplete. The intent is to focus on those Issues that have the most

profound effects on the flavor of a language or about which there is the most

controversy in the current literature.

12

2.1. Processes and Modules

A process is a logical thread of control. It is the working of a processor,

the execution of a block of code. A process is described by a state vector that

specilies its' position in its code, the values of its data, and the status of its inter­

faces to the rest of the world.

A module is a syntactic construct that encapsulates data and procedures. A

module is a closed scope. It presents a limited interface to the outside world and

hides the details of its internal operation.

In a sense, a module is a logical computer and a process is what that com­

puter does. Several language designers have chosen to associate exactly one pro­

cess with each module, confusing the difference between the two. It is possible

to design languages in which there may be more than one process within a

module, or in which a process may travel between modules. Such languages

may pretend that the processes within a module execute concurrently, or they

may acknowledge that the processes take turns. In the lalter case the language

semantics must specify the circumstanc:es under which execution switches from

one process to another. In the former case the language must provide some

other mechanism for synchronizing access to shared data.

Modules are static objects in that they are defined when a program is writ­

ten. Some languages permit them to be nested like Algol blocks; others inSist

they be disjoint. In some cases, it may be possible to create new instances of a

module at run time. Separate instances have separate sets of data.

Some languages insist that the number of processes in a program be fixed

at compile time. Others allow new processes to be created during execution.

Some languages insist that a program's processes form a hierarchy. Special

39

dom. There is no general mechanism for guarding clauses with Boolean expres-

sions.

3.7. PUTS and ZENO

PUTS [39] is an acronym for "Programming Language in the Sky," an

ambitious attempt at advanced language design. In the area of distributed com­

puting, it envisions a framework in which a' computation may involve processes

written in multiple languages, executing on heterogeneous machines. ZENO [9]

is a single language based heavily on the PUTS design. lIS syntax is borrowed

from Euclid [73].

A ZENO program consists of a collection of ~odules that may be instan­

tiated to create processes. Processes are assigned names at the time of their crea­

tion. They are independent equals. A process dies when it reaches the end of ilS

code. It may die earlier if it wishes, but it cannot be killed from oulSide. There

is no shared data. Receive is explicit. Send is non-blocking and buffered. There

is only one path into each process, but each message includes a special trans­

action slot to help in selective receipt. A sender names the receiver explicitly.

The receiver lists the senders and transaction numbers of the messages it is wil­

ling to receive. There is no other means of message screening - no other form

of guards. As in CSP (section 3.4), forcing receivers to name senders makes it

difficult to write servers. A "pending" function allows a process to determine

whether messages from a particular sender, about a particular transaction, are

waiting to be received.

The most unusual feature of PUTS/ZENO is the structure of its messages.

In contrast to most proposals, there is no strong typing of interprocess communi­

cation. Messages are constructed much like the property lists of USP [93].

40

They consist of name/value pairs. A process is free to examine the message slolS

that interest it. It is oblivious to the existence of others.

In keeping with its multi-language, multi-hardware approach, PUTS prohi­

bits the transmission of all but simple types. ZENO is more flexible.

Recent extensions to PUTS [38] are designed to simplify the organization

of large distributed systems and to increase their reliability. Cooperating

processes are tagged as members of a single activity. A given process may

belong to more than one activity. It enjoys a special relationship with ilS peers: it

may respond automatically to changes in their Status. Activities are supported by

built-in atomic transactions, much like those of Argus (section 3.8).

3.8. Extended CLU and Argus

Extended CLU [79,80] is designed to be suitable for use on a long-haul

network. It includes extensive features for ensuring reliability in the face of

hardware failures, and provides for the transmission of abstract data types

between heterogeneous machines [55]. The language makes no assumptions

about the integrity of communications or the order in which messages arrive.

The fundamental units of an Extended CLU program are called guardians.

A guardian is a module; it resides on a single machine. A guardian may contain

any number of processes. Guardians do not nest. Processes within the same

guardian may share data. They use monitors for synchronization. All interac­

tion among processes in separate guardians is by means of message passing.

Receive is explicit. Send is non-blocking and buffered. Each guardian pro­

vides ports to which its peers may address messages. New instances of a guard­

ian may be created at run time. New port names are created for each instance.

Comments in L YN X begin with' - - ' and extend through end-of-line.

COMMENT =

- - (NOT (\n)) '"

Comments are treated like while space.

Numeric constants can he expressed in oClal, decimal, or hexadecimal.

NUMBER =

o (0 I ocuiig!!) * I
decdigit I 0 I decdig!t) * I
/I (0 I hexdigit) *

where
ocuiigit = '1' . .' 7'
decdigit = '1' .. '9'
hexdigit = '1' . .'9', 'A' . .'F', 'a' . .'P

13S

Character and string constants are delimited by single and double quotes,

respectively. Non-printing characters may be indicated by the single-letter

backslash-escapcs of C (\b, \n, \r, \l), or by numbers (as defined above) delim­

ited by a pair of backslashes (as in \/171'\ for the delete character). Single quotes

in character constants and double quotes in string constants are indicated by"

and \", respectively. Backslashes are indicated by·\\. Backslashes not accounted

for by any of the preceding rules are ignored.!5

15 These conventions agree with C except in the form of numeric escapes.

CHARCONST =
, (

NOT (, , \ , \n , nonprinI) I
\ NOT (/I , 0 , decdigiI, \n , nonprinI) I
\ number \

) ,

STRINGCONST =
" (

NOT (" , \ , \n , 1l0nprilll) I
\ NOT (/I , 0 , decdigit, \n , Ilonprillt) I
\ number \

) * "
where

136

Ilonprinrindicates the Ascii characters with codes 1..8,11..31, and 127
decdigit is as above
number is as defined for the token' 'number"

Keywords are:

ACCEPT AND ARRAY AWAIT

BEGIN BIND CALL CASE

CONNECT CONST DO ELSE

ELSIF END ENTRY EXCEPTION

EXIT EXPORT EXTERNAL FOREACH

FORWARD FROM FUNCTION IF

IMPORT IN LOOP HOD

MODULE NOT OF ON

OR OTHERWISE PROCEDURE RAISE

READ RECEIVE RECORD REMOTE

REPEAT REPLY RETURN REVERSE

SEND SET THEN TO

TYPE UNBIND UNTIL VAR

WHEN WHILE WITH WRITE

After excluding keywords, identifiers are strings of letters, digits, and

underscores that do not begin with a digit and do not end with an underscore.

Case is not significant in identifiers, except when significance is imposed from

outside by .associating names in the language with external objects.

151

minus sign (-) can also be a unary operator, if there is no expression to its

immediate left. Otherwise, it is a binary operator, Binary operators have two

operands: the expressions to their left and fight. The rest of the operators in the

above list are binary,

5.4.1. Opera lor Precedence

In the absence of parentheses, operands and o~rators arc grouped together

according to the following levels of precedence.

Loosest grouping

OR
AND

< <= >= > <>
+ -- (binary)

'" MOD I
NOT - (unary)

Tightest grouping

Operators of equal precedence associate from left to right.

5.4.2. Operator Semantics

For the purposes of this section, define the base of any type except a

subrange to be the type itself. Define the base of a subrange to be the base 01 the

subrange's parent type.

NOT

is a unary operator whose operand must have, base type Boolean. "NOT

expr" is an expression of type Boolean whose value is the negation of the

value of expr.

152

AND and OR

are binary operators whose operands must have base type Boolean. "exprl

AND expr2" and "exprJ OR expr2" are expressions of type Boolean

whose values are the logical and and or, respectively, of the values of their

operands.

(Unary) -

is an operator whose operand must have base type integer." expr" is an

expression of type integer whose value is the additive inverse of the value of

expr.

+, - , and '"

are binary operators whose operands must be sets, or else of base type

integer. If exprl and expr2 are of base type integer, then "exprJ +

expr2," "exprl _. expr2," and "exprl ,', expr2" are expressions of type

integer whose values are the sum, difference, and product, respectively, of

the values of their operands. The VAX implementation performs these

operations in two's complement arithmetic with no checks for overOow,

If expr J and expr2 are sets, then "expr 1 + expr2," "expr 1 - expr2," and

"exprl ,', expr2" are expressions whose values are the union, difference,

and intersection, respectively, of the values of the operands. If neither

operand has a provisional type, then the types must be the same, and the

type of the expression will be the same as well. If exactly one operand has

a provisional type, then it is coerced to the type of the other operand, if pos­

sible. The coercion is not permilled if 1) the two operands have different

component base types, or 2) the bounds of the component type of the provi­

sional operand do not lie within the bounds of the component type of the

163

awaiLstmt ::= AWAIT expr

The expression must be of type Boolean. The current thread will not continue

until the expression is true. If it is false when first encountered, it must be

changed by a different thread.

6.11. Compound Statement

A compound statement is a delimited list of statements with an optional set

of exception handlers.

compoun<Lstml
han<LlisLopt

when_clause
morc-whens

morc-handlers

exception

:: = BEGIN stmLlisLop han<LlisLopt END
:: = when_clause morc-handlers

WHEN exception morc-whens DO stmLlisLopt
, exception morc-whens

:: = when_clause more_handlers

:: = expr iden Lopt

Compound statements comprise the bodies of subroutines, modules, and entries.

They may also be nested anywhere a statement can occur.

Each exception handler consists of a series of when clauses and a statement

list. As mentioned in section 3.4, an exception is either an expression of type

link followed by the name of a buill-in exception class, or a name introduced in

an exception declaration. The exceptions in the when clauses of a given com­

pound statement need not be distinct. When an exception arises, the first clause

that matches the exception will be used. Exceptions are discussed in more detail

in section 7.2.

164

6.12. Raise Statement

Some exceptions occur spontaneously in the course of communication on

links. Others arc caused by execution of the raise statement.

:: = RAISE exception

An exception associated with a link end is raised in the current thread of control.

An exception introduced by an exception declaration is raised in each thread with

an active handler for it.

6.13. Input/Output Statements

Input and output statements read and write Ascii data on the standard input

and output streams. In the Charlotte implementation, these streams connect to

the (possibly virtual) console terminal of the local node.

io

deLlisLopt

designator-list
des_IisLtail

WRITE (expr-list)
READ (expr des_lisLopt)
designator-list

:: = designator des_IisLtail
, designator des_IisLtail

The parameters of read and write have the same format as those of the scallfand

prillt[routines in C. The first argument must be a string constant or an array

whose clements have base type char. The rest of the arguments must be scalars

or strings. The second and subsequent arguments to read are automatically

passed by reference.

