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ABSTRACT 

In a distributed environment, processes interact solely through the 

exchange of messages. Safe, convenient, and emcient communication is of vital 

importance, not only for th\! tightly-coupled components of parallel algorithms, 

hut also for more loosely-coupled us\!rs '01' distrihuwd resources. Server 

processes in particular must b\! ablt to communicate effectively with clients writ­

ten at widely varying times and displaying largely unpredictable behavior. Such 

communication requires high-level language support. 

Interprocess communication can be supported by augmenting a conven­

tional sequential language with direct calls to operating system primitives, but the 

result is both cumbersome and dangerous. Convenience and safety are offered 

by the many distributed languages proposed to date, but in a form too innexible 

to support loosely-coupled applications. A new language known as LYNX over­

comes the disadvantages of both these previous approaches. 

The name of the language is a play on its use of duplex communical1on 

links. Links are a mechanism for the naming, protection, and abstraction of dis­

tributed resources. They allow the connections between processes to be 

inspected and altered dynamically. Additional language features support the divi­

sion of processes IOto mUltiple threads of contro\. The interaction of threads and 

links facilitates the construction of servers. 

Experience with L YN X indicates that the language IS a significant improve­

ment over existing notations for interprocess communicallon. An implementation 

on top of the Charlotte distributed operallng system presented several interesting 

problems and yielded unexpected insights into the nature of the 

language/operating system interface. A paper design of an implementation for 
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the SODA distributed operating system was in some ways considerably simpler, 

The Charlotte implementation is complete and performs well. 
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Introduction 

The first task of an introduction is to establish definitions. I begin with the 

words in my title. 

I use the adjective distributed to describe any hardwan: or software involv­

ing interacting computations on processors that share no physical memory. Dis­

tributed algorithms usually entail concurrency, thac is, they require the simul­

taneous eXistence of more than one thread of control. If these threads can exe­

cute simultaneOUSly we say they proceed in parallel. 

The subject area of distributed computing is exceedingly broad. Distributed 

hardware always consists of nodes connected by a communication medium. 

but beyond that very little is I1xed. The nodes may be homogeneous or hetero­

geneous. They may be uniprocessors or multiprocessors. The communication 

medium can be almost anything, so long as it remains connected. To stay within 

the realm of feasibility. this dissertation addresses a very narrow subject: a sys­

tems programming language for a multicomputer, 

As discussed here. a multicomputer is a connected network of homogene­

ous uniprocessors. used as a single machine. 

A multicomputer is an allractive hardware option· for any organization whose 

computing load is easily divided into a large number of independent jobs. 

Interactive timesharing is an obvious example. So long as there are enough jobs 

to keep its nodes busy. a multicomputer timesharing system offers the advantages 
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of low response-time variance. graceful degradation in the event of failures. 

incremental upgrades, and essentially linear gains in throughput with increasing 

cost. 

A multicomputer requires a distributed operating system. Several such 

operating systems have been built or are under construction 

[1,2,25,30.41,69.92,94,101.102,109]. Most employ a relatively small ker­

nel, replicated on each node. that cooperates with the hardware to provide the 

most basic services: communication, low-level device control. and protection. 

Such traditional operating system functions as resource and device management. 

routing and directory maintenance. and medium- and long-term scheduling can 

be provided by server processes that run in the same environment as user pro-

grams. 

There are several reasons for separating servers from the kernel. To the 

extent that the kernel provides mechallisms while the servers set policy [120]. 

separation yields the traditional advantages of clarity, ease of maintenance. and 

the avoidance of mistakes. In addition. considerable amounts of memory can be 

saved by installing servers on a relatively small number of nodes. finally. a 

server responsible for the management of an entire neighborhood of nodes can 

often make beller decisions on the basis of regional information than it could with 

purely local data. 

Together, the kernel and servers constitute the operating system of the mul­

ticomputer. They are systems programs in the sense that they exist to make the 

system useful. The kernel runs on a bare machine and implements a new. 

abstract machine that is safer and easier to use. The servers run on the kernels 

and tie their machines together. The kernels live in the familiar world of devices 
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and interrupts on a uniprocessoL They can be written in a conventional systems 

language. The servers, however, pose new and different problems. 

! I applicatloll' I servers I ;:=. ===========: 
~~'''''' J 
00000···0 

The design of servers is a complicated issue. How many nodes should be 

covered by a single server? How should the servers In separate neighborhoods 

interact? How do we balance reliability agai!1st redundancy? Such questions are 

beyond the scope of this dissertation. For my purposes, it suffices to note that 

the systems programs for a multicomputer will be critically dependent on safe, 

convenient, efficient, and reliable facilities for interprocess communication. 

Both servers and utilities (command interpreters, . compilers, loaders, and so 

forth) can be expected to rely on complicated protocols for interprocess commun­

ication. Moreover, they must cope With a complicated web of connections to 

other processes, a web whose topology changes frequently at run time. 

One can consider the interconnections among processes on a multicom­

puter to be a generalization of files. In fact, files themselves may be represented 

by connections. Where a traditional operating system provides iile operations as 

primitive services, a distributed operating system will provide communication 

primitives instead. The primitives of existing systems vary quite a bit, particu­

larly with regard to naming, addressing, and error semantics. All, however, 

allow a user program to request that a message be sent or to wait for a message to 
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arrive. 

It is tempting to suppose that a systems language for a multicomputer could 

provide communication facilities that translate as directly into operating system 

primitives as do the file operations of traditional languages. While such a trans­

lation might be possible for processes whose communication is limited to file-like 

operations, it is not possible for processes in general or for servers in particulaL 

The extra compiexity of interprocess communication can be allributed to several 

issues. 

(I) Convenience and Safetyl 

Interprocess communication is more structured than are file operallons. 

The remote requests of servers and multi-process user programs resemble 

procedure calls more than they resemble the transfer of uninterpreted 

streams of bytes. Processes need 10 send and receive arbitrary collections 

of program variables, including those with structured types, without sacrif­

icing type checking and without explicitly packing and unpacking buffers. 

{2l Error Handling and Protection 1 

Interprocess communication is more error-prone than arc file operations. 

Both hardware and software may fail. Software is a particular problem, 

since communicating processes cannot in general trust each otheL A tradi­

tional tile is, at least logically, a passive entity whose behaVior is determined 

by the operations performed on il. A connection 10 an arbitrary process is 

much more non-deterministic. 

1 Safety involves detecting invalid actions on the part of a single process. 
Protection means preventing the actIOns of one process from damaging anotheL 
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FaulHolerant algorithms may allow a server to recover from many kinds of 

failures. The server must he able to detect those failures at the language 

level. It must not he vulnerable to erroneous or malicious behavior on the 

part of clients. Errors in communication with anyone particular client 

must not affect the service provided to others. 

(31 Concurrent Conversations 

While a conventional sequential program typically has nothing interesting to 

do while waiting for a fill: operation to complete, a server usually does have 

other work to do while waiting for communication to complete. Certainly, 

a server must never be blocked indelinilely while waiting for action on the 

parl of an untrustworthy client. As described ~y Liskov, Herlihy. and Gil­

hert (81.83], and discussed in chapter 3, it IS often easiest to structure a 

server as a dynamic set of tasks, one for each uncompleted request. Effi­

ciency constraints preclude scheduling these tasks in the kernel. Unfor­

tunately, a straightforward translation of the communication primitives pro­

vided by most operating systems will include operations that block the cal­

ling process, in this case the entire server. 

Practical experience testifies to the importance of these issut.:s. The Char­

lotte distributed operating systt.:m (7.41] is a case in point. As a member of the 

Charlotte group I have had the opportunity to study the construction of servers 

firsthand: a process and memory manager (the sWrterj. a command interpreter. a 

process inter-connector. two kinds of lIIe servers. a name server' (the switch­

board). and a terminal driver. Until recently, all were wrillen in a conventional 

sequential language (40] peppered with calls to the operating system kernel. As 

work progrt.:ssed. serious problems arose. The problems can be attributed to the 

issues just described. 

• 

It 

Charlotte servers devote a considerable amount of effort to packing and 

unpacking message buffers. The standard technique uses type casts to 

overlay a record structure on an array of bytes. Program variables are 

assigned to or copied from appropriate fields of the record. The code is 

awkward at best and depends for correctness on programming conventions 

that are not enforced by the compiler. Errors due to incorrect interpreta­

tion of messages have been relatively few, but very hard to find. 

Every Charlotte kernel call returns a status variable whose value indicates 

whether the requested operation succet.:ded or failed. Different sorts of 

failures result in different values. A well-written program must inspect 

every status variable and be prepared to deal appropriately with every possi­

ble value. It is not unusual for 25 or 30% of a carefully-written server to 

be devoted to error checking and handling. 

Conversations between servers and clients often require a long series of 

messages. A typical conversation with a file server. for exampll:. hegins 

with a request to open a lIIe, continues with an arbitrary sequence of read. 

write, and seek requests. and ends with a request to close the lilt.:. Tht.: 

flow of control for a singll: conversation could bt.: descriht.:d by simple. 

straight-line code except for the fact that the servt.:r cannot afford to wait In 

tht.: middle of that code for a message to bt.: ddivered. The explicit inter­

leaving of separate conversations is very hard to read and understand. 

The last problem is probably the most serious. In ordt.:r 10 maximize con­

currency and protect themselves from recalcitrant clients, Charlotte servers break 

the code thal manages a conversation into many small pieces, separated by 

requests for communication. The servers invoke the pieces individually so thai 
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conversations interleave. Every Charlotte server shares the following overall 

structure: 

begin 
mitialize 
loop 

wait for a communication requestto.complete 
determine the conversation to which it applies 
case requesl.lype of 

A: 

B: 

restore state of conversation 
compute 
start new requesl 
save state 

end case 
end loop 

end. 

The now of control for a typical conversation is hidden by the global loop. Sav-

ing and restoflng state serves two purposes: it preserves the data structures asso­

ciated with the conversation and it keeps track of the current point of execution in 

what would ideally be straight-line code. Both these tasks would be handled 

implicitly if the conversation were managed by an independent thread of control. 

Data structures would be placed in local variables and the progress of the conver­

sation would be rellected by its program counter. 

The complexity of mterprocess communication has motivated the design of 

a large number of distributed programming languages. Many of these languages 

are described in chapter 1. Most of the designs are convenient and safe. Their 

communication statements refer directly to program variables and they insist on 

type security for messages. Many provide special mechanisms for error handling 

and recovery. Several allow a process to be subdivided into more than one 
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th read of control. 

Unfortunately, none of the languages surveyed was designed with servers in 

mind. Most were intended to support communication within a single distributed 

program, nOI between separate programs. The issue of protection is never 

addressed. The network of interconnections is often statically deciared. More­

over, without exception, each language proposal either ignores the question of 

implementation entirely, or else assumes thai everything running on the machine 

will be written in one common language and that the language implementor will 

have complete control of that machine down to the hardware level. 

For servers, a language must maintain the flexibility of explicit kernel calls 

while providing extensive features to make those calls safer and more convenient. 

A language that accomplishes these aims is introduced in chapter 2. Known as 

L YN X, the language is specifically intended for the loosely-coupled processes 

supported by the kernel of a distributed operating system. The name of the 

language is derived from its use of communication channels called links. 

Links are provided as a built-in data type. A link is used to represent a 

resource. The ends of links can be moved from one process to anotheL Type 

security is enforced on a message-by-message basis. Servers are free to rear­

range their interconnections in order to meet the needs of a changing user com­

munity and in order to control access to the resources they prOVide. Multiple 

conversations are supported by integrating the communication facilities with the 

mechanism for creating new threads of control. 

The thesis of this dissertation is two-fold: first, that the LYNX program-

ming language is a significant Improvement over existing notations for certain 
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kinds of distributed computing; and second, that II can be effectively implemented 

on top of an existing operating system. The first half of the thesis is defended in 

chapter 3. Example programs demonstrate the use of L YN X for problems not 

solvable with existing distributed languages. Comparisons to equivalent sequen­

tial code with direct calls to operating system primit~yes show that L YN X is safer, 

easier to use, and easier to read. 

The second claim is defended in chapter 4. Two implementations of LYNX 

arc described, one for Charlotte and one for a system called SODA [69]. The 

implementation effort encountered several interesting problems and yielded some 

unexpected insights into the nature of the language/operating system interface. 

Though the design of L YN X was based largely on the primitives provided by 

Charlotte, the SODA implementation is in some respects considerably simpler. 

The SODA implementation exists on paper only: the one for Charlolle is in 

actual use. 
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Chapter 1 

A Survey of Existing Distributed Languages 

1. Introduction 

II has been recognized for some time that certain algorithms (operating sys­

tems in particular) are most elegantly expressed by concurrent programs in 

which there are several independent and, at least in theory, simultaneously active 

threads of control. On the assumption that the threads interact by accessing 

shared data, a whole body of research has evolved around methods for synchron­

izing that access (19,20,28,35,36,52,56,57]. Even on a conventional unipro­

cessor, effective synchronization is crucial in the face of context switches caused 

by interrupts. 

With the development of multicomputers it has become practical to distri­

bute computations across multiple machines. This prospect has lent a new 

urgency to the study of distributed programs - concurrent programs in which 

separate threads of control may run on separate physical machines. There are 

two reasons for the urgency: 

(I) On a mulucomputer, a distributed program may solve a problem substan­

tially faster than could its sequenual counterpart. 

(2) The systems programs lor a multicomputer must by their very nature be 

distributed. 

Unfortunately, there is no general consensus as to what language features 

are most appropriate for the expression of distributed algorithms. Shared data is 

no longer the obvious approach, since the underlying hardware supports message 
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passing instead. The alternatives proposed to date show a remarkable degree of 

diversity. This survey attempts to deal with that diversity by developing a frame­

work for the study of distributed programming languages. The framework allows 

existing languages to be compared for semantic (as opposed to purely cosmetic) 

differences. It also facilitates the exploration of new and genuinely different pos-

sibilities. 

Section 2 presents the framework. Section 3 uses that framework to 

describe a number of existing languages. No attempt is made to survey tech­

niques for managing shared data. (Good surveys have appeared elsewhere 16].) 

The evaluations are intentionally biased towards languages that lend themselves to 

implementation on top of a distributed operating system, where message passing 

is the only means of process interaction. 

2. The Framework 

This section discusses major issues in distributed language design: 

processes and modules 
communication paths and naming 

- synchronization 
implicit and explicit message receipt 
message screening and multiple rendezvous 

- miscellany: shared data, asynchronous receipt, timeout, reliability 

The list is Incomplete. The intent is to focus on those Issues that have the most 

profound effects on the flavor of a language or about which there is the most 

controversy in the current literature. 
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2.1. Processes and Modules 

A process is a logical thread of control. It is the working of a processor, 

the execution of a block of code. A process is described by a state vector that 

specilies its' position in its code, the values of its data, and the status of its inter­

faces to the rest of the world. 

A module is a syntactic construct that encapsulates data and procedures. A 

module is a closed scope. It presents a limited interface to the outside world and 

hides the details of its internal operation. 

In a sense, a module is a logical computer and a process is what that com­

puter does. Several language designers have chosen to associate exactly one pro­

cess with each module, confusing the difference between the two. It is possible 

to design languages in which there may be more than one process within a 

module, or in which a process may travel between modules. Such languages 

may pretend that the processes within a module execute concurrently, or they 

may acknowledge that the processes take turns. In the lalter case the language 

semantics must specify the circumstanc:es under which execution switches from 

one process to another. In the former case the language must provide some 

other mechanism for synchronizing access to shared data. 

Modules are static objects in that they are defined when a program is writ­

ten. Some languages permit them to be nested like Algol blocks; others inSist 

they be disjoint. In some cases, it may be possible to create new instances of a 

module at run time. Separate instances have separate sets of data. 

Some languages insist that the number of processes in a program be fixed 

at compile time. Others allow new processes to be created during execution. 

Some languages insist that a program's processes form a hierarchy. Special 



13 

rules may govern the relationships between a process and its descendants. In 

other languages. all processes are independent equals. A process may be permit­

ted to terminate itself. and perhaps to terminate others as well. It will usually 

terminate automatically if it reaches the end of its code. 

2.2. Communication Paths 

The most important questions about a distrihuted language revolve around 

the facilities it provides for exchanging messages. For want of a beller term. I 

define a communication path to be something with one end into which senders 

may insert messages and another end from which receivers may extract them. 

This definition is intentionally vague. It is meant to encompass a wide variety of 

language designs. 

Communication paths establish an equivalence relation on messages. 

Senders assign messages to classes by naming particular paths (see section 2.3). 

Receivers accept messages according to class by selecting particular paths (see 

section 2.6.1). Messages sent on a common path enjoy a special relationship. 

Most languages insert Ihem in a queue and guarantee receipt in the order they 

were sent. Some languages allow the queue to be reordered. 

One important question is most easily explored in terms of the abstract 

nOllon of paths: how many processes may be attached to each end? There are 

four principal options: 2 

2 These four options correspond. respectively. to the distributed operatmg 
system concepts of input ports. output ports. free port;, and bound ports. I have 
avoided this nomenclature because of the conflicting uses of the word "port" by 
various language designs. 
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(1) Many Senders, One Receiver 

This is by far the most common approach. It mirrors the client/server rela­

tionship found in many useful algorithms: a server (receiver) is willing to 

handle requests from any client (sender). A single server caters to a whole 

community of clients. Of course, a server may provide more than one ser­

vice; it may be on the receiving end of more than one path. Separate paths 

into a receiver are commonly called entry points. In theory, one could get 

by with a single entry point per server. The advantage of multiple entries is 

that they facilitate message screening (see section 2.b.ll and allow for strict 

type checking on each of several different message formats. From an 

implementor's point of view. multiple entry points into a single receiver are 

handled in much the same way as multiple senders on a single communica­

tion path. 

(2) One Sender, Many Receivers 

This approach is symmetric to that in (Ii. It is seldom used. however. 

because il does not reflect the structure of common algorithms. 

(3) Many Senders. Many Receivers 

This is the most general approach. In its purest form it is very dimcult to 

implement. The problem has to do with the maintenance of bookkeeping 

information for the path. In the one-receiver approach. information is con-

veniently stored at the receiving end. In the one-sender approach. it is kept 

at the sending end. With more than one process at each end of the path. 

there is no obvious location. If all information about the status of the path 

is stored on a single processor, then all messages will end up going through 

that intermediary. doubling the total message traffic. If the information is 

distributed instead. there will be situations in which either a) a sender must 
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(at least implicitly) query all possible receivers to see if they wanl its mes­

sage, or b) a receiver must query all possible senders to see if they have 

messages to send. 

Neither option is particularly desirable. Protocols exist whose communica­

tion requirements arc linear in the number of possible pairs of 

processes! 12, 26], but this is generally too costly. One way out is to res­

trict the model by insisting that mulLiple processes on one end of a path 

reSide on a single physiCal machine. This approach is taken by several 

languages: messages are sent to modules, not processes, and any process 

within the module may handle a message when it arrives. 

(4) One Sender, One Receiver 

This approach is the easiest to implement, but is acceptable only in a 

language that allows programmers to refer conveniently to arbitrary sets of 

paths. In effect, such a language allows the programmer to "tie" a 

number of paths together, imitating one of the approaches above. 

The preceding descriptions arc based on the assumption that each individual 

message has exactly one sender and exactly one receiver, no maller how many 

processes are attached to each end of the communication path. For some appli­

cations, it may be desirable to provide a broadcast facility that allows a sender to 

address a message to a/lthe receivers on a path, with a single operation. Several 

modern network architectures support broadcast in hardware 1104]. U nfor­

tunately, they do not all guarantee reliability. Br,oadcast will be complex and 

slow whenever acknowledgments must be returned by each individual receiver. 

Several language and operating system designers have attempted to imple­

ment send and receive as symmetric operallons (see in particular sections 3.4 and 
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4.3.2). Despite their efforts, there remains an inherent asymmetry in the 

sender/receiver relationship: data flows one way and not the other. This asym­

metry accounts for the rdative uselessness of one-many paths as compared to 

many-one. It also accounts for the fact that no one even discusses the symmetric 

opposite of hroadcast: a mechanism in which a receiver accepts identical copies 

of a message from all the senders on a path at once. 

2.3. Naming 

In order to communicate, processes need to be able 10 name each other, or 

at least to name the communication paths thaI connect them. Names may be 

established at compile time, or It may he necessary to create them dynamically. 

Naming is closely related to processes, modules, and communication paths. 

Several comments should be made: 

• In the typical case of many senders/one receiver, it is common for the 

sender to name the receiver explicitly, possibly naming a specil1c path 

len try) Into the receiver if there is more than one. Meanwhile the receiver 

specifies only the entry point. It accepts a message from anyone on the 

other end of the path. 

Compiled-in names can only distinguish among things that arc distinct at 

compile time. Multiple instanllations of a single block of code will require 

dynamically-created names. 

In languages where messages are sent to modules, it may be possible for 

names 101' module entry points) to be established at compile time, even 

when the processes that handle messages sent to the module are dynami­

cally created. Processes within a module may be permilled to communicate 



17 

with each other via shared data. 

Several naming strategies appropriate for use among independent programs 

on a distributed operating system arc nOl generally found in programming 

language proposals. Finkel [43] suggests thai processes may refer lO each other 

by capabilities, by reference lO the facilities they provide, or by mention of names 

known lO the operating system. The link mechanism described in chaptcr 2 is a 

similar approach [100]. It is intended lO support communication between 

processes thai arc designed, compiled, and loaded at widely disparate limes. It 

allows much later binding than one would usually need for the pieces of a single 

program. 

2.4. Synchronization 

Since all interprocess interaction on a multicomputer is achieved by means 

of messages, it is neither necessary nor even desirable for a language to provide 

synchronization primitives other than those inherent in the facilities for commun­

ication. The whole question of synchronization can be treated as a sub-issue of 

the semantics of the send operation !29, 43,79]. There are three principal possi­

bilities:) 

(1) No-Wait Send 

In this approach the sender of a message continues execution immediately, 

even as the message is hegmning the journey to wherever it is going. The 

operating system or run-time support paCkage must buffer messages and 

J In any particular implementation; the process of sending a message will re­
quire a large number of mdividual steps. Conceivably, the sender could be un­
blocked after anyone of those steps. In terms of programming language seman­
tics. however. the only steps that matter arc the ones that are visible to the user­
level program. 
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apply back-pressure against processes that produce messages too quickly. If 

a communication error occurs (for example, the intended recipient has ter­

minated), it may be difficull to return an error code to the sender, since 

execution may have proceeded an arbitrary distance beyond the point where 

the send was performed. 

(2) Synchronization Send 

In this approach the sender of a message waits until that message has been 

received before continuing execution. Message tramc may increase, since 

the implementation must return confirmation of receipt to the sender of 

each message. Overall concurrency may decline. On the other hand, it is 

easy to return error codes in the event of failed transmission. Further­

more, there is no need for buffering or back-pressure (though messages 

from separate processes may still need lO be queued on each communica-

tion path 1. 

(3) Remote-Invocation Send 

In this approach the sender of a message waits until it receives an explicit 

reply from the message's recipient. The name "remote invocation" is 

meant to suggest an analogy to calling a procedure: the sender transmits a 

message (input parameters) lO a remote process that performs some opera­

tion and returns a message (output parameters) to the sender, who may then 

continue execution. The period of time during which the sender is 

suspended is referred lO as a rendezvous. For applications in which it 

mirrors the natural structure of the algorithm, remote-invocation send is 

both clear and efficient. Both the original message and the (non-blocking) 

reply carry useful information; no unnecessary confirmations arc involved. 

As Liskov (791 points out. however, many useful algorithms cannot be 
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expressed in a natural way with remote invocation. 

The choice of synchronization semantics is one of the prinCipal areas of 

disagreement among recent language proposals. Section 3 includes examples of 

all th ree strategies. 

2.5. Implicit and Explicit Message Receipt 

Lauer and Needham [75] and Cashin [29] discuss a duality between 

"message-oriented" and "procedure-oriented" interprocess communication. 

Rather than semantic duals, I maintain that the two approaches are merely vary­

ing syntax for the same underlying functionality. What is at issue is whether 

message receipt is an explicit or an implicit operation. 

In the former case, an active process may deliberately receive a message, 

much as it might perform any other operation. In the latter case, a procedure­

like body of code is activated automatically by the arrival of an appropriate mes­

sage. Either approach may be paired with any Of the three synchronization 

methods. 

Implicit receipt is most appropriate when the functions of a module are 

externally driven. An incoming message triggers the creation of a new process 10 

handle the message. After the necessary operations have been performed, the 

new process dies. Alternatively, one may think of the message as awakening a 

sleeping process that performs its operations and then goes back to sleep, pending 

arrival of another message. There may be one such "sleeping process" for each 

of the module's entry procedures, or it may be more convenient 10 imagine a sin­

gle sleeper capable of executing any of the entries. If remote-invocation send is 

used, il may be intuitive 10 think of the' \soul" of a sender as traveling along 
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with its message. This soul then animates the receiving block of code, eventually 

returning to its original location (along with the reply message), and leaving that 

code as lifeless as before. Each of these options suggests a different implementa-

tion. 

Implicit receipt is a natural syntax for the client/server model. It is beller 

suited than the explicit approach to situations in which requests may arrive at 

unpredictable times or in which there is no obvious way 10 tell when the last mes­

sage has arrived. Explicit receipt, on the other hand, is more appropriate for 

situations that lack the client/server asymmetry. It is useful for expressing com­

munication among aCl1ve, cooperating peers, where both parties have useful work 

to do between interactions. An obvious example is a producer/consumer pair in 

which both the creation of new data and the consumption of old are time­

consuming operations. (See section 9,1 of chapter 2.) 

The choice of syntax for message receipt is a second major area of 

disagreement among recent language proposals. (Synchronization was the first.) 

StarMod (section 3.11) and NIL lsection 3.16) provide both implicll and explicit 

receipt. Most languages, however, provide a single option only. 

2.0. Details of the ReceIve Operation 

As noted above, most languages permit multiple senders but only one 

receiver on each communication path. In addition, they typically allow a process 

to be non-deterministic in choosing which entry point to serve next; instead of 

having to specify a particular path, a receiver is free to accept messages from any 

of a variety of paths on which they may be presenl. 4 With remote-invocation 

4 Among the languages discussed in section 3, CSP/SO alone 104] provides a 
similar degree of flexibility for senders. Though it permits only a single sender 
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send, a receiver may even accept new messages before replying to old. This sec­

lion discusses techniques for choosing between available messages and for 

managing more than one concurrent rendezvous. 

2.0.1. Message Screening 

Assume for the moment that a process may form the receiving end of 

several communication paths. Further, assume that each of these paths may 

carry a variety of messages from a variety of senders. In a completely non­

deterministic situation, a receiver might be expected to cope with any message 

from any process on any path. This burden is usually unacceptable. A process 

needs to be able to exercise control over the sorts ·of messages it is willing to 

accept at any particular time. It needs to qualify its non-deterministic options 

with guards that specify which options are open and which arc currently closed. 

Semantics 

There is a wide range of options for message screening semantics. Every 

language provides some means of deciding which message should be received 

next. The fundamental question IS: what factors may be considered in reaching 

the decision? The simplest approach is to "hard-code" a list of open paths. In 

effect, this approach allows the decision to be made at compile time. Most 

languages, however, allow at least part of the decision to be made at run time. 

Usually, the programmer will specify a Booleafl condition that must evaluate to 

"true" before a particular message will be accepted. The question now 

and receiver on each communication path, the language allows both senders and 
receivers to choose among several alternative paths, depending on whether any­
one is listening on the other end. This added flexibility entails implementation 
problems similar to those discussed in section 2.2 (3). For a more complete dis­
cussion of CSP, see section 3.4. 
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becomes: on what may the condition depend'! It is not difficult to implement 

guards involving only the local variables of the receiver. Complications arise 

when a process tries to base its choice on the contents of the incoming messages. 

In most languages, messages arriving on a particular communication path are 

ordered by a queue. In a few cases, it may be possible to reorder the queues. In 

any case, a simple implementation is still possible if path selection or queue ord­

ering depends on some particular well-known slot of the incoming message. 

PUTS and ZENO for example, allow a process to screen messages by sender 

name (path) and transaction slot (see section 3.7). 

In the most general case, a language may permit a receiver to insist on 

predicates involving arbitrary fields of an incoming message. The implementa­

tion has no choice but to go ahead and receive a message sight unseen, then look 

at its contents to see if it really should have done so. Unless unwanted messages 

can be returned to their sender, the receiver may require an arbitrary amount of 

buffer space. 

Syntax of Guards 

The precise way in which guards are specilied depends largely on the 

choice between implicit and explicit message receipt. With implicit receipt, there 

are two basic options: 

( 1) The language may allow the execution of an entry procedure to be 

suspended until an arbitrary Boolean expression becomes true. 

(2) The language may allow th" procedure to be suspended on a condition 

queue or semaphore, with the assumption that action in some other pro­

cedure will release it when it is safe to continue. 
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The first approach is the more general of the two. The second is easier to 

implement and is generally more efficient. Brinch Hansen discusses the trade­

oils involved ( [23], pp. 15-21). Both approaches assume that execution of an 

entry procedure can be suspended afler examining an incoming message. Since 

messages will differ from one instance of the procedure to the next, separate 

activallon records will be required for each suspe[1ded entry. Campbell and 

Habermann [28] suggest the simpler (and more restrictive) approach of allowing 

guards to involve local data only, and of insisung they occur at the very begin­

nmg of their entry procedures. A language that took such an approach would be 

able to avoid the separate activation records. It would also be less expressive. 

Guards are more straightforward with explicit receipt. The most common 

approach looks something like a Pascal case statement, with separate clauses for 

each possible communication path. Each clause may be preceded by a guard. 

The physical separation of clauses allows messages of different types to be 

received into different local variables. In a languilge with looser message typing 

(for example PUTS and ZENO, of secuon 3.7), there may be a statement that 

specifies receipt into a single variable from any of a set of open paths. An ordi­

nary sequenual case statement then branches. on some Held of the message just 

received. 

2.6.2. Multiple Rendezvous 

In a language using remote-invocation send, it'is often useful for a receiver 

to be in rendezvous with more than one sender at a time. One ingenious applica­

tion involves a process scheduler [22,87]. The scheduler has two entry points: 

schedule..me and /'TrLdone. Every process with work to do calls schedule..me. 

The scheduler remains in rendezvous with all of these callers but one. While 
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that caller works, the scheduler figures out which process P has the next-highest 

priority. When the worker calls I'TrLdone, the scheduler ends its rendezvous 

with P. 

In a language with both remote-invocation send and implicit message 

receipt, a module may bt! in rendezvous with several senders at one time. If each 

entry procedure runs until it blocks, then the module is a monitor [57J. If the 

implementation timt!-slices among t!ntrit!s, or if it employs a multiprocessor with 

common store, then tht! languagt! must provide additional mechanisms for con­

trolling access to tht! module's common data. 

Multiple rendezvous is also possible with explicit message receipt. Several 

languages require the receive and reply statements to he paired syntactically, but 

allow the pairs to nest. in such languages the senders in rendezvous with a sin­

gle receiver must be released in LIFO order. If senders are to be released in 

arbitrary order, then the reply (or disconnect) statemt!nt must be able to specify 

which rendezvous to end. Mutual t!xclusion among the senders is not an issue, 

since only one process is involved on the receiving t!nd. Mao and Yt!h [87] note 

that careful location of a disconnect statemt!nt can minimize the amount of time a 

sending proct!ss waits, leading to higher concurrt!ncy and hettt!r performance. 

Similar tuning is not generally possible with implicit receipt; senders are released 

implicitly at the t!nd of entry procedures. It would be possihle to provide an 

explicit discollnecT with implicit receipt (I do so in chapter 2), but it would tend to 

violate the analogy to sequential procedure calls. 

2.7. Side Issues 

The issues discussed in this section are less fundamental than those 

addressed above. They fall into the category of convt!nient "extra ft!atures"-
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things that mayor may not be added to a language after the basic core has been 

designed. 

( I) Shared Data 

In order to permit reasonahle implementations on a multicomputer. a distri­

buted language must in general insist that interaction among processes be 

achieved by means of messages. For the sake of efficiency. however. a 

language may provide for shared access to common variables by processes 

guaranteed to reside on the same physical machine. It may be necessary to 

provide additional machinery (semaphores. monitors. critical regions. etc.) 

to control "simultaneous" access. 

(2) Asynchronous Receipt 

Several communication schemes place 'no pound on the length of time that 

can pass before a message is noticed at the receiving end of its communica­

tion path. There is certain Iy no such bound for explicit receipt. There are 

times. however. when it is desirable to receive data as soon as it becomes 

available. One solution is to equip a receiving module with so-called 

immediate procedures [43 J - special ent~y. procedures that guarantee 

prompt execution. Immediate procedures imply the existence of shared 

data. since multiple processes may he active in the same module and since 

execution may switch from one process to another at unpredictable times. 

(3) Timeout and Related Issues 

In most proposals employing synchronization or remote-invocation send, 

the sender of a message may he suspended indefinitely if no one is willing 

to listen to it. Likewise a process that attempts to receive a message may 

have to wait forever if no one sends it anything. Such delays may be 
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acceptable in a distributed program where communication patterns are care­

fully defined and each process is able to assume the correctness of the oth­

ers. In certain real-time applicallons. however. and in language systems 

that attempt to provide for reliability under various sorts of hardware 

failure. it may be desirable to provide a mechanism whereby a process that 

waits "too long" times out and is able to take some sort of corrective 

action. 

One particular sort of timeout is especially useful, and may be provided 

even in cases where the more general facility is not. By specifying a 

timeout of zero. a process can express its desire to send or receive a mes­

sage only when such a request can be satisfied immediately. that is when 

some other process has already expressed its willingness to form the other 

end of the InteraCllon. 

(4) Robustness 

When persistent hardware failures are a serious possibility. or when a pro­

gram is expected to respond in a reasonable fashion to unpredictable real­

time events. it may not be possible to hide all errors from the application 

layer. Programming languages may need to provide special mechanisms 

for high-level recovery. Liskov's Extended CLU and Argus (section 3.8) 

are noteworthy examples. The problems involved in providing for reliabil­

ity in distributed programs have not been adequately investigated. Like 

many researchers. I ignore them. 

(5) Unreliable Send 

In certain applications. particularly in the processing of real-time data, 

speed may be more important than reliability. It may be more appropriate 
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to send new dat.a than to resend messages that fail. For such applications, a 

language may provide fast but unreliable messages. Unreliable broadcast 

is particularly interesting, since it can be provided on some architectures at 

no more cost than point-to-point communication. 

3. Several Languages 

This section surveys more than two dozen distributed language proposals. 

For each, it describes how the language fits. into the framework of section 2 and 

then mentions any features that are particularly worthy of note. Languages are 

considered in approximate order of their publication. For those without the pati­

ence of a saint, I particularly recommend the sections on monitor languages, 

CSP, Distributed Processes, Argus, and Ada. 

3.1. Path Expressions 

Path Expressions (28,53] are more of a mechanism than a language. They 

were invented by Campbell and Habermann in the early 1970's to overcome the 

disadvant.ages of semaphores for the protection of shared dat.a. Rather than trust 

programmers to insert P and V operations in their code whenever necessary, the 

designers of path expressions chose to make synchronization rules a part of the 

declaration of each shared object. 

The path expression proposal makes no ~ention of modules, nor does it say 

much about the nature of processes. It speciJ1es only that processes run asyn­

chronously, and that they interact solely by invoking the operations provided by 

shared objects. Like the monitors described below, path expressions can be 

forced into a distributed framework by considering a shared object to be a passive 

entity that accepts requests and returns replies. Under this model, the proposal 
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uses remote-invocation send with implicit message receipt. Communication paths 

are many-one. There may be several identical Objects. Processes name both the 

object and the operation when making a request. 

The declaration of a shared ohject specifies three things: the internal struc­

ture of the object, the operations that may be invoked from outside and that are 

permitted to access the internal structure, and the path expressions that govern 

the synchronization of invocations of those operations. There is no convenient 

way to specify an operation that works on more than one object at a time. 

A path expression describes the set of legal sequences in which an object's 

operations may be executed. Synt.actically, a path expression resembles a regular 

expression. "(A, B); {C}; 0", for example, is a path expression that permits a 

single execution of either A or B (hut not both), followed by one or more simul­

t.aneous executions of C, followed in turn by a single execution of D. There is 

no restriction on which executions may be performed on behalf of which 

processes. Reference (28) includes a proof that path expressions and semaphores 

are equally powerful; each can be used to implement the other. 

Path expression solutions to such problems as access control for readers 

and writers [33] can be surprisingly subtle and complex. Robert and Verjus [95] 

have suggested an alternative synt.ax. Like Camphell and Habermann, they dis­

like scauering synchronization rules throughout the rest of the code. They prefer 

10 group the rules together in a control module thai authorizes the executions of 

~ set of operations. Their synchronization rules are predicates on the number 

)1" executions of various operations that have been requested, authorized, and/or 

~ompleted since the module was initialized. Their solutions to popular problems 

ire both straightforward and highly intuitive. 
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3.2. Monitor Languages 

Monitors were suggested by Dijkstra 136). developed by Brinch Han­

sen [20]. and formalized by Hoare [57] in the early 1970s. Like path expres­

sions. monitors were intended to regularize ,the access to shared data structures 

by simultaneously active processes. The first languages to incorporate monitors 

were Concurrent Pascal [21]. developed by Brinch Hansen, and SIMONE [67]. 

designed by Hoare and his associates at Queen's University, Belfasl. Others 

include SB-Mod 113]. Concurrent SP/k [59, tiO], Mesa [74,89], Extended 

BCPL 186], Pascal-Plus 1112], and Modula [115]. Of the bunch, Concurrent 

Pascal. Modula, and Mesa have been by far the most influential. SIMONE and 

C-SP/k are strictly pedagogical languages. Pascal-Plus is a successor to 

SIMONE. SB-Mod is a dialect 01" Modula. C-SP/k has been succeeded by a 

production-quality language called Concurrent Euclid 161]. 

In all the languages, a monitor is a shared objecl Wilh operalions, internal 

state, and a number of condition queues. Only one operation of a given monilor 

may be active at a given point in time. A process that calls a busy monitor is 

delayed until the monitor is free. On behalf of its calling process, any operation 

may suspend itself by wailing on a queue. An operation may also signal a 

queue, in which case one of the waiting processes is resumed, usually the one 

that waited I1rsl. Several languages extend the mechanism by allowing condition 

queues to be ordered on the basis of priorities passed to the wail operation. 

Mesa has an even more elaborate priority scheme for the processes themselves. 

Monitors were originally designed for implementation on a conventional 

uniprocessor. They can, however, be worked into a distributed framework by 

considering processes as active entities capable of sending messages, and by con-
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sidering monitors as passive entities capable of receiving messages, handling 

them, and returning a reply. This model agrees well with the semantics of Con­

current Pascal and SIMONE, where monitors provide the only form of shared 

data. It does not agree as well with other languages, where the use of monitors 

is optional. Distributed implementations would be complicated considerably by 

the need to provide for arbitrary data sharin g. 

Concurrent Pascal, SI MON E, E-BCPL, and C-SP/k have no modules. In 

the other four languages surveyed here, monitors are a special kind of module. 

Modules may nest. In Modula and SB-Mod. the number of modules is I1xed at 

compile time. In Pascal-Plus and Mesa. new instances may be created dynami­

cally. Pascal-Plus modules are called envelopes. They have an unusually 

powerful mechanism for initialization and I1nalization. Modules in SB-Mod are 

declared in hierarchical levels. Inter-module procedure calls are not permilted 

from higher to lower levels. SIMONE, C-SP/k. and Pascal-Plus provide built-in 

mechanisms for simulation and the manipulalion of pseudo-time. 

Concurrent Pascal and C-SP/k programs contain a lIxed number of 

processes. Neither language allows process declarations to nest, but Concurrent 

Pascal requires a hierarchical ordering (a DAG) in which each parent process 

lists explicitly the monitors to which its children are permilled access. In the six 

other languages, new processes can be created at run time. Process declarations 

may be nested in Pascal-Plus. The nesting del1nes an execution order: each 

parent process starts all its children al once and waits for lhem to lin ish before 

proceeding. In Mesa, process instances are created by forking procedures. 

Mesa compounds the problems of shared data by allowing arbitrary variables to 

be passed to a process by reference. Nothing prevents an inner procedure from 

passing a local variable and then relurning immediately, deallocating the variable 
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and turning the reference into a dangling pointer. 

Under the distributed model described above, monitor languages use 

remote-invocation send with implicit receipt. Communication paths are many­

one. In languages thal permit multiple monitors with identical entries (Con­

current Pascal, Pascal-Plus, and Mesa), the sender must name both the monitor 

and entry. It also names both in SIMONE, but only because the bare entry 

names are not visible under Pascal rules for lexical scope. In E-BCPL the 

sender calls the monitor as a procedure, passing it the name of the operation it 

wishes to invoke. 

The precise semantics of mutual exclusion in monitors are the subject of 

considerable dispute [6,54,62,68,71,85,91,114]. Hoare's original propo­

sal [57] remains the clearest and most carefully described. It specifies two book­

keeping queues for each monitor: an entry queue and an urgent queue. When 

a process executes a signal operation from within a monitor, it waits in the 

monitor's urgent queue and the first process on the .appropriate condition queue 

obtains control of the monitoL When a process leaves a monitor it unblocks the 

first process on the urgent queue or, if the urgent queue is empty, it unblocks the 

first process on the entry queue instead. 

These rules have two unfortunate consequences: 

tl) A process that calls one monitor from within another and then waits on a 

condition leaves the outer monitor locked. If the necessary signal operation 

can only be reached by a similar nested call, then deadlock will result. 

(2) Forcing the signaler to release control to some other waiting process may 

result in a prohibitive number of context switches. It may also lead to 

situations in which the signaler wakes up to find that its view of the world 
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has been altered unacceptably. 

One solution to the first problem is to release the locks on the outer moni­

tors of a nested wait. This approach requires a means of restoring the locks 

when the waiting process is finally resumed. Since other processes may have 

entered the outer monitors in the intervening time, those locks might not be 

available. On a uniprocessor, the problem can be solved by requiring all opera­

tions of all monitors to exclude one another in time. Outer monitors will thus be 

empty when an inner process is resumed. Most of the languages mentioned here 

use global monitor exclusion. The exceptions are Concurrent Pascal, Mesa, and 

SB-Mod. 

Concurrent Pascal and Mesa provide a separate lock for each monitor 

instance. Nested calls leave the outer monitors locked. SB-Mod provides a lock 

for each set of monitors whose data are disjoint. There arc two forms of inter­

monitor calls. One leaves the calling monitor locked, the other leaves it 

unlocked. Neither affects monitors higher up the chain. A process that returns 

from a nested monitor call is delayed if the calling monitor is busy. 

The second problem above can be addressed in several ways. 

Modula [116], SB-Mod, E-BCPL, and C-SP/k all reduce the number of context 

switches by eliminating the urgent queue(s). Careful scheduling of the unipro­

cessor takes the place of mutual exclusion. In general, process switches occur 

only' at wait and signal operations, and not at module exit.:; When the current 

5 E-BCPL timeslices among the runnable processes. Clock interrupts are 
disabled inside monitor routines. SB-Mod reschedules processes in response to 
hardware interrupts, but the interrupts are masked at all levels below that of the 
current process. Interrupted processes are resumed when the current process at­
tempts to return to a lower interrupt level. 
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process signals, execution moves to the first process on the appropriate condition 

queue. When the current process waits, execution may move to any other pro­

cess that is not also waiting. 6 A process that would have been on one of Hoare's 

entry queues may well be allowed to proceed before a process on the correspond­

ing urgent queue. 

Signal operations in Concurrent Pascal cause an automatic return from 

monitor routines. There is thus no need for an urgent queue. To simplify the 

implementation, Concurrent Pascal allows only one process at a time to wait on a 

given condition. Mesa relaxes these restrictions by saying that a signal is only a 

hint. The signaler does not relinquish control. Any process suspended on a con­

dition queue must explicitly double-check its surrou?dings when it wakes up; it 

may find it cannot proceed after all, and has to wait again. Wettstein [114] notes 

that if signals are only hints then it is indeed feasible to release exclusion on all 

the monitors involved in a nested wait (though Mesa does not do SO). Before 

continuing, a signalled process could re-join each of the entry queues, one by 

one. After regaining the locks it would check the condition again. 

Kessels [71J suggests a different approach to the semantics of conditions. If 

every queue is associated with a prt:-declared Boolean expression, then the signal 

operation can be dispensed with altogether. When a process leaves a monitor, 

the run-time support package can re-evaluate the Boolean expressions to deter­

mine which process to run next. 

o The next process to run after a wait is al.ways the next runnable process on 
a circular list. All processes stay on the list in Modula, SB-Mod, and E-BCPL. 
Their order is I1xed. Process switches are slowed unnecessarily by the need to 
skip over waiting processes. Waiters in C-SP/k are removed from the list, even­
tually to be re-inserted behind their signaler. 
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SB-Mod expands on Kessel's proposal. The Boolean expressions for condi­

tion queues are optional. Wait suspends the caller if the expression is false or 

was not provided. Send (signal) transfers control to the first process on the queue 

if the expression is true or was not provided. A new operation called "mark" 

sets a flag in the I1rst process on the queue. When the current process leaves its 

monitor. the queue is re-examined. If the expression is true or was not provided. 

then the marked process is moved to the ready queue. No process switch occurs. 

Of all the languages surveyed, SIMONE is truest to Hoare. It does not 

provide separate entry queues for every monitor, but it does provide an urgent 

stack. with processes resumed in LIFO order. 

3.3. Extended POP-2 

Kahn and MacQueen (66] have implemented a small but elegant language 

based on a generalization of coroutines. Their language has much in common 

with CSP (section 3.4, below) but was developed independently. 

Process declarations in Extended POP-2 look very much like procedures. 

The~e are no modules. Processes share no data. They are instantiated With a 

cobegin construct called" doco." The doco statement uses a series of channels 

to connect input and output ports in the newly-created processes. 

Once running, processes can communicate by means of put and get opera­

tions on ports. Given the binding to channels achieved by doco, communication 

paths are one-one. Send is non-blocking and buffered. Receive is explicit, and 

names a single port. There is no provision for non-deterministic or selective 

receipt. Processes with a single input and a single output port may be instan­

tiated with a special functional syntax. 
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3.4. Communicating Sequential Processes 

CSP [58] is not a full-scale language. Rather, it is an ingenious proposal 

by C. A. R. Hoare for the syntactic expression of non-determinism and interpro­

cess communication. CSP/80 [64], Extended CSP [8], occam [88], and a name­

less language by Roper and Barter [96] are all allempts to expand Hoare's syntax 

into a usable language. I will refer to Extended CSp'as E-CSP and to Roper and 

Barter's language as RB-CSP. 

Processes are the central entities in CSP. There are no modules. Regular 

CSP, E-CSP, occam, and RB-CSP all allow new processes to be created at run 

time with a modified cobegill construct. CSP/SO provides for a fixed number of 

independent processes, statically defined. Subprocesses in E-CSP and RB-CSP 

are not visible to their parent's peers. Messages from outside are addressed to 

the parent. The parent redirects them to the appropriate child. To avoid ambi­

guity, the E-CSP compiler guarantees that no two subprocesses ever communi­

cate with the same outsider. RB-CSP performs the equivalent checks at run 

time. None of the CSP languages supports recursion. 

Disjoint processes in CSP do not share data; all interaction is by means of a 

generalization of the traditional concepts of input and output. In regular CSP, 

and in CSP/80 and occam, the result is equivalent to explicit receipt and syn­

chronization send. E-CSP provides both synchronization and no-wait send. 

RB-CSP uses only no-wait send. 

Communication paths in CSP are one-one; both sender and receiver name 

the process at the other end. Forcing the receiver to name the sender prevents 

the modeling of common ciientlserver algorithms. It also precludes the use of 

libraries. The four implementations mentioned here address the problem in dif-
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ferent ways. CSP/80 lets processes send and receive through ports. Sender 

ports and receiver ports are bound together in a special linking stage. Occam 

processes send and receive messages through channels. Any process can use 

any channel that is visible under the rules of lexical scope. E-CSP and RB-CSP 

provide processname variables. An E-CSP receiver still specifies a sender, but 

the name it uses can be computed at run time. An RB-CSP receiver does not 

specify the sender at all. It specifies a message type and must be willing to 

receive from any sender with a matching type. 

Communication is typeless in regular CSP and in occam. Types are associ­

ated with ports in CSP/80. They are associated with individual communication 

statements in E-CSP. Individual input and output commands match only if their 

types agree. RB-CSP provides a special type constructor called message with 

named slots, much like those of PUTS (section 3.7). A given process need only 

be aware of the slots it may actually use. 

CSP incorporates Dijkstra's non-deterministic guarded commands [37]. A 

special kind of guard, called an input guard, evaluates to true only if a specified 

input command can proceed immediately. In regular CSP, and in E-CSP and 

RB-CSP, there is no corresponding output guard to test whether a process is wait­

ing to receive. Hoare notes that the lack of output guards makes it impossible to 

translate certain parallel programs into equivalent, sequential versions. CSP with 

input guards alone can be implemented by the usual strategy for many-one com­

munication paths (see section 2.2): information is stored at the receiving end. 

The provision of output guards as well leads to the usual problems of many-many 

paths. (For a discussion, see the appendix of Mao and Yeh's paper on commun­

ication ports [87].) Moreover, as noted by the designers of CSP/80, the 

indiscriminate use of both types of guards can lead to implementation-dependent 
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deadlock. Nonetheless, CSP/SO does provide both ifjput and output guards. The 

linker prevents deadlock by refusing to connect a sender with output guards to a 

receiver with input guards. 

3.5. Distributed Processes 

In the design of Distributed Processes [22], Brinch Hansen has unified the 

concepts of processes and modules and has adapted the monitor concept for use 

on distributed hardware. 

A Distributed Processes program consists of a fixed number of modules 

residing on separate logical machines. Each module contains a single process. 

Modules do not nest. Processes communicate by calling entry procedures (called 

common procedures) defined in other modules. Communication is thus by 

means of implicit receipt and remote-invoc;ation send. Data can be shared 

between entry procedures, but not across module boundaries. 

An entry procedure is free to block itself on an arbitrary Boolean condition. 

The main body of code for a process may do likewise. Each process alternates 

between executing its main code and serving exter,nal requests. It jumps from 

one body of code to another only when a blocking statement is encountered. The 

executions of entry procedures thus exclude each other in time, much as they do 

in a monitor. Nested calls block the outer modules; a process remains idle while 

waiLing for its remote requests to complete. There is a certain amount of imple­

mentation cost in the repeated evaluation of blocking conditions. Brinch Hansen 

argues that the cost is acceptable, particularly if every module resides on a 

separate physical machine. 
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3.6. Gypsy 

Gypsy [51] was designed from the start with formal proofs in mind. Pro­

grams in Gypsy are meant to be verified routinely, with automatic tools. 

Much of Gypsy, including its block structure. is borrowed from Pas­

cal [65]. There is no notion of modules. New processes are started with a cobe­

gin construct. The clauses of the cobegin are all procedure calls. The pro­

cedures execute in parallel. They communicate by means of buffer variables, 

passed to them by reference. Since buffers may be accessible to more than one 

process, communication paths are many-many. Sharing of anything other than 

buffers is forbidden. There is no global data, and no objects other than buffers 

can be passed by reference to more than one process in a cobegin. 

Buffers are bounded FIFO queues. Semantically, they are defined by his­

tory sequences that facilitate formal proofs. Send and receive are buffer opera­

tions. Send adds an object to a buffer. Receive removes an object from a buffer. 

Send blocks if the buffer is full. Receive blocks if the buffer is empty. In the 

nomenclature of section 2, Gypsy uses no-wait send and explicit receipt, with the 

exception that back-pressure against prolific senders is part of the language defin­

ition. Declared buffer lengths allow the synchronization semantics to be 

independent from implementation details. 

A variation of Dijkstra's guarded commands [37] allows a process to exe­

cute exactly one of a number of sends or receives. The await statement contains a 

series of clauses. each of which is guarded by a send or receive command. If 

none of the commands can be executed immediately. then the await statement 

Jiocks until a buffer operation in some other process allows it to proceed. If 

110re than one of the commands can be executed, a candidate is chosen at ran-
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dom. There is no general mechanism for guarding clauses with Boolean expres-

sions. 

3.7. PUTS and ZENO 

PUTS [39] is an acronym for "Programming Language in the Sky," an 

ambitious attempt at advanced language design. In the area of distributed com­

puting, it envisions a framework in which a' computation may involve processes 

written in multiple languages, executing on heterogeneous machines. ZENO [9] 

is a single language based heavily on the PUTS design. lIS syntax is borrowed 

from Euclid [73]. 

A ZENO program consists of a collection of ~odules that may be instan­

tiated to create processes. Processes are assigned names at the time of their crea­

tion. They are independent equals. A process dies when it reaches the end of ilS 

code. It may die earlier if it wishes, but it cannot be killed from oulSide. There 

is no shared data. Receive is explicit. Send is non-blocking and buffered. There 

is only one path into each process, but each message includes a special trans­

action slot to help in selective receipt. A sender names the receiver explicitly. 

The receiver lists the senders and transaction numbers of the messages it is wil­

ling to receive. There is no other means of message screening - no other form 

of guards. As in CSP (section 3.4), forcing receivers to name senders makes it 

difficult to write servers. A "pending" function allows a process to determine 

whether messages from a particular sender, about a particular transaction, are 

waiting to be received. 

The most unusual feature of PUTS/ZENO is the structure of its messages. 

In contrast to most proposals, there is no strong typing of interprocess communi­

cation. Messages are constructed much like the property lists of USP [93]. 
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They consist of name/value pairs. A process is free to examine the message slolS 

that interest it. It is oblivious to the existence of others. 

In keeping with its multi-language, multi-hardware approach, PUTS prohi­

bits the transmission of all but simple types. ZENO is more flexible. 

Recent extensions to PUTS [38] are designed to simplify the organization 

of large distributed systems and to increase their reliability. Cooperating 

processes are tagged as members of a single activity. A given process may 

belong to more than one activity. It enjoys a special relationship with ilS peers: it 

may respond automatically to changes in their Status. Activities are supported by 

built-in atomic transactions, much like those of Argus (section 3.8). 

3.8. Extended CLU and Argus 

Extended CLU [79,80] is designed to be suitable for use on a long-haul 

network. It includes extensive features for ensuring reliability in the face of 

hardware failures, and provides for the transmission of abstract data types 

between heterogeneous machines [55]. The language makes no assumptions 

about the integrity of communications or the order in which messages arrive. 

The fundamental units of an Extended CLU program are called guardians. 

A guardian is a module; it resides on a single machine. A guardian may contain 

any number of processes. Guardians do not nest. Processes within the same 

guardian may share data. They use monitors for synchronization. All interac­

tion among processes in separate guardians is by means of message passing. 

Receive is explicit. Send is non-blocking and buffered. Each guardian pro­

vides ports to which its peers may address messages. New instances of a guard­

ian may be created at run time. New port names are created for each instance. 
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The sender of a message specifies a port by name. It may also provide a reply 

port if it expects to receive a response. The (epiy port name is really just part of 

the message, but is marked by special syntax to enhance the readability of pro­

grams. Within a guardian, any process may handle the messages off any port; 

processes are anonymous providers of services. A facility is provided for non­

deterministic receipt, but there are no guards; a rect:!iver simply lists the accept­

able ports. In keeping with the support of reliability in the face of communica­

tion failure, a timeout facility is provided. 

Argus [82,84] is the successor to Extended CLU, Argus uses remote­

invocation send and implicit message receipt. Instead of ports, Argus guardians 

provide handlers their peers may invoke. Processes are no longer anonymous 

in the sense they were in Extended CLU, Each invocation of a handler causes 

the creation of a new process to handle the call. Additional processes may be 

created within a guardian with a cobegin-like construct. 

Argus programs achieve robustness in the face of hardware failures with 

stable storage and an elaborate action mechanism. Actions are atomic; they 

either commit or abort. If they commit. all their effects appear to occur instan­

taneously. If they abort, they have no effect at all. Actions may nest. A remote 

procedure call is a nested action. Built-in atomic objects [110] support low­

level actions. and may be used within a guardian to synchronize Its processes. 

3.9. Communication Port 

Like CSP and Distributed Processes, Communication Port [87] is less a 

full-scale language than a concept on which a language might be based. A Com­

munication Port program consists of a fixed collection of processes. There are 

no modules. There is no shared data. Processes communicate with remote-
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invocation send and explicit message receipt. 

Each process provides a variety of ports to which any other process may 

send messages. Ports provide strict type checking. Senders name both the 

r.eceiver and its ~rt. There may thus be several receivers with the same internal 

structure. The receive statement is non-deterministic. Guards may be placed on 

its options. The guards must refer to local data only. Receiving a message and 

returning a reply are independent operations; it is possible for a receiver to be in 

rendezvous with several senders at one time. The senders may be released in 

any order. Careful placement of release statements is a useful tuning technique 

that can be used to minimize the length of rendezvous and increase concurrency. 

3.10. Edison 

Edison [23,24] is a remarkable language in a number of ways. Based 

loosely on Pascal, Concurrent Pascal, and Modula. it is a considerably smaller 

language than any of the three. It seems to be an experiment in minimal 

language design. 

Processes in Edison are created dynamically with cobegin. Modules are 

used for data hiding. Communication is by means of shared data, and mutual 

exclusion is achieved through critical regions. There are no separate classes of 

critical regions; the effect is the same as would be achieved by use of a single, 

system-wide semaphore. Entry to critical regions may be controlled by arbitrary 

Boolean guards. It is possible to follow a programming strategy in which all 

shared data is protected by monitors created out of critical regions and modules. 

It is equally possible to avoid such rules. 
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Despite its title ("a multiprocessor language" l, I question the suitability of 

Edison for use on multiple processors. The use of critical regions that all 

exclude each other could periodically halt all processors save one. On a multi­

computer, shared data is an additional problem. Unless a careful programming 

style is imposed above and beyond the rules of the language itself, Edison does 

not fit into the framework of section 2. 

3.11. StarMod 

StarMod [31,32] is an extension to Modula that attempts to incorporate 

some of the novel ideas of Distributed Processes. It provides additional features 

of its own. Modules and processes are distinct. Modules may nest. There may 

be arbitrarily many processes within a module. Processes may be created 

dynamically; they are independent equals. Processes within the same processor 

module may share data. The programmer may influence their relative rates of 
, 

progress by the assignment of priorities. 

StarMod provides both explicit and implicit message receipt and both syn­

chronization and remote-invocation send. The four resulting combinations 

employ a common syntax on the sending end. Communication paths are many­

one. A sender names both the receiving module and its entry point. Entries may 

be called either as procedures or as functions. A procedural send allows the 

sender to continue as soon as its message is received. A jimcIiollal send blocks 

the sender until its value is returned. Remote-invocation send is thus limited to 

returning a single value. 

On the receiving end, a module may mix its two options, using explicit 
". 

receipt on some of its communication paths and implicit receipt on the others. 

The sender has no way of knowing which is empioyed. A receiver can be 
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changed· from one approach to the other without any change to the sender. 

Libraries can be changed without invalidating the programs that use them. 

When a message arrives at a implicit entry point, a new process is created to 

handle the call. When a message arrives at a explicit entry point, it waits until 

some existing process in the module performs a receive on the corresponding 

port. There is no mutual exclusion among processes in a module; they proceed 

in (simulated) parallel. They may arrange their own synchronization by waiting 

on semaphores. The explicit receive is non-deterministic, but there are no 

guards on its options. A single receiver can be in rendezvous with more than 

one sender at a time, but it must release them in LIFO order. Separate calls to 

the same implicit port will create separate, possibly parallel, processes. Separate 

processes in a module may receive from the same explicit port. 

StarMod was designed for dedicated real-time applications. The StarMod 

kernel behaves like a miniature operating system, highly emcient and tuned to 

the needs of a single type of user-level program. Simplicity is gained at the 

expense of requiring every program to specify the interconnection topology of its 

network. Direct communication is permitted only between modules that are 

neighbors in that network. The programmer is thus responsible for routing. 

3.12. ITP 

The Input Tool Process model lUll is an extensIOn of van den Bos's Input 

Tool Method [17], an unconventional language for input-driven programs. 

An ITP program consists of a collection of processes. There are no 

modules. Processes do not nest. They share no data. Each process consists of a 

hierarchical collection of tools. A tool looks something like a procedure. It is 

made available for activation by appearing in the input rule of a higher-level 
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tool. (The root tools are always available.) A tool is actually activated by the 

completion of lower-level tools appearing in its own input rule. Leaf tools are 

activated in response to inputs from other processes, or from the user. 

Input rules allow message screening. They resemble path expressions (sec­

tion 3.1). They specify the orders in which io:ver-Ievcl tools may be activated. 

Unwanted inputs can be disallowed at any layer of the hierarchy. 

ITP uses synchronization send with implicit message receipt. Within a pro­

cess. any tool can send data to any other process. The naming mechanism is 

extremely flexible. At their most general, the communication paths are many­

many. A sender can specify the name of the receiving process. the receiving 

tool, both, or neither. It can also specify broadcast to all the members of a pro­

cess set. A receiver <leaf tool) can accept a message from anyone. or it can 

specify a particular sender or group of senders. A global communication arbiter 

coordinates the pairing of appropriate senders and receivers. 

The current ITP implementation runs on multiple processors. but does not 

allow the most general many-many communication paths. Syntax for the sequen­

tial part of the language is borrowed from C [70]. 

3.13. Ada 

The adoption of Ada! 108] by the U. S. Department of Defense is likely to 

make it the standard against which concurrent languages are compared in future 

years. 

Processes in Ada are known as tasks. Tasks may be statically declared. 

They may also be created at run time. The code associated with a task is a spe­

cial kind of module. Since modules may nest. it is possible for one task to be 
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declared inside another. This nesting imposes a strict hierarchical structure on a 

program's tasks. No task is permitted to leave a lexical scope until all that 

scope's nested tasks have terminated. A task can be aborted from outside. Tasks 

may share data. They may also pass messages. 

Ada uses remote-invocation send. The sender names both the receiver and 

its entry point. Dynamically-created tasks are addressed through pointers. Com­

munication paths are many-one. Receive is explicit. Guards (depending on both 

local and global variables) are permitted on each clause. The choice between 

open clauses is non-deterministic. A receiver may be in rendezvous with more 

than one sender at a time. but must release them in LIFO order. There is no 

special mechanism for asynchronous receipt; the same effect may be achieved 

through the use of shared data. Ada provides sophisticated facilities for timed 

pauses in execution and for communication timeout. Communication errors 

raise the TASKING_ERROR exception. A programmer may provide for error 

recovery by handling this exception. 

Since data may be shared at. all levels of lexical nesting, it may be necessary 

for separate tasks to share (logical) activation records. That may be difficult 

across machine boundaries. More subtle problems arise from the implicit rela­

tionships among relatives in the process tree. For example. it is possible for a 

task to enter a loop in which it repeatedly receives messages until all of its peers 

have terminated or are in similar loops. The implementation must detect this 

situation in order to provide for normal termination of all the tasks involved. 

3.14. Synchronizing Resources 

SR [4,5] is an attempt to generalize and unify a number of earlier propo­

sals. It appears to have grown out of work on extensions to monitors [3]. 
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An SR program consists of a collection of modules called resources. A 

resource may contain one or more processes, and may export operations those 

processes define. Operations arc similar to ports in Extended CLU and entries in 

Ada. The processes within a resource share data. Neither resources nor 

processes may nest. There is special syntax for declaring arrays of identical 

resources, processes, and operations. A procedure is abbreviated syntax for a 

process that sits in an infinite loop with a receive statement at the top and a send 

at the bottom. 

Receil'e IS explicit. Its syntax is based on Dijkstra's guarded com­

mands [37]. Input guards have complete access to the contents of potential mes­

sages. Moreover, messages need not be received in the order sent. A receiver 

may specify that the queue associated with an operation should be ordered on the 

basis of an arbitrarily complicated formula involving the contents of the messages 

themselves. It is possible for a process to be in rendezvous with more than one 

sender at a time. It must release them in LIFO order. 

SR provides both no-walt and remote-invocation send. Messages are sent to 

specific operations of specific resources. Thus each communication path has a 

single receiving resource and, potentially, multiple senders. Operations can be 

named explicitly. They can also be referenced through capability variables. A 

capability variable is similar to a record; it consists of several fields, each of 

which points to an operation of a specific type. Within a resource, a particular 

operation must be served by only one process. 

There are no facilities for asynchronous receipt or timeout. Each opera­

tion, however, has an associated function that returns the current length of its 

queue. This function may be used to simulate a receive with timeout zero: the 
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receiver simply checks the queue length before waiting. 

3.15. Linda 

Linda [47,48,49] provides the full generality of many-many communica­

lion paths. Processes interact in Linda by inserting and removing tuples from a 

distributed, global tuple space (TS).7 Tuple space functions as an associative 

memory; tuples are accessed by referring to the patterns they contain. 

Published papers on Linda do not dwell on the language syntax. It seems 

to resemble C [70]. Processes are created with a cobegin-like construct and can 

share data in addition to TS. The data can be protected with some sort of mutual 

exclusion mechanism. There is no mention of modules. 

Linda combines no-wait send with explicit message receipt. Tuples are 

added to TS with the non-blocking outO command. They are removed with the 

inO command. A readO command (originally called in*{)) allows tuples to be 

read without removing them from TS. All three commands take an arbitrary list 

of arguments. The first is required to be an actual value of type name. The rest 

may be actuals or "formals." An in() command succeeds when it finds a tuple 

in TS that matches all its actuals and provides actuals for all its formals. In outO 

commands, formals serve as "don't care" flags; they match any actual. In inO 

commands, formals are slots for incoming data. 

The matching of tuples according to arbitrary patterns of actuals provides a 

very powerful mechanism for message screening. It also leads to serious imple­

mentation problems. Much of the work on Linda involves finding tractable algo­

rithms for managing TS. The language was originally intended for the Stony 

7 also called structured memory (STM) in early papers. 
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execute one at a time. New processes are created by a built-in procedure that 

accepts a procedure name and an array to be used as stack space and returns the 

id of a neWly-created process. There is no preemption; a given process contin­

ues to run until it explicitly relinquishes control and names the process to be run 

in its stead. 

One goal of Modula-2 is to permit a large variety of process-scheduling 

strategies to be implemented as library packages. By hiding all coroutine 

transfers in a library, the programmer can imitate virtually any other concurrent 

language. The imitations can be straightforward and highly efficient. For a 

uniprocessor, Modula-2 provides the richness of expression of multiple threads of 

control at very liltle cost. 

4.2. Nelson's Remote Procedure Call 

Nelson's thesis [90] is devoted to the development of a transparent mechan­

ism for remote procedure calls. A remote procedure call combines remote­

invocation send with implicit message receipt. Transparency is defined to mean 

that remote and local procedure calls appear to be the same; they share the same 

- atomicity semantics, 
naming and conl1guration, 

- type checking, 
- parameter passing, and 
- exception handling. 

Nelson describes a mechanism. called Emissary, for implementing remote 

procedure calls. Emissary attempts to satisfy all five of the "essential properties" 

listed above, together with one "pleasant property": efficiency, The attempt at 

transparency is almost entirely successful, an'd the performance results are quite 

impressive. 
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Emissary falls short of true transparency in the area of parameter passing. 

Not all data types are meaningful when moved to a different address space. 

Unless one is willing to incur the cost of remote memory accesses, pointers and 

other machine-specific data cannot be passed to remote procedures. Moreover, 

in/oUi parameters must be passed by value/result, not by reference. In the pres­

ence of aliasing and other side effects, remote procedures cannot behave the 

same as their local counterparts. So long as programmers insist on pointers and 

reference parameters, it is unrealistic to propose a truly transparent mechanism. 

4.3. Distributed Operating Systems 

The borderline between programming languages and operating systems is 

very fuzzy, especially in hypothetical systems. Interprocess communication lies 

very near the border. It is often difficult to tell whether a particular mechanism 

is really part of the language or part of the underlying system. Much depends on 

the degree to which the mechanism is integrated with other language features: 

type checking, variable names, scope rules, protection, exception handling, con­

currency, and so forth. The mechanisms described in this section, at least in 

their current form, are fairly clearly on the operating system side of the line. 

This dissertation is a first attempt at incorporating them into the language level. 

4.3.1. ,Links 

Links were introduced in the Demos [10] operating system. They have 

been adopted, in one form or another, by several descendant systems: Arachne 

(Roscoe) [44, 102], Charlotte [7,41], and DEMOS/MP [92]. 

Links are a naming and protection mechanism. In Demos, and in Arachne 

and DEMOS/MP. a link is a capability to an input port. It connects an arbitrary 
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Brook microcomputer Network, a wrapped-around grid (torus) architecture. 

3.16. NIL 

NIL [27, 105] is a language under development at IBM's T, J. Watson 

Research Center. It is intended for use on a variety of distributed hardware. 

The current implementation runs on a single IBM 370. Processes are the funda­

mental program units; there is no separate module concept. There is no shared 

data; processes communicate only by message passing. The designers of NIL 

suggest that a compiler might divide a process into parallel pieces if more than 

one CPU were available to execute il. 

Communication paths are many-one. They are created dynamically by con­

necting output ports to an appropriate input port. Any process can use the 

publish command to create capabilities that point to its input ports. It may then 

pass the capabilities in messages to other processes that can use them in connect 

commands. All type checking on ports is performed at compile time. 

NIL provides both no-wait and remote-invocation send. Remote-invocation 

sends may be forwarded. The process receiving a forwarded message is respon­

sible for releasing the sender. No-wait sends are buffered and deslruclive; vari­

ables sent in messages assume an uninitialized "typestate" and can no longer be 

inspected. 

Receive in NIL is explicil. It has two varieties, one to correspond to each 

type of Sella. Exceptions are used to recover from communication errors. 

There are elaborate rules for propagating exceptions when a process terminates. 
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4. Related Notions 

Each of the proposals described in section 3 has been described in the 

literature (at least in pan) as a high-level language for distributed computing. 

For one reason or another, the proposals in this section have nol. They all con­

tain useful ideas, however, and are worth conSidering in any discussion of inter­

process communication and concurrency. 

The survey in section 3 is meant to be reasonably complete. No such claim 

is made for this section. I have used by own personal tastes in deciding what to 

include. 

4.1. Concurrent Languages 

Several early high-level languages, notably Algol-68 (106], PilI (11), and 

SIMULA (14], provided some sort of support for concurrent processes, or at 

least coroutines. These languages relied on shared data for interprocess interac­

tion. They were intended primarily for uniprocessors, and may have been suit­

able for multiprocessors as well, but they were certainly not designed for imple­

mentation on multicomputers. Recently, Modula-2 [117, 118J has re-awakened 

interest in coroutines as a practical programming tool. In designing Modula-2, 

Wirth has recognized that even on a uniprocessor, and even in the absence of 

interrupts, there are still algorithms that are most elegantly expressed as a collec­

tion of cooperating threads of control. 

Modula-2 is more closely related to Pascal [(5) than to the Modula of sec­

tion 3.2. For the purposes of this survey, the principal difference between the 

Modulas is that the newer language incorporates a much simpler and more prim­

itive form of concurrency. Processes in Modula-2 are actually coroutines; they 
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number of holders to an owner. The owner can receive messages from the 

link. It owns the input port. A holder can send messages to the link. II holds 

the capability. A holder can create copies of its capability. and can send them in 

messages on other links. The owner can exercise control over the distribution of 

capabilities and the rights that they confer. 

Where Demos links are many-one, Charlotte links are one-one. Their 

ends are symmetric. Each process can send and receive. There is no notion of 

owner and holder. Only one process can access a given end of a given link at a 

given point in lime. 

The protection properties of links make them useful for applications that are 

somewhat loosely coupled - applications in which processes are developed 

independently and cannot assume that their partners are correct. Typically, a 

link is used to represent a resource. (In a timesharing system, a link might 

represent a file.) Since a single process may implement a whole collection of 

resources, and since a single resource may be supported by an arbitrary number 

of operations, links provide a granularity of naming somewhere in between pro­

cess names and operation names. 

4.3.2. SODA 

SODA [69] is an acronym for a "Simplified Operating system for Distri­

buted Applications." It might better be des~ribed as a communications protocol 

for use on a broadcast medium with a very 'Iarge number of heterogeneous 

nodes. 

Each node on a SODA network consists of two processors: a client proces­

sor, and an associated kernel processor. The kernel processors are all alike. 

They are connected to the network and communicate with their client processors 
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through shared memory and interrupts. Nodes are expected to be more 

numerous than processes, so client processors are not multi-programmed. 

Communication paths in SODA are many-one, but there is a mechanism by 

which a process can broadcast a request for server names that match a certain 

pattern. All communication statements are non-blocking. Processes are 

informed of interesting events by means of software interrupts. Interrupts can be 

masked. 

From the point of view of this survey, the most interesting aspect of the 

SODA protocol is the way in which it decoutJles control !low and data !low. In 

all the languages in section 3. message transfers are initiated by the sender. In 

SODA, the process that initiates an interaction can arrange to send data, receive 

data, both, or neither. The four options are termed, respectively, put, get, 

exchange, and signal. Synchronization in SODA falls outside the classification 

system described in section 2.4. 

Every interaction between a pair of processes has a requester and a 

server _ The server feels a software interrupt whenever a requester attempts to 

initiate a transfer. The interrupt handler is provided with a (short) description of 

the request. At its convenience, the server can accept a request that triggered its 

handler at some point in the past. When it does so, the transfer actually occurs. 

and the requester is notified by an interrupt of its own. The programmer is 

responsible for writing handlers and for keeping track of outstanding requests in 

both the server and requester. In simple cases, the bookkeeping may be 

managed by library routines. 
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5. Conclusion 

There is no doubt that the best way to evaluate a language is to use it. A 

certain amount of armchair philosophizing may be justified (this chapter has cer­

tainly done its share!), but the real test of a language is practical experience. It 

will be some time before most of the languages in section 3 have received enough 

use to make definitive judgments possible. 

One very useful tool would be a representative sample of the world's more 

difficult distributed problems. To evaluate a language, one could make a very 

good start by coding up solutions to these problems and comparing the results to 

those obtained with various other methods. Much of the success of any language 

will depend on the elegance of its syntax - on whether it is pleasant and natural 

to use. But even the best of syntax cannot make up for a fundamentally unsound 

design. 

Section 2 has discussed some major open questions. The two most impor­

tant appear to be the choice of synchronization semantics for the send operation 

and the choice between implicit and explicit message receipt. I have argued else­

where [98] that a reasonable language needs to provide a variety of options. Just 

as a sequential language benelits from the presence of several similar loop con­

structs, so can a distributed language benelit from the presence of several similar 

constructs for inlerprocess communication. It is worth noting that thirty years of 

effort have failed to produce an ideal sequential language. It is unlikely that the 

next thirty will see an ideal distributed language, either. 
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Chapter 2 

An Overview of LYNX 

1. Introduction 

This chapter introduces a new distributed programming langu:.ge. It pro­

vides an overview of concepts discussed in considerably more detail in the follow­

ing chapter and in the appendix. The language, known as LYNX, was specifi­

cally designed for systems programs for a multicomputer. It differs from the 

languages of chapter I in three of the major areas covered by that survey: 

Processes and Modules 

Processes and modules in LYNX reflect the structure of a multicomputer. 

Modules may nest, but only within a machine; no module can cross the 

boundaries between machines. Each outermost module is inhabited by a 

single process. Processes share no memory. They are managed by the 

operating-system kernel and execute in parallel. Multiple threads of control 

within a process are managed by the language run-time system, but there is 

no pretense of parallelism among them. 

Communication Paths and Naming 

L YN X derives its name from links. Links are pairs of one-one, movable 

communication paths. The programmer has complete run-time control 

over the binding of links to processes and names to links. The resulting 

flexibility allows links to be used for reconfigurable, type-checked connec­

tions between very loosely-coupled processes - processes written and 

loaded at widely disparate times. 
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Syntax for Message Receipt 

Messages in LYNX may be received both expliciLly and implicitly. 

Processes can decide at run time which approach(es) to use when, and on 

which links. 

2. Main Concepts 

The three most important concepts in L YN X are the process. the link. and 

the thread of control. Processes are supported by the operating system. They 

execute in parallel and interact by exchanging messages on two-way communica­

tion links. 

Each process begins with a single thread of control. executing the initializa­

tion code of its outermost module. It can create new threads itself or can arrange 

for them to be created automatically in response to incoming messages. Separate 

threads do nor execute in parallel; the process continues [0 execute a single 

'thread until it blocks. It then takes up some other thread where it last left off. If 

no thread is runnable. the process waits until one is. In a sense. the threads are 

coroutines, but the details of control transfer are hidden in the run-time support 

package. Blocking statements are discussed in section 8. 

Lexical scope in LYNX is defined as in Modula [115]. New threads of 

control may created at any level of lexical nesting. Non-global data may there­

fore be shared by more than one thread. The activation records accessible at any 

given time will form a tree, with a separate thread corresponding to each leaf. 

When a thread enters a scope in which a module is declared. it executes the 

module's initialization code before proceeding. A thread is not allowed to leave a 

given scope until all its descendants still active in that scope have completed. 
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The sequential features of LYNX are Algol-like. I will not discuss them 

here. A full description of the language can be found in the appendix. 

3. Links 

A link is a two-ended communication channel. Since all data is encapsu­

lated in modules. and since each outermost module corresponds to a single pro­

cess, it follows that links an: the only means of interprocess interaction. The 

language provides a primitive type called "link." A link variable accesses one 

end of a link. much as a pointer accesses an Object in Pascal [65]. The dis­

tinguished value "nolink" is the only link constant. 

New values for link variables may be created by calling the built-in func-

tion "newlink": 

endA : = newlink ( endB ) ; 

One end of the new link is returned as the function value; the other is returned 

through a result parameter. This asymmetry is useful for nesting calls to new­

link inside the various communication statements (see below). In practice. calls 

to newlink seldom appear anywhere clse. 

Links may be destroyed by calling the built-in procedure "destroy"; 

destroy ( myend ) ; 

Destroy is similar to "dispose" in Pascal. All link variables accessing either end 

of the link become unusable (i.e. dangling). An attempt to destroy a nil or dan­

gling link is a no-op. 

Arbitrary data structures can be sent in messages. If a transmitted data 

structure contains variables of type Link., then the lin k ends referenced by those 
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variables are moved from the sending process to the receiver. The semantics of 

this feature are somewhat subtle. Suppose process A has a link variable X that 

accesses the "green" end of link L. Now suppose A sends X to process B, 

which receives it into link variable y, Once the transfer has occurred, Y will be 

the only variable anywhere that accesses the green end of L. Loosely speaking, 

the sender of a link variable loses access to the end of the link involved. This 

rule ensures that a given end of a given link belongs to only one process at a 

time. 

It is an error to send a link end that is bound to a entry (see below), or on 

which there are outstanding sends or receives. 

4. Sending Messages 

Message transmission looks like a remote invocation: 

connect opname I expr_list I var_list) on linkname ; 

Run-time support routines package the operation name and expression list into a 

message and send it out on the link. The current thread in the sender is blocked 

until it receives a reply message containing values for the variable list. 

5. Receiving Messages Explicitly 

Any thread of control can receive a message by executing the accept and 

reply statements: 

accept opname ( vaclisI) on linkname ; 

reply ( expr_list) ; 

AccepI blocks the thread until a message is available. Reply causes the expression 
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list to be packaged into a second message and returned to the sender. The com­

piler enforces the pairing of accepts and replies. 

6. Entries 

An entry looks much like a procedure. II is used for receiving messages 

implicitly. Entry headers are templates for messages. 

entry opname ( irLargs) : oULtypes; 
begin 

end opname; 

All arguments are passed by value. The header may be followed by the keyword 

forward or remote instead of a begin ... end block. Remote has the same meaning 

as forward, except that an eventual appearance of the entry body is not required. 

Source file inciusion can therefore be used to insert the same entry declarations 

in both the delining and invoking modules. 

Any process may bind its link ends to entries: 

bind linLlist to entry_list; 

After binding, an incoming request on any of the mentioned link ends may cause 

the creation of a new thread to execute one of the mentioned entries, with param­

eters taken from the message. An entry unblocks the sender of the message that 

created it by executing a reply statement (without a matching accept). 

A link end may be bound to more than one entry. The bindings need not 

be created at the same time. A bound end can even be used in subsequent accept 

statements. These provisions make it possible for separate threads to carryon 

independent conversations on the same link at more or less the same time. 

When all of a process's threads are blocked, the run-time support routines 
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auempt to receive a message on any of the links for which there are outstanding 

accepts or bindings. The operation name contained in the message is matched 

against those of the accepts and the bound cntrics in order to decide which thread 

to create or resume. If the name differs from those of all the outstanding accepts 

and bindings. then the message is discarded and an exception IS raised in the 

sender (see below for a discussion of exceptions). 

Bindings may be broken: 

unbind linLlist from elllry_list; 

An auempt to break a non-existent binding is a no-op. 

Entries visible under the usual scope rules can be used to create new 

threads directly. without links or bindings: 

call entryname ( expr_list I var_list) ; 

The built-in function "curlink" returns a reference to the link on which 

the request message arrived for the closest lexically-enclosing entry. If there is 

no enclosing entry, or if the closest enclosing entry was called locally. then cur­

link returns nolink. In the examples at the end of this chapter. curlink is used in 

entries to make and break bindings for the link on which the current request 

arrived. 

In order to facilitate type checking, the operation names and message for­

mats of connect and accept statements must be del1ned by entry declarations. 

The entries can of course be declared remote. 
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7. Exceptions 

The language incorporates an exception handling mechanism in order to 1) 

cope with exceptional conditions that arise in the course of message passing, and 

2) allow one thread to interrupt another. The mechanism is intended to be as 

simple as possible. It does not provide the power or generality of Ada [108] or 

PLII [11]. 

Exception handlers may be attached to any begin ... end block. Such blocks 

comprise the bodies of procedures, entries, and modules, and may also be 

inserted anywhere a statement is allowed. The syntax is 

begin 

when exceptiorLiist do 

when exCeptio/Llist do 

end; 

A handler (when clause) is executed in place of the ponion of its begin ... end 

block that had yet to be executed when the exception occurred. 

• 

.. 
• 

Built-in exceptions are provided for a number of conditions: 

Failure of the operation name of a message to match an accept or binding 

on the far end of the link. 

l)pe clash between the sender and receiver of a message . 

Termination of a receiving thread that has not yet replied. 

• Destruction of the link. 

Links can be destroyed explicitly by threads on either end. They are also des­

troyed in the event of hardware failures and at process termination. 
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A built-in exception is raised in the block in which it occurs. If that block 

has no handler, the exception is raised in the 'next scope on the dynamic chain. 

This propagation halts at the scope in which the current thread began. If the 

exception is not handled at that level, the thread is aborted. If the propagation of 

an exception escapes the scope of an accept statem:!1,t, or if an exception is not 

handled at the outermost scope of an entry that h.as not yet replied, then an 

exception is raised in the appropriate thread in the sending process. If the propa­

gation escapes a scope in whIch nested threads are still active. those threads are 

aborted recursively. 

User-defined exceptions are raised by the statement 

raise exception_name; 

A user-defined exception is felt by all and only those threads that have declared a 

handler for it in some scope on their current dynamic chain (this mayor may not 

include the current thread>. Since the handlers refer to it by name, the exception 

must be declared in a scope visible to all the threads that usc it. The coroutine 

semantics guarantee that threads feel exceptions only when blocked. User­

defined exceptions are useful for interrupting a thread that is waiting for some-

thing that will never happen. 

8. Blocking Statements 

As suggested earlier. connec!, accep!, and reply may cause a context switch 

by blocking the thread that uses them. A context switch will also occur when 

control reaches the end of a scope in which nested threads are still active or in 

which bindings still exist. 
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There is one additional way to cause a context switch: 

await condition; 

will guarantee that execution of the current thread will not continue until the 

(arbitrarily complex) Boolean condition is true. 

9. Examples 

The sample programs in this section are small and unexciting. They serve 

as an introduction to the syntax of L YN X. 

9.1. Producer and Consumer 

The consumer demonstrates explicit receipt of requests. The producer 

feeds it a continuous stream of data. 

module producer (consumer: link); 

type data = whatever; 
entry transfer (info: data); remote; 

function produce : data; 
begin 

- - whaIever 
end produce; 

begin -- - producer 
loop 

connect transfer (produce I l on consumer; 
end; 

end producer. 



module consumer (producer: link); 

type data = whatever; 
entry transfer !info: data); remote; 

procedure consume (info: data); 
begin 

whalever 
end consume; 

var buffer: data; 

begin -. - consumer 
loop 

accept transfer (buffer) on producer; reply; 
consume (buffer); 

end; 
end consumer. 

9.2. Bounded Buffer 
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Everyone's favorite example, the bounded buffer smooths out fluctuations 

in the relative speeds of producers and consumers. It demonstrates implicit 

receipt of requests. 

module buffer (producer, consumer: link); 
const 

size = whatever; 
type 

data = whatever; 
var 

buf: array [I .. size] of data; 
l1rstfree, lastfree : [l..size]; 

entry put <info: data); 
begin 

await firsd'ree < > lastfree; 
bufll1rstfree] : = info; 

""'j< 

firstfree := firstfree mod size + I; 
reply; 

end put; 

entry get: data; 
begin 

await Oastfree mod size + I} < > firstfree; 
lastfree : = lastfree mod size + 1; 
reply (buf[lastfree]); 

end get; 

begin 
ilrsd'ree : = 1; 
lastfree : = size; 
bind producer to put; 
bind consumer to get; 

end buffer. 
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To use the code above, a producer and consumer must actively request the 

service of the buffer. Such requests are appropriate if both parties know that an 

intermediary exists. The buffer may be thought of as a "mail-drop." II gen­

eralizes easily to serve an arbitrary number of producers and consumers. If the 

buffer IS optional, however, or if it is to be spliced into the connection between 

an unsuspecting producer/consumer pair, then a different approach is needed. 

The version below is compatible with the code in section 9. I. The version above 

was not. 



module buffer (producer, consumer: link); 
const 

size = whatever; 
type 

data = whatever; 
var 

bur: array [1. .size] of data; 
firstfree, lastfree : [I. .size]; 

entry transfer (info: data); 
begin 

await firstfree < > lastfree; 
buf[firstfree] : = info; 
firstfree := firstfree mod size + 1; 
reply; 

end transfer; 

begin 
fi rstfree : = 1 ; 
lastfree : = size; 
bind producer to transfer; 
loop 

await Oastfree mod size + 1) < > flrstfree; 
connect transfer (buf[lastfree] I ) on consumer; 
lastfree : = lastfree mod size + 1; 

end; 
end buffer. 

9.3. Priority Scheduler 
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The priority scheduler was described in section 2.0.2 of chapter 1. It 

schedules a resource among a community of clients, highest priority first. Each 

client calls schedule..me to obtain access to the resource. It calls 1m_done to make 

the resource available to others. For the sake of simplicity, I assume that the 

priorities of separate clients are distinc!. The progr~m is overly simplistic in that 
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it incorporates no mechanism to recover the resource if a client terminates while 

holding il. 

module scheduler (creator, resource: link); 

type priority = whatever; 
var available: Boolean; 

module priority_queue; 
import 

priority; 
export 

insert, delete, top; 

procedure insert (level: priority); 
begin 

. add new level to queue 
end insert; 

procedure delete (level: priority); 
begin 

.. rel7Wve old level from queue 
end delete; 

function top: priority; 
begin 

- - return highest priority ill queue 
end top; 

begin .. - prIOrity queue 
- - illilia lize queue to e mp ty 

end priority_queue: 

entry im_done (returned: link); forward; 



entry schedule_me (level: priority) : link; 
begin 

insert (level); 
await available and level = top; 
available := false; 
unbind curlink from schedule_me; 
bind curlink to im_done; 
reply (resource); 
delete (level); 

end schedule_me; 

entry im_done; - - (returned: link); 
begin 

unbind curlink from im_done; 
bind curlink to schedule_me; 
available := true; 
resou rce : = retu rned; 
reply; 

end im_done; 

entry newelienl (elient : link); 
begin 

reply; 
bind elient to schedule_me; 

end newelient; 

begin 
bind creator to newciient; 
avaiiable : = true; 

end scheduler. 

9.4. Readers and Writers 
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The readers/writers problem is well-known and has many variants [33]. 

The solution presemed here avoids starvation of either readers or writers. 

module readwrite (creator: link); 

const maxwriters = whatever; 
type ticket = [O .. maxwritersj; 
var 

free, current: ticket; 
- -- wmers Ulke tickets like the ones at a bakery. 
-- -- free is the next available number; 
- -- current is the one now being served. 

readers, writers, waitingreaders, waitingwriters : integer; 
- - writers is always 0 or 1_ 

entry doread; --- - should have argumellts 
begin 

-- -- whatever; 
end doread; 

entry dowrite; - - should have arguments 
begin 

-- - whatever; 
end dowrile; 

entry startread; forward; entry startwrite; forward; 
entry endread; forward; entry endwrilC; forward; 

entry startread; 
begin 

if waitingwriters = 0 and writers = 0 then 
readers : = readers + 1; 

else 
waitin greaders : = waitin greaders + 1; 
await waitingreaders = 0; 

end; 
unbind curlink from startwrite, startread; 
bind curlink to doread, endread; 
reply; 

end startread; 
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entry slartwnte; 
var 

turn: ticket; 
begin 

if readers = 0 and writers = 0 then 
writers := writers + 1; 

else 
waitingwrilers := waitingwriters + I; 
turn := free; free := free mod maxwrilers + 1; 
await current = turn; 

end; 
unbind curlink from slarlread. SlarLWrile; 
bind curlink to doread. dowrite. endwrite; 
reply; 

end Slartwrilc; 

entry endread; 
begin 

unbind curlink from doread, endread; 
bind curlink 10 slartread, Slarlwrite; 
readers: = readers -- 1; 
if readers = 0 then 

if wailingwrilers < > 0 then 
writers: = 1; 
wailingwriters := wailingwrilers - 1; 
current := currenl mod maxwrilers + 1; 

end; 
end; 
reply; 

end endread; 
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entry endwrile; 
begin 

unbind curlink from doread. dowrite. endwriLe; 
bind curlink to slarlread. Slarlwrile; 
writers: = wrilers - 1; 
if waitingreaders < > 0 then 

readers: = wailingreaders; 
waitingreaders : = 0; 

elsif wallingwrilers < > 0 then 
wnters:= 1; 
wailingwrilers := waitingwriters -- 1; 
current:= currenl mod maxwrilers + 1; 

end; 
reply; 

end endwrile; 

entry newclient (client: link); 
begin 

reply; 
bind client to slartread. SlarLWrile; 

end newclienl; 

begin - -- initialization 
readers: = 0; writers: = 0; 
wailingreaders := 0; wailingwritcrs := 0; 
current:= 0; free:= 1; 
bind creator to newclient; 

end readwrite. 
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Chapter 3 

Rationale 

1. Introduction 

The preceding chapter sketched an overview of L YN X. This chapter 

explains the rationale behind the design. Some of the features of LYNX are 

unique; others were chosen from among the possibilities presented by existing 

languages. Unique features are the result of major design decisions. They are 

discussed in section 2. Minor decisions are discussed in section 3. The con­

cluding section describes practical experience building servers with LYNX. 

2. Major Decisions 

Every language is heavily influenced by the perspective of its designer(s). 

The languages of chapter 1 grew out of efforts to generalize existing sequential 

languages, first to multiple processes, then to multiple processors. LYNX was 

approached from an entirely different direction. It began with the distributed 

processes and worked to increase their effectiveness through high-level language 

support. 

Previous languages introduced new models for distributed computation. 

Aiming for elegance, they attempted to guess which small set of concepts would 

prove to be fundamental. In so doing they 0ften unified concepts that are beller 

kept distinct. By contrast, L YN X captures a model that was already in use. It 

supports the concepts that proved fundamentai in the construction of servers for 

Charlotte. The most important of these concepts are the process, the link, and 
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lh e th read of con trol. 

Processes are central; they are what makes distributed programs special. 

Discussion of LYNX divides naturally into two sUbtopics: features that support 

interaction between processes and features that support computation within 

processes. Links are the key to the former topic; threads of control are the key to 

the latter. 

2.1. Links 

Links are a tool for representing distributed resources. A resource is a 

fundamental concept. It is an abstractIOn, defined by lhe semantics of its external 

interface and approached conceptually as a single entity. The definition of a 

resource is entirely in lhe hands of the programmer who creates it. Examples of 

resources include open files, query processors, physical devices, data streams, 

and available blocks of memory. The interface to a resource may include an 

arbitrary number of remote operations. An open file, for example, may be 

defined by the semantics of read, write, seek, and close operations. 

Recent sequential languages have provided explicit support for data abstrac­

tion .. Modula moduks [115], Ada packages [108], and Clu clusters [78] are 

obvious examples. Sequential mechanisms for abstraction, however, do not gen­

eralize easily to the distributed case. They are complicated by the need to share 

resources among more than one loosely-coupled process. Several issues are 

involved. 

• Reconf1guration 

Resources move. It must be possible to pass a resource from one process 

to another and to change the implementation of a resource without the 
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knowledge of the processes that use it. 

Naming 

A resource needs a single name that is independent of its implementation. 

Process names cannot be used because a single process may implement an 

arbitrary number of resources. Operation names cannot be used because a 

single resource may provide an arbitrary number of operations in its exter­

nal interface. 

Type Checking 

Operations on resources are at least as complicated as procedure calls. In 

fact, since resources change location at run time, their operations are as 

complicated as calls to formal procedures. Type checking is crucial. It 

guarantees that a resource and its users never misinterpret one another. 

Protection 

Even if processes interpret each other correctly, they still cannot trust each 

other. Neither the process that implements a resource nor the process that 

uses it can afford to be damaged by the other's bad behavior. 

In light of these issues, links appear Ideally suited to representing distri­

buted resources. As first-class objects they are easily created, destroyed. stored 

in data structures, passed to subroutines, or moved from one process to another. 

Their names are independent both of the processes that implement them and the 

operations they supporl. A client may hold a link to one of a community of 

servers. The servers may cooperate to implement a· resource. They may pass 

their end of the client's link around among themseI~~s in order to balance their 

workload or to connect the client to the member of their group most appropriate 

for serving its requests at a particular point in time. The client need not even be 
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aware of such goings on. 

Names for links are uniform in the sense that there is no need to differen-

tiate, as one must in Ada, between communication paths that are statically 

declared and those that are accessed through pointers. Moreover. links are one­

one paths; a server is free to choose the clients with which it is willing to com­

municate at any particular time. It is free to consider clients as a group by gath­

ering their links together in a set and by binding them to the same entries. II is 

never forced, however, to accept a request from a arbitrary source thai happens 

to know its address. 

Dynamic binding of links to entries is a simple but effective means of pro­

viding protection. As demonstrated in the priority scheduler and readers/writers 

examples of chapter 2 (sections 9.3 and 9.4), bindings can be used to control the 

access of particular clients to particular operations. With many-one paths no 

such control is possible. Ada. for example, can only enforce a solution to the 

readers/writers problem by resorting to a system of keys [I J 3]. 8 

The protection afforded by links is nOI, of course. complete. In particular. 

though a process can make or break bindings on a link-by-link basis. it has no 

way of knowing which process is attached to the far end of any link. It is not 

even informed when an end moves. In one sense. a link is like a capability: it 

allows its holder to request operations on a resource. In another sense. it is a 

coarser mechanism that requires access lists for tine-grained protection. The 

rights to specific operations are controlled by servers through bindings; they are 

8 The "solution" in reference 163J (page J I-Ill limits each process to one 
read or write operation per protected session. II does not generalize to applica­
tions in which processes gain access, perform a series of operations, and then 
release the resource. 



77 

not a property of links. Links also differ from capabilities in that they can never 

be copied and can always be moved. 

Protection could be increased by distinguishing between the server end 

and the elient end of a link. The inability of a server to tell when far ends move 

is after all a direct consequence of link symmetry. If links were asymmetric one 

could allow the server ends to move without notice, yet require permission (or at 

least provide notification) when client ends move. Such a scheme has several 

disadvantages. Foremost among them is its complexity. Two different types of 

link variable would be required, one to access each type of end. Connect would 

require a link to a server. Accept, bind, and unbind would require a link to a 

client. Newlink would return one link of each type. Destroy would take an argu­

ment of either type. The semantics of enclosures would depend on which end 

was enclosed; special rules would apply to the movement of links that connected 

to servers. Finally, communication between peers (who often make requests of 

each other) would suddenly require pairs of links, one for each direction. 

Symmetric links strike a compromise between absolute protection on the 

one hand and simplicity and flexibility on the other. They provide a process with 

complete run-time control over its connections to the. rest of the world, but limit 

its knowledge about the world to what it hears in messages. A process can con­

found its peers by restricting the types of requests iUs willing to accept, but the 

consequences are far from catastrophic. Exceptions are the most serious result, 

and exceptions can be caught. Even an uncaught exception kills only the thread 

that ignores itY 

9 Admilledly, a malicious process can serve requests and provide erroneous 
results. No language can prevent it from doing so. 
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To a large extent, links are an exercise in late binding. Since the links in 

communication statements are variables, requests are not bound to communica-

tion paths until the moment they are sent. Since the far end of a link can be 

moved, requests are not bound to receiving processes until the moment they are 

rect:!ived. Since the set of valid operations depends on outstanding bindings and 

accepts, requests are not bound to receiving threads of control until after they 

have been examined by the receiving process. Only after a thread has been 

chosen can a request be bound to the types it must contain. Checks must be per­

formed on a message-by-message basis. (Low-cost techniques are discussed in 

chapter 4, section 3.3.) 

Several of the languages in chapter 1 provide late binding for communica-

tion paths. Ada [108], Argus [82,84], and Mesa [74,89] provide variables that 

hold a reference to a process. NIL [27, 105] provides variables that hold a refer­

ence to a single operation. SR [4,5] provides capabilities that hold references to 

a set of operations, perhaps in different processes. Each of these languages 

allows references to be passed in messages. Each checks its types at compile 

time. To permit such checking, each assigns types to the variables that access 

communication paths. Variables of different types have incompatible values. By 

contrast, the dynamic type checking of L YN X has two major advantages: 

(1) A process can hold a large number of links without being aware of the 

types of messages they may eventually carry. A name server, for example, 

can keep a link to each registered process, even though many such 

processes will have been created long after the name server was compiled 

and placed in operation. 
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(2) A process can use the same link for different types of messages at different 

times, or even at the same time. A server capable of responding to several 

radically different types of requests need not create an artilkial. and highly 

complicated, variant record type in order to describe the message it expects 

to receive. 

LYNX type checking also differs from that of previous languages in its use 

of structural equivalence ( [50], p. 92). The alternative, name equivalence, 

requires the compiler to maintain a global name space for types. Beyond the 

traditional advantages and disadvantages of each approach [107], two specifically 

distribul£d concerns motivated the adoption of structural equivalence for LYNX. 

(1) A global name space requires a substantial amount of bookkeeping, particu-

larly if it is to be maintained on more than one machine. While the task is 

certainly not impossible. the relative scarcity of compilers that enforce 

name equivalence across compilation units suggests that it is not trivial, 

either, 

(2) Compilers that do enforce name equivalence across compilation units usu­

ally do so by affixing time stamps to files of declarations [89. 108. 117]. A 

change or addition to one declaration in a file appears to modify the others. 

A global name space for distributed programs can be expected to devote a 

f1Ie to the interface for each distributed resource. Mechanisms can be dev­

ised to allow simple eXl£llsions to an interface [76], but certain enhance­

ments will inevitably invalidate all the users of a resource. In a tightly­

coupled program, enhancements to one. compilation unit may force the 

unnecessary recompilation of others. In a loosely-coupled system. 

enhancements to a process like the file server may force the recompilation 
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of every program in existence. 

The Charlotte implementation of LYNX, described in the following 

chapter, uses name equivalence for types wlthin eacb process. The decision to do 

so was based primarily on expediency: name equivalence was easier to imple­

ment. For the issues that L YN X addresses. the intra-process type checking 

mechanism is more or less irrelevant. 

2.2. Threads of Control 

Even on a single machine many processes can most easily be written as a 

collection of largely independent threads of control. Language designers have 

recognized this fact for many years (see chapter I, section 4.1 J. and have often 

allowed more than one thread to operate inside a single module and share that 

module's data. The threads have been designed to operate in Simulated parallel, 

that is, as if they wen: running simultaneously on separate processors with access 

to a common store. 

In Argus [82,84], StarMod [31,32], and SR [4. 5J a resource is an isolated 

module. SR calls such modules resources; Argus calls them guardians and 

StarMod calls them processor modules. Each module is implemented by one 

or more processes. Semantics specify that the processes execute in parallel, but 

implementation considerations preclude their assignment to separate physical 

machines. In effect, the "processes" of Argus. SR. and StarMod are the 

threads of control of L YN X. Guardians. resources. and processor modules 

correspond to LYNX processes. 

Ada allows data to be shared by arbitrary processes (called tasks). It has 

no notion of modules that are inherently disjoint. An Ada implementation must 
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either simulate shared data across machine b~undaries or else specify that only 

processes that share no data can be placed on separate machines. In either case, 

language semantics specify that processes execute in parallel. 

While simulated parallelism may be aesthetically pleasing, it does not reflect 

the nature of the underlying hardware. On a single machine, only one thread of 

control can execute at a time. There is no inherent need for synchronization of 

simple operations on shared data. By pretending that separate threads can exe­

cute in parallel, language designers introduce race conditions that should not 

even exist; they force the programmer to provide explicit synchronization for 

even the most basic operations. 

In Extended CLU ( [79,80], the predecessor to Argus) and in StarMod, 

monitors and semaphores are used to protect shared data. These mechanisms are 

provided in addition to those already needed for inter-module interaction. They 

lead to two very different forms of synchronization in almost every program. 

In Ada and SR, processes with access to common data synchronize their 

operations with the same message-passing primitives used for inter-module 

interaction. Small-grain protection of simple variables is therefore rather costly. 

Argus sidesteps the whole question of concurrent access with a powerful 

(and complicated) transaction mechanism that serializes even large-grain opera­

tions. Programmers have complete control over the exact meaning of atomicity 

for individual data types [110, Ill]. Such an approach may prove ideal for the 

on-line transaction systems that Argus is intended to support. II is not appropri­

ate for the comparatively low-level operations of operating system servers. 

Servers might choose to implement a transaction mechanism for processes that 

want one. They must, however, be prepared to interact with arbitrary clients. In 
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an environment where transactions are not a fundamental concept, servers cannO! 

afford to rely on transactions themselves. 

A much more attractive approach to intra-module concurrency can be seen 

in the semantics of Brinch Hansen's Distributed Processes [22]. Instead of pre­

tending that entry procedures can execute concurrently, the DP proposal provides 

for each module to contain a single process. The process jumps back and forth 

between its initialization code and the various entry procedures only when 

blocked by a Boolean guard. Race conditions are impossible. The comparatively 

simple await statement suffices to order the executions of entry procedures. 

There is no need for monitors, semaphores, atomic data, or expensive message 

passing. 

An important goal of L YN X is to provide safe and convenient mechanisms 

that accurately reflect the structure of the underlying system. In keeping with 

this goal, L YN X adopts the semantics of entry procedures in Distributed 

Processes, with six extensions: 

(1) Messages can be received explicitly, as well as implicitly. 

(2) Entry procedures can reply before terminating. 

(3) New threads of control can be created locally, as well as remotely. 

(4) Blocked threads can be interrupted by exceptions. 

(5) A process can accept external requests while waiting for the reply to a 

request of its own. 

(6) Modules and procedures can nest without restriction. 

The last extension is, perhaps, the most controversial. As in Ada, it allows 

the sharing of non-local, non-global data. Techniques for managing the neces-
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sary tree of activation records are well understood [16]. They are discussed 

briefly in section 3.1 of chapter 4 and in section 7 of the appendix. Activation 

records for any subroutine that may not return before the next context switch 

must be allocated from a heap. Even the best storage allocator will require more 

time than is devoted to incrementing the stack pointer in more conventional 

languages. The allocator will not. however. require more time than is often 

devoted to saving line numbers and other debugging information when subrou­

tines are called. The automatic management of stale for independent conversa­

tions is certainly worth at least as much effon as the maintenance of data for 

post-mortem dumps. 

Admittedly, the mutual exclusion of threads in LYNX prevents race condi­

lions only between context switches. In effect. LYNX code consists of a series of 

critical sections. separated by blocking statements. Since context switches can 

occur inside subroutines. it is not even immediately obvious where those blocking 

statements are. The compiler can be expected to help to some extent by produ­

cing listings in which each (potentially) blocking statement is marked. Experi­

ence to date has not uncovered a serious need for inter-thread synchronization 

across blocking statements. For those cases that do, arise. a simple Boolean vari­

able in an await statement performs the work of a semaphore. 

3. Minor Decisions 

3. I. Synchronization 

As described in section 2.4 of chapter I. there are three principal 

approaches to message synchronization. 
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(I) No-Wait Send 

A sender continues execution immediately. even as its message is beginning 

the journey to wherever it is going. 

(2) Synchronization Send 

The sender waits until the message has been received before continuing 

execution. 

(3) Remote-Invocation Send 

The sender wails until it receives a reply from the receiver. 

The principal advantage of the no-wait send is a high degree of con­

currency. The principal disadvantages are the complexity of buffering messages 

and the difficulty of reflecting errors back to a sender who may have proceeded 

an arbitrary distance past the point of call. For L YN X. the concurrency advan­

tage is not as compelling as it might first appear. since a process can continue 

with other threads of control when a given one is blocked. and since node 

machines may be mulLiprogrammed anyway. The disadvantage of buffering is 

not panicularly compelling either. II makes the run-time suppon package larger 

and more complicated. and it necessitates flow control. but solutions do exist. 

The deciding factor IS the probiem of error reponing. Unlike traditional ito 

(which often is implemented in a no-wait fashion). interprocess message passing 

involves type-checked communication with potentially erroneous or even mali­

cious user programs. The likelibood of errors is high. as is the need to detect 

and cope with them in a synchronous fashion. 

L YN X provides remote-invocation send rather than synchronization send 

because it is a more powerful mechanism and because it requires fewer underly­

ing messages in common situations. Synchronization send does overcome the 
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disadvantages of the no-wait send, but it requires a top-level acknowledgment. 

The acknowledgment cannot be sent by the operating system because it contains 

confirmation of the correctness of types. Given the ubiquity of client/server rela­

tionships, it is reasonable to expect most messages to be requests that need expli­

cit replies. As long as an acknowledgment is being sent anyway, it might as well 

carry useful data. Synchronization send is easily simulated with remOle invoca­

tion by sending an immediate reply. Simulating remote invocation with syn­

chronization send requires extra messages. 

There is some motivation for providing synchronization send in acklition to . 

remote invocation. For messages that need no reply, top-level acknowledgments 

can be ·sent by run-time support routines, rather than by the user's program, 

allowing the sender to be unblocked after two fewer context switches on the 

receiving end. The savings are too small, however, to justify cluttering the 

language with a second kind of send. 

3.2. Explicit and Implicit Message Receipt 

LYNX provides two very different means of receiving messages: the accept 

statement and the mechanism of bindings. The former allows messages to be 

received explicitly; the latter allows them to be received implicitly. Each has 

applications for which it is appropriate and others for which it is awkward and 

confusing. A practical language needs both. 

Implicit receipt most accurately reflects the externally-driven nature of most 

servers: 

module server; - - implicit receipt 
var client: link; 

entry A; 
begin 

end A; 

entry B; 
begin 

end B; 

begin 
bind client to A, B; 

end server. 

Explicit receipt is much less straightforward: 

module server; - - explicit receipt 
type 

message = record 
ca se class : whatever of 

end; 
end; 

var 
client: link; 
m : message; 

entry request 1m : message); remote; 
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begin - - server 
loop 

accept request (m) on client; 
case m.class of 

{A} 

IB} 

end; 
reply; 

end; 
end server. 

In these examples the explicit approach has several disadvantages: 
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(1) It requires a complicated variant record structure to reneci differences in 

arguments between the different entries. 

(2) It is misleading. The server module is a passive body of code; it does noth­

ing until called from outside. 

(3) IL carries implications about concurrency that may not be appropriate. 

The third disadvantage is probably the most important. In the second 

example above. the server cannot hegin work on a new request until the previous 

one has finished. If a request requires communication with some third party. the 

server will be blocked (needlessly) until that communication completes. It is of 

course possible within the server to assign a different (active) thread of control to 

each type of request. but the server will still be limited to one partially-completed 

request of each type. There is in general no way to accommodate an unspecified 

number of requests with a fixed number of threads. 

Explicit receipt is most useful for the exchange of messages between active. 

cooperating peers. Its use was demonstrated by th~ producer and consumer of 

chapter 2, section 9.1. In this case the implicit approach is considerably less 

attractive: 

module producer (consumer: link); 

type data = whatever; 
entry newstuff (info; data); remote; 

function produce: data; 
begin 

- -- wharever 
end produce; 

begin - producer 
loop 

connect newstuff (produce I ) on consumer; 
end; 

end producer. 

module consumer (producer: link); - - implicit receipl 

type data = whatever; 
var 

. buffer: data; 
consumed. received: Boolean; 

entry newstuff (info: data); _. - called by producer 
begin 

await consumed; 
buffer; = info; 
received: = true; 

end newstuff; 

procedure consume (info: data); 
begin 

-- - wharever 
end consume; 
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begin - - consumer 
consumed: = true; received: = false; 
loop 

await received; 
consume (buffer); 
consumed: = truc; 

end; 
end consumer. 
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Thc "ncwstutr' entry really belongs in lhe consumer's main loop. Moving it 

oUI-or-line results in code that is unnecessarily complicated, asymmetric, and 

hard to understand. The dual solution [IS} is equally bad: 

module producer (consumcr : link); - impliCit receipt 

type data = whatever; 
var 

buffer: data; 
produced, sent; Boolean; 

entry oldsluff : data; -. - called by consumer 
begin 

await produced; 
reply (buffer); 
sent := true; 

end oldstuff; 

function produce : data; 
begin 

- -- whatever 
end produce; 

begin - - producer 
produced: = false; sent: = true; 
loop 

await sent; 
buffer: = produce; 
produced: = true; 

end; 
end producer. 

module consumer (producer: link); 

type data = whatcver; 
entry oldstuff : data; remote; 

pr9cedure consume (info: data); 
begin 

wharever 
end consume; 

var buffer: data; 

begin consumer 
loop 

connect oldstuff ( buffer) on producer; 
consume (buffer); 

end; 
end consumer 
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Some existing languages, notably StarMod [31,32], already provide both 

explicit and implicit receipt. L YN X goes one step farther by allowing a process 

to decide al run lime which formts) LO use when, and on which links. 
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3.3. Syntax 

The accept statement in LYNX is designed to be as simple as possible. It 

does not, for example. define a nested scope the way it does in Ada. There is no 

need to copy message parameters into variables that would remain visible after 

the scope was closed. In addition. instead of declaring parameter types at each 

accept statement, LYNX allows accepts at more than one place in the code to 

share declarations. Since entry headers already declare parameter types for 

implicit receipt. it seems reasonable to use them for explicit receipt as well. An 

operation that is served both explicitly and implicitly need only be declared once. 

An operation that is only served explicitly can be declared with an entry whose 

body is remote. 

Entry headers segregate their request parameters and reply types. An obvi­

ous alternative would use a single parameter. list. with names for all parameters. 

Request, reply. and request/reply parameters could appear in any order. Unfor­

tunately. the resulting syntax would not reflect the structure of accept statements. 

It would also tend to hide the underlying request and reply messages, messages 

that I prefer to keep visible. 

Unlike most proposed languages with explicit receipt, LYNX does not pro­

vide a mechanism for accepting a message on anyone of a set of links. Applica­

tions examined to date appear to need such non-determinism only in cases where 

implicit receipt is the more appropriate approach. A non-deterministic version of 

explicit receipt would be a fairly straightforward addition to the language. should 

it prove necessary. 
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3.4. Exceptions 

I am aware of no precedent for the semantics of user-defined exceptions in 

LYNX. Since built-in exceptions were needed anyway. the addition of the user­

defined variety allowed one thread to interrupt another with lillie extra syntax. 

Interruptions are useful in protocols where one thread may discover that the 

communication for which another thread is waiting is no longer appropriate (or 

possible). One example is a stream-based f1ie server. The code below sketches 

the form that such a server might take. 

The file server begins life with a single link to the switchboard. a name 

server that introduces clients to various other servers. When the switchboard 

sends the file server a link to a new client (line 49), the f1ie server binds that link 

to an entry procedure for each of the services it provides. One of those entries, 

for opening f1ies, is shown in the code below (lines 3-48). 

Open files are represented by links. Within the server, each file link is 

managed by a separate thread of control. New threads are created in response to 

open requests. After verifying that its physical Iile exists (line 24), each thread 

creates a new link (line 25) and returns one end to its client. It then binds the 

other end to appropriate sub-entries. Among these sub-entries, context is main­

tained automatically from one request to the next. As suggested by Black [15], 

bulk data transfers are initiated by the producer (with connect) and accepted by 

the consumer. When a l1Ie is opened for writing the server plays the role of con­

sumer. When a l1Ie is opened for reading the seryer plays the roie of producer. 

Seek requests are handled by raising an exception (line 21, caught at line 37) in 

the file-server thread that is allempting to send data out over the link. Clients 

close their files by destroying the corresponding links. 
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module fileserver (switchboard: link); 
type string = whatever; bytes = whatever; 

entry open (f1lename : string; readflag. writel1ag. seckl1ag : Boolean) 
: link; 

var f1leink : link; rcadplr, writeptr : integer; 
exception seeking; 

procedure put (data: bytes; f1lename : string; writeptr : integer); 
external; 

function get (filename: string; readptr : integer) : bytes; external; 
fUllction available (f1lename : string) :. Boolean; external; 

entry writeseek (iileptr : integer); 
begin 

writeptr := fileptr; reply; 
end writeseek; 

entry stream (data; bytes); 
begin . 

put (data, f1lename, writeptr); writeptr : = writeptr + I; reply; 
end stream; 

entry readseek (newptr: integer); 
begin 

readptr := newptr; raise seeking; reply; 
end readseek; 

begin - - open 
if available (filename) then 

reply Inewlink (f1lelnk»; - relf/rue client 
readplr : = 0; writeptr : = 0; 

if writeflag then 
if seekl1ag then bind f1lelnk to writeseek; end; 
bind filelnk to stream; 

end; 
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if readf1ag then 
if seekf1ag then bind f1lelnk to readseek; end; 

loop 
begin 

connect stream (get (f1lename, readptr) I ) on f1lelnk; 

readptr : = readptr + I; 
when seeking do 

- - nothing; continue loop 
when f1lelnk REMOTE-DESTROYED do 

exit; - - leave loop 
end; 

end; - - loop 
end; - - if readflag 

else -'- not available 
reply (Oolink); - - release client 

end; 
_ _ control will Iwt leave 'open' until nested entries have died 

end open; 

entry newclient (client: link); 

begin 
bind client to open; reply; 

end newclient; 

begin - - main 
bind switchboard to newclient; 

end t1leserver. 

4. Experience 
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Original implementations of the Charlotte servers were written in Modula 

([40]. sequential features only) with direct calls to the Charlotte primitives. 

Work is underway to re-build the servers in LYNX. As of this writing, the file 

server is I1nished and the memory manager (the starter) is well under way. The 

first version of the terminal driver la new server) is being written in L YN X as 

well. 
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Several preliminary conclusions can be drawn. 

L YN X programs are considerably easier to write than their sequential 

counterparts. The Modula liieserver 'was written and re-wriuen several 

times over a period of about two years. It has been a constant source of 

trouble. The LYNX fileserver was written in two weeks. It would have 

required even less time had the L YN X run-time package already been 

debugged. 

The source for L YN X programs IS considerdbly shorter than equivalent 

sequential code. The new fijeserver is just over 300 lines long. Tbe origi­

nal is just under 1000 lines. 10 

LYNX programs are considerably easier to read than their sequential coun­

terparts. While this is a highly subjective measure. it appears to reflect the 

consensus of programmers who have examined both versions. 

10 Object code from L YN X is somewhat longer than its sequential counter­
part. See section 6.1 of chapter 4. 
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Chapter 4 

Implementation 

1. Introduction 

This chapter describes two implementations of L YN X. The first. for the 

Charlotte distributed operating system, was actually buill. The second, for an 

operating system called SODA, was designed on paper only, 

The Charlolle implementation took just under two years of part-time work 

by a single programmer. It required the development of several interesting tech­

niques, particularly for type checking and for moving large numbers of links. It 

also encountered unexpected problems with the Charlotte kernel interface. 

Surprisingly. though the design of LYNX was based largely on the primitives 

provided by Charlotte, the SODA implementa~ion is in some ways considerably 

simpler. 

2. Overview of Charlotte 

Charlotte [7.41] runs on the Crystal multicomputer (341, a collection of 20 

VAX 11/750 node machines cOllnected by a 10-Mbitlsecond token ring from 

Proteon Corporation. Each node has two or three megabytes of memory. Some 

nodes have disks. Several larger V AXen are used for program developmenl. 

They run UNIX and are included in the ring. 

The Charlotte kernel is replicated on each node. It provides direct support 

for both processes and links. Its most important system calls are the following. 
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MakeLink (var end1, end2 : link) 

Create a link and return references to its ends. 

Destroy (myend : link) 

Destroy the link with a given end. 

Send (L : link; buffer: address; length: integer; enclosure: link) 

Start a send activity on a given link end, optionally enclosing one 

end of some other link. 

Receive (L : link; buffer: address; length: integer) 

Start a receive activity on a given link end. 

Cancel (L : link; d : direction) 

Attempt to cancel a previously-started send or receive activity. 

Wait (var e : description) 

Wail for an activity to complete, and return its description (link end, 

direction, length, enclosure). 

All calls return a status code. All but Waie arc guaranteed to complete in a 

bounded amount of lime. Wait blocks the caller until an activity completes. 

The kernel matches send and receive activities. It allows only one out­

standing activily in each direction on a given end of a link. Completion must be 

reported by Waie before another similar activity can be started. Buffers are 

managed by user processes, in user address space. Results arc unpredictable if a 

process uses a buffer between the starting of an activity and the notification of its 

completion. 
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3. The Charlotte Implementation 

The Charlotte L YN X compiler consists of about 13000 lines of Pascal 

source and about 400 lines of C. (The C code includes initialized data struc­

tures, UNIX 110, and logical operations on bit fields.) The run-time system for 

L YN X consists of about 5000 lines of C and 200 lines of assembler. The com­

piler uses a table-driven scanner and LL( 1) parser, with FMQ [45] syntactic 

error correction. It generates error-free C source code peppered with escapes to 

assembly language. The standard C compiler is a second pass. The result is a 

friendly but slow-running utility that produces code of acceptable quality. The 

appendix contains a thorough description of the implemented language. 

3. l. Threads of Control 

Lexical nesting of entries implies the sharing of non-local, non-global data 

among multiple threads of control and precludes stack-based storage allocation 

for routines that may cause context switches. For the sake of efficiency, the 

compiler notices any routines that cannot cause context switches and allocates 

their activation records on a stack. For the rest of the routines, the storage allo­

cator uses a naive first-fit algorithm on a heap. A production-quality implemen­

tation would probably requIre experimentation with other allocators. 

The L YN X implementation uses a static chain instead of a display. The 

only context that must be saved when control switches from one thread to another 

is the contents of ten of the VAX's general registers and the value of a global 

pointer to the context block of the current thread. Each context block contains 

several Boolean flags, links for the queue on which its thread resides, and room 

for a subroutine-call stack mark. A thread yields control by putting itself on an 

appropriate queue, aiming the stack pointer at its context block, and calling a 
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procedure known as the dispatcher. The subroutine call instruction saves the 

appropriate registers. 

The dispatcher maintains queues of threads that are blocked for various rea­

sons. When called, it decides which thread to run next, aims the VAX frame 

pointer at the thread's context block, and executes a return-from-subroutine 

instruction. 

The threads hlocked at await statements reside on a single circular queue. 

Each time It is called, the dispatcher returns control to the next thread on that 

queue. The resumed thread re-evaluates its Boolean condition and returns 

immediately to the dispatcher if that condition is not true. If the dispatcher dis-

covers that it has come all the way around the queue without finding a true con­

dition. then it executes a Wait system call to obtain notification of a completed 

activity from the Charlotte kernel. The Boolean expressions in every await state­

ment are therefore re-evaluated every time a message is sent or received. The 

cost involved is discussed in section 6.2. 

3.2. Communication 

The run-time system uses Charlotte links to implement the links of LYNX. 

Link variables are indices into a table invisible to the user. For each link end. 

the table contains 

• 

• 
• 

head pointers for the queues of threads waiting to send and receive mes-

sages on the link, 

the size and address of the buffer of the outstanding receive activity (if any). 

a sequence counter for connect statements (used to detect unwanted reply 

messages). and 
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• a small amount of status information . 

For a connect statement. the run-time system starts a send activity with the 

kernel. When that activity completes. it starts a receive activity. Run-time rou­

tines also start send activities for reply statements and receive activities for accept 

statements and bindings. 

There are two basIC kinds of messages: requests and replies. Requests 

are caused by connect statements. Replies are caused by reply statements. Each 

message includes several bytes of self-description. For requests. this information 

consists of the name of the remote operation. the identity of the thread (the 

client) that executed the connect statement. a sequence number. and a code word 

for type-checking. For replies. only the sequence number and client thread are 

specified. They are copied from the request message. 

The operation name is used to direct an incoming request to an appropriate 

thread of control (a server). The identity of the client is used to direct an incom­

ing reply. Sequence numbers allow the dispatcher to detect replies for clients 

that have felt exceptions and are no longer waiting. The type-checking informa­

tion is discussed in the following section. 

3.3. Type Checking 

As explained in chapter 3. message type-checking in L YN X is based on 

structural equivalence. Equivalent types have the same canonical description. 

In the absence of pointers. these descriptions can mimic ordinary type declara­

tions. with the SUbtypes expanded in-line. Canonical descriptions for messages 

can then be built from the descriptions of their parameters. 
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0---...::.L---@ 
requesl 

-- ------- -------_ .. --- --------~ 

A thread in B receives the request and begins serving the operation. A now 

expects a reply on L and posts a Receive with the kernel. Now suppose some 

other thread in B requests an operation on L. A will receive B's request before 

the reply II wanted. Since A may not be willing to serve requests on L at this 

point, B is not able to assume that ilS request is being served simply because A 

received it. 

A similar problem arises if A binds L to a number of entries and then 

breaks the bindings before all its threads are blocked. In the interests of con­

currency, the run-time support routines will have posted a Receive with the ker­

nel as soon as the first binding was made. When the last one is broken, they will 

attempt to cancel the Receive. If B has requested an operation in the meantIme, 

the Cancel will fail. The next time A calls Wait, it will receive notification of the 

message from B, a message it does not wanl. Delaying the start of receive activi­

ties until all threads are blocked does not help. A must still start activities for all 

the messages it would be willing to receive. It will continue execution after one 

of them completes. Before waiting for a second, it may change the set of mes­

sages it is willing to receive. 

The first problem arises because Charlotte provides no way to screen mes­

sages within a single link. The second problem arises because Charlotte provides 

no way for the user program to say "please receive exactly one request, on any 

one of the following set of link ends." The second problem would be more obvi­

ous if LYNX provided a non-deterministic version of explicit receipt, in the style 
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)fCSP or Ada (see chapter I, section 2.6.1, and chapter 3, section 3.3). 

In both cases it is tempting to let A buffer unwanted messages until it is 

again willing to receive from B, but such a solution is impossible for two rea­

sons. First, a user-defined exception may arise in B, causing it to attempt to can­

cel the Send on L. Since A does not yet want the message, the Cancel should 

succeed, but cannot. Second, the scenario in which A receives a request but 

wants a reply can be repeated an arbitrary number of times, and A cannot be 

expected to provide an arbitrary amount of buffer space. 

A must return unwanted messages to B. In addition to the request and 

reply messages needed in simple situations, we now introduce the retry message. 

Retry is a negative acknowledgment. In the second scenario above, when A has 

broken all its bindings, a re-sent message from B will be delayed by the kernel, 

since A will have no Receive outstanding. To prevent arbitrary numbers of 

retransmissions in the first scenario (since A will keep a Receive posted for the 

reply it wants), we also introduce the forbid and allow messages. Forbid denies 

a process the right to send requests. (It is still free to send replies.) Allow 

restores that right. Retry is equivalent to forbid followed by allow. Both forbid 

and retry return any link end that was enclosed in the unwanted message. A pro­

cess that has received a forbid message keeps a Receive posted on the link in 

hopes of receiving an allow message. 1 1 A process that has sent a forbid message 

remembers that it has done so and sends an allow message as soon as it is either 

willing to receive requests or else has no Receive outstanding (so the kernel will 

delay all messages). 

11 ThiS of course makes it vulnerable to receiving unwanted messages itself. 
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The size of the description of a message depends on the number of parame­

ters and on the complexity of their types. Rather than enclose the description 

itself in every message, the L YN X implementation uses a hash function to 

reduce canonical descriptions to a single word. An obvious hash function treats 

a string of symbols as an integer base N, where N is the size of the symbol set. 

Suppose <a> = a" -1 all -2 a" _) ... ao is a string of symbols. Let 

If <a> is the canonical description of a type A, we say 

hashval(Ai =hash«a>l and hash/en(Al =n. 

In the Charlolle L YN X implementation, N is 37 and p is 

232 -- 5 = 4294967291. Symbols are represented by the values ]-37. No sym­

bol has value 0, since prepending a zero-value symbol to a string would not 

change its hash code. The lack of a zero-value symbol allows N to be used for 

the value of the final symbol without introducing ambiguity. 

In addition to simplicity, this hash function has the advantage of incremen­

tal computation. It obviates the need 10 store explicit canonical descriptions. The 

compiler remembers the hash code and length of each type's canonical descrip­

tion, but not the description itself. When a composite type is declared, its hash 

code and description length can be calculated from those of its constituent types. 

Suppose, for example. we are given the following declarations: 

A = [l .. lOJ; 
B = record 

i, j : integer; 
end; 

C = nray A of B; 

We would like the hash code for C to be the same as the "ash code for 

C' = array [1 .. ]OJ of record 
i, j : integer; 

end; 

This is precisely the result we obtain by letting 

hash val ( C i = [a x N''''·'''''''' (A) + hash val (A) ] X N""x"'"" (11) + hash val (B) . 

hashlen(C) = ] +hashlen(A) + hashlen(B) , 
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where a is the value of the symbol "array" as an N-ary digit. All arithmetic is 

carried out in the ring of integers mod p. 

As currently defined. L YN X provides no pointers. If it did, the hashing 

technique would need 10 be changed. The problem stems from the need for for­

ward references in defining circular structures. When a given type is first 

encountered we might not know the nature of its paris. We could still derive a 

canonical deSCription and hash code for each type, but we could not do it incre­

mentally the way we could above. 

At the end of each declaration section all existing types will be fully 

defined. Well-known techniques can be used to determine which are structurally 

distinct and which equivalent [72J. Symbol-table entries for equivalent types can 

be coalesced. We can then use the string-of-symbols notation. augmented with 

backpointers, to construct canonical descriptions for the types that remain. We 

expand each declaration recursively until we encounter a cycle. We then insert a 



backpointer to tht: point where the cycle began. For example, the type 

sequence record 

end; 

item integer; 
next: -sequence; 

might be represented by the string "record integer pointer - 3 end." 
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In a language with external compilation, the hashing of type descriptions 

provides a simple mechanism for type checking across compilation units with 

ordinary linkage editors [99]. For messages, it reduces the overhead of run-time 

type checking to a simple one-word comparison. The only disadvantage .)f the 

scheme is its lack of absolute security. With a reasonable word size, however, 

the range of the hash function will inClude enough values to make errors 

extremely unlikely. 

In the Charlotte L YN X implementation, ope. :lIion names are also hashed 

for inclusion in the self-descriptive part of messages. The hash function is the 

same as for types. The letters, digits, and underscore are assigned the values I­

N. The compiler checks to make sure that no process uses the same hash code 

for more than one accept statt:ment or non-remote entry. 

3.4. Exceptions 

The routines that manage exceptions treat <:ach group of when clauses as a 

single handler. Each scope keeps the address of its innermost handler group in 

its stack frame. When an exception occurs, the stack of the affected thread is 

searched until a handler is found. The compikr inserts a dummy handler at the 

end of every entry, so the search never proceeds back through a fork in the run­

time environment tree. The code for a group 01' when clauses simply re-raises 
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exccptions it is not supposed to handle. 

Built-in exceptions are raised in a single thread. User-defined exceptions 

may be raised in many threads at oncc. Every user-defined exception has an 

associated list of threads with appropriate handlers. Threads insert and remove 

themselves from the list as they enter and leave scopes in which the handlers are 

defined. 

Each scope also keeps a list of nested threads. These threads are aborted if 

an exce;:>tion escapes the scope when it has no handler. 

The run-time package includes exception handlers for each of the commun­

ication routines. These handlers are responsible for cleaning up unfinished com­

munication when an exception occurs. Among other things, they often deallo­

cate unused buffers and move their thread from one queue to another. 

4. Problems 

Despite the fact that much of the design of L YN X was motivated by the 

primitives of Charlone, the actual process of Implementation proved to be quite 

difficult. Most of the difficulty stemmed from two sources: the arrival of 

unwanted messages and tht: enclosure of ends of more than one link. 

4.1. Unwanted Messages 

For the vast majority of operations, only two Charlone messages will be 

used: one for the request and one for the reply. Unfortunately, complications 

arise in a number of special cases. 

Suppose that a thread in process A requests a remote operation on link L. 
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Further complications arise when the hutTer supplied to Receive IS too small 

to hold the message that arrives. This can happen whenever a process is 

interested in more than one kind of message on a given link. If the messages 

require dillerent size buffers, the run-time support routines may post a Receive 

with the kernel lor the smaller siZe message befon: learning that the largt!r one 

exists. The larger message may arrive hefore the Receive can he cancelled and 

restarted with a larger huller. 

fortunately, Charlone informs hoth the sender and the receiver when over­

flow occurs. The sender's communicallon roullne can retransmit the message 

on the assumption that the new buffer will be larger. It need only retransmit 

once; the receiver will not he nOlilied of the overflow until it blocks, and hy then 

it will know the size of the largest valid message. Whl.:n it posts a second Receive 

its buller will rellect that size. 

If a reply message overllows (wice in succession (hen thl.: server thread can 

bl.: sure that thl.: client thread has felt an I.:xcl.:ption and died. The server can con­

(inul.:. If a request message overllows twice in a row, however, the client cannot 

make a similar assumption. It must wait for a message from the server. If the 

serVer is only willing to receive replies, it returns a forhid message. If it is wil­

ling to receive requests (hut only small ones, presumahlYI. it instructs the client 

to raise an excepllon of class INVALlD_OP in (ill.: thread that sent the request. 

A n:ceiver saves the enclosure from a message that overllows. It 

rt!members that enclosure when it receives the n:transmission (retransmissions 

can be recognized by their self-descriptive information J. Since a client thread 

may feel an exception and die befort! sending a retransmission, the receiver must 

destroy the saved enclosure if it receives an original (non-retransmiut!d) message 

lOS 

firsl. In the ahsence of exceptions, each sender guarantees that the original and 

retransmiued Vl.!rsions of a message make consecutive use of their link, with 

nothing in he(ween. 

4.2. Moving Multiple Links 

Most data can be transmilled from one machinl.: to another as a simple 

stream of byll.:s. Links cannol. Two problems arise. First, since a considerahle 

amount of state information is associated with a link. and since rules forbid mov­

ing an active end, the run-time system must be aware of all the rcfen:nces to 

links contained in a given message. Second, since Charlone permits only one 

link end to be enclosed in each message supplied to the kernel, the run-time sys­

tem must packetize its higher-level messages. 

To minimize the size of ohject liles, the Charlotte LYNX compiler leaves 

all the work of message passing to run-time support routines. At compile time, it 

constructs descriptors for the request and reply messages of each entry. These 

descriptors list the offsets within the messages at which refert!nccs to links may 

he found. For the following entry, 

.entry foo (a, h ; integer, I : link; c : char) : link, link; 

the request descriptor would be <S> (integers are four hytes long). Tht! reply 

descri ptor wou Id be < 0, 4>. 

Complications arise for sets of links, for arrays containing links, and for 

variant records. Sets are handled by preceding thcir offscts with a nag. 

set offset 
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Arrays are handled by embedding a loop in the descriptor. 

loop, offsetl, offset2, ... , offsetN endloop, count, add, backup 

Loop and endloop are flags. Count is the number of elements in the array. Add 

is the size of a single element. Backup is the distance back to the loop flag. 

The offsets between the loop and endloop flags give the localions of links in the 

tirst element of the array. Later elements are handled by adding multiples of 

add to those offsets. 

Arrays can nest. The routine that interprets message descriptors counts the 

number of times it has gone around the loop for each level of nesting. It also 

keeps track of the cumulative add correction for offsets. At the end of each 

array it reduces that correction by count limes add. 

Variant records are handled by embedding an if SUllement in the descriptor. 

if, offset, singlelOn, value, [offset, ... , j 
range, lvalue, hvalue, (offset, ... ,j 
singleton, value, range, lvalue, hvalue, (offsel, ... ,j 
... , endif 

The offset following the if flag gives the location oC the tag of the variant. The 

lists of singletons and ranges give the valid tag values for the arms of the variant. 

Each arm may contain nested arrays or other variants. 

The value of a link variable is an index into a process-specitlc table. When 

enclosed in a message, the value must tle changed. Before transmitting a mes­

sage buffer, the run-time routines change invalid links to nolink. Valid links are 

left alone. 12 On the receiving end, the oid values are used to 1) distinguish valid 

12 It is possible of course that an uninitialized link variable or an old link 
variable whose value has been reused will be interpreted as a valid reference. 
This is the standard problem with dangling references. 
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links from nolink, and 2) detect duplicates. Once the receiver has examined the 

butTer, both processes can tell how many distinct, valid links were meant to be 

enclosed. 

A request or reply that contains more than one enclosure must be broken 

into several Charlotte messages. The tirst packet contains the message buffer and 

the tlrst enclosure. Additional enclosures are passed in empty enc messages (see 

tlgure 4.1). For requests, the receiver must return an explicit goahead message 

after the tirst packet so the sender can tell the request is wanted. No goahead is 

needed for requests with zero or one enclosures, and none is needed for replies, 

GY------~l~_------GV 
simple case 

connect - -- --- ------~<:q~~~~--- --- -----

_ ----- ------!.;:p!y---- ------ ---

multiple enclosures 

accept 
compute 
reply 

con nect ____________ I~<;.ql!<:~l _________ --.... accept 
.... ________ .. g2~~~£l~I _____ .... ____ _ 

enc .. --_ .... ---_ .. ---- -- --_ .. --_ .... ---~ 

enc .. _ ..... _______ .. __ .. __ .... _ .. ________ 000 

compute 
____________ !!!P!L- __________ - reply 

enc 
~- .. -_ .. -_ ... ---_ .. -_ .. -- -- ------_ .. -

4---- ........ __ .. __ ~!}f .. ____ .. 00 .. ---- .... 

figure 4.1: link enclosure protocol 
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since a reply is always wanted. 

4.3. Semantic Complications 

In two instances, the problems described above forced me to do what a 

"real-life" implementor could not: change the semantics of the language. 

( J ) I had hoped to allow exceptions to abort unstarted communication as if it 

had never been requested. This proved impossible, because enclosures 

may be lost. Consider the following chain of events. 

a) Process A sends a request to process B, enclosing a link end. 

b) B receives the request unintentionally; it only wanted a reply, 

c) A feels a local. user-defined exception, aborting the request. 

d) B crashes before it can send the enclosure back to A in a forbid mes-

sage. 

The enclosure is lost, though the semantics of LYNX say the communica­

tion never started. Thus the rule: all link ends contained in a message are 

lost as soon as the communication is requested, whether it finishes or not. 

(2) Exceptions of class EXC_REPL Yare raised at connect statements when 

server threads die during rendezvous. I had hoped 10 define a similar 

exception class to be raised at reply statements when clients die during ren­

dezvous. In Charlotte, however, that would have required an explicit, top­

level aCknowledgement from client to server when a reply message was suc­

cessfully received. The reSUlting 50% increase in underlying message 

tramc for typical cases would have been an unacceptable burden. Thus the 

rule: if a reply statement completes successfully, the server thread can 

assume the reply was delivered only if the clien! thread was still alive. 

Il2 

5. A Paper Implementation for SODA 

It is worth considering whether the complexity of the implementation Just 

described is the fault of Charlotte or of L YN X. For purposes of comparison, this 

section describes an implementation of LYNX for SODA, a "Simplified Operat­

ing system for Distributed Applications." SODA was designed by Jonathan 

Kepecs as a part of his Ph. D. research [69}. 

5.1. A Review of the SODA Primitives 

SODA was described in section 4.3.2 of chapter 1. Features needed by the 

L YN X implementation are summarized here. 

Every SODA process has a unique id. II also advertises a collection of 

names to which it is willing to respond. There is a kernel call to generate new 

names, unique over space and time. The discover kernel call uses unreliable 

broadcast in an attempt to find a process that has advertised a given name. 

Processes do not necessarily send messages, rather they request the 

transfer of data. A process that is interested in communication specitles a name, 

a process id. a small amount of out-of-band information, the number of bytes it 

would like to send and the number it is willing to receive. Since either of the last 

two numbers can be zero, a process can request to send data. receive data, nei­

ther. or both. The four varieties of request are termed put. get, signal. and 

exchange, respectiVely, 

Processes are informed of interesting events by means of software inter­

rupts. Each process establishes a single handler which it can close temporarily 

when it needs to mask out interrupts. A process feels a software interrupt when 

its id and one of its advertised names are specified in a request from some other 
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process. The handler is provided with the id of the requester and the arguments 

of the request, including the out-of-band information. The interrupted process is 

free to save the information for future reference. 

At any time, a process can accept a request that was made of it at some 

time in the past. When it does so, the request is completed (data is transferred in 

hoth directions simultaneously), and the requester feels a software interrupt 

informing it of the completion and providing it with a small amount of out-of­

band information from the accepter. Like the requester, the accepter specifies 

buffer sizes. The amount of data transferred in each direction is the smaller of 

the specified amounts. 

Completion interrupts are queued when a handler is busy or closed. 

Requests are delayed; the requesting kernel retries periodically in an attempt to 

get through (the requesting user can proceed). If a process dies before accepting 

a request, the requester feels an interrupt that informs it of the crash. 

5.2. A Ditl'erent Approach to Links 

A link in SODA can be represented by a pair of unique names, one for 

each end. A process Ihat owns an end of a link advertises the associated name. 

The following algorithm can be used to keep track of Ihe location of links and to 

move their ends from one process 10 another. 

Every process knows the names of the ,link ends it owns. Every process 

keeps a hint as to the current location of the far end of each of its links. The 

hints can be wrong, but are expected to work most o~ the time. 

A process that wants to send a L YN X mcssag~~ either a request or a reply, 

initiates a SODA put to the process it thinks is on ~he other end of the link. A 
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process moves link ends hy enclosing their names in a message. When the mes­

sage is SODA-accepted hy the receiver, the ends are understood to have moved. 

Processes on the fixed ends of moved links will have incorrect hints. 

A process that wants to receive a L YN X message, either a request or a 

reply, initiates a SODA signal to the process it thinks is on the other end of the 

link. The purpose of the signal is allow the aspiring receiver to tell if its link is 

destroyed or if its chosen sender dies. In the laller case, the receiver will fee! an 

interrupt informing it of the crash. In the former case, we require a process that 

destroys a link to accept any previously-posted status signal on its end, mention­

ing the destruction in tl'.~ out-of-band information. We also require it to accept 

any outstanding put request, but with a zerO-length buffer, and again mentioning 

the destruction in the out-of-band information. After clearing the signals and 

puts, the process can unadvertise the name of the end and forget that it ever 

existed. 

Suppose now that process A has a link L to process B and that it sends its 

end to process C 

Q messa"e Gi) ___ ~_c ______ _ 

(9 
Q (§) 

~ before 

(9 

Q-----Gi) y 
<£) 

after 
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If C wants LO send or receive on L, but B terminates after receiving L from A, 

then C must be informed of the terminalion so it knows that L has been des­

troyed. C will have had a SODA request posted with A. A must accept this 

request so that C knows to watch B instead. We therefore adopt the rule that a 

process that moves a link end must accept any pr~viously-posted SODA request 

from the other end, just as it must when it destroys the link. It specifies a zero­

length buffer and uses the out-of-band information to tell the other process where 

it moved its end. In the above example, C will rt:!-start its request with B instead 

of A. 

Thl' amount of work involved in moving a link end is very small, since 

accepting a request does nOI even block the accepter. More than one link can be 

enclosed in the same message with no more difficulty than a single end. If the 

fixed end of a moving link is not in active use, there IS no expense involved at 

all. In the above example, if C receives a SODA request from B, it will know 

that L has moved. 

The only real problems occur when an end of a dormant link is moved. If 

our example, if L is first used by C after, it is moved, C will make a SODA 

request of A, not B, since its hint is out-of-date. There must be a way to fix the 

hint. If each process keeps a cache of links it h~s known about recently, and 

keeps the names of those links advertised, then A may remembt:!r it sent L 10 B, 

and can tell C where it went. If A has forgottt:!n, C can use the discover com­

mand in an attempt to find a process that knows about the far end of L. 

A process that is unable to find the far end of a link must assume it has 

been destroyed. If L exists, the heuristics of caching and broadcast should suf­

fice to find it in the vast majority of cases. If the faiiure rate is comparable to 
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that of other "acceptable" errors, such as garbled messages with "valid" check­

sums, then the heuristics may indeed be all we ever need. 

Without an actual implementation to measure, and without reasonable 

assumptions about the reliability of SODA broadcasts, it is impossible to predict 

the success rate of the heuristics. The SODA discover primitive might be espe­

cially strained by node crashes, since they would tend to precipitate a large 

number of broadcast searches for lost links. If the heuristics failed too often, a 

fall-back mechanism would be needed. 

Several absolute algorithms can be devised for finding missing links. 

Perhaps the simplest looks like this: 

• 

• 

" 

Every process advertises a freeze name. When C discovers its hint for L is 

bad, it posts a SODA request on the freeze name of every process currently 

in existence (SODA makes it easy to guess their ids). It includes the name 

of L in the request. 

Each process accepts a freeze request immediately, ceases execution of 

everying but its own searches (if any), increments a counter, and posts an 

unfreeze request with C. If it has a hint for L, it includes that hint in the 

freeze accept or the unfreeze request. 

When C obtains a nt:!w hint or has unsuccessfully qut:!ried everyone it 

accepts the unfrt:!eze requests. When a frozt:!n process ft:!els an interrupt 

indicating that its unfreeze request has been accepted or that C has crashed, 

it decrements its counter. If the counter hits zero, it continues execution. 

The existence of the counter permits multiplt:! concurrent searches. 

This algorithm has the considerable disadvantage of bringing every LYNX pro­

ct:!ss in existence to a temporary halt. On the other hand, it is simple, and should 
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only be needed when a node crashes or a destroyed link goes unused for so long 

that everyone has forgotten about it. 

5.3. Comparison to Charlotte 

The SODA implementation avoids the major prohlems of Chariotte. II 

moves multiple links in a single message. It receives no unwanted messages. II 

always knows what size buffer to allocate. It needs no retry, forbid, or allow 

messages. It does not require the semantic compromises of section 4.3. 

In all fairness, however, there are potential problems that bear mentioning. 

To begin with, SODA limits the maximum size of messages to some (relatively 

large) network-dependent constant. In all lik.e1ihood, the limit could be respected 

by L YN X without packetizing messages and without seriously inconveniencing 

the programmer. After all, most language implementations place limits on all 

sorts of things: the length of variable names, the maximum depth of procedure 

nesting, the size of the run-time stack, and so forth .. 

A much stricter (and again unspecified) lim\! applies to the out-of-band 

information for request and accept. If all the self-descriptive information included 

in messages under Charlolle were to be provided out-of-band, a minimum of 

about 48 bits would be needed. With fewer bits available, some information 

would have to be included in the messages themselves, as in Charlotte. 

The most serious problem with SODA involves a third unspecified constant: 

the permissible number of outstanding requests between a given pair of 

processes. The implementation described in the previous section would work 

easily if the limit were large enough to accommpdate three requests for every link 

between the processes (a LYNX-request put, a LYNX-reply put, and a status sig-
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nail. Since reply messages are always wanted (or can at least be discarded if 

unwanted), the implementation could make do with two outstanding requests per 

link and a single extra for replies. Too small a limit on outstanding requests 

would leave the possibility of deadlock when many links connect the same pair of 

processes. In practice, a limit of a half a dozen or so is unlikely to be exceeded 

(it implies an improbable concentration of simultaneously-active resources in a 

single' process), but there is no way to rellect the limit to the user in a 

semantically-meaningful way. Correctness would start to depend on global 

characteristics of the process-interconnection grapb. 

None of these problems is a serious condemnation of the SODA design. At 

most, SODA would need only minor modifications to support a considerably 

simpler L YN X implementation than does Charlolle. There are at least three 

important lessons to be gained from this fact. 

Lesson one: Hints can be beller than absolutes. 

The maintenance of absolute, up-to-date, consistent, distributed information 

can be more trouble than it is worth. It may be considerably easier to rely 

on a system of hints, so long as they usually work, and so long as we can 

tell when they fail. 

The Charlotte kernel admits that a link end has been moved only when all 

three parties agree. The protocol for obtaining such agreement was a 

major source of problems in the kernel, particularly in the presence of 

failures and simultaneously-moving ends [7]. The implementation of links 

on top of SODA was comparatively easy. 

Lesson two: Screening belongs in the application layer. 

Every reliable protocol needs top-level acknowledgments. A distributed 
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operating system can auemptto circumvent this rule by allowing a user pro­

gram to describe in advance the sorts of messages it would be willing to ack­

nowledge if they arrived. The kernel can then issue acknowledgments on 

the user's behalf. The shortcut only works. if failures do not occur between 

the user and the kernel, and if the descriptive facilities in the kernel inter­

face are sufficiently rich to specify precisely which messages are wanted. 

For implementing LYNX, the descrip~ive mechanisms of Charlotte were 

simply not rich enough. 

SODA provides a very general mechanism for, screening messages. Instead 

of asking the user to describe its screening .function, SODA allows it to pro­

vide thaI function itself. In effect, it replaces a static description of desired 

messages with a formal subroutine that can be called when a message 

arrives. 

Lesson three: Simple primitives are best. 

From the point of view of the language implementor. the "ideal operating 

system" probably lies at one of two extremes: it either provides everything 

the language needs, or else provides almost nothing, but in a flexible and 

efficient form. A kernel that provides some of what the language needs, 

but not all, is likely to be both awkward and slow: awkward because il has 

sacrificed the flexibility of Ihe more primitive system, slow because it has 

sacrificed its simplicity. Clearly, Charloue could be modified to support all 

that LYNX requires. The changes, however, would not be trivial. More­

over, they would probably make Charlotte significantly larger and slower, 

and would undoubtedly leave out something that some other language 

would want. The beauty of SODA is that it provides mechanisms flexible 

enough to support a wide range of programming languages and styles. 
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Among the languages of chapter 1, existing implementations have all 

assumed a homogeneous environment. Implementors have felt free to 

adopt the first extreme, addressing themselves to the needs of a single 

language and often eliminating any real distinction between the operating 

system and the run-time support for the language itself. Such an approach 

will prove inadequate for general-purpose computing, when a machine like 

a multicomputer must be shared by dissimilar users. For such an environ­

ment. the kernel interface will need to be relatively primitive. The fact that 

LYNX can be implemented easily on something as simple as SODA speaks 

well of its appropriateness for writing general-purpose servers. 

6. Measurements 

6.1. Size 

Object files produced by the Charlotte L YN X compiler tend to be about 

50% larger than object files for comparable C programs. The difference can be 

attributed to a number of sources: default exception handlers, descriptive infor­

mation for entries and messages, initialization, management of the environment 

tree, and run-time checks on subranges, sets, case statements, and function 

returns. In addition to the increase in basic code size, every LYNX program is 

linked to a substantial amount of run-time support code: the dispatcher, the com­

munication routines, and code 10 manage exceptions and threads. 

The run-time support consists of 23. 7K bytes of object code. Of this lotal, 

3.0K supports sets and run-lime checks. II can legilimately be regarded as 

correcting deficiencies in C. rather than supporting the features of LYNX. The 

remaining 20.7K can be allributed to the following goals: 
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support for multiple threads of control '19'ji, 3.9K 

basic communication 29% 5.9K 
multiple-link transfers 30% 6.IK 

exception bookkeeping 11% 2.2K 
exception handlers 12% .2.oK 

The support for multiple-link transfers is divided more or less equally 

between t1nding links buried in data structures and packetizing messages. Some­

what less than half of the support for basic communication is devoted to forbid, 

allow, and retry messages, and to undersize buffers. I would expect the run-time 

support for SODA to be about 4K smaller than that for Charlolle, Both might be 

reduced further by careful programming. 

6.2. Threads of Control 

With a single thread of control, the following loop executes in just over 8.5 

seconds: 

foreach i in [1 .. 100000] do 
await true; 

end; 

A loop with a call to an empty subroutine takes 3.8 seconds. 

procedure null; 
begin end null; 

foreach i in [I .. 100000] do 
null; 

end; 

The loop overhead itself takes 0.6 seconds. 

foreach i in (I .. 100000] do 
nothing 

end; 
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By implication, a context switch between threads of control requires a minimum 

of 85- b= 79 microseconds, or approximately two and a half times as long as a 

call to an ~mpty subroutine with no arguments (38- 6= 32 microseconds). 

Since the Boolean conditions in await statements can refer to arbitrary vari­

ables, the context of a thread must be restored before a condition can be checked. 

If there are many threads blocked at await statements, and if their Boolean condi­

tions are reiatively complicated (and therefore take some time to evaluate), it may 

ta!;e considerably longer than 79 microseconds to switch to a new rcady task. 

Moreover, as pointed out in section 3.1, the run-time support routines must cycle 

through all tasks blocked at await statements before waiting for each external 

event. 

Only extensive experience with LYNX will reveal whether the repeated 

evaluation of awaited conditions constitutes an unacceptable burden. It does not 

appear to be unacceptable in the applications written to date, mainly because 

await statements are infrequently used. Most threads block for communication, 

not local conditions. 

taken: 

• 

• 

If await statements should prove to be a burden, several steps could be 

A more intelligent compiler could notice when threads are waiting on a 

simple Boolean variable, could keep those threads on a single queue, and 

could check the variable only once, without changing contexts. 

The language could be extended to allow Boolean expressions to be associ­

ated with named condition variables, as proposed by Kessels PI] for use 





., 

123 

in monitors. Run-time routines could then check even complicated condi­

tions exactly once when the current thread bl~cks, again without changing 

contexts. 

The language could be extended to include semaphores or signals, requir­

ing threads to unblock each other explicitly. 

6.3. Communication 

The facilities of L YN X are not without cost. Even the simplest remote 

request must gather and scatter parameters, manage queues of sending and 

receiving threads, establish default exception handlers, enforce flow control, 

check operation names and types, guard against buffer overflow, look for 

enclosed links, and make sure the links are valid. 

The following table summarizes timing information for two simple opera­

tions. The first half of the table gives times for a remote operation with no 

request or reply parameters. The second half gives times for an operation with 

1000 bytes of data transfer in each direction. In each row, times for LYNX pro­

grams are compared against times for C programs that execute the same system 

calls in the same order but without the checks described above. The figures were 

obtained by timing a pair of processes in tight IOOO-iteration loops, one with an 

embedded connect statement, the other with an accept sk'ltement. 13 The 6 

microsecond loop overhead is insignificant. 

I J Tests were carried out over a period of several days under a variety of net­
work loads. Tests that demonstrated high variance were repeated more often than 
those that seemed more stable. No test was repeated fewer than five times. The 
:±: figures give the most significant digit of tbe standard deviation. 

Empty request, reply 
intra-machine 
inter-machine 

IK request, reply 
ir.tra-machine 
inter-machine 
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explicit receipt 
LYNX C 

45.6:t 0.1 ms 39.4:t 0.3 ms 
56.9:t 0.8 ms 54.7 -t 0.7 ms 

49.7:±: 0.1 ms 41.1:±: 0.1 ms 
65.1 :t 0.1 ms 60.1:±: 0.1 ms 

The gap between L YN X and C programs is smaller across machines 

because parts of the run-time support can execute in parallel. The gap between 

the times in the first and second halves of the table is due in part to the copying 

of buffers. A timing test similar to the one for context switches reveals that copy­

ing a 1000 byte buffer requires approximately 360 microseconds. The LYNX 

program requires 4 such copies for gathering and scattering, for a total of 1.4 

milliseconds. The rest of the gap is consumed by the Charlotte kernel. 

Similar figures have been obtained for implicit message receipt: 

Empty request, reply 
intra-machine 
inter-machine 

IK request, reply 
intra-machine 
inter-machine 

implicit receipt 
LYNX C 

46.8 ± 0.1 ms 
60.2 :t 0.1 ms 

50.3:': 0.1 ms 
69.5:!: 0.1 ms 

39.5 ± 0.3 ms 
55.2 :t 0.2 ms 

41.1 ± 0.2 ms 
63.3 ± 0.3 ms 

Differences from the first table are due to two factors. First, the L YN X server in 

the second table incurs overhead for the creation and destruction of a separate 

thread of control for each request. Second, the speed of the kernel itself is 

affected by the order in which system calls are made. With implicit receipt, the 
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run-time system posts a new Receive as soon as the old one completes. 

server with server with 
explicit receipt im plicit receipt 

Receive Receive 

Wait (receive) Wait (receive) 
Send Receive 

Wait (send) Send 
Receive Wait (send) 

Wait (receive) Wait (receive) 
Send Receive 

Wait (send) Send 
Receive Wait (send) 

Because of Charlotte's sensitivity to the ordering of events. the figures 

above are suggestive, not definitive. The speed of messages in practice will 

depend not only on the actions of the sender and receiver, but equally well on all 

events that are noticed by the kernel. 

6.4. Predicted Values for SODA 

The SODA L YN X implementation, as described in section 5.3. would be 

considerably simpler than the one for Charlotte. Most of the difference, how­

ever, would be seen only in unusual cases: the transfer of messages with multiple 

enclosed links. the receipt of unwanted requests. Typical message traffic would 

require about as much run-time support as it currently does in Charlotte. It 

might. however. require considerably less kernel support. 

It is difficult to compare message transmission times in Charlotte and 

SODA. Charlotte has a considerable hardware advantage: the only implementa-

126 

tion of SODA ran on a collection of PDP-iI/23's with a I-Mbilfsecond CSMA 

bus. SODA, however, probably has a software advantage: it was much simpler 

and easier to implement. The Charlotte group made a deliberate decision to 

sacril1ce efficiency in order to keep the project manageable. 

With these reservations in mind. it appears reasonable to t:xpect consider­

ably beller performance from SODA. Experimental figures reveal that for small 

messages SODA was three times as fast as Charlotte. 14 Much of the difference 

can be attributed to the Lack of features in the kernel. By providing a simpler 

interface, SODA avoids duplicating functions that are provided at a higher level. 

To a large extent, the differences between Charlotte and SODA can be cast 

in tile context of a more general class of end-to-end arguments [97]. End-to­

end arguments provide a rationale for simplifying the lower levels of a layered 

software system. Among other things. they question the wisdom of providing too 

many functions in levels that are shared by several applications. Any facility that 

is not used by a given application will extract a performance penalty that could be 

avoided by moving it up into the higher levels that use il. 

One of the easiest targets for end-to-end arguments is the detection of 

errors in communication protocols. A lower protocol level can only eliminate 

errors that can be described in the context of its interface to the level above. 

Overall reliability must be ensured at the application level. Since end-to-end 

checks generally catch aIL errors. low-level checks are redundant. They are jus­

tified only if errors occur frequently enough to make early detection essential. 

14 The difference is less dramatic for larger messages; SODA's slow network 
extracted a heavy toll. The figures break even somewhere between lK and 2K 
bytes. 
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The run-time system for LYNX never passes Charlotte an invalid link end. 

It never specifies an impossible buffer address' or length. It never tries to send 

on a moving end or enclose an end on itself. To a certain extent it provides its 

own LOp-level acknowledgments, in the form of goahead, retry, and forbid mes­

sages, and in the confirmation of operation names and types implied by a reply 

message. It would provide additional acknowledgments for reply messages (sec­

tion 4.3, paragraph 2) if they were not so expensive. For the users of LYNX, 

Charlotte wastes time by checking these things itself. 

Wi 

Conclusion 

This dissertation makes at least five important contributions to computer sci· 

ence. 

(1) It enumerates the language needs of multicomputer systems programs. 

(2) It presents a framework for the discussion of distributed languages and a 

survey of previous proposals. 

(3) It develops a new language ideally suited to meeting the needs in I!). 

(4) It demonstrates the feasibility of implementing that language (and by impli· 

cation languages in general) on a distributed operating system. 

(5) It derives useful insights inlo Ihe nalure of the language/operating system 

interface. 

In comparison to a sequential language that performs communication 

through library routines or through direct calls to operating system primitives, 

LYNX supports 

- direct use of program variables in communication statements 
-- secure Iype checking 
- thorough error checking, with exception handlers outside 

the normal flow of control 
-- automatic management of concurrent conversations 

In comparison to previous distributed languages, L Y N X obtains these benefits 

without sacrificing the flexibility needed for loosely-coupled applications. LYNX 

supports 

dynamic binding of links to processes 
- dynamic binding of types to links 
- abstraction of distributed resources 
- protection from errors in other processes 
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In addition, L YN X reflects the structure of an underlying multicomputer by dif­

ferentiating between processes, which execute in parallel and pass messages, and 

threads of control, which share memory and execute in mutual exclusion. 

The languages of chapter 1 were designed primarily to support communica­

tion between pieces of a single distributed program. Even for this limited 

domain, L YN X offers some advantages over most previous proposals. By provid­

ing both explicit and implicit receipt, L YN X admits a wide range of communica­

tion styles. By allowing dynamic binding of links to entry procedures, LYNX 

provides access control for such applications as the readers/writers problem. By 

integrating implicit receipt with the creation of threads, L YN X supports com­

munication between processes and management of context within processes with 

an economy of syntax. 

Support for tightly-coupled programs, however, is not central to the thesis. 

The real significance of the work at hand lies in problems unaddressed by previ­

ous research. LYNX is not another language in the mold of chapter 1. It meets 

the needs of loosely-coupled applications for which other languages were never 

intended. I feel no need to claim that LYNX is better than other languages for 

general-purpose use, only that it is more appropriate for writing servers on a 

multicomputer operating system. 

Since the arguments for LYNX rest on practical (as opposed to theoretical) 

concerns, they are strengthened considerably by the existence of a compiler and 

a working run-time system. The implementation Jor Charlotte, as described in 

chapter 4, is important in several respects. It permitted the construction of 

usable programs. II verified that the language could be implemented efficiently, 

with a reasonable amount of effort. It spurred the development of novel tech-
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niques for checking types and moving links. In concert with the paper design for 

SODA, it produced the lessons of section 5.3 (hints can be better than absolutes; 

screening belongs in the application layer; simple primitives are best). Finally, it 

resulted in a product of continuing value to the larger Charlotte project. 

Directions for Future Research 

The material in this dissertation suggests several avenues for future work. 

The most obvious of these would explore extensions and improvements to L YN X. 

Some extensions could be motivated by efforts to adapt the language to additional 

problem domains. Substantial changes might be needed, for example, if L YN X 

were to be used on a multiprocessor architecture, where memory could be shared 

by more than one CPU. Other extensions might prove useful even in the 

language's original domain. Possibilities include: 

• 

• 

A cobegin construct for dividing a thread into subthreads 

Such a construct WOUld, for example, allow a thread to request operations 

on IwO different links when order is unimportant. As currently defined, 

L YN X requires the thread to specify an arbitrary order, or else creale sub­

threads through calls to entries that are separated lexically from the princi­

pal flow of control. 

A mechanism for forwarding requests 

In some algorithms a server passes a request on 10 a peer, waits for a reply, 

and passes the reply back to the client. Communication could be reduced if 

the second server repiied to the client directly. It is nOl immediately obvi­

ous how such a facililY would work in LYNX, where all communication is 

c:onstrained to flow through links. 
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"Exception handlers" for bindings 

A link that is bound to entries but is not in usc by any active thread can be 

destroyed at either end. LYNX specifics that the bindings are broken, but 

provides no "nook" for programmer-det1ned recovery. The language 

could allow a link to be bound to a cleanup entry that would be executed 

automatically when the link was destroyed. 

Asynchronous receipt 

As currently defined, L YN X provides no mechanism for coping with asyn­

chronous external events. Both incoming and outgoing messages go unno­

ticed until all threads in a process are blocked. Real-time device control 

cannot he programmed in L YN X, nor can any algorithm in which incom­

ing messages must interrupr the execution of lower-priority "background" 

computation [42,46]. To support such algorithms, LYNX would need con­

siderably more elahorate facilities than it currently provides for synchroniz­

ing threads. 

Beyond mere changes to the language, work on LYNX points to several 

related subjects. Efliciency is one of these, particularly the relationship of effi-

ciency to layers in a communication protocol. Previous work on high-speed 

mechanisms for interprocess communication [77,90, 103] suggests that layers 

extract an enormous price in communication overhead. Nevertheless, layers arc 

certainly useful. Their modular structure makes them easier than integrated sys­

tems to build, debug, maintain, and understand. They also promote flexibility by 

allowing different upper layers to run simultaneously on the same underlying 

system. Research to date has produced neither a really fast layered protocol nor 

a convincing explanation of why such a protocol cannot exist. 
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Assuming that layers will continue to exist, at least to the extent that 

languages will be built on top of distributed operating systems, it is very much 

worthwhile to investigate the interface between the layers. The results in chapter 

4 suggest that the interface delined by the Charlotte kernel is inappropriate: too 

low-level to be used conveniently "as is," yet too inflexible to support a straight­

forward implementation of LYNX. The search for an "ideal" interface would 

benet1t substantially from formal criteria for evaluating particular proposals. 

Finally, there is at least some reason to be suspect of any programmmg 

language that places "too many" parameters outside the control of the individual 

programmer. Niklaus Wirth, in his 1984 Turing Award Lecture, proposed that 

"Systems programming requires an efficient compiler generating efficient code 

that operates without a fixed, hidden, and large so-called run-time pack­

age." [119] L YN X does not meet this standard by any stretch of the imagina­

tion. lis run-time package is fixed, hidden, and large, for the simple reason that 

it cannot itself be written in LYNX. The package relies on knowledge of the 

compiler's storage-allocation strategy. It also uses symbol-table data generated by 

the compiler but invisible to the user. If the necessary information were made 

an explicit part of the language, much of the run-time package could be moved 

into library routines. Pieces that proved inappropriate for particular applications 

could be quickly and easily replaced. The modified language might be consider­

ably more flexible than the current version. II might also be more amenable to 

formal analysis !lhough its library routines might not!). 

The design of LYNX was very much an exercise in practical problcm­

solving. As such, it must be judged on the basis of the solutions it provides. 

Only long-term experience can support a final verdict. New problems will 
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undoubtedly arise and will in turn provide the impetus for additional research. 

At present. however. the evidence suggests thai LYNX is a success. 
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Appendix 

LYNX Reference Manual 

Caveat: this reference manual is nOI a formal document. II describes the 

CharlollelV AX implementation of L YN X at a level of detail suitable for program-

mers. 

1. Lexical Conventions 

A L YN X program is a sequence of characters from the Ascii character set. 

Characters are scanned by the compiler from left to right and are grouped 

together in tokens. Some tokens are valid prefixes of longer tokens. In such 

cases. the compiler finds tokens of maximal length. Tokens can be separated by 

white space (spaces. tabs (\t), and newlines (\n». While space has no other 

meaning. 

Many tokens are simple symbols: 

( . 

< 
+ 

<= >= 
:;: 

> <> 

« 
-> 

» 

Others are more complicated. All can be defined by regular expressions. 

In the following, italics are used for intermediate definitions. Parentheses 

are used for grouping. Vertical bars are used for alternation. Other adjacent 

symbols are meant to he concatenated. The function NOT indicates complemen­

tation with respect to the Ascii character scI. 



Comments in L YN X begin with' - - ' and extend through end-of-line. 

COMMENT = 

- - ( NOT ( \n ) ) '" 

Comments are treated like while space. 

Numeric constants can he expressed in oClal, decimal, or hexadecimal. 

NUMBER = 

o ( 0 I ocuiig!!) * I 
decdigit I 0 I decdig!t) * I 
/I ( 0 I hexdigit) * 

where 
ocuiigit = '1' . .' 7' 
decdigit = '1' .. '9' 
hexdigit = '1' . .'9', 'A' . .'F', 'a' . .'P 

13S 

Character and string constants are delimited by single and double quotes, 

respectively. Non-printing characters may be indicated by the single-letter 

backslash-escapcs of C (\b, \n, \r, \l), or by numbers (as defined above) delim­

ited by a pair of backslashes (as in \/171'\ for the delete character). Single quotes 

in character constants and double quotes in string constants are indicated by" 

and \", respectively. Backslashes are indicated by·\\. Backslashes not accounted 

for by any of the preceding rules are ignored.!5 

15 These conventions agree with C except in the form of numeric escapes. 

CHARCONST = 
, ( 

NOT ( , , \ , \n , nonprinI) I 
\ NOT ( /I , 0 , decdigiI, \n , nonprinI) I 
\ number \ 

) , 

STRINGCONST = 
" ( 

NOT ( " , \ , \n , 1l0nprilll) I 
\ NOT ( /I , 0 , decdigit, \n , Ilonprillt) I 
\ number \ 

) * " 
where 
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Ilonprinrindicates the Ascii characters with codes 1..8,11..31, and 127 
decdigit is as above 
number is as defined for the token' 'number" 

Keywords are: 

ACCEPT AND ARRAY AWAIT 

BEGIN BIND CALL CASE 

CONNECT CONST DO ELSE 

ELSIF END ENTRY EXCEPTION 

EXIT EXPORT EXTERNAL FOREACH 

FORWARD FROM FUNCTION IF 

IMPORT IN LOOP HOD 

MODULE NOT OF ON 

OR OTHERWISE PROCEDURE RAISE 

READ RECEIVE RECORD REMOTE 

REPEAT REPLY RETURN REVERSE 

SEND SET THEN TO 

TYPE UNBIND UNTIL VAR 

WHEN WHILE WITH WRITE 

After excluding keywords, identifiers are strings of letters, digits, and 

underscores that do not begin with a digit and do not end with an underscore. 

Case is not significant in identifiers, except when significance is imposed from 

outside by .associating names in the language with external objects. 



IDENTIFIER = 

leller I ( 

where 

( letter I _ ) 
( letter I _ , digit) * 
( leiter I digit) 

letter = 'A' .. 'z" ~a' .. 4 Z ' 

digit = '0' . .'9' 

2. Types 
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A type is a set of values and a mapping from those values to representations 

in memory, Types are useful for restricting the values that can be used in vari­

ous contexts. Several types are pre-defined. Others are created by type con-

structors. 

type ::= IDENTIFIER 
:: = en urn_type 
:: = subr_type 
:: = array_type 
: : = record....type 
:: = seLtype 

2. 1. Pre-defined Types 

integer 

char 

consists of as many distinct values as can be1represented in a single word. 

Its values lie in a contiguous range centered' approximately at the origin 

(-2147483648 through 2147483647 on the VAX). 

consists of the Ascii characters. Char variables occupy one byte on the 

VAX. 
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Boolean 

link 

consists of the truth values. True and false are pre-defined constants of type 

Boolean. Boolean vanables occupy one byte on the VAX. 

consists of references to the ends of communication channels. Link values 

are created at run time. A given end of a given link is accessible to only 

one process at a time. Links are discussed in detail below. 

Nolink is a pre-defined constant of type link. The value nolink can be 

assigned into or compared against the contents of a link variable, but is 

usable for nothing else. Link variables occupy two bytes on the VAX. 

2.2. Enumerations 

The values of an enumeration type have a one-one correspondence with the 

first few non-negative integers. 

en urn_type 
idenLlist 
id....IiSLtail 

:: = ( idenLiist ) 
- IDENTIFIER id....lisLtail 

, idenLiist 

The identifiers in the list name the values of the lype. Enumeration variables 

occupy four bytes on the VAX. 

2.3. Subranges 

A type can be declared to be a subrange of any existing scalar type. The 

existing type is called the parent type of the subrange. Scalar types are integers, 

chars, Booleans, enumerations, and subranges. 
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:: = [ expr .. expr ] 

Subrange variables occupy one, two, or four bytes on the VAX, depending on 

whether or not their bounds fall in the ranges -128 .. 127, - 32768 .. 32767, or 

-- 2147483648 .. 2147483647, respectively. 

2.4. Array Types 

The values of an array type are ordered lists of values of the array's ele­

ment type. The length of each list is the number of distinct values of the array's 

index type. 

:: = ARRAY type OF type 

The type that follows the word ARRAY is the index type. The second type is the 

element type. The index type must be scalar. 

A variable of an array type thus consists of many smaller variables, called 

the elements of the array. The element variables have names: if expr is an 

expression whose type is the index type of array "foo" and whose value is II, 

then "foo {expr]" is a name for the nth element of foo. 

The elements of an array are stored in consecutive locations in memory. 

The location of the first element is the same as the location of the array. There 

is no special syntax for multi-dimensional arrays. The programmer can of 

course declare arrays of arrays and access their elements as "name {row] 

[column]. " 

2.5. Record Types 

A record is a list of named fields. The values of a record type are lists of 

values of the types of the fields. 

recor<Ltype 
fiel<LlisLopt 

field 

vnLlisLopt 

variant 
componenLlist 
comp-lisLiail 

component 
componenLtail 

:: = RECORD fielcLlisLopt EN D 
:: = field fiel<LlisLoPI 

:: = idenLlist : lype ; 
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:: = CASE IDENTIFIER: type OF vnLlisLopt END; 
..- , 

:: = variant vnLlisLopt 

:: = { componenLlist } fielcLlisLopt 
:: = component comp-lisLtail 
:: = , component comp-lisLtail 

:: = expr componenLtail 
.. expr 

A variable of a record type thus consists of a collection of smaller variables, 

one for each field of the record. Each of these smaller variables has a name. 

The name is created by appending a period and the name of the field to the name 

of the record variable. 

The word CASE introduces a variant portion of a record. All variants have 

the same location. Only one variant is valid at a time. 

The identifier following the word CASE is the name of a special field called 

the tag of the variant portion of the record. The tag must have a scalar type. It 

determines which variant is valid at a particular point in time. The component 

list of each variant lists the values of the tag for which the variant is valid. The 

lists must be disjoint. Their component expressions must have values that can be 

determined at compile time. They cannot involve function calls. 

On the VAX, records have the same representation in memory as C structs 

and unions. 
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2.6. Set Types 

The values of a set type are unordered sets of values of the set's COID-

ponent type. 

seLlype :: = SET OF type 

The component type must be scalar or link. 

On the VAX, every set variable occupies 16 bytes. The component type of 

a set (if other than link), must have no more than 128 elements. For sets of 

subranges of integers, the subrange bounds must lie between 0 and 127, 

inclusive. 

J. Declarations 

Identifiers denote types, constants, variables, exceptions, exception classes, 

subroutines, and entries. Several identifiers are pre-defined; all others must be 

declared by the programmer, Identifiers exported from a module (sections 3.7 

and 4) appear in the export list before they are declared. All other identifiers 

must be declared before they are used. 

deept 

declaration 

:: = declaration dec_pt 

::= CONST consLdec consLdectaii 
:: = TYPE type_dec type-dectail 
:: = VAR vaL dec vaLdectail 
:: = EXCEPTION idenLlist ; 
:: = subroutine; 
:: = entry; 
::= module; 

Declaration sections can appear in any order, an arbitrary number of times. 
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3.1. Types 

A type may have any number of names. There are four built-in types. 

They all have names. Each It:xical occurrence of a type constructor introduces a 

new type. A type declaration introduces a new name for the type on its right 

hand side. A constructed type that appears on the right-hand side of a variablt: 

declaration has no name. Once declared, the name of a type can be used any­

where a type constructor could be used, but without introducing a new type. 

tyre-dec :: = IDENTIFIER = type ; 
.. - ~ 

J.2. Constants 

Constant declarations introduce names for string constants or for values of 

pre-defined scalar types. 

consLdec .. - IDENTIFIER = expr; 

consLdeetail :: = consLdec consLdeetail 

The expression must have a value that can be determined at compile time. It 

cannot involve function calls. If the expression is a string constant, then the 

deciared constant has the new and nameless type .. ARRAY [O .. n] of char," 

where n is the number of characters in the string. Byte n is a null (Ascii 0). 

3.3. Variables 

Variable declarations reserve memory locations and introduce names for 

those locations. 
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:: = idenLlist : type ; 
•• - l 

The name of a variable refers either to the localion of the variable or to the value 

stored at that location /its contents), depending on context. The type of a vari­

able restricts the values that can be stored at its location. It is a programming 

error to refer to the contents of a variable before storing a value at its location. 

3.4. Exceptions 

Every link value has several exceptions associated with it. Names for these 

exceptions consist of an expression of type link (with the appropriate value) fol­

lowed by the name of a built-in exception class. 

Additional exceptions are introduced by exception declarations. Each iden­

tHier in the identifier list of an exception declaration is the (only) name for a new 

exception. 

Programmer-defined exceptions have different semantics from the excep­

tions associated with links (see section 7.2). Both kinds of exceptions are used 

only in when clauses (section 6.11) and raise statements (section 6.12). 

3.5. Subroutines 

Subroutines are parameterized sequences of statements. 

subroutine 

ar~lisLopt 

mode 

formal 
fun_type_opt 

body 

PROCEDURE IDENTIFIER ar[;-lisLopt; body 
FUNCTION IDENTIFIER ar[i-lisLopt 
fun_type_opt ; body 
( mode formal more_m_formals ) 

; mode formal mor~m_formais 

VAR 
CONST 

:: = idenLlist . IDENTIFIER 
:: = : IDENTIFIER 

:: = deept compouncLstmt IDENTIFIER 
.. FORWARD 
:: = EXTERNAL 
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The name of the subroutine follows the keyword PROCEDU RE or FU NCTION. 

The identifier at the end of a non-trivial subroutine body must match the name of 

the subroutine. 

The argument list specifies formal parameters for the subroutine, 

together with the modes and type names of those parameters. Within the com­

pound statement of a subroutine body, parameters may be used as if they were 

variables. V AR parameters are passed by reference. Plain parameters are 

passed by value. The contents of CONST parameters cannot be modified. 

CONST parameters are passed by reference on the VAX. 

Functions yield a value whose type name follows the argument list. Pro­

cedures do not yield II value. 

A FORWARD subroutine body indicates that the subroutine will be 

declared again later in the same scope, with a non-trivial body. The second 

declaration must omit the argument list and function type. 
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An EXTERNAL subroutine body indicates that the subroutine is external to 

LYNX and must be found by the linkt!f Case is significant in the names of 

external subroutines. 

3.6. Entries 

An entry resemblt!s a proc\!dure. 

entry 

formaLtail 

OULtypes-opt 

::= ENTRY IDENTIFIER in_args-optoULtypes-opt: 
body 

:: = ( formal formaLtail ) 

: formal formaLtail 

: idenLiist 

The name of the entry follows the keyword ENTRY As with subroutines, the 

identifier at the end of a non-trivial body must match the name of the entry. 

An entry cannot be declared EXTERNAL, but it can be declared 

REMOTE. 

body ::= REMOTE 

A REMOTE body indicates that the entry may de declared again (minus in argu­

ments and out types. but with non-trivial body) in the same scope. Unlike FOR­

WARD, REMOTE does not require the later declaration. 

The in arguments and out types of an entry an: templates for the request 

and reply messages of a remote operation. Within the statements of the body of 

the entry. the in arguments can be used as if they were variables. Through the 

use of the bind statement (section 6.9), the programmer can arrange for an entry 

to be executed in response to incoming requests. 
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3.7. Modules 

Modules are an encupsulation mechanism for structuring programs and for 

limiting the scope of identifiers. 

module 

imporLpl 

exporLpt 

cpcLstmLopt 

MODULE IDENTIFIER: imporLpt exporLpt 
deept cpcLstmLopt IDENTIFIER 
IMPORT idenLiist ; 

EXPORT idenLlist ; 

:: = compoun<Lstmt 
::= END 

The compound statement of a module. if it has one. is called the module's 

initialization code. For consistency with the terms for subroutines and entries, 

it is occasionally called the module's body as well. The purpose of import and 

export lists is explained below. 

4. Scope 

Declaration sections appear near the beginning of every block. Blocks are 

subroutines, entries, and modules. 

Declarations introduce meanings for identil1ers. Identillers can have dif­

ferent meanings at different places in a program. The portion of a program in 

which a particular meaning holds is called that m\!aning's scope. The scope of a 

m\!aning extends from the declaration of its identifier to the end of the block in 

which that declaration appears, with three exceptions: 

(l) If a nested block contains a declaration of the same identil1er, or if a with 

statement or labeled statement introduces a new meaning for the identifier 

(see sections 6.5.4, 6.6, and 6.8), then the scope of the outer meaning 
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does not include the scope of the inner meaning. 

(2) A meaning does not extend into any nested module unless its identifier is 

explicitly im ported. 

(3) If a module expliCllly exports an identifier, then the meaning of that iden­

tifier extends from its declaration inside the module to the end of the ellc/os-

ing block [subject to exceptions II) and (2». 

Identifiers can he imported or exported repeatedly in a nested chain of modules. 

For the purpose of defining scopes, the formal parameters of subroutines 

and entries are considered to be part of the declaration section immediately fol­

lowing their argument list. They are not visible in as large a scope as is the 

name of their subroutine or entry. 

Two record types visible at the same point in a program can have fields with 

the same name. Otherwise, declarations of the same identifier must have disjoint 

scopes. In particular, simultaneously visible enumeration types cannot have 

values wilh the same name. 

The environment of a particular thread of control at run time is a mapping 

from names to their current meanings. New meanings appear whenever control 

enters the initialization code of a module or the body of a subroutine or entry. 

The affected identifiers are those declared in the immediately preceding declara­

tion section. For a subroutine or entry, the meanings disappear with the comple­

tion of the body of the block. For a module, the meanings disappear with the 

completion of the closest enclosing subroutine or entry. They may not be visible 

outside the module, unless they are exported. For any particular thread, the 

appearance and disappearance of meanings occurs in LIFO order. (The same is 

not true of a process as a whole, as discusscd· in section 7.) 
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5. Expressions 

An expression evaluates to a value at run time. Every expression has a 

type. Expressions are composed of atoms, parentheses, function calls, and 

operators. 

expr 
expr_tail 

term 
term_tail 

factor 

selector 
selector_tail 

5.1. Atoms 

:: = term expLtaii 
: : = reLop term expLtail 

: : = factor term_tail 
:: = otheLop factor tcrm_tail 

:: = NOT factor 
:: = - factor 
:: = constant 
:: = set 
:: = ( expr ) 
:: = selector seLfactail 
.. IDENTIFIER selector_tail 

. IDENTIFIER selector_tail 

An atom is an explicit constant, or the name of a constant or variable. 

constant 

changeover 

designator_tail 

::= NUMBER 
::= CHARCONST 
::= STRINGCONST 
:: = changeover 

.. - [ expr J designator_tail 

.. : IDENTIFIER designatoLtail 

.. - . IDENTIFIER designatoLtail 
:: = changeover 
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A number or character constant is an expression with an obvious value and 

type. A string constant has the new and nameless type "ARRAY [0 .. n] of 

char," where n is the number of characters in the string. 

The name of a constant or variable is an expression whose value is the 

value of the constant or the contents of the variable and whose type is the type of 

the constant or variable. Within a name, a period indicates selection of a field of 

a record. Brackets indicate selection of an element of an array. A colon indi-

cates a type cast. 

Type casts are allowed only on variables. A variable name followed by a 

type cast is the name of an imaginary variable whose type is specified by the cast, 

whose location is the same as that of the original .variable, and whose value is 

determined by interpreting the data at that location . That value may be garbage. 

5.2. Set Expressions 

A set expression evaluates to a value of type "SET OF componenLtype," 

where corllPOnenLtype is a subrange whose bounds are the lowest and highest 

possible values of any of the component expressions or ranges. The set type is 

new and nameless. It is provisional in the sense that it may be coerced to 

another type if context requires it. 

set 
comp-lisLopt 

:: = { comp-lisLopt } 
:: = componen Llist 

The value of the set contains the value of each component expression and all 

values in each component range. 
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5.3. Function Calls 

The type of a function call is specified in the declaration of the function. 

The value is obtained by involdng the function at run time. 

seLfac_tail 
expLlist 
expr _lisLtail 

:: = ( expLlist ) 
:: = expr expr _iisLtail 
.. ,expLlist 

The expressions in the argument list are called actual parameters. They must 

agree in order and number with the formal parameters of the function. Their 

types must be compatible with the types of the formals. Type compatibility is 

discussed under assignment statements (section 6.1). A function call with no 

parameters looks like an atom. 

The values of the actual parameters are used as initial values for the formal 

parameters of the function. Actual parameters corresponding to VAR or CONST 

formal parameters must be variables. The contents of actual parameters 

corresponding to V AR formal parameters may be changed by invoking the func­

tion. The contents of actual parameters corresponding to value or CONST for­

mal parameters are not changed. 

5.4. Operators 

All operators are pre-denned. They are represented by the following 

tokens: 

+ 
< 

NOT 
<= 
AND 

* 
>= 
OR 

> 
IN MOD 

-> 
<> 

NOT is a unary operator. It has one operand, the expression to its right. The 
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minus sign (-) can also be a unary operator, if there is no expression to its 

immediate left. Otherwise, it is a binary operator, Binary operators have two 

operands: the expressions to their left and fight. The rest of the operators in the 

above list are binary, 

5.4.1. Opera lor Precedence 

In the absence of parentheses, operands and o~rators arc grouped together 

according to the following levels of precedence. 

Loosest grouping 

OR 
AND 

< <= >= > <> 
+ -- (binary) 

'" MOD I 
NOT - (unary) 

Tightest grouping 

Operators of equal precedence associate from left to right. 

5.4.2. Operator Semantics 

For the purposes of this section, define the base of any type except a 

subrange to be the type itself. Define the base of a subrange to be the base 01 the 

subrange's parent type. 

NOT 

is a unary operator whose operand must have, base type Boolean. "NOT 

expr" is an expression of type Boolean whose value is the negation of the 

value of expr. 
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AND and OR 

are binary operators whose operands must have base type Boolean. "exprl 

AND expr2" and "exprJ OR expr2" are expressions of type Boolean 

whose values are the logical and and or, respectively, of the values of their 

operands. 

(Unary) -

is an operator whose operand must have base type integer." expr" is an 

expression of type integer whose value is the additive inverse of the value of 

expr. 

+, - , and '" 

are binary operators whose operands must be sets, or else of base type 

integer. If exprl and expr2 are of base type integer, then "exprJ + 

expr2," "exprl _. expr2," and "exprl ,', expr2" are expressions of type 

integer whose values are the sum, difference, and product, respectively, of 

the values of their operands. The VAX implementation performs these 

operations in two's complement arithmetic with no checks for overOow, 

If expr J and expr2 are sets, then "expr 1 + expr2," "expr 1 - expr2," and 

"exprl ,', expr2" are expressions whose values are the union, difference, 

and intersection, respectively, of the values of the operands. If neither 

operand has a provisional type, then the types must be the same, and the 

type of the expression will be the same as well. If exactly one operand has 

a provisional type, then it is coerced to the type of the other operand, if pos­

sible. The coercion is not permilled if 1) the two operands have different 

component base types, or 2) the bounds of the component type of the provi­

sional operand do not lie within the bounds of the component type of the 
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other operand. If both operands have provisi~nal types, then the bases of 

their component types must be the same, and the expression has a new pro­

visional type. The component type of the expression has the same base as 

the component types of the operands, and its bounds are the minimum and 

maximum of the bounds of the components of the operands. 

I and MOD 

are binary operalors whose operands must have base type integer. .. exprl ! 

expr2" and "exprJ MOD expr2" are expressions of type integer whose 

values arc the quotient and remainder, respectively. obtained in dividing 

exprl by expr2. The remainder has the sa'lle sign as the dividend (in this 

case exprJ J. 

<, <=, >=, and> 

are binary operators whose operands must either be sets or else have scalar 

base types. If the operands arc sets, then the type rules described under 

.. +, -, and'"" apply. "setl op sel2" is an, expression of type Boolean 

whose value reflects the relationship belWee,n the two sets. In the order of 
," 

the heading above, tht; operators delermine wh~ther setl is a proper subset, 

subset, superset, or proper supersel of sel2. 

If the operands are scalars, then Iheir base types must be the same, and 

.. exprl op expr2" is an expression of lype Boolean whose value indicales 

whether exprJ is less than, less than or equal to, greater lhan, or grealer 

than or equal to expr2. 

= and <> 

are binary operators whose operands must,eilher be sets, be of type link, or 

have scalar base types. If the operands are sets, then the Iype rules 
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described under "+, -, and ,," apply. If the operands are scalars, then 

their base types must be the ·same. In al\ cases, .. exprl op expr2" is an 

expression of type Boolean whose value indicates whether expr 1 and expr2 

have the same value. 

is a binary operator whose operands must have type link. "exprl­

expr2" (read" exprl is similar to expr2") is an expression of Iype Boolean 

'whose value indicates whether the values of exprJ and expr2 arc references 

to opposite ends of the same link. Checking for similarity is not supported 

by the Charlotte implementation. 

_ > is a binary operator whose lef! operand muse have type link and whose righl 

operand must be the name of an entry. "expr - > entryname" is an 

expression of type Boolean whose value indicates whether the link end 

referenced by expr is bound to entryname. (Bindings are discussed in sec­

tion b.9.) 

IN is a binary operator whose right operand must be a set whose component 

base type is the same as the base type of the lef! operand. •• expr 1 IN 

expr2" is an expression of type Boolean whose value indicates whether the 

value of the left operand is a component of the value of the right operand. 

6. Statements 

Statements accomplish the work of a program. They change the contents of 

variables, send messages, and produce OUlpUI data on the basis of internal calcu­

lations, incoming messages, and input data. 



stmt 

otheLstmt 

labeled-stmt 

::== reply 
:: == otheLstmt 
:: == labeLopt labeled-stmt 
:: == communication 
::== io 
:: = hind-stmt 
::== unbind-stml 
::== iLstmt 
:: == case_stmt 
:: == exiLstmt 
:: == wilh_stmt 
:: == retu rn_stmt 
:: == awaiLstmt 
:: == raise_stmt 
:: == selector seLstmLtail 

:: == loop-stmt 
:: == compound-stmt 

6.1. Assignment Statement 

An assignment statement changes the contents· of a variable. 

seLstmLtail 
firstchange 

::== firstchange:== expr 
:: == changeover 
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The left-hand side of the assignment precedes the : == sign. It must be the 

name of a variable. The type of the expression on the right-hand side must be 

compatible with the typeo!" the left-hand side. 

Every type is compatible with itself (compatibility is renexive). A subrange 

and its parent type are compatible with each other. Two subranges are compati­

ble with each other if their parent types are compatible and if their sets of values 

intersect. (Run time checks may be necessary to guarantee that assignments pro­

duce valid values for the left-hand side.) A string constant is compatible with any 

array whose clements have base type chaL A long string may be truncated to fill 

156 

a small array. A short string may be extended with garbage to fill a large array. 

A provisional set type is compatible with any type it could be coerced to match 

(run time checks may again be necessary). Types not covered by these rules are 

not compatible. 

6.2. Procedure Call 

Like a function call, a procedure call provides a set of actual parameters 

to be used for the initial values of the formal parameters of the subroutine. 

Unlike a function, a procedure yields no value. 

seLstmLtail 
Lar~opt 

::== Lar~opt 
.. (expr_lisl) 

Actual parameters must agree in order and number with the formal parameters of 

the procedure. Their types must be compatible with the types of the formals. 

Actual parameters corresponding to VAR or CONST formal parameters must be 

variables. The contents of actual parameters corresponding to V AR formal 

parameters may be changed by calling the procedure. The contents of actual 

parameters corresponding to value or CONST formal parameters are not 

changed. 

6.3. If Statement 

An if statement contains one or more lists of statements, at most one of 

which is executed. The choice between the lists is based on the values of one or 

more Boolean expressions. 



iLstmt 

elsiLiisLopt 

stmLiisLopt 

:: = IF expr TH EN stmLiisLopt elsiLiisLopt els~opt 
END 

:: = ELSIF expr THEN stmLiisLopt elsiLiisLopt 

:: = ELSE stmLiisLopt 

:: = stmt ; stmLiisLopt 
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The first statement list is executed if the first Boolean is true. the second if the 

second Boolean is true, and so forth. The last list. if present. is executed if none 

of the Booleans are true. 

6.4. Case Statement 

Like an if statement. a case statement contains multiple lists of statements. 

It is intended for the commonly-occurring situation in whICh the choice between 

lists is based on the value of a single variable. 

cas~stmt 

case_lisLopt 

defaulLopt 

:: = CASE expr OF cas~lisLopt defaulLopt END 
.. {componenLiist ~ stmLiisLopt case_iisLopt 

OTHERWISE stmLiisLopt 

The expression following the word CASE must be a scalar. The beginning of 

each arm of the case statement has the same syntax as a set expression. The 

component lists must be disjoint. The expressions they contain must have values 

that can be determined at compile time. They cannot involve function calls. 

Exactly one of the statement lists must be executed. If the value of the 

scalar expression is found in one of the component lists. then the immediately 

following statement list is executed. If the value is not found. then the statement 

list following the word OTH ERW ISE (if present) is executed instead. If the 
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value is not found and the OTHERWISE clause is missing, then an error has 

occurred and execution must halt. 

6.5. Loop Statements 

Loop statements cause repetitive execution of a nested list of statements. 

loop-stml 

6.5.1. Forever Loop 

:: = [oreveLloop 
:: = wh ile_loop 
: : = repeaLioop 
: : = foreach_loop 

Execution can only leave a forever loop by means of an exit statement, a 

return statement. or an exception. 

forever_loop LOOP slmLiisLopt EN D 

6.5.2. While Loop 

The header of a while loop contains a Boolean expression. 

::= WHILE expr DO stmLiisLopt END 

The expression is evaluated before every iteration of the loop. If its value is true, 

the statements inside the loop are executed. If it is false. execution continues 

with the next statement following the loop. If the value of the Boolean expression 

is false the first time it is examined, then the loop is skipped in its entirety. 

C..S.3. Repeat Loop 

The footer of a repeat loop contains a Boolean expression. 
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repeaLioop :: = REPEAT stmLlisLopt UNTIL expr 

The expression is evaluated after every iterati<;>n of the loop. If its value is false, 

the statements inside the loop are executed again. If it is true, execution contin­

ues with the next statement following the loop. The statements inside a repeat 

loop are always executed at least once. 

6.5.4. Foreaeh Loop 

The header of a foreach loop introduces a new variable called the index of 

the loop. 

generator 

reversiblc_gen 

FOR EACH IDENTIFIER IN generator DO 
stmLlisLopt END 
[ expr .. expr 1 

.. set 
:: = selector firstchange 
.. REVERSE reversible_gen 

i expr .. expr 1 
selector 

The scope of the index is the statement list inside the loop. The type of the index 

is determined by the loop's generator. A generator can be a range of values, a 

set expression, a name of a set variable, or a name of a scalar type. 

The generator produces a sequence of values for the index. The statements 

inside the foreach loop are executed once for each value. If the generator is a 

range of values, then the type of the indcx will be the base type of the bounds of 

the range (the bounds must have the same base type). The indcx takes on thc 

values in the range in ascending or descending order, depending on whether the 

word REVERSE appears in the loop header. The range may be empty, in which 

case the loop is skipped in its entirety. 
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If the generator is a set expression or a variable of a set type, then the type 

of the index is the base type of the components of the set. The index takes on the 

values of the set in arbitrary ordeL 

If the generator is the name of a scalar type, then that type is the type of the 

index. The index takes on the values of the type in ascending or descending 

order, depending on whether the word REVERSE appears in the loop header. 

The value of the index can be examined but not changed by the statements 

in the loop. It cannot appear on the left-hand side of an assignment, nor can it 

be passed as a VAR parameter to any procedure or function, nor can it appear 

among the request parameters of an accept statement or the reply parameters of a 

connect, call, or receive statement. 

6.6. Exit Statement 

A exit statement can only appear inside a loop or inner compound statement 

(not the body of a subroutine, module, or entry). An exit statement causes con­

trol to jump to the statement immediately following the loop or compound state-

menlo 

exiLstmt 
idenLopt 

EXIT idenLopt 
IDENTIFIER 

Any loop statement or compound statement can be preceded by a label. 

labeLopt < < IDENTIFIER> > 

The scope of the identifier in a labe! is the statement list inside the immediately 

following loop or compound statemenlo The identifier in an exit statement must 

'lave been introduced in a label. Control jumps to the statement immediately 
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following the labeled statement. If the identifier in ihe exit statement is missing, 

then control jumps to the statement immediately lollowing the closest enclosing 

loop or compound statement. 

6.7. Return Statement 

A return statement can only appear inside a subroutine. 

relurn_slml 
expr_opt 

:: = RETU RN expLopl 
::= expr 

If the subroutine is a function, the type, of the return expression must be 

compatible with the type of the function. The function yields the value of the 

expression, and control returns to the evalualion of the expression in which the 

funclion call appeared. If control reaches the end of the body of a function 

without encountering a return statement, then an error has occurred and execu-

tion must halt. 

If the subroutine is a procedure, then the return expression must be miss­

ing. Control continues with tne statement immediatt:ly following the procedure 

call. There is an implicit return statement at the end of the body of every pro-

cedurt:. 

6.g, With Statement 

A with statement makt:s it easier and more emcient 10 access the fields of a 

record. 

with_stmt 
designator 

:: = WITH designator DO stmLlisLopt EN D 
:: = seleclOr lirstchange 

The designator must be the name of a record variablt:. Within the statement list 
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of the with statement, the fields of the record can be named directly, without 

preceding them with the designalOr and a period. The with statement constitutes 

a nested scope; any existing meanings for the names of the l1elds will be hidden. 

6.9. Bind and Unbind Statements 

The bind statement associates link ends with entries. The unbind statement 

undoes associations. 

bind...slmt 
unbind...Slmt 

BIND expLlisl TO idenLiist 
UNBIND expr_list FROM idenLiist 

Each expression in the expression lisl must either be of type link or else be a set 

of component base type link. Each identifier in the identilier list must be the 

name of an entry. Each mentioned link end is bound (unbound} to (from) each 

mentioned entry. If any of the link values are not valid, then an error has 

occurred and execution must hall. 

Binding and unbinding are idempotent operations when performed by a sin­

gle thread of control; a thread does no harm by making the same binding twice, 

or by auempting to break a non-existent binding. Connicting bindings are a 

run-time error, If two threads auempt to bind the same link end to different 

instances of Ihe same entry (same entry lexically, but different environments), or 

if one or more threads auempt to bind the same link end to different entries with 

tht: same name, then an error has occurred and execution must hall. 

The purpose of bindings is discussed under execution (section 7) below. 

6.10. Await Statement 

The await statement is used to suspend ext:cution of the current thread of 

control until a given ccndition holds. 
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awaiLstmt ::= AWAIT expr 

The expression must be of type Boolean. The current thread will not continue 

until the expression is true. If it is false when first encountered, it must be 

changed by a different thread. 

6.11. Compound Statement 

A compound statement is a delimited list of statements with an optional set 

of exception handlers. 

compoun<Lstml 
han<LlisLopt 

when_clause 
morc-whens 

morc-handlers 

exception 

:: = BEGIN stmLlisLop han<LlisLopt END 
:: = when_clause morc-handlers 

WHEN exception morc-whens DO stmLlisLopt 
, exception morc-whens 

:: = when_clause more_handlers 

:: = expr iden Lopt 

Compound statements comprise the bodies of subroutines, modules, and entries. 

They may also be nested anywhere a statement can occur. 

Each exception handler consists of a series of when clauses and a statement 

list. As mentioned in section 3.4, an exception is either an expression of type 

link followed by the name of a buill-in exception class, or a name introduced in 

an exception declaration. The exceptions in the when clauses of a given com­

pound statement need not be distinct. When an exception arises, the first clause 

that matches the exception will be used. Exceptions are discussed in more detail 

in section 7.2. 
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6.12. Raise Statement 

Some exceptions occur spontaneously in the course of communication on 

links. Others arc caused by execution of the raise statement. 

:: = RAISE exception 

An exception associated with a link end is raised in the current thread of control. 

An exception introduced by an exception declaration is raised in each thread with 

an active handler for it. 

6.13. Input/Output Statements 

Input and output statements read and write Ascii data on the standard input 

and output streams. In the Charlotte implementation, these streams connect to 

the (possibly virtual) console terminal of the local node. 

io 

deLlisLopt 

designator-list 
des_IisLtail 

WRITE ( expr-list ) 
READ ( expr des_lisLopt ) 
designator-list 

:: = designator des_IisLtail 
, designator des_IisLtail 

The parameters of read and write have the same format as those of the scallfand 

prillt[ routines in C. The first argument must be a string constant or an array 

whose clements have base type char. The rest of the arguments must be scalars 

or strings. The second and subsequent arguments to read are automatically 

passed by reference. 
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6.14. Communication Statements 

Communication slatements use links to exchange messages with remote 

processes. 

communication :: = connecLstmt 
:: = calLstmt 
:: = accepLstmt 
.. sencLstml 

receive-stmt 

6.14.1. Connect and Call Statements 

The connect slatement requests a remote operation. The call slatement 

invokes a local operation. 

connecLstmt 
calLstmt 
cal Largs_opl 

calLargs 

.. CONNECT IDENTIFIER calLargs_opt ON expr 
::= CALL IDENTIFIER calLargs_opt 
:: = ( calLargs ) 

:: = expT-list I des_lisLopt 
:: = I designatoLlisl 

The identifier following the word CON N ECT or CALL must he the name of an 

entry. The final expression of a connect slalement must have type link. 

The thread of control that executes a connect or call slatement is called a 

client. The client creates a request message from the actual parameters of the 

expression list. sends the message. and waits for a reply message. The reply will 

con lain new values for the actual parameters in the designator list. The request 

actual parameters must agree in number and order with the formal parameters of 

the entry whose name follows the word CONNECT or CALL. Their types must 

be compatible with those of the formals. The reply'actual parameters must be the 

names of variables. They must agree in number and order, and be compatible. 
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with the reply types of the entry. 

6. ]4.2. Accept Statement 

The accept Slatement allows a thread of control to serve a request from 

some other process for a remote operation. 

accepLstmt 

cLar~opt 

reply 

:: = ACCEPT IDENTIFIER cLar~opl ON expr ; 
o_LlisLopt reply 

:: = otheLstmt ; O_LIiSLopt 

( designatoLlist ) 

REPLY e-ar~opt 

The identifier following the word ACCEPT must be the name of an entry. The 

expression following the word ON must have type link. 

The thread of control that executes an accept slatement is called a server. 

The server waits for a request message from a client on the other end of the 

referenced link. When such a message arrives. it will con lain new values for the 

actual parameters in the designator list. The parameters in that list must agree in 

number and order, and be compatible, with the parameters of the entry whose 

name follows the word ACCEPT. 

The server executes the Slatemenl list and returns a reply message 10 the 

client. The actual parameters following the word REPLY musl agree in number 

and order, and be compatible, with the reply types of the entry whose name fol­

lows the word ACCEPT. The actuals are packaged together to form the reply 

message. They are returned to the client on the link specified after the word 

ON - the same link on which the request message arrived. 
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The syntax of the portion of an accept statement beginning with the word 

REPL Y is a valid statement in and of itself; therefore the statements inside the 

accept cannot include a reply. 

0.14.3. Reply Statement 

Accept statements provide for the explicit receipt of requests for remote 

operations. Entries provide for implicit receipt. Within the body of an entry, 

the reply portion of an accept statement can appear by itself. IL actual parame­

ters must agree in number and order, and be -ompatible, with the return types of 

the entry in which the reply statement occurs. The reply message is returned to 

the client on the same link on which the request message arrived. 

If control reaches the end of an entry without replying, or if the thread of 

control executing the entry attempts to reply more than once, then an error has 

occurred and execution must halt. 

6.14.4. Send Statement 

The send statement allows a thread to escape the normal checking of opera­

tion names and message types. 

sencLstmt 
length_opt 

enclosu re-opt 

SEND designator length_opt enclosure-opt ON expr 
< term> 

WITH expr 

The designator following the word SEND must be the name of a variable. The 

expression following the word ON must have type link. A sequence of bytes, 

beginning at the location of the variable, are sent on the referenced link. The 

length option indicates the number of bytes to be sent. If missing, the size of the 
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variable is assumed (and the bytes that are sent are precisely the contents of the 

variable). No interpretation is implied for the transferred bytes; in particular, 

link variables that happen to lie among them do !lor cause the link ends they 

reference to be moved. In the Charlotte implementation, a single enclosure can 

be attached to the message by means of an optional with clause. 

The thread of control that executes a send statement blocks until the mes­

sage is received by some thread in the process on the other end of the link. It 

does /lOr wait for a reply message. 

6.14.5. Receive Statement 

The receive statement is the counterpart of the send statement. It allows a 

thread to escape the normal checking on messages. 

RECEIVE designator length_opt enclosure_opt 
ON expr 

The designator following the word RECEIVE must be the name of a variable. 

The expression following the word ON must have type link. A sequence of bytes 

is received on the referenced link and stored in memory beginning at the location 

of the variable. The length option indicates the number of bytes to be received. 

If missing, the size of the variable is assumed (and the bytes that are received 

constitute new contents for the variable). The enclosure option is provided for 

the benefit of the Charlotte implementation. It must be the name of a variable of 

type link. The contents of the link variable are changed to reference the link end 

that was enclosed in the message. If no end was enclosed, the contents of the 

link variable are changed to nolink. 

The thread of control that executes a receive statement blocks until a mes-

sage arrives. 
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6.14.6. Communication Rules 

Messages sent in the same direction on the same link are guaranteed to 

arrive in order. Messages sent on different links are not. even if they involve the 

same pair of processes. Similarly. the cleanup of the far end of a link that is des­

troyed locally may occur in arbitrary order with respect to the destruction or 

arrival of messages on other links. 

If any of the following rules is broken, then an error has occurred and exe­

cution must hall. 

(l) For all communication statements. the value of the expression that follows 

the word ON must reference a valid link. 

(2) A link end that is bound to an entry, or that is being used in a connect, 

accept, or reply statement may not simultaneously be enclosed in a mes-

sage. 

(3) A link end that is bound to an entry, or that is being used in a connect, 

accept, or reply statement may not simultaneously be used in a send or 

receive statement. 

Rule 3 is not enforced correctly c, the Charlotte implementation. There 

are (unlikely) circumstances under which invalid communication will be allowed 

or valid communication forbidden. In general, a program is safe if it avoids 

using send and receive on links that may occasionally have threads executing con­

nect statements on both ends simultaneously. 

6.14.7. Enclosures 

There are no limitations on the data types that can appear in the argument 

lists of connect, accept, and reply statements. In particular, references to links 
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and data structures that contain references to links can be transferred from one 

process to another. 

If a link variable that references a valid link is enclosed in a request or 

reply message, then the end of the link that it references is moved to the receiving 

process. The contents of the link variable are changed in the receiving process to 

be a valid reference to the moved end of the link. A single link variable can also 

be enclosed in a send statement, but only by means of the with clause (section 

6.14.4). 

A link end that is enclosed in a message becomes inaccessible in the send­

ing process, even if communication is interrupted by an exception. Link vari­

ables that referenced the end are now dangling references; their contents are no 

longer valid. 

A process can own both ends of a link. If it sends a message to itself on 

that link, references to any enclosures still become invalid, just as if they had 

been sent to another process. Link variables that refer to enclosures in call state­

ments or in replies from called entries do not become dangling; they remain 

valid. 

7. Execution 

A L YN X program is a collection of modules. Modules nest. The syntax 

for outermost modules differs slightly from that of other modules. Each outer­

most 1]10dule is inhabited by a single process. 

process 

:: = process> process-list 

MODULE IDENTIFIER in_args_opt; 
deept cpcLstmLopt IDENTIFIER 
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An outermost module has no import and export lists. Its arguments must have 

built-in types. Links in the argument list provide the means for a process to 

communicate with the rest of the world. 

A process begins execution with a single thread of control. The task (,f that 

thread is to execute the initialization code of the process's outermost module. 

Before doing so, the thread recursively executes the initialization code of any 

nested modules. In general, a thread of controi executes the initialization code of 

a module immediately before executing the body of the subroutine, module, or 

entry in which that module is declared. 

New threads of control are created by instantiating entries. Entries are 

instantiated by call statements and by the arrival of messages on link ends bound 

to entries. 

The threads in a process do nOl execute in parallel. A process continues 

with a given thread until it blocks. (Blocking statements are listed in section 

7.1.) It then switches context to another thread. If no other thread is runnable, 

the process walts for an event. An event is the completion of an outstanding 

connect or reply statement, or the arrival of a request on a link end that is bound 

to an entry or for which tht:re are outstanding accept statements. If no events are 

expected, then deadlock has occurred and execution must halt. Events only com­

plete when ail threads are blocked. 

The completion of an event always allows some thread to continue execu­

tion. Only one event completes at a time. The 'nature of the event determines 

which thread runs next. If a cor.nect or reply statement has completed, the 

thread that executed that statement can continue. If a request arrives on a link 

end for which there are outstanding accept statements or bindings to entries, then 
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the contents of the request are examined. 

If the requested operation matches the name of an entry in one of the 

accept statements, then the thread that executed that accept statement can con­

tinue. If the requested operation matches the name of an entry in one of the 

bindings, then a new thread of control is created. That thread begins execution 

in the appropriate entry with mitial values for its parameters taken from the mes­

sage. If outstanding accept statements or bindings exist, but the requested opera­

tion matches none of them, then a built-in exception of class INVALlD_OP is 

raised at the connect statement on the other end of the link and the local process 

waits for another event. 

As mentioned in section 4, the meanings of identifiers visible to a given 

thread of control come and go in LIFO order. Likewise, the management of 

storage for the variables accessible to the thread can be performed in LIFO 

order. Variables declared in an outermost module are created when their process 

is created. Parameters and variables declared local to a subroutine or entry are 

created when control enters the body of their block. Variables declared immedi­

ately inside a non-outermost module are created when control enters the body of 

the closest enclosing subroutine, entry, or outermost module. Different instan­

tiations of the same subroutine or entry do not share local variables. 

Since a process may have many suspended threads of control at a given 

point in time, the variables of a process as a whole cannot be managed on a 

stack. The creation of a new thread of control in an entry creates a new branch 

in a run-time environment tree. The environment of a thread created with a call 

statement is similar to that of a procedure; in addition to (new) local variables, it 

shares the variables in enclosing blocks with its caller. The environment of a 
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thread created in response to a message on a bound link is the same as it would 

have heen if the entry in question had been called locally at the point the bind 

statement was executed. 

Control is not allowed to return from a subroutine whose local variables are 

still accessihle to other threads of control or to potential threads that might be 

created in response to incoming messages. Similarly, a thread does not terminate 

when it reaches the end of the body of its entry; it too waits for nested threads to 

Hnish. A process terminates only after all its threads have finished. A thread 

that is waiting for nested threads does so at the very bottom of the block, after the 

word END. Exception handlers for the block are no longer active. 

7.1. Blocking Statements 

The absence of asynchronous context switches allows the programmer to 

assume that data structures remain consistent until the current thread of control 

blocks. A context switch between the threads of a process can occur 

(1) at every connect, call, accept, and reply statement, 

(2) at every await stalement, 

(3) whenever the current thread terminates, and 

(4) whenever control reaches the end of' a subroutine, entry, or outermost 

module whose local variahles remain acc~ssihle 10 other threads or potential 

threads. 

In the absence of exceptions. a thread that res~mes execution after a con­

text switch continues with the statement immediately following the statement Ihal 

blocked. Functions must not contain blocking state~ents or calls to subroutines 

whose execution may lead to a blocking statemenl. 
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7.2. Exception Handling 

Exceptions interrupt the normal now of control. They come In two 

varieties. 

Built-in exceptions are associated with links. In the process of communica­

tion on link end L, the following exceptions may arise: 

A remote operation was requested, but it was not among those for which 

there were accepts or bindings in the process on the far end of L. 

L TYPE-CLASH 

A remote operation was requested, and the process on the far end of L was 

willing to serve it, but the two processes disagreed on the number, order, 

or types of the request or reply parameters. 

L LOCAL-DESTROYED 

The link end referenced by L was destroyed by a thread of control in the 

local process. 

L REMOTE-DESTROYED 

The other end of the link referenced by L was destroyed by a thread in the 

process that owned it. 

L EXCREPLY 

A remote operation had started, bUI the thread of control that was serving it 

felt an exception that prevented it from replying. 16 

16 There is no corresponding exception for a server whose client feels a 
10cally-deHned exception before it can receive its reply. When a reply statement 
completes without exception, a server can assume that Ihe reply message was 
successfully delivered if and only if the client thread was still alive within the pro­
cess on the far end of the link. The server can he sure that Ihe client's process 
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L LENGTH_CLASH 

An unchecked serul or receive was attempted, but the receiver wanted fewer 

bytes than the sender sen!. The built-in function ACTUALLENGTH will 

return the number of bytes successfully transferred. This number will be 

the smaller of the lengths expected by the two processes. 

Excepuons occur only when all threads arc blocked. Built-in exceptions 

are raised in the thread in which they arise. The handlers of the closest enclos­

ing compound statement are examined in order to see if one of them matches the 

exception that arose. If one docs, then the thread is moved to the beginning of 

the matching handler and is ready to continue. The handler will be executed in 

place of the portion of the compound statement that had yet to be executed when 

the exception occurred. 

If the closesl enclosing compound statement has no handlers, or if none of 

them matches the exception, then the exception propagates to the handlers of 

the nest enclosing compound statement. If the propagation reaches the com­

pound statement comprising the body of a subroutine, then the exception is raised 

at the subroutine's point of call, and propagarion continues. Any nested threads 

that still have access to the local variables of the subroutine are aborted (recur­

sively). Likewise any bindings that might create such threads are broken. 

The propagation of an exception stops when' an. ,appropriate handler is found 

or when the body of an entry or outermost module .is reached. A thread with no 

appropriate handler is aborted. If propagation escapes the scope of an accept 

statement, or if an exception remains unhandled in the body of an entry that has 

not yet replied, then a built-in exception of class EXC_REPL Y is raised at the 

was alivc and that the link between them was still inlac!. 
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corresponding connect statement in the process on the other end of the link. 

In the absence of exceptions, when all threads are blocked, the occurrence 

of an event allows exactly one thread to continue. With exceptions, however, 

more than one thread may be unblocked at once. When a link is destroyed, for 

example, all threads waiting for the completion of communication on the same 

end of that link arc moved to the beginning of their handlers simultaneously, and 

an arbitrary one is chosen to continue first. 

Both built-in and programmer-defined exceptions can arise from use of the 

raise statement. A built-m exception is raised as if it had occurred in communi­

cation in the current thread of control. By contrast, a programmer-defined 

exception is raised in all and Dilly those threads that have an active handler for il. 

Once raised in a thread, a programmer-defined exception propagates like a built­

in exception. The only difference is that the propagation will always encounter 

an appropriate handler by the time it reaches the compound statement in which 

the thread originated, 

When a connect, accept, or reply statement is interrupted by a 

programmer-defined exception, the language makes no guarantee about whether 

or not the requested communication will have occurred. Any of the following 

conditions may hold. 

connect 

J) The operation may not have started. The process at the other end of the 

link does not know anything has happened. 2) The request may have been 

received by thc process at the far end of the link. It is now being served. 

The reply message will be discarded when it arrives. 3) The operation may 

have completed. The reply message will have been discarded. 
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accept 

reply 

I) The operallon may not have started. The process at the other end of the 

link does not know anything has happened. 2) A request may have been 

received. The connected thread (if it still exists) in the process at the other 

end of the link will feel a built-in exception of class EXC_REPL Y. 

I) The operation may not have completed. The connected thread (if it still 

exists) in the process at the other end of the link will feel a built-in excep­

tion of class EXC_REPLY, If the server thread attempts to reply again, 

then an error has occurred and execution must stop. 2) The operation may 

have completed. The process at the other end of the link does not know 

anything has happened. 

In tbe case of connect and reply, link ends that were enclosed (or were to have 

been enclosed) are no longer accessible to the sending process. 

7.3. Message Type Checking 

Since the client and server involved in a remote operation will in general be 

in different processes, they will share no declarations. Run-time checking is 

necessary to assure that they agree on the number, order, and structural 

equivalence of request and reply parameters. 

Structural equivalence is a weaker check than the notion of compatible 

types used in the rest of the language. The built-in types are of course equivalent 

in every process. Enumeration types are equivalent if they have the same 

number of values. Subrange types are equivalent if they have the same bounds 

and the same (built-in) base type. Array types are equivalent if they have 
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equivalent index and element types. Record types are equivalent if their fields 

have equivalent types and occur in the same order. 

If a client requests an operation that the process on the other end of the link 

is willing to serve, but the server would disagree about the number, order, or 

structure of the parameters of the request or reply messages, then a built-in 

exception of class TYPE_CLASH is raised in the client. The server continues to 

wait for a valid, matching request. 

8. Pre-defined Identifiers 

The fOllowing identifiers are pre-defined. 

types: Boolean. integer, char. link 
constants: true. false, nolink 
exception classes: TYPE-CLASH, INVALlD_OP. LENGTH_CLASH. 

EXCREPL Y, LOCALDESTROYED, 
REM OTE-DESTROYED 

functions: newlink. valid, curlink, ACTUALLENGTH 
procedures: destroy 

The types, constants, and exception classes have been discussed elsewhere. 

The function "newiink" takes a single reference parameter of type link and 

yields a value of type link. The parameter and function value return references 

to the two ends of a new link, created as a side effect. 

The function "valid" takes a single value parameter of type link and yields 

a value of type Boolean. The value indicates whether the parameter accesses an 

end of a currently valid link til at can be used in communication or bindings. 

The function "curlink" takes no parameters. It returns a value of type 

link. The value is a reference 10 the link on which the request message arrived 

for the closest lexically-enclosing entry (not the original entry for the current 
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thread of control). If there is no enclosing entry, or if the closest enclosing entry 

was invoked locally with a call statement, then curlink yields nolink. 

The function "ACTU ALLENGTH" takes no parameters. It returns a 

value of type integer. If ACTUALLENGTH is called before the first context 

switch after the completion of a send or receive statement, then the value is the 

number of bytes actually transferred·. In other circumstances, 

ACTUALLENGTH returns garbage. ACTUALLENGTH is intended for use 

in code immediately following a receive statement or in handlers for 

LENGTH_CLASH exceptions. 

The procedure "destroy" takes a single value parameter of type link. It 

destroys the corresponding link. Variables referetiCing either end of the link (in 

any process) become invalid. An attempt to destroy a nil or dangling link is a 

no-op. 

9. Collected Syntax 

The following is an LL( I) grammar for L YN X. Process-list is the start 

symbol. The notation 

A 

is shorthand for 

A 

BIC 

::= B 
::= C 

Epsilon IE) denotes the empty string. 

accepLstmt 

arg.JisLopt 

:: = ACCEPT IDENTIFIER cLar!5-opl ON expr ; 
o_LlisLopt reply 

.. (mode formal more-m_formals) I E 

array_type 
awaiLstmt 
bincLstmt 

body 

calLargs 
calLargLopt 
calLstmt 
case_lisLopt 
case_stmt 
chan;.,;eover 

communication 

comr-lisLopt 
comp_lisLtail 
component 
componenLiist 
componenLtail 
compouncLstmt 
connecLstmt 
consLdec 
consLdeetail 
constant 
cpcLstmLopt 
cLar!5-opt 
deept 
declaration 

defaulLopt 
des_lisLoPI 
deLlisLtail 
designator 
designaLOLlist 
designatoLtail 

::= ARRAY type OF type 
:: = AWAIT expr 
::= BIND expr_list TO idenLiist 
::= UNBIND expLiist FROM idenLiist 
:: = deept compouncLstmt IDENTIFIER 
::= FORWARD I EXTERNAL I REMOTE 
:: = expLlist I deLlisLopt I I designaLOLlist 
:: = ( calLargs) I E 

::= CALL IDENTIFIER calLargLopt 
:: = { componenLiist } stmLlisLopt case_lisLopt I E 

:: = CASE expr OF case_JisLopt defaulLopt EN D 
:: = l expr J designatoLtail 
:: = : IDENTIFIER designatoLtail 
:: = connecLstmt I calLstmt I accepLstmt 
:: = sencLstmt I receive_stmt 
:: = componenLiist I E 

:: = , component comr-lisLtail I E 

:: = expr componenLtaii 
:: = component comp_lisLtail 
:: = .. expr I E 

::= BEGIN stmLlisLopt hancLlisLopt END 
:: = CONNECT IDENTIFIER calLargLopt ON expr 
::=IDENTIFIER=expr; I; 
::= consLdec consLdeetail I E 

:: = CHARCONST I STRINGCONST I NUMBER 
:: = compouncLstmt I END 
:: = ( designaLOLlist) I E 

: : = declaration deept I E 

:: = CONST consLdec consLdeetail 
:: = TYPE type_dec type_deetail 
:: = V AR variable_dec vaLdec_tail 
:: = EXCEPTION idenLiist ; 
:: = subroutine; I entry; I module; 
::= OTHERWISE stmLlisLopt I E 

:: = designaLOLiist I E 

:: = , designator deLlisLtail I E 

:: = selector firstchange 
:: = designator des_lisLtail 
:: = . IDENTIFIER designatoLtail 
:: = changeover I E 

.. I expr_list) I E 

ISO 



else....opt 
elsiLiisLopt 
enclosu re_opt 
entry 
enum_type 
exception 
exiLsunt 
exporLpt 
expr 
expLlist 
expr _lisLlail 
expLopt 
expLtail 
factor 

field 

field-lisLopt 
firstchange 
foreacLloop 

foreveLloop 
formal 
formaLtail 
fun_type_opt 
generator 

hand-liSLopt 
id-lisLtail 
idenLiist 
idenLopt 
iLstmt 
imporLpt 
in_argLopt 
io 

labeLopt 
labeled-stmt 
length_opt 
loop-stmt 

:: = ELSE stmLlisLopt I E 

:: = ELSI F expr TH EN stmLliSLopt elsiLiisLopt I E 

:: = WITH expr I E 
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:: = ENTRY IDENTIFIER' in-.:argLopt oULtypeLOpt ; body 
:: = ( idenLiist ) 
:: = expr idenLopt 
:: = EX IT idenLopt 
:: = EXPORT idenLiist; I E 

:: = term expLtail 
:: = expr expLliSLtail 
:: = ,expLlist I E 

:: = expr I E 

:: = reLop term expLtail I E 

:: = NOT factor I - factor I constant 
:: = set I (expr) I selector seLfactail 
:: == idenLiist : type: I ; 
::= CASE IDENTIFIER: type OF vnLlisLopt END; 
:: = l1e1d field-lisLopt I E 

:: = changeover I € 

::= FOR EACH IDENTIFIER IN generator DO 
stmLlisLopt EN D 

:: = LOOP stmLlisLopt EN D 
.. idenLiiSl: IDENTIFIER 
:: = ; formal formaLtail I E 

::= : IDENTIFIER I E 

:: = [ expr .. expr 1 I selector firstchange 
:: = set I REVERSE revcrsible_gen 
:: = when_clause more....handlers I E 

" ,idenLiist I E 

::= IDENTIFIER id-lisLtail 
:: = IDENTIFIER 1 E 

:: = IF expr TH EN stmLlisLopt elsiLiisLopt else....opt EN D 
::= IMPORTidenLiist; I € 

:: = ( formal formaLtail) i € 

:: = WRITE ( expLiist ) 
:: = READ ( expr deLlisLopt ) 
::= «IDENTIFIER» I € 

:: = loop-sunt I compound-stmt 
: : = < term > I E 

:: = while_loop I foreach_loop 
:: = repeaLioop I foreveLloop 

mode 
module 

more_handlers 
more_m_formals 
more_whens 
o_LlisLopt 
otheLop 
otheLstmt 

oULlypeS_opt 
process 

procesLlist 
raise_stmt 
receive_stmt 
record-type 
reLop 

repeaLioop 
reply 
return_stmt 
reversibie....gen 
seLfactail 
seLstmLtail 
selector 
selector_tail 
send-stmt 
set 
seLlype 
sunt 
stmLlisLopt 
subLtype 
subroutine 

term 
term_tail 
type 

::= VAR I CONST I € 

::= MODULE IDENTIFIER; imporLpt exporLpt 
deepl cp<LstmLopt IDENTIFIER 

:: = when_clause more_handlers I E 

:: = : mode formal more_m_formals I E 

:: = , exception more....whens I E 

:;= other_stmt; o_LlisLopt I € 

::= OR I AND I + I I * I / I MOD 
:: = labeLopl labeled-stml I communication I io 
:: = bind-stmt I iLstmt I case_stmt I exiLstmt 
:: = with_stmt I return_stmt I awaiLstmt I raise_stmt 
:; = selector seLstmLtail I € 

" : idenLiist I E 

::= MODULE IDENTIFIER in_args_opt; 
dec_pt cp<LstmLopt IDENTIFIER 

:: = process, process_list ! E 

::= RAISE exception 
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:: = RECEIVE designator length_opt enclosure_opt ON expr 
:: = RECORD field-lisLopl EN D 
::= IN I - I - > 
::= = I <> I < I <= I > I >= 
:: = REPEAT stmLlisLopt U NTI L expr 
:: = REPLY e....ar!1-opt 
;: = RETU RN eXpLopt 
:: = [ expr " expr 1 I selector 
:: = changeover I (expr_list 1 I E 

:: = lirstchange : = expr I c-ar!1-0pt 
:: = IDENTIFIER selectoLtail 
:: = , IDENTIFIER selector_tail I E 

:: = SEND designator length_opt enclosure....opt ON expr 
:: = { comp-lisLopt } 
;: = SET OF type 
:: = reply I otheLslmt 
:: = sunt ; stmLlisLopt I € 

:: = [ expr .. expr 1 
;:= PROCEDURE IDENTIFIER ar!1-lisLopt; body 
:: = FUNCTION IDENTIFIER ar!1-lisLopt fun_type....opt 

: body 
:: = factor term_tail 
:: = otheLop factor term_tail I € 

.. IDENTIFIER I enum_type I subuype 



type_dec 
type-dec_tail 
vaLdec_tail 
variable_dec 
variant 
vnLlisLopt 
when_clause 
while-loop 
with_stmt 

:: = array_type I recorcLtype I seLlype 
::= IDENTIFIER = type; I ; 
:: = type_dec type-dee-taii I E 

:: = variable_dec vaLdee-taill ,t'o 

:: = idenLiist : type; I ; 
:: = 1 componenLiist } ficlcLlisL~Pt 
:: = variant vnLlisLopt I E 

::= WHEN exception more_whens DO stmLliSLopt 
::= WHILE expr DO stmLlisLopt END 
:: = WITH designator DO stmLlisLopt EN D 
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