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ABSTRACT

In a distributed environment, processes interact solely through the
exchange of messages. Sale, convenient, and efficient communication is of vital
importance, not only for the tightly-coupled components of parallel algorithms,
but also for more loosely-coupled users of distributed resources. Server
processes in particular must be able 10 communicate effectively with clients writ-
ten at widely varying times and displaying largely unpredictable behavior. Such
communication requires high-level language support.

Interprocess communication can be supporied by augmenting a conven-
tional sequential language with direct calls to operating system primitives, but the
result is both cumbersome and dangerous. Convenience and safety are offered
by the many distributed languages proposed to date, but in a form 100 inflexible
to support loosely-coupled applications. A new language known as LYNX over-
comes the disadvantages of both these previous approaches.

The name of the language is a play on its use of duplex communication
links. Links arc a mechanism for the naming, protection, and abstraction of dis-
ributed resources. They allow the connections between processes 1o be
inspected and altered dynamically. Additional language features support the divi-
sion of processes into multiple threads of control. The interaction of threads and
links facilitates the construction of servers.

Experience with LYNX indicates that the language is a significant improve-
ment over existing notations for interprocess communication. An implementation
on 1op of the Charloue distributed operating system presented several interesting
problems and yielded unexpecied insights into the nawre of the

language/operating system interface. A paper design of an implementation for

iii

the SODA distributed operating system was in some ways considerably simpler.

The Charlotte implementation is completc and performs well.
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Introduction

The first task of an introduction is 10 establish definitions. 1 begin with the

words in my title.

I use the adjective distributed to describe any hardware or software involv-
ing inleracting computations on processors that share no physical memory. Dis-
tributed algorithms usually entail concurrency, that is, they require the simul-
taneous existence of more than one thread of control. If these threads can exe-

cute simultaneously we say they proceed in parallel.

The subject area of distributed computing is exceedingly broad. Distributed
hardware always consists of nodes connected by a communication medium,
but beyond that very little is fixed. The nodes may be homogeneous or hetero-
gencous. They may be uniprocessors or multiprocessors. The communication
medium can be almost anything, so long as it remains connected. To stay within
the realm of feasibilily, this dissertation addresses a very narrow subject; a sys-
tems programming language for a multicomputer,

As discussed here, a multicomputer is a connected network of homogene-

ous uniprocessors, used as a single machine.

SHRL LS

A multicomputer is an attraclive hardware option.-for any organization whose

computing load is easily divided into a large number of independent jobs.
Interactive timesharing is an obvious example. So long as there are enough jobs

1o keep its nodes busy, a multicomputer timesharing system offers the advantages

of low response-time variance, graceful degradation in the event of failures,
incremental upgrades, and essentially linear gains in throughput with increasing

coslt.

A multicomputer requires a distributed operating system. Several such
operating  systems have been buil  or are under  construction
{1,2,25,30,41, 69,92, 94, 101, 102, 109]. Most employ a relatively small ker-
nel, replicated on each node, that cooperates with the hardware to provide the
most basic services: communication, low-level device control, and protection.
Such traditional operating system functions as resource and device management,
routing and directory maintenance, and medium- and long-term scheduling can
be provided by server processes that run in the same environment as user pro-
grams.

There are several reasons for separating servers from the kernel. To the
extent that the kernel provides mechanisms while the servers set policy [120],
separation yields the traditional advantages of clarity, ease ol maintenance, and
the avoidance of mistakes. In addition, considerable amounts of memory can be
saved by installing servers on a relatively small number of nodes. Finally, a
server responsible for the management of an entire neighborhood of nodes can
often make beuer decisions on the basis of regional information than it could with
purely local daia.

Together, the kernel and servers constitute the operating system of the mul-
ticomputer, They are systems programs in the sense that they exist 1o make the
system useful, The kernel runs on a barc machine und implements a new,
abstract machine that is safer and easier o use. The servers run on the kernels

and tie their machines together. The kernels live in the familiar world of devices



and interrupts on a uniprocessor. They can be written in a conventional systems

language. The servers, however, posc new and different probiems.

l applicatons
servers
1 Kernel
L N I S O l__.

o C /31 -..

The design of servers is a complicated issue. How many nodes should be
covered by a single server? How should the servers in separate neighborhoods
interact? How do we balance reliability against redundancy? Such questions are
beyond the scope of this dissertation. For my purposes, it suffices to note that
the systems programs for a multicomputer will be critically dependent on safe,
convenient, efficient, and reliable facilitics for interprocess communication.
Both servers and utilities (command interpreters, . compilers, loaders, and so
forth) can be expecled o rely on complicaied protocols for interprocess commun-
ication. Moreover, they must cope with a complicated web of connections to

other processes, a web whose topology changes frequently at run time.

One can consider the inlerconnections among processes on a multicom-
puter to be a generalization of files. In faci, files themselves may be represented
by connections. Where a traditional operating system provides file operations as
primitive services, a distributed operating sysiem will provide communication
primitives instead. The primitives of existing systems vary quite a bit, particu-
larly with regard to naming, addressing, and error semantics. All, however,

allow a user program o request that a message be sent or 1o wait for a message (o

arrive.

1t is tempting to suppose that a systems language for a multicomputer could
provide communication facilities that translate as directly into operating system
primitives as do the file operations of traditional languages. While such a trans-
lation might be possible for processes whose communication is limited to file-like
operations, it is not possible for processes in general or for servers in particular.
The extra compiexity of interprocess communication can be attributed to several

issues.

(1) Convenience and Safetyi
Interprocess communication is more structured than are file operations.
The remote requests of servers and multi-process user programs resemble
procedure calls more than they resemble the transfer of uninterpreted
streams of bytes. Processes need to send and receive arbitrary collections
of program variables, including those with structured types, without sacrif-

icing type checking and withoul explicitly packing and unpacking buffers.

(2) Error Handling and Protection’
Interprocess communication is more error-prone than are file operations.
Both hardware and software may fail. Software is a particular problem,
since¢ communicaling processes cannot in general trust cach other. A tradi-
tional file is, at least logically, a passive entity whose behavior is determined
by the operations performed on it. A connection 1o an arbitrary process is

much more non-deterministic.

! Safety involves detecting invalid actions on the part of a single process.
Protection means preventing the actions of one process from damaging another.



Fault-tolerant algorithms may allow a server o recover from many kinds of
failures. The server must be able to detect those failures at the language
level. 1t must not be vulnerable to erroneous or malicious behavior on the
part of clients. Errors in communication with any one particular client

must not affect the service provided to others.

Concurrent Conversations

While a conventional sequential program typically has nothing interesting to
do while waiting for a file operation to complete, a server usually does have
other work to do while waiting for communication to complete. Certainly,
a server must never be blocked indefinitely while wailing for action on the
part of an untrustworthy client. As described by Liskov, Herlihy, and Gil-
bert [81, 83}, and discussed in chapter 3, it is often easiest to structure a
server as a dynamic set of tasks, one for each uncompleted request. Effi-
ciency constraints preclude scheduling these tasks in the kernel. Unfor-
tunately, a straightforward translation of the communicalion primitives pro-
vided by most operating systems will include operations that block the cal-
ling process, in this case the entire server.

Practical experience testifies to the importance of these issues. The Char-

loue distributed operating sysiem {7,41] is a case in point. As a member of the

Charlotte group | have had the opportunity to study the construction of servers

firsthand: a process and memory manager (the starter), a command interpreter, a

process inter-connector, two kinds of file servers, a name server (the switch-

board), and a terminal driver. Until recently, all were written in a conventional

sequential language [40] peppered with calls to the operating system kerncl. As

work progressed, serious problems arose. The problems can be attributed to the

issues just described.

Charloue servers devote a considerable amount of effort to packing and
unpacking message buffers. The standard technique uses type casts to
averlay a record structure on an array of bytes. Program variables are
assigned 10 or copied from appropriate fields of the record. The code is
awkward at best and depends for correctness on programming conventions
that are not enforced by the compiler. Errors due 1o incorrect interpreta-

tion of messages have been relatively few, but very hard to find.

Every Charlotte kernel call returns a status variable whose value indicates
whether the requested operation succeeded or failed. Different sorts of
failures result in different values. A well-written program must inspect
every status variable and be prepared to deal appropriately with every possi-
ble value. It is not unusual for 25 or 30% of a carefully-written server to

be devoted 1o error checking and handling.

Conversations between servers and clients ofien require a long series of
messages. A typical conversation with a file server, for example, begins
with a request to open a file, continues with an arbitrary sequence of read,
write, and seck requests, and ends with a request to close the file. The
flow of control for a single conversation could be described by simple,
straight-line code except for the fact that the server cannot afford 1o wait in
the middle of that code for a message to be delivered. The explicit inter-
leaving of separate conversations is very hard to read and understand.

The last problem is probably the most serious. In order to maximize con-

currency and protect themselves from recaleitrant clients, Charloue servers break
the code that manages a conversation into many small pieces, separated by

requests for communication. The servers invoke the pieces individually so that



conversations interleave. Every Charlotte server shares the following overall
structure:
begin
initialize
loop
wait for a communication request to complete
determine the conversation to which it applies
case request.type of
A
restore state of conversation
compule
start new request
save state
B:

end case
end loop
end.
The flow of control for a typical conversation is hidden by the global loop. Sav-
ing and restoring stale serves two purposes: it preserves the data structures asso-
ciated with the conversation and it keeps track of the current point of execution in
what would ideally be straighi-line code. Both these tasks would be handled
implicitly if the conversation were managed by an independent thread of control.
Data structures would be placed in local variables and the progress of the conver-

sation would be reflected by ils program counter.

The complexity of interprocess communication has motivaied the design of
a large number of distributed programming languages. Many of these languages
are described in chapter 1. Most of the designs ure convenient and safe. Their
communication statements refer directly to program variables and they insist on
type security for messages. Many provide special mechanisms for error handling

and recovery. Several allow a process to be subdivided into more than one

thread of control.

Unfortunately, none of the languages surveyed was designed with servers in
mind. Most were intended to support communication within a single distributed
program, nol between sepurate programs. The issue of protection is never
addressed. The network of interconnections is often statically deciared. More-
over, without exception, each language proposal either ignores the question of
implementation entirely, or else assumes thal everything running on the machine
will be written in one common language and that the ianguage implementor will

have complete control of that machine down 1o the hardware level.

For servers, a language must maintin the flexibility of explicit kernel calls
while providing exiensive features to make those calls safer and more convenient.
A language that accomplishes these aims is introduced in chapter 2. Known as
LYNX, the language is specifically intended for the loosely-coupled processes
supported by the kernel of a distributed operating system. The name of the

language is derived from its use of communication channels called links.

Links are provided as a built-in data type. A link is used lo represent a
resource. The ends of links can be moved from one process to another. Type
security 15 enforced on a message-by-message basis. Servers are {ree to rear-
range their interconnections in order to meet the needs of a changing user com-
munity and in order 1o control access to the resources they provide. Multiple
conversations are supported by integrating the communication facilities with the

mechanism for creating new threads of control.

The thesis of this dissertation is two-fold: first, that the LYNX program-

ming language is a significant improvement over existing notations for certain



kinds of distributed computing; and second, that it can be effectively implemented
on top of an existing operating system. The first half of the thesis is defended in
chapter 3. Example programs demonstrate the use of LYNX for problems not
solvable with existing distributed languages. Comparisons o equivalent sequen-
tial code with direct calls 10 operating system primitives show that LYNX is safer,

easier to use, and casier 1o read,

The second claim is defended in chapter 4. Two implementations of LYNX
are described, one for Charlotte and one for a system called SODA [69]. The
implementation effort encountered several interesting problems and yielded some
unexpected insights into the nature of the language/operating system interface.
Though the design of LYNX was based largely on the primitives provided by
Charlotte, the SODA implementation is in some respects considerably simpler.
The SODA implementation exists on paper only: the one for Charlote is in

actual use.

10

Chapter 1

A Survey of Existing Distributed Languages

1. Introduction

It has been recognized for some time that certain algorithms (operating sys-
tems in particular) are most elegantly expressed by concurrent programs in
which there are several independent and, at least in theory, simultaneously active
threads of control. On the assumption that the threads interact by accessing
shared data, a whole body of research has evolved around methods for synchron-
izing that access [19, 20, 28, 35, 36, 52,56, 57]. Ewven on a conventional unipro-
cessor, cffective synchronization is crucial in the face of context switches caused

by interrupts.

With the development of multicomputers it has become practical to distri-
bute computations across multiple machines. This prospect has lent a new
urgency to the study of distributed programs — concurrent programs in which
separate threads of control may run on separate physical machines. There are

two reasons for the urgency:

(1)  On a mulucomputer, a distributed program may solve a problem substan-

tially faster than could its sequential counterpart.

(2) The sysiems programs for a multicomputer must by their very nature be

distributed.

Unforwnately, there is no general consensus as to whalt lunguage features
are most appropriate for the expression of distributed algorithms. Shared data is

no longer the obvious approach, since the underlying hardware supports message
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passing instead. The aliernatives proposed to date show a remarkable degree of
diversity. This survey atternpts 1o deal with that diversity by developing a frame-
work for the study of distributed programming languages. The framework allows
existing languages to be compared for semantic (as opposed to purely cosmetic)
differences. 1t also facilitates the exploration of new and genuinely different pos-
sibilities.

Section 2 presents the framework. Section 3 uses that framework to
describe a number of existing languages. No attempt is made to survey tech-
niques for managing shared data. (Good surveys have appeared elsewhere [6].)
The evaluations are intentionally biased towards lunguages that lend themselves (o
implementation on top of a distributed operating system, where message passing

is the only means of process interaction.

2. The Framework
This section discusses major issues in distributed language design:

processes and modules
-- communication paths and naming
- synchronization
- implicit and explicit message receipl
- message screening and multiple rendezvous
- miscellany: shared data, asynchronous receipt, imeout, reliability

The list is incomplete. The intent is to focus on those tssues that have the most
profound effects on the flavor of a language or about which there is the most

controversy in the current literawre.

12

2.1. Processes and Modules

A process is a iogical thread of control. It is the working of a processor,
the execution of a block of code. A process is described by a state vector that
specifies its position in its code, the vatues of its dat, and the stats of its inter-
faces to the rest of the world.

A module is a syntactic construct that encapsulates data and procedures. A
module is a closed scope. [t presents a limited interface 10 the outside world and

hides the details of its internal operation.

In a sense, a module is a logical computer and a process is what that com-
puter does. Several language designers have chosen 1o associate exactly one pro-
cess with each module, confusing the difference between the two. It is possible
to design languages in which there may be more thun one process within a
module, or in which a process may travel between modules. Such languages
may pretend that the processes within a module execute concurrently, or they
may acknowledge that the processes take turns. In the latter case the language
semantics must specify the circumstances under which exccution switches from
one process to another. In the lformer case the language must provide some
other mechanism for synchronizing access 1o shared data.

Modules are static objects in that they are defined when a program is writ-
ten. Some languages permit them to be nested like Algol blocks; others insist
they be disjoint. In some cases, it may be possible to create new instances of a
module at run tme. Separate instances have separate sets of data.

Some languages insist that the number of processes in a program be fixed
at compile ume. Others allow new processes to be created during execution.

Some languages insist that a program’s processes form a hierarchy. Special
£ prog p y
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rules may govern the relationships between a process and its descendants. In
other languages, all processes are independent equals. A process may be permit-
1ed to terminate itself, and perhaps to terminate others as well. It will usually

terminate automatically if it reaches the end of its code.

2.2. Communication Paths

The most important questions about a distributed language revolve around
the facilities it provides for exchanging messages. For want of a better term, |
define a communication path to be something with one end into which senders
may insert messages and another end from which receivers may extract them.
This definition is intentionally vague. 1t is meant to encompass a wide variety of
language designs.

Communication paths establish an equivalence relation on messages.
Senders assign messages to classes by naming particuiar paths (see section 2.3).
Receivers accept messages according to class by selecting particular paths (see
section 2.6.1). Messages sent on a common path enjoy a special relationship.
Most languages insert them in a queue and guarantee receipt in the order they

were sent. Some languages allow the queue to be reordered.
One important question is most easily explored in terms of the abstract
notion of paths: how many processes may be attached to each end? There are

four principal op(ions:2

2 These four options correspond, respectively, to the distributed operating
system concepts of input ports, output ports, free poris, and bound ports. | have
avoided this nomenclature because of the conflicting uses of the word ‘‘port’’ by
various language designs.

(hH

2)

(3

14

Many Senders, One Receiver

This is by far the most common approach. It mirrors the client/server rela-
tionship found in many useful algorithms: a server (receiver) is willing to
handle requests from any client (sender). A single server caters to a whole
community of clients. Of course, a server may provide more than one ser-
vice; it may be on the receiving end of more than one path. Separate paths
into a receiver are commonly called entry points. In theory, one could get
by with a single entry point per server. The advantage of multiple entries is
that they facilitate message screening (sce section 2.6.1) and allow for strict
type checking on each of several different message formats. From an
implementor’s point of view, multiple entry points into a single recciver are
handled in much the same way as multiple senders on a single communica-
tion path.

One Sender, Many Receivers

This approach is symmetric to that in (1). It is seldom used, however,

because it does not reflect the structure of common algorithms.

Many Senders, Many Receivers

This is the most general approach. In its purest form it is very difficult to
implement. The problem has to do with the mainienance of bookkeeping
information for the path. In the one-receiver approach, information is con-
veniently stored at the receiving end. In the one-sender approach, it is kept
at the sending end. With more than one process at cach end of the path,
there is no obvious location, If all information about the status of the path
is stored on a single processor, then all messages will end up going through
that intermediary, doubling the total message traffic. Hf the information is

distributed instead, there will be situations in which either a) a sender must
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(at least implicitly) query all possible recgivers to see if they want its mes-
sage, or b) a receiver must query all possible senders 10 see if they have

messages to send.

Neither option is particularly desirabie. Protocols exist whose communica-
tion requirements are lincar in the number of possible pairs of
processes [12,26], but this is generally too costly. One way out is 1o res-
trict the model by insisting that multiple processes on one end of a path
reside on a single physical machine. This approach is waken by several
languages: messages are sent 10 modules, not processes, and any process

within the module may handle a message when it arrives,

(4) One Sender, One Receiver

This approach is the ecasiest to implement, but is acceptable only in a

language that allows programmers to refer conveniently 10 arbitrary sets of

paths. In effect, such a language allows the programmer to ‘‘tie’” a

number of paths together, imitating one of the approaches above.

The preceding descriptions are based on the assumption that each individual
message has exactly one sender and exactly one receiver, no matter how many
processes are attached o each end of the communication path. For some appli-
cations, it may be desirable to provide a broadcast facility that allows a sender to
address a message to all the receivers on a path, with a single operation. Several
modern network archilectures support broadcast in hardware {104]. Unfor-
wnately, they do not all guaraniee reliability. Broadcast will be complex and
slow whenever acknowledgments must be returned by each individual receiver.

Several language and operating system designers have atlempted to imple-

ment send and receive as symmelric operalions {se¢ in particular sections 3.4 and
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4.3.2). Despite their efforts, there remains an inherent asymmetry in the
sender/receiver relationship: data flows one way and not the other. This asym-
metry accounts for the relative uselessness of one-many paths as compared to
many-one. 1L also accounts for the fact that no one even discusses the symmetric
opposite of broadcast: a mechanism in which a receiver accepts identical copies

of a message from all the senders on a path at once.

2.3. Naming

In order to communicate, processes need 1o be able (o name each other, or
at least 10 name the communication paths that connect them. Names may be
established at compile time, or it may be necessary o create them dynamically.
Naming is closely relaied 1o processes, modules, and communication paths.

Several comments should be made:

® In the typical case of many senders/one receiver, it is common for the
sender lo name the receiver explicitly, possibly naming a specific path
tentry) into the receiver if there is more than one. Meanwhile the receiver
specifies only the entry point. It accepts a message from anyone on the
other end of the path.

(] Compiled-in names can only distinguish among things that are distinct at
compile ime. Multiple instantiations of a single block of code wili require
dynamically-created names.

® In languages where messages are sent to modules, it may be possible for
names (of module entry points) 1o be established at compile time, even
when the processes that handle messages sent to the module are dynami-

cally created. Processes within a module may be permitted 10 communicate
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with each other via shared data.

Several naming strategies appropriate for use among independent programs
on a distributed operating system are not generally found in programming
language proposals. Finkel [43] suggests that processes may refer o each other
by capabilities, by reference to the facilities they provide, or by mention of names
known to the operating system. The link mechanism described in chapter 2 is a
similar approach [100]. It is intended to support communicalion between
processes that are designed, compiled, and loaded at widely disparate times. It
allows much later binding than one would usually need for the pieces of a single

program.

2.4. Synchronization

Since all interprocess interaction on a multicomputer is achieved by means
of messages, it is neither necessary nor even desirable for a language to provide
synchronization primitives other than those inherent in the facilities for commun-
ication. The whole question of synchronization can be treated as a sub-issue of
the semantics of the send operation [29,43, 79). There are three principal possi-
bilities:*

(1y No-Wait Send

In this approach the sender of a message continues execution immedialely,

even as the message is beginning the journey o wherever it is going. The

operating system or run-time support package must buffer messages and

In any particular implementation, the process of sending a message will re-
quire a large number of individual steps. Conceivably, the sender could be un-
blocked after any one of those steps. In terms of programming language seman-
tics, however, the only steps that mater are the ones that are visible 1o the user-
level program.

(2)

(3)
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apply back-pressure against processes that produce messages too quickly. If
a communication error occurs (for example, the intended recipient has ter-
minated), it may be difficult to return an error code to the sender, since
execution may have proceeded an arbitrary distance beyond the point where

the send was performed.

Synchronization Send

In this approach the sender of a message waits until that message has been
received before continuing execution. Message traffic may increase, since
the implementation must return confirmation of receipt 1o the sender of
each message. Overall concurrency may decline. On the other hand, it is
easy o return error codes in the event of failed transmission. Further-
more, there is no need for buffering or back-pressure (though messages
from separate processes may still need to be queued on each communica-

tion path).

Remote-Invocation Send

In this approach the sender of a message waits until it receives an explicit
reply from the message’s recipient. The name ‘‘remote invocation’” is
meant (o suggest an analogy to calling a procedure: the sender transmits a
message (input paramelters) to a remote process that performs some opera-
tion and returns a message (oufput parameters) to the sender, who may then
continue execution. The period of time during which the sender is
suspended is referred o as a rendezvous. For applicalions in which it
mirrors the natural structure of the algorithm, remote-invocation send is
both clear and efficient. Both the original message and the (non-blocking)
rvcply carry useful information; no unnecessary confirmations are involved.

As Liskov |79] points out, however, many useful algorithms cannot be
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expressed in a natural way with remote invocation.

The choice of synchronization semantics is one of the principal areas of
disagreement among recent language proposals. Section 3 includes examples of

all three strategies.

2.5. Implicit and Explicit Message Receipt

Lauer and Needham [75] and Cashin [29] discuss a duality between
‘*message-oriented’” and  ‘‘procedure-oriented’’ interprocess communication.
Rather than semantic duals, I maintain that the two approaches are merely vary-
ing syntax for the same underlying functionality. What is at issue is whether

message receipl is an explicit or an implicit operation.

In the former case, an active process may deliberately receive a message,
much as it might perform any other operation. In the latter case, a procedure-
like body of code is activated automatically by the arrival of an appropriate mes-
sage. Either approach may be paired with any of the three synchronization
methods.

Implicit receipt is most appropriate when the functions of a module are
externally driven.  An incoming message triggers the creation of a new process 10
handle the message. After the necessary operations have been performed, the
new process dies. Alternatively, one may think of the message as awakening a
sleeping process that performs its operations and then goes back to sleep, pending
arrival of another message. There may be one such ‘‘sieeping process’ for each
of the module’s entry procedures, or it may be more convenient Lo imagine a sin-
gle sleeper capable of executing any of the entries. I remote-invocation send is

used, it may be inwitive to think of the “‘soul’ of a sender as traveling along
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with its message. This soul then animates the receiving block of code, eventually
returning to its original location (along with the reply message), and leaving that
code as lifeless as before. Each of these options suggests a different implementa-
tion.

Implicit receipt is a natural syntax for the client/server model. It is beuer
suited than the explicit approach to situations in which requests may arrive at
unpredictabie times or in which there is no obvious way 1o tell when the last mes-
sage has arrived. Explicit receipt, on the other hand, is more appropriate for
situations that lack the client/server asymmetry. It is useful for expressing com-
munication among active, cooperating peers, where both parties have useful work
to do between interactions. An obvious example is a producer/consumer pair in
which both the creation of new data and the consumption of old are time-

consuming operations. (See section 9.1 of chapter 2.)

The choice of syntax for message receipt is a second major area of
disagreement among recent language proposals. (Synchronization was the first.)
StarMod (section 3.11) and NIL (section 3.16) provide both implicit and explicit

receipl. Most languages, however, provide a single option only.

2.6. Details of the Receive Operation

As noted above, most languages permit multiple senders but only one
receiver on each communication path. In addition, they typically allow a process
1o be non-deterministic in choosing which entry point to serve next; instead of
having 1o specify a particular path, a receiver is free 10 accept messages from any

of a varicty of paths on which they may be present.?  With remote-invocation

4 Among the languages discussed in section 3, CSP/80 alone [64) provides a
similar degree of flexibility for senders. Though it permits only a single sender
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send, a receiver may even accept new messages before replying to old. This sec-
tion discusses lechniques for choosing beiween available messages and for

managing more than one concurrent rendezvous.

2.6.1. Message Screening

Assume for the moment that a process may form the receiving end of
several communication paths. Further, assume that each of these paths may
carry a variety of messages from a variety of senders. In a completely non-
deterministic situation, a receiver might be expected to cope with any message
from any process on any path. This burden is usually unacceplable. A process
needs to be able to exercise control over the sorts ‘of messages it is willing 10
accept at any particular time. It nceds to qualify its non-deterministic options

with guards that specify which options are open and which are currently closed.

Semantics

There is a wide range ol options for message screening semantics. Every
language provides some means of deciding which message should be received
next. The fundamental question is: what factors may be considered in reaching
the decision? The simplest approach is to “‘hard-code’ a list of open paths. In
effect, this approach allows the decision to be made at compile time. Most
languages, however, allow at least part of the decision 10 be made at run time.
Usually, the programmer will specify a Boolean condition that must evaluate to

““true’’ before a particular message will be accepted. The question now

and receiver on each communication path, the language allows both senders and
receivers to choose among several alternative paths, depending on whether any-
one is listening on the other end. This added flexibility entails implementation
problems similar to those discussed in section 2.2 (3). For a more complete dis-
cussion of CSP, see section 3.4.

22

becomes: on what may the condition depend? 1t is not difficult to implement
guards involving only the local variables of the receiver. Complications arise
when a process tries 1o base its choice on the contents of the incoming messages.
In most languages, messages arriving on a particular communication path are
ordered by a queue. In a few cases, it may be possible to reorder the queues. In
any case, a simple implementation is still possible if path selection or queue ord-
ering depends on some particular well-known slot of the incoming message.
PLITS and ZENO for example, allow a process to screen messages by sender

name (path) and transaction slot {sce section 3.7).

In the most general case, a language may permit a receiver to insist on
predicates involving arbitrary ficlds of an incoming message. The implementa-
tion has no choice but o go ahead and receive a message sight unseen, then look
at its contents 1o sec if it really should have done so. Unless unwanted messages
can be returned lo their sender, the receiver may require an arbitrary amount of

buffer space.

Syntax of Guards
The precise way in which guards are specified depends largely on the
choice between implicit and explicit message receipt. With implicit receipt, there
are two basic oplions:
(1) The language may allow the execution of an entry procedure to be
suspended until an arbitrary Boolean expression becomes true.
(2) The language may allow the procedure to be suspended on a condition

queue or semaphore, with the assumption that action in some other pro-

cedure will release it when it is safe to continue.
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The first approach is the more general of the two. The second is easier 1o
implement and is generally more efficient. Brinch Hansen discusses the trade-
offs involved { [23], pp. 15-21). Both approaches assume that execution of an
entry procedure can be suspended afier examining an incoming message. Since
messages will differ from one instance of the procedure to the next, separate
activation records will be required for cach suspended entry. Campbell and
Habermann [28] suggest the simpler.{and more restrictive) approach of allowing
guards to involve local data only, and of insisting they occur at the very begin-
ning of their entry procedures. A lunguage that ook such an approach would be

able to avoid the separate activation records. 1t would also be less expressive.

Guards are more straightforward with explicit receipt. The most common
approach looks something like a Pascal case statement, with separate clauses for
each possible communication path. Each clause may be preceded by a guard.
The physical separation of clauses allows messages of different types to be
received into different local variables. In a language with looser message typing
(for example PLITS and ZENO, of section 3.7), there may be a statement that
specifies receipt into a single variable from any of a set of open paths. An ordi-
nary sequential case statement then branches on some f{ield of the message just

received.

2.6.2. Multiple Rendezvous

In a language using remote-invocation send, it-is often useful for a receiver
1o be in rendezvous with more than one sender at a time. One ingenious applica-
tion involves a process scheduler [22, 87]. The scheduler has two entry points:
schedule_me and I'm_done. Every process with work to do calls schedule_me.

The scheduler remains in rendezvous with all of these callers but one. While
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that caller works, the scheduler figures out which process P has the next-highest
priority. When the worker calls I'm_done, the scheduler ends its rendezvous

with P.

In a language with both remote-invocation send and implicit message
receipl, a module may be in rendezvous with several senders at one time. 1f each
entry procedure runs until it blocks, then the module is a monitor {57}, If the
implementation time-siices among entries, or if it employs a multiprocessor with
common store, then the language must provide additional mechanisms for con-

trolling access to the module’s common data.

Multiple rendezvous is also possible with explicit message receipt. Several
languages require the receive and reply statements to be paired syntactically, but
allow the pairs to nest. in such languages the senders in rendezvous with a sin-
gle receiver must be released in LIFO order. If senders are to be released in
arbitrary order, then the reply (or disconnect) statement must be able to specify
which rendezvous 10 end. Mutual exclusion among the senders is not an issue,
since only one process is involved on the receiving end. Mao and Yeh [87] note
that careful location of a disconnect statement can minimize the amount of time a
sending process waits, leading to higher concurrency und better performance.
Similar wning is not generally possible with implicit receipt; senders are released
implicitly at the end of entry procedures. It would be possible 1o provide an
explicit disconnect with implicit receipt (1 do so in chapter 2), but it would tend to

violate the analogy to sequential procedure calls.

2.7. Side Issues

The issues discussed in this section are less fundamental than those

addressed above. They fall into the category of convenient ‘‘extra features’—
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things that may or may not be added 10 a language afler the basic core has been

designed.

(1

2)

(3

Shared Data

In order to permil reasonable implementations on a multicomputer, a distri-
buted language must in general insist that interaction among processes be
achieved by means of messages. For the sake of efficiency, however, a
language may provide for shared access to common variables by processes
guaranteed 10 reside on the same physical machine. It may be necessary to
provide additional machinery (semaphores, monitors, critical regions, etc.)

to control ‘‘simulianeous’” access.

Asynchronous Receipt

Several communication schemes place mo bound on the length of time that
can pass before a message is noticed at the receiving end of its communica-
tion path. There is certainly no such bound for explicit receipt. There are
times, however, when it is desirable to receive data as soon as it becomes
available. One solution is 10 equip a receiving module with so-called
immediate procedures [43] — special entry. procedures that guaraniee
prompt execution. Immediate procedures imply the existence of shared
data, since multiple processes may be active in the same module and since
execution may switch from one process to another at unpredictable times.
Timeout and Related Issues

In most proposals employing synchronization or remote-invocation send,
the sender of a message may be suspended indefinitely if no one is willing
to listen 1o it. Likewise a process that atiempls to receive a message may

have to wait forever if no one sends it anything. Such delays may be

4)

(5)
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acceplable in a distributed program where communication paterns are care-
fully defined and each process is able 10 assume the correctness of the oth-
ers. In certain real-time applications, however, and in language systems
that atempt to provide for reliability under various sorts of hardware
failure, it may be desirable to provide a mechanism whereby a process that
waits *‘too long’’ times out and is able to take some sort of corrective

action.

One particular sort of timeout is especially useful, and may be provided
even in cases where the more general facility is not. By specifying a
timeout of zero, a process can express its desire 10 send or receive a mes-
sage only when such a request can be satisfied immediately, that is when
some other process has already expressed its willingness to form the other
end of the interaction.

Robustness

When persistent hardware failures are a serious possibility, or when a pro-
gram is expecied (o respond in a reasonable fashion 1o unprediciable real-
time events, il may not be possible to hide all errors from the application
layer. Programming languages may need to provide special mechanisms
for high-level recovery. Liskov’s Extended CLU and Argus (section 3.8)
are noteworthy examples. The problems involved in providing for reliabil-
ity in distributed programs have nol been adequately investigated. Like
many researchers, | ignore them.

Unreliable Send

In certain applicauons, particularly in the processing of real-time data,

speed may be more important than reliability. It may be more appropriate
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to send new data than 1o resend messages that fail. For such applications, a
language may provide fast but unreliable messages. Unreliable broadcast
is particularly interesting, since it can be provided on some architectures at

no more cost than point-to-point communication.

3. Several Languages

This section surveys more than two dozen distributed language proposals.
For each, it describes how the language fits,into the {ramework of section 2 and
then mentions any features that are particularly worthy of nole. Languages are
considered in approximate order of their publication. For those without the pati-
ence of a saint, | particularly recommend the sections on monitor languages,

CSP, Distributed Processes, Argus, and Ada.

3.1. Path Expressions

Path Expressions {28, 53] are more of a mechanism than a language. They
were invented by Campbell and Habermann in the early 1970’s 10 overcome the
disadvantages of semaphores for the protection of shared data. Rather than trust
programmers to insert P and V operations in their code whenever necessary, the
designers of path expressions chose to make synchronization rules a part of the

declaration of cach shared object.

The path expression proposal makes no mention of modules, nor does it say
much about the nature of processes. It specifies only thal processes run asyn-
chronously, and that they interact solely by invoking the operations provided by
shared objects. Like the monitors described below, path expressions can be
forced into a distributed framework by considering a shared object to be a passive

entity that accepls requests and rewrns replics. Under this model, the proposal
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uses remote-invocation send with implicit message receipt. Communication paths
are many-one. There may be several identical objects. Processes name both the

object and the operation when making a request.

The declaration of a shared object specifies three things: the internal struc-
ture of the object, the operations that may be invoked from outside and that are
permitted to access the internal structure, and the path expressions that govern
the synchronization of invocations of those operations. There is no convenient

way to specify an operation that works on more than one object at a time.

A path expression describes the set of legal sequences in which an object’s
operations may be executed. Syntactically, a path expression resembles a regular
expression. ‘‘(A, B); {C}; D, for exampie, is a path expression that permits a
single execution of either A or B (but not both), followed by one or more simul-
taneous executions of C, followed in turn by a single execution of D. There is
no restriction on which executions may be performed on behall of which
processes. Reference [28] includes a proof that path expressions and semaphores

are equally powerful; each can be used to implement the other.

Path expression solutions 1o such problems as access control for readers
and writers [33] can be surprisingly subtle and complex. Robert and Verjus [95]
have suggested an alternative syntax. Like Campbell and Habermann, they dis-
like scatlering synchronization rules throughout the rest of the code. They prefer
lo group the rules together in a control module that authorizes the executions of
a set of operations. Their synchronization rules are predicates on the number
of executions of various operations that have been requested, authorized, and/or
completed since the module was initialized. Their solutions to popular problems

ire both straightforward and highly intitive.
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3.2. Monitor Languages

Monitors were suggesied by Dijkstra [36], developed by Brinch Han-
sen [20], and formalized by Hoare [57] in the carly 1970s. Like path expres-
sions, monitors were intended to regularize the access (o shared data structures
by simultancously active processes. The f{irst languages 1o incorporate monitors
were Concurrent Pascal [21], developed by Brinch.Hansen, and SIMONE [67},
designed by Hoare and his associales at Queen’s University, Belfast. Others
include SB-Mod |13}, Concurrent SP/k [59, 60}, Mesa [74, 89], Extended
BCPL [86], Pascal-Plus [112], and Modula [115]1 Of the bunch, Concurrent
Pascal, Modula, and Mesa have been by far the most influential. SIMONE and
C-SP/k are strictly pedagogical languages. Pascal-Plus is a successor 1o
SIMONE. SB-Mod is a dialect of Modula. C-SP/k has been succeeded by a
production-quality language called Concurrent Euclid [61].

In all the languages, a monitor is a shared object with operations, internal
stale, and a number of condition queues. Only one operation of a given monitor
may be active at a given poinl in ume. A process that calls a busy monitor is
delayed unltil the monitor is free. On behalf of its calling process, any operation
may suspend itself by wairing on a queue. An operation may aiso signal a
queue, in which case one of the waiting processes is resumed, usually the one
that waited first. Several languages extend the mechanism by allowing condition
queues to be ordered on the basis of priorities passed to the wait operation.

Mesa has an even more elaborate priority scheme for the processes themselves.
Monitors were originally designed for implementation on a conventional

uniprocessor. They can, however, be worked into a distributed framework by

considering processes as aclive entities capable of sending messages, and by con-
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sidering monitors as passive entities capable of receiving messages, handling
them, and returning a reply. This model agrees well with the semantics of Con-
current Pascal and SIMONE, where monilors provide the only form of shared
data. 1t does not agree as well with other languages, where the use of monitors
is optional. Distributed implementations would be complicated considerably by

the need to provide for arbitrary data sharing.

Concurrent Pascal, SIMONE, E-BCPL, and C-SP/k have no modules. In
the other four languages surveyed here, monitors are a special kind of module.
Modules may nest. In Modula and SB-Mod, the number of modules is fixed at
compile time. In Pascal-Plus and Mesa, new inslances may be created dynami-
cally. Pascal-Plus modules are called envelopes. They have an unusually
powerful mechanism for initialization and finalization. Modules in SB-Mod are
declared in hierarchical levels. Inter-module procedure calls are not permitted
from higher to lower levels. SIMONE, C-SP/k, and Pascal-Plus provide built-in

mechanisms for simulation and the manipulation of pseudo-time.

Concurrent Pascal and C-SP/k programs contwin a fixed number of
processes. Neither language allows process declarations 1o nest, but Concurrent
Pascal requires a hierarchical ordering (a DAG) in which each parent process
lists explicitly the monitors to which its children are permitted access. In the six
other languages, new processes can be created at run time. Process declarations
may be nested in Pascal-Plus. The nesting defines an execution order: each
parent process starts all its children at once and waits for them to finish before
proceeding. In Mesa, process instances are created by forking procedures.
Mesa compounds the problems of shared data by allowing arbitrary variables to
be passed to a process by reference. Nothing prevents an inner procedure from

passing a local variable and then rewrning immediately, deallocating the variable



and turning the reference into a dangling pointer.

Under the distributed model described above, monitor languages use
remote-invocation send with implicit receipt. Communication paths are many-
one. In languages that permit muliiple monitors with identical entries (Con-
current Pascal, Pascal-Plus, and Mesa), the sender must name both the monitor
and entry. It also names both in SIMONE, but only because the bare entry
names are not visible under Pascal rules for lexical scope. In E-BCPL the
sender calls the monitor as a procedure, passing it the name of the operation it

wishes to invoke.

The precise semantics of mutual exclusion in monitors are the subject of
considerable dispute [6, 54, 62, 68, 71, 85,91, 114]. Hoare’s original propo-
sal [57] remains the clearest and most carefully described. It specifies two book-
keeping queues for each monitor: an entry queue and an urgent queue. When
a process executes a signal operation from within a monitor, it wails in the
monitor’s urgent queue and the first process on the appropriate condition queue
obtains control of the monitor. When a process ieaves a monitor it unblocks the
first process on the urgent queue or, if the urgent queue is empty, it unblocks the

first process on the entry queue instead.
These rules have two unfortunate consequences:

(1) A process that calls one monitor from within another and then waits on a
condition leaves the outer monitor locked. [f the necessary signal operation

can only be reached by a similar nested call, then deadlock will result.

(2) Forcing the signaler to release control to some other waiting process may
result in a prohibitive number of context switches. It may also lead to

situations in which the signaler wakes up to find that its view of the world
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has been altered unacceptably.

One solution 1o the first problem is to release the locks on the outer moni-
tors of a nested wait. This approach requires a means of restoring the locks
when the waiting process is finally resumed. Since other processes may have
entered the outer monilors in the intervening time, those locks might not be
available. On a uniprocessor, the problem can be solved by requiring all opera-
tions of all monitors to exclude one another in time. Outer monitors will thus be
empty when an inner process is resumed. Most of the languages mentioned here
use global monitor exclusion. The exceptions are Concurrent Pascal, Mesa, and
SB-Mod.

Concurrent Pascal and Mesa provide a separate lock for each monitor
instance. Nested calls leave the outer monitors locked. SB-Mod provides a lock
for each set of monitors whose data are disjoini. There are two forms of inter-
monitor calls. One leaves the calling monitor locked, the other leaves it
unlocked. Neither affects monitors higher up the chain. A process that returns
from a nested monitor call is delayed if the calling monitor is busy.

The second problem above can be addressed in  several ways.
Modula [116], SB-Mod, E-BCPL, and C-SP/k all reduce the number of context
switches by eliminating the urgent queue(s). Careful scheduling of the unipro-
cessor takes the place of mutual exclusion. In general, process switches occur

only at wail and signal operations, and not at module exit.® When the current

5 E-BCPL timeslices among the runnable processes. Clock interrupls are
disabled inside monitor routines. SB-Mod reschedules processes in response o
hardware interrupts, but the interrupts are masked at all leveis below that of the
current process. Interrupled processes are resumed when the current process al-
tempts to return 1o a lower interrupt level.
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process signals, execution moves 1o the first process on the appropriate condition

queue. When the current process waits, execution may move to any other pro-

cess that is not also waiting.® A process that would have been on one of Hoare's

entry queues may well be allowed to proceed before a process on the correspond-

ing urgent qucue.

Signal operations in Concurrent Pascal cause an automatic return from
monitor routines. There is thus no need for an urgent queue. To simplify the
implementation, Concurrent Pascal allows only one process at a time to wait on a
given condition. Mesa relaxes these restrictions by saying that a signal is only a
hint. The signaler does not relinquish control. Any process suspended on a con-
dition queue must explicitly double-check its surroundings when it wakes up; it
may find il cannot proceed afier all, and has to wait again. Wettstein [114] notes
that if signals are only hints then it is indeed feasible to release exclusion on all
the monitors involved in a nested wait (though Mesa does not do so). Before
continuing, a signalled process could re-join each of the entry queues, one by

one. After regaining the locks it would check the condition again.

Kessels [71] suggests a different approach to the semantics of conditions. If
every queue is associated with a pre-declared Boolean expression, then the signal
operation can be dispensed with altogether. When a process leaves a monitor,
the run-time support package can re-evaluate the Boolean expressions to deter-

mine which process to run next.

® The next process 10 run afler a wair is always the next runnable process on
a circular list. Al processes stay on the list in Modula, SB-Mod, and E-BCPL.
Their order is fixed. Process swilches are slowed unnecessarily by the need to
skip over waiting processes. Wailers in C-SP/k are removed from the lisi, even-
tually to be re-inserted behind their signaler.
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SB-Mod expands on Kessel's proposal. The Boolean expressions for condi-
tion queues are optional. Wair suspends the caller if the expression is false or
was not provided. Send (signal) transfers control to the first process on the queue
if the expression is true or was not provided. A new operation called ‘‘mark’’
sets a flag in the first process on the queue. When the current process leaves its
monitor, the queue is re-examined. [f the expression is true or was not provided,

then the marked process is moved to the ready queue. No process switch occurs.

Of all the languages surveyed, SIMONE is truest to Hoare. It does not
provide separate entry queues for every monitor, but it does provide an urgent

stack, with processes resumed in LIFO order.

3.3. Extended POP-2

Kahn and MacQueen [66] have implemented a small but elegant language
based on a generalization of coroutines, Their language has much in common

with CSP (section 3.4, below) but was developed independently.

Process declarations in Extended POP-2 look very much like procedures,
There are no modules. Processes share no data. They are instantiated with a
cobegin construct called ‘'doco.”” The doco stalement uses a series of channels

to connect input and output ports in the newly-created processes.

Once running, processes can communicate by means of put and ger opera-
tions on ports. Given the binding to channels achieved by doco, communication
paths are one-one. Send is non-blocking and buffered. Receive is explicit, and
names a single port. There is no provision for non-deterministic or selective
receipt. Processes with a single input and a single output port may be instan-

tiated with a special functional syntax.



3.4, Communicating Sequential Processes

CSP {58] is not a full-scale language. Rather, it is an ingenious proposal
by C. A. R. Hoare for the syntactic expression of non-determinism and interpro-
cess communication. CSP/80 [64], Extended CSP {8], occam [88], and a name-
less language by Roper and Barter [96] are all auempts to expand Hoare’s syntax
into a usable language. 1 will refer to Extended CSP as E-CSP and to Roper and

Barter’s language as RB-CSP.

Processes are the central entities in CSP. There are no modules. Regular
CSP, E-CSP, occam, and RB-CSP all allow new processes to be created at run
time with a modified cobegin construct. CSP/80 provides for a fixed number of
independent processes, statically defined. Subprocesses in E-CSP and RB-CSP
are not visible to their parent’s peers. Messages from outside are addressed to
the parent. The parent redirects them to the appropriate child. To avoid ambi-
guity, the E-CSP compiler guarantees thal no two subprocesses ever communi-
cate with the same outsider. RB-CSP performs the equivalent checks at run

time. None of the CSP languages supports recursion.

Disjoint processes in CSP do not share data; all interaction is by means of a
generalization of the traditional concepts of input and output. In regular CSP,
and in CSP/80 and occam, the result is equivalent 10 explicit receipt and syn-
chronization send. E-CSP provides both synchronization and no-wait send.

RB-CSP uses only no-wait send.

Communication paths in CSP are one-one; both sender and receiver name
the process at the other end. Forcing the receiver to name the sender prevents
the modeling of common client/server algorithms. 1t also precludes the use of

libraries. The four implementations mentioned here address the problem in dif-
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ferent ways. CSP/80 lets processes send and receive through ports. Sender
ports and receiver ports are bound together in a special linking stage. Occam
processes send and receive messages through channels. Any process can use
any channel that is visible under the rules of lexical scope. E-CSP and RB-CSP
provide processname variables. An E-CSP receiver still specifies a sender, but
the name it uses can be computed at run time. An RB-CSP receiver does not
specify the sender at all. It specifies a message type and must be willing to

receive from any sender with a malching type.

Communication is typeless in regular CSP and in occam. Types are associ-
ated with ports in CSP/80. They are associated with individual communication
statements in E-CSP. Individual input and output commands match only if their
types agree. RB-CSP provides a special type constructor called message with
named slots, much like those of PLITS (section 3.7). A given process need only

be aware of the slots it may actually use.

CSP incorporates Dijkstra’s non-deterministic guarded commands [37]. A
special kind of guard, called an input guard, evaluates to true only if a specified
input command can proceed immediately. In regular CSP, and in E-CSP and
RB-CSP, there is no corresponding outpu! guard 10 test whether a process is wait-
ing to receive. Hoare notes that the iack of output guards makes it impossible to
transiate certain parallel programs into equivalent, sequential versions. CSP with
inpul guards alone can be implemented by the usual strategy for many-one com-
munication paths (see section 2.2): information is stored at the receiving end.
The provision of output guards as well leads to the usual problems of many-many
paths. (For a discussion, see the appendix of Mao and Yeh's paper on commun-
ication ports {87].) Moreover, as noted by the designers of CSP/80, the

indiscriminate use of both types of guards can lead to implementation-dependent
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deadlock. Nonetheless, CSP/80 does provide both input and output guards. The
linker prevents deadlock by refusing to connect a sender with output guards to a

receiver with input guards.

3.5. Distributed Processes

In the design of Distributed Processes [22], Brinch Hansen has unified the
concepts of processes and modules and has adapted the monitor concept for use

on distributed hardware.

A Distributed Processes program consists of a fixed number of modules
residing on separate logical machines. Each module contains a single process.
Modules do not nest. Processes communicate by calling entry procedures (called
common procedures) defined in other modules. Communication is thus by
means of implicit receipt and remote-invocation send. Data can be shared

berween entry procedures, but not across module boundaries.

An entry procedure is free to black itself on an arbitrary Boolean condition.
The main body of code for a process may do likewise. Each process aliernates
between execuling its main code and serving external requests. 1t jumps from
one body of code to another only when a blocking statement is encountered. The
executions of entry procedures thus exclude each other in time, much as they do
in a monitor. Nested calls block the outer modules; a process remains idie while
waiting for its remole requests to complete. There is a certain amount of imple-
mentation cost in the repeated evaluation of blocking conditions. Brinch Hansen
argues that the cost is acceptable, particutarly il every module resides on a

separate physical machine.
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3.6. Gypsy

Gypsy [51] was designed from the start with formal proofs in mind. Pro-

grams in Gypsy are meant to be verified routinely, with automatic tools.

Much of Gypsy, including its block structure, is borrowed from Pas-
cal [65]. There is no notion of modules. New processes are started with a cobe-
gin construct. The clauses of the cobegin are all procedure calls. The pro-
cedures execute in parallel. They communicate by means of buffer variables,
passed to them by reference. Since buffers may be accessible to more than one
process, communication paths are many-many. Sharing of anything other than
buffers is forbidden. There is no global data, and no objects other than buffers

can be passed by reference to more than one process in a cobegin.

Buffers are bounded FIFO queues. Semantically, they are defined by his-
tory sequences that facilitate formal proofs. Send and receive are buffer opera-
tions. Send adds an object to a buffer. Receive removes an object from a buffer.
Send blocks if the buffer is full. Receive blocks if the buffer is empty. In the
nomenclature of section 2, Gypsy uses no-wait send and cxplicit receipt, with the
exception that back-pressure against prolific senders is part of the language defin-
ition. Declared buffer lengths allow the synchronization semantics to be

independent from implementation details.

A variation of Dijkstra’s guarded commands {37] allows a process to exe-
cute exactly one of a number of sends or receives. The await statement contains a
series of clauses, each of which is guarded by a send or receive command. If
none of the commands can be executed immediately, then the await stalement
siocks until a buffer operation in some other process allows il to proceed. If

more than one of the commands can be executed, a candidaie is chosen at ran-
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dom. There is no general mechanism for guarding clauses with Boolean expres-

sions.

3.7. PLITS and ZENO

PLITS [39] is an acronym for *‘Programming Language in the Sky,” an
ambitious atiempt at advanced language design. In the area of distributed com-
puting, it envisions a framework in which a'computation may involve processes
written in muliple languages, execuling on heterogeneous machines. ZENO [9]
is a single language based heavily on the PLITS design. lts syntax is borrowed

from Euclid {73].

A ZENO program consists of a collection of modules that may be instan-
tiated 1o create processes. Processes are assigned names at the time of their crea-
tion. They are independent equals. A process dies when it reaches the end of its
code. It may die earlier if it wishes, but it cannot be killed from outside. There
is no shared data. Receive is explicit. Send is non-blocking and buffered. There
is only one path into each process, but each message includes a special trans-
action slot 1o help in selective receipt. A sender names the receiver explicitly.
The receiver lists the senders and transaction numbers of the messages it is wil-
ling 10 receive. There is no other means of message screening — no other form
of guards. As in CSP tsection 3.4), forcing receivers 1o name senders makes it
difficult 10 write servers. A ‘‘pending” function allows a process to determine
whether messages from a particular sender, about a pariicular transaction, are
watling to be received.

The most unusual feature of PLITS/ZENO is the structure of its messages.
In contrast to most proposals, there is no strong typing of interprocess communi-

cation. Messages are constructed much like the property lists of LISP [93].
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They consist of name/value pairs. A process is free to examine the message slots

that interest it. 11 is oblivious 1o the existence of others.

In keeping with its multi-language, multi-hardware approach, PLITS prohi-

bits the transmission of all but simple types. ZENO is more flexible.

Recent exiensions to PLITS {38] are designed 1o simplify the organization
of large distributed systems and to increase their reliability. Cooperating
processes arc tagged as members of a single activity. A given process may
belong to more than one activity. It enjoys a special relationship with its peers: it
may respond automatically to changes in their status. Activilies are supported by

built-in atomic transactions, much like those of Argus (section 3.8).

3.8. Extended CLU and Argus

Extended CLU [79, 80] is designed to be suitable for use on a long-haul
network. It includes extensive feawres for ensuring reliability in the face of
hardware failures, and provides for the transmission of abstract data types
between heterogeneous machines [55]. The language makes no assumptions

about the integrity of communications or the order in which messages arrive.

The fundamental units of an Extended CLU program are called guardians.
A guardian is a module; it resides on a single machine. A guardian may contain
any number of processes. Guardians do not nest. Processes within the same
guardian may share data. They use monitors for synchronization. All interac-
tion among processes in separate guardians is by means of message passing.

Receive is explicit. Send is non-blocking and buffered. Each guardian pro-
vides ports to which its peers may address messages. New instances of a guard-

ian may be created at run time. New porl names are created for each instance.
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The sender of a message specifies a port by name. It may also provide a reply
port if it expects to receive a response. The teply port name is really just part of
the message, but is marked by special syntax 1o enhance the readability of pro-
grams. Within a guardian, any process may handle the messages off any port;
processes are anonymous providers of services. A facility is provided for non-
deterministic receipt, but there are no guards; a receiver simply lists the accept-
able ports. In keeping with the support of reliability in the face of communica-

tion failure, a timeoul facility is provided.

Argus [82, 84] is the successor to Extended CLU. Argus uses remote-
invocation send and implicit message receipt. Instead of ports, Argus guardians
provide handlers their peers may invoke. Processes are no longer anonymous
in the sense they were in Extended CLU. Each invocation of a handler causes
the creation of a new process to handle the call. Additional processes may be

crealed within a guardian with a cobegin-like construct.

Argus programs achieve robustness in the face of hardware failures with
stable storage and an elaborate action mechanism. Actions are atomic, they
either commit or abort. If they commit, all their effects appear to occur instan-
taneously. H they abort, they have no effect at all. Actions may nest. A remote
procedure call is a nested action. Built-in atomic objects [110] support low-

level actions, and may be used within a guardian to synchronize its processes.

3.9. Communication Port

Like CSP and Distributed Processes, Communication Port [87] is less a
full-scale language than a concept on which a language might be based. A Com-
munication Port program consists of a fixed collection of processes. There are

no modules. There is no shared data. Processes communicale with remote-
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invocation send and explicit message receipt.

Each process provides a variety of ports to which any other process may
send messages. Porls provide strict type checking. Senders name both the
receiver and its poh. There may thus be several receivers with the same internal
structure. The receive stalement is non-deterministic. Guards may be placed on
its optioﬁs. The guards must refer to local daia only. Receiving a message and
reurning a reply are independent operations; it is possible for a receiver (o be in
rendezvous with several senders at one time. The senders may be released in
any order. Careful placement of release statements is a useful uning technique

that can be used to minimize the length of rendezvous and increase concurrency.

3.10. Edison

Edison [23,24] is a remarkabic language in a number of ways. Based
loosely on Pascal, Concurrent Pascal, and Modula, il is a considerably smaller
language than any of the three. It seems 1o be an experiment in minimal
language design.

Processes in Edison are created dynamically with cobegin. Modules are
used for dala hiding. Communication is by means of shared data, and mutual
exclusion is achieved through critical regions. There are no separate classes of
critical regions; the effect is the same as would be achieved by use of a single,
system-wide semaphore. Entry to critical regions may be controlled by arbitrary
Boolean guards. It is possible lo follow a programming strategy in which all
shared data is protecied by monitors created out of critical regions and modules.

It is equally possible to avoid such rules.
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Despite its title (‘‘a multiprocessor language’’), 1 question the suitability of
Edison for use on muliiple processors. The use of critical regions that all
exclude each other could periodically halt all processors save one. On a multi-
computer, shared data is an additional problem. Unless a careful programming
style is imposed above and beyond the rules of the language itself, Edison does

not fit into the framework of section 2.

3.11. StarMod

StrMod {31, 32]) is an exiension to Modula that attempls to incorporate
some of the novel ideas of Distributed Processes. It provides additional features
of its own. Modules and processes are distinct. Modules may nest. There may
be arbitrarily many processes within a module. Processes may be created
dynamically; they are independent equals. Processes within the same processor
module may share daia. The programmer may influence their relative rates of

%
progress by the assignment of priorities.

StarMod provides both explicit and implicit message receipt and both syn-
chronization and remote-invocation send.  The four resulting combinations
employ a common syntax on the sending end. Communication paths are many-
one. A sender names both the receiving module and its entry point. Entries may
be called either as procedures or as functions. A procedural send allows the
sender (o continue as soon as its message is received. A functional send blocks
the sender until its value is returned. Remote-invocation send is thus limited 1o
returning a single value.

On the receiving end, a module may mix its two options, using explicit
receipt on some of its communication paths and implicit receipt on the others.

The sender has no way of knowing which is empioyed. A receiver can be
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changed from one approach to the other withoul any change 1o the sender.
Librarics can be changed without invalidating the programs that use them.
When a message arrives at a implicit entry point, a new process is created (o
handle the call. When a message arrives at a explicit entry point, it waits until
some existing process in the module performs a receive on the corresponding
port. There is no mutual exclusion among processes in a module; they proceed
in (simulated) parallel. They may arrange their own synchronization by waiting
on semaphores. The explicit receive is non-deterministic, but there are no
guards on its options. A single receiver can be in rendezvous with more than
one sender at a time, but it must release them in LIFO order. Separate calls to
the same implicit port will create separate, possibly parallel, processes. Separate

processes in a module may receive from the same explicit port.

StarMod was designed for dedicated real-time applications. The StarMod
kernel behaves like a miniature operating system, highly efficient and tuned to
the needs of a single type of user-level program. Simplicity is gained at the
expense of requiring every program to specify the interconnection topology of its
network. Direct communication is permitted only between modules that are

neighbors in that network. The programmer is thus responsible for routing.

3.12. ITP

The Input Tool Process model [18] is an extension of van den Bos’s Input

Tool Method [17], an unconventional language for input-driven programs.

An ITP program consists of a collection of processes. There are no
modules. Processes do not nest. They share no data. Each process consists of a
hierarchical collection of tools. A (ool looks something like a procedure. It is

made available for activation by appearing in the input rule of a higher-level
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tool. (The root tools are always available.) A tool is actually activaited by the
completion of lower-level tools appearing in its own input rule. Leaf tools are

activated in response o inputs from other processes, or from the user.

Input rules allow message screening. They resemble path expressions (sec-
tion 3.1). They specify the orders in which jower-level tools may be activated.
Unwanted inputs can be disallowed at any layer of the hierarchy.

ITP uses synchronization send with implicit message receipt. Within a pro-
cess, any tool can send data to any other process. The naming mechanism is
extremely flexible. At their most general, the communication paths are many-
many. A sender can specily the name of the receiving process, the receiving
tool, both, or neither. It can also specify broadcast 1o all the members of a pro-
cess set. A receiver (leaf tool} can accept a message from anyone, or it can
specify a particular sender or group of senders. A global communication arbiter

coordinates the pairing of appropriate senders and receivers.

The current ITP implementation runs on multiple processors, bul does not
allow the most gencral many-many communication paths. Syntax for the sequen-

tial part of the language is borrowed from C [70].

3.13. Ada

The adoption of Ada {108] by the U. S. Department of Defense is likely to
make it the standard against which concurrent languages are compared in future

years.

Processes in Ada are known as tasks. Tasks may be statically declared.
They may also be created at run time. The code associated with a task is a spe-

cial kind of module. Since modules may nest, it is possible for one task to be
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declared inside another. This nesting imposes a strict hierarchical structure on a
program’s tasks. No task is permitied to leave a lexical scope until all that
scope’s nested tasks have terminated. A task can be aborted from outside. Tasks
may share data. They may also pass messages.

Ada uses remote-invocation send. The sender names both the receiver and
its entry point. Dynamically-created tasks are addressed through pointers. Com-
munication paths are many-one. Receive is explicit. Guards (depending on both
local and global variables) are permitted on each clause. The choice between
open clauses is non-delerministic. A receiver may be in rendezvous with more
than one sender at a time, but must release them in LIFO order. There is no
special mechanism for asynchronous receipt; the same effect may be achieved
through the use of shared data. Ada provides sophisticated facilities for timed
pauses in execution and for communication timeout. Communication errors
raise the TASKING_ERROR exception. A programmer may provide for error

recovery by handling this exception.

Since data may be shared at all levels of lexical nesting, it may be necessary
for separate tasks to share (logical) activation records. That may be difficult
across machine boundaries. More subtie problems arise from the implicit rela-
tionships among relatives in the process tree. For example, it is possible for a
task to enter a loop in which it repeatedly receives messages until all of its peers
have terminated or are in similar loops. The implementation must detect this

situation in order to provide for normal termination of all the tasks involved.

3.14. Synchronizing Resources

SR {4, 5] is an auempt to generalize and unify a number of earlier propo-

sals. 1t appears to have grown out of work on extensions to monitors [3].
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An SR program consists of a collection of modules called resources. A
resource may contain one or more processes, and may export operations those
processes define. Operations are similar to ports in Extended CLU and entries in
Ada. The processes within a resource share data. Neither resources nor
processes may nest. There is special syntax for declaring arrays of identical
resources, processes, and operations. A procedure is abbreviated syntax for a

process that sits in an infinite loop with a receive statement at the top and a send

at the bottom.

Receive 1s explicit. Itis syntax is based on Dijkstra’s guarded com-
mands {37]. Input guards have complete access to the contents of polential mes-
sages. Morcover, messages need not be received in the order sent. A receiver
may specify that the queue associated with an operation shouid be ordered on the
basis of an arbitrarily complicated formula involving the contents of the messages
themselves. It is possible for a process to be in rendezvous with more than one

sender at a time. 1t must release them in LIFO order.

SR provides both no-wait and remote-invocation send. Messages are sent to
specific operations of specific resources. Thus each communication path has a
single receiving resource and, potentially, multiple senders. Operations can be
named explicitly. They can also be referenced through capability variables. A
capability variable is similar 10 a record; it consists of several fields, each of
which points to an operation of a specific type. Within a resource, a particular

operation must be served by only one process.

There are no facilities for asynchronous receipt or timeout. Each opera-
tion, however, has an associated function that returns the current length of its

queue. This function may be used to simulate a receive with timeout zero: the
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receiver simply checks the queue length before waiting.

3.15. Linda

Linda [47, 48, 49] provides the full generality of many-many communica-
tion paths. Processes interact in Linda by inserting and removing tuples from a
distributed, global tuple space (TS).7 Tuple space functions as an associative

memory; tuples are accessed by referring to the patierns they contain,

Published papers on Linda do not dwell on the language syntax. It seems
1o resemble C [70]. Processes are created with a cobegin-like construct and can
share data in addition 10 TS. The data can be protected with some sort of mutual

exclusion mechanism. There is no mention of modules.

Linda combines no-wait send with explicit message receipt. Tuples are
added to TS with the non-blocking out() command. They are removed with the
in() command. A read() command (originally called in*()) allows tuples to be
read without removing them from TS. All three commands take an arbitrary list
of arguments. The first is required to be an actual value of type name. The res
may be actuals or ‘‘formals.” An in(} command succeeds when it finds a tple
in TS that matches all its actuals and provides actuals for all its formals. In out()
commands, formals serve as ‘*don’t care’’ flags; they march any actual. In in()

commands, formals are slots for incoming data.

The matching of wples according to arbitrary patierns of actuals provides a
very powerful mechanism for message screening. 1t also leads to serious imple-
mentation problems. Much of the work on Linda involves finding tractable algo-

rithms for managing TS. The language was originally intended for the Stony

7 also called structured memory (STM) in early papers.
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execule one at a time. New processes are created by a built-in procedure that
accepts a procedure name and an array to be used as stack space and returns the
id of a newly-created process. There is no preemption; a given process conlin-
ues to run untl it explicitly relinquishes control and names the process to be run

in its stead.

One goal of Modula-2 is to permit a large variety of process-scheduling
strategies to be implementied as library packages. By hiding all coroutine
transfers in a library, the programmer can imitate virtually any other concurrent
language. The imitalions can be straightforward and highly efficient. For a
uniprocessor, Modula-2 provides the richness of expression of multiple threads of

control at very little cost.

4.2. Nelson’s Remote Procedure Call

Nelson’s thesis {90] is devoted to the development of a transparent mechan-
ism for remote procedure calls. A remote procedure call combines remote-
invocation send with implicit message receipt. Transparency is defined 1o mean

that remote and local procedure calls appear to be the same; they share the same

- atomicity semantics,

-~ naming and configuration,

- type checking,

~ parameter passing, and

— exception handling.

Nelson describes a mechanism, called Emissary, for implementing remote

procedure calls. Emissary attempts to satisfy all five of the *‘essential properties”’
listed above, together with one ‘‘pleasant property’”: efficiency. The attempt at

transparency is almost entirely successful, an'd the performance resulis are quite

impressive.
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Emissary falls short of true transparency in the area of parameter passing.
Not all data types are meaninglul when moved 1o a different address space.
Unless one is willing to incur the cost of remote memory accesses, pointers and
other machine-specific data cannot be passed to remote procedures. Moreover,
infour parameters must be passed by value/result, not by reference. In the pres-
ence of aliasing and other side effects, remote procedures cannot behave the
same as their local counterparts. So long as programmers insist on pointers and

reference paramelers, it is unrealistic 1o propose a fruly transparent mechanism.

4.3. Distributed Operating Systems

The borderline between programming languages and operating systems is
very fuzzy, especially in hypothetical systems. Interprocess communication lies
very near the border. It is often difficult to tell whether a particular mechanism
is really part of the language or part of the underlying system. Much depends on
the degree to which the mechanism is integrated with other language features:
type checking, variable names, scope rules, protection, exception handling, con-
currency, and so forth. The mechanisms described in this section, at least in
their current form, are fairly clearly on the operating system side of the line.

This dissertation is a first aitempt at incorporating them into the language level.

4.3.1. Links

Links were introduced in the Demos [10] operating system. They have
been adopted, in one form or another, by several descendant systems: Arachne

(Roscoe) [44, 102], Charlotte [7,41], and DEMOS/MP [92].

Links are a naming and protection mechanism. In Demos, and in Arachne

and DEMOS/MP, a link is a capability to an input port. It connects an arbitrary
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Brook microcomputer Network, a wrapped-around grid (1orus) architecture.

3.16. NIL

NIL [27, 105] is a language under development at IBM’s T. J. Watson
Research Center. It is intended for use on a variety of distributed hardware.
The current implementation runs on a single IBM 370. Processes are the funda-
mental program unils; there is no separate module concept. There is no shared
data; processes communicate only by message passing. The designers of NIL
suggest that a compiler might divide a process into parallel picces if more than

one CPU were available to execute it.

Communication paths are many-one. They are created dynamically by con-
necling output ports to an appropriate input port. Any process can use the
publish command to create capabilities that point to its input ports. It may then
pass the capabilities in messages to other processes that can use them in connect

commands. All type checking on ports is performed at compile time,

NIL provides both no-wait and remote-invocation send. Remote-invocation
sends may be forwarded. The process receiving a forwarded message is respon-
sible for releasing the sender. No-wail sends are buffered and destructive; vari-
ables sent in messages assume an uninitialized ‘‘typestate’® and can no longer be

inspected.

Receive in NIL is explicit. It has two varieties, one to correspond to each
type of send. Exceptions are used to recover from communication errors.

There are elaborate rules for propagaling exceptions when a process terminates.

4. Related Notions

Each of the proposals described in section 3 has been described in the
literature (at least in part) as a high-level language for distributed computing.
For one reason or another, the proposals in this section have not. They all con-
tain useful ideas, however, and are worth considering in any discussion of inter-

process communication and concurrency.

The survey in section 3 is meant to be reasonably complete. No such claim
is made for this section. 1 have used by own personal tastes in deciding what lo

include.

4.1. Concurrent Languages

Several early high-level languages, notably Algol-68 [106], PV/1 [11], and
SIMULA [14], provided some sort of support for concurrent processes, or al
least coroutines. These languages relied on shared data for interprocess interac-
tion. They were intended primarily for uniprocessors, and may have been suit-
able for multiprocessors as well, but they were certainly not designed for imple-
mentation on multicomputers. Recently, Modula-2 [117, 118] has re-awakened
interest in coroutines as a practical programming tool. In designing Modula-2,
Wirth has recognized that even on a uniprocessor, and even in the absence of
interrupts, there are still algorithms that are most elegantly expressed as a collec-

tion of cooperating threads of control.

Modula-2 is more closely related 1o Pascal (65) than to the Modula of sec-
tion 3.2. For the purposes of this survey, the principal difference between the
Modulas is that the newer language incorporates a much simpler and more prim-

itive form of concurrency. Processes in Modula-2 are actually coroutines; they
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number of holders 10 an owner. The owner can receive messages from the
link. It owns the input port. A holder can send messages to the link. It holds
the capability. A holder can create copies of its capability, and can send them in
messages on other links. The owner can exercise control over the distribution of

capabilities and the rights that they confer.

Where Demos links are many-one, Charlotte links are one-one. Their
ends are symmelric. Each process can send and receive. There is no notion of
owner and holder. Only one process can access a given end of a given link at a

given point in time.

The protection properties of links make them useful for applications that are
somewhat loosely coupled — applications in which processes are developed
independently and cannot assume that their partners are correct. Typically, a
link is used to represent a resource. (In a timesharing sysiem, a link might
represent a file.) Since a single process may implement a whole coliection of
resources, and since a single resource may be supported by an arbitrary number
of operations, links provide a granularity of naming somewhere in between pro-

cess names and operation names.

4.3.2. SODA

SODA [69] is an acronym for a *‘Simplified Operating system for Distri-

)

buted Applications.” It might better be described as a communications protocol
for use on a broadcast medium with a very large number of heterogeneous

nodes.

Each node on a SODA network consists of two processors: a client proces-
sor, and an associaled kernel processor. The kernel processors are all alike.

They are connected to the network and communicate with their client processors
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through shared memory and interrupts. Nodes are expected to be more

numerous than processes, so client processors are not multi-programmed.

Communication paths in SODA are many-one, but there is a mechanism by
which a process can broadcast a request for server names that match a certain
pattern. All communication statements are non-blocking. Processes are

informed of interesting events by means of software interrupts. Interrupts can be

masked.

From the point of view of this survey, the most interesting aspect of the
SODA protocol is the way in which it decouples control flow and data flow. In
all the languages in section 3, message transfers are initiated by the sender. In
SODA, the process that initiates an interaction can arrange to send data, receive
data, both, or neither. The four options are termed, respectively, put, get,
exchange, and signal. Synchronization in SODA falls ouiside the classification

systemn described in section 2.4,

Every interaction between a pair of processes has a requester and a
server. The server feels a software interrupt whenever a requester atiempls 10
initiate a transfer. The interrupt handler is provided with a (short) description of
the request. At its convenience, the server can accept a request that triggered its
handler at some point in the past. When it does so, the transfer acwally occurs,
and the requester is notified by an interrupt of its own. The programmer is
responsibie for writing handlers and for keeping track of outstanding requests in
both the server and requester. In simple cases, the bookkeeping may be

managed by library routines.



5. Conclusion

There is no doubt that the best way to evaluate a language is to use it. A
certain amount of armchair philosophizing may be justified (this chapter has cer-
tainly done its share!), but the real test of a language is practical experience. It
will be some time before most of the languages in section 3 have received enough

use to make definitive judgments possible.

One very useful tool would be a representative sample of the world’s more
difficult distributed problems. To evaluate a language, one could make a very
good start by coding up solutions 1o these problems and comparing the results to
those obtained with various other methods. Much of the success of any ianguage
will depend on the elegance of its synlax — on whether it is pleasant and natural
to use. But even the best of syntax cannol make up for a fundamentally unsound
design.

Section 2 has discussed some major open questions. The two most impor-
tant appear to be the choice of synchronization semantics for the send operation
and the choice between implicit and cxplicit message receipt. | have argued else-
where [98] that a reasonable language needs to provide a variety of options. Just
as a sequential language benefits from the presence of several similar loop con-
structs, so can a distributed language benefit from the presence of several simiiar
constructs for interprocess communication. It is worth noting that thirty years of
effort have failed 10 produce an ideal sequential language. It is unlikely that the

next thirty will see an ideal distributed language, either.
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Chapter 2

An Overview of LYNX

1. Introduction

This chapter introduces a new distributed programming languzge. It pro-
vides an overview of concepts discussed in considerably more detail in the follow-
ing chapter and in the appendix. The language, known as LYNX, was specifi-
cally designed for systems programs for a multicomputer. It differs from the

languages of chapter 1 in three of the major areas covered by that survey:

Processes and Modules
Processes and modules in LYNX reflect the structure of a multicomputer,
Modules may nest, but only within a machine; no module can cross the
boundaries between machines. Each outermost module is inhabited by a
single process. Processes share no memory. They are managed by the
operating-system kernel and execute in parallel. Multipie threads of control
within a process are managed by the language run-time system, but there is
no pretense of parallelism among them.

Communication Paths and Naming
LYNX derives its name from links. Links are pairs of one-one, movable
communication paths. The programmer has complete run-lime control
over the binding of links to processes and names to links. The resulting
flexibility allows iinks to be used for reconfigurable, type-checked connec-
tions between very loosely-coupled processes — processes writien and

loaded at widely disparate times.
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Syntax for Message Receipt
Messages in LYNX may be received both explicitly and implicitly.
Processes can decide at run time which approach(es) to use when, and on

which links.

2. Main Concepts

The three most important concepts in LYNX are the process, the link, and
the thread of control. Processes are supported by the operating system. They
execute in parallel and interact by exchanging messages on two-way communica-
tion links.

Each process begins with a single thread of control, executing the initializa-
tion code of its outermost module. It can create new threads itself or can arrange
for them 1o be created automatically in response to incoming messages. Separate
threads do nor execute in parallel; the process continues o execule a single
thread until it blocks. It then takes up some other thread where it last left off. If
no thread is runnable, the process waits until one is. In a sense, the threads are
coroutines, but the details of control transfer are hidden in the run-time support

package. Blocking statements are discussed in section 8.

Lexical scope in LYNX is defined as in Modula [115]. New threads of
control may created at any level of lexical nesting. Non-global data may there-
fore be shared by more than one thread. The activation records accessible at any
given time will form a tree, with a separate thread corresponding to each leaf.
When a thread enters a scope in which a module is declared, it executes the
module’s initialization code before proceeding. A thread is not allowed to leave a

given scope until all its descendants still active in that scope have completed.
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The sequential features of LYNX are Algol-like. 1 will not discuss them

here. A full description of the language can be found in the appendix.

3. Links

A link is a two-ended communication channel. Since all data is encapsu-
lated in modules, and since each outermost module corresponds to a single pro-
cess, it follows that links are the only means of interprocess interaction. The
language provides a primitive type called ‘‘link.”” A link variable accesses one
end of a link, much as a pointer accesses an object in Pascal [65]. The dis-

tinguished value “‘nolink’” is the only link constant.
New values for link variables may be created by calling the buil-in func-
tion ‘‘newlink’’:
endA := newlink ( endB ) ;

One end of the new link is returned as the function value; the other is returned
through a result parameter. This asymmeltry is useful for nesting calls to new-
link inside the various communication statements (see below). In practice, calls

to newlink seldom appear anywhere else.
Links may be destroyed by calling the built-in procedure ‘‘destroy’”:
destroy ( myend ) ;

Destroy is similar to ‘‘dispose’” in Pascal. All link variables accessing either end
of the link become unusable (i.e. dangling). An attempt to destroy a nil or dan-
gling link is a no-op.

Arbitrary data structures can be sent in messages. If a transmitled data

structure contains variables of type link, then the link ends referenced by those
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variables are moved from the sending process to the receiver. The semantics of
this feature are somewhat subtle. Suppose process A has a link variable X that
accesses the ‘‘green’ end of link L. Now sdppose A sends X to process B,
which receives it into link variable Y. Once the transfer has occurred, Y will be
the only variable anywhere that accesses the green end of L. Loosely speaking,
the sender of a link variable loses access to the end of the link involved. This
rule ensures that a given end of a given link belongs to only one process at a

time.

1t is an error to send a link end that is bound 1o a entry (see below), or on

which there are outstanding sends or receives.

4. Sending Messages
Message transmission looks like a remote invocation:
connect opname { expr_list | var_list) on linkname ;

Run-tirhe support routines package the operation name and expression list into a
message and send it out on the link. The current thread in the sender is blocked

until it receives a reply message containing values for the variable list.

5. Receiving Messages Explicitly
Any thread of control can receive a message by executing the accept and

reply statements:
accept opname ( var_list) on linkname ;
reply ( expr_list) ;

Accept blocks the thread unlil a message is available. Reply causes the expression
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list to be packaged into a second message and returned 1o the sender. The com-

piler enforces the pairing of accepts and replies.

6. Entries

An entry looks much like a procedure. 1t is used for receiving messages

implicitly. Entry headers are templates for messages.

entry opname ( in_args ) : ouL types ;

begin

end opname;
All arguments are passed by value. The header may be followed by the keyword
Jorward or remote instead of a begin ... end block. Remote has the same meaning
as forward, except that an eventual appearance of the entry body is not required.
Source file inciusion can therefore be used to insert the same entry declarations

in both the defining and invoking modules.

Any process may bind its link ends to entries:

bind link_list to entry_list ;

After binding, an incoming request on any of the mentioned link ends may cause
the creation of a new thread to execute one of the mentioned entries, with param-
elers laken from the message. An entry unblocks the sender of the message that

created it by executing a reply statement (without a matching accepr).

A link end may be bound to more than one entry. The bindings need not
be created at the same time. A bound end can even be used in subsequent accept
statements. These provisions make it possible for separate threads 1o carry on
independent conversations on the same link at more or less the same time.

When all of a process’s threads are blocked, the run-time support routines
P ppo



61

attempt to receive a message on any of the links for which there are outstanding
accepts or bindings. The operation name contained in the message is matched
against those of the accepts and the bound entrics in order to decide which thread
to create or resume. If the name differs from those of all the outstanding accepts
and bindings, then the message is discarded and an exception is raised in the

sender (sce below for a discussion of exceptions).

Bindings may be broken:

unbind link list from eniry_list;
An attempt to break a non-existent binding is a no-op.

Entries visible under the usual scope rules can be used to create new

threads directly, without links or bindings:
call entryname ( expr_list | var_list ) ;

The built-in function “*curlink’’ returns a reference to the link on which
the request message arrived for the closest lexically-enclosing entry. If there is
no enclosing entry, or if the closest enclosing entry was called locally, then cur-
link returns nolink. In the examples at the end of this chapter, curlink is used in
entries to make and break bindings for the link on which the current request

arrived.

In order to facilitate type checking, the operation names and message for-
mats of connect and accept statements must be defined by entry declarations.

The entries can of course be declared remote.
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7. Exceptions

The language incorporates an exception handling mechanism in order to 1)
cope with exceptional conditions that arise in the course of message passing, and
2) allow one thread 10 interrupl another. The mechanism is intended 10 be as

simple as possible. 1t does not provide the power or generality of Ada [108] or
PL/I{11].

Exception handlers may be auached to any begin ... end block. Such blocks
comprise the bodies of procedures, entries, and modules, and may also be

inserted anywhere a slatement is allowed. The synlax is
begin
wh'e'r'x exception_list do
Wh;l.l exception_listdo
;a;;d;
A handler (when clause) is executed in place of the portion of its begin ... end

block that had yet to be executed when the exception occurred.
Built-in exceptions are provided for a number of conditions:

® Failure of the operation name of a message to match an accept or binding

on the far end of the link,

‘e Type clash between the sender and receiver of a message.

® Termination of a receiving thread that has not yet replied.

® Destruction of the link.

Links can be destroyed explicitly by threads on either end. They arc also des-

troyed in the event of hardware failures and at process termination.
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A built-in exception is raised in the block in which it occurs. If that block
has no handler, the exception is raised in the next scope on the dynamic chain.
This propagation halts at the scope in which the current thread began. If the
exception is not handled at that level, the thread is aborted. If the propagation of
an exception escapes the scope of an accept statement, or if an exception is not
handled at the outermost scope of an entry that has not yet replied, then an
exception is raised in the appropriate thread in the sending process. If the propa-
gation escapes a scope in which nested threads are still active, those threads are

aborted recursively.

User-defined exceptions are raised by the statement
raise exception_name ;

A user-defined exception is felt by all and only those threads that have declared a
handler for it in some scope on their current dynamic chain (this may or may not
include the current thread). Since the handlers refer to it by name, the exception
must be declared in a scope visible to all the threads that use it. The coroutine
semantics guarantee that threads feel exceptions only when blocked. User-
defined exceptions are useful for interrupting a thread that is waiting for some-

thing that will never happen.

8. Blocking Statements

As suggested earlier, connect, accept, and reply may cause a context switch
by blocking the thread that uses them. A context switch will also occur when
control reaches the end of a scope in which nested threads are still active or in

which bindings still exist.
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There is one additional way 1o cause a context switch:
await condition ;

will guaraniee that execution of the current thread will not continue until the

(arbitrarily complex) Boolean condition is true.

9. Examples

The sample programs in this section are small and unexciting. They serve

as an introduction to the syntax of LYNX.

9.1. Producer and Consumer

The consumer demonstrates explicit receipt of requests. The producer

feeds it a continuous stream of data.
module producer (consumer : link);

type data = whatever;
entry transfer (info : dala); remote;

function produce : data;
begin

- — whatever
end produce;

begin — - producer
loop
connect transfer (produce | ) on consumer;
end;

end producer.
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module consumer (producer : link);

type data = whatever;
entry transfer (info : daw); remote;

procedure consume (info ; data);
begin

- - whatever
end consume;

var buffer : data;

begin - — consumer
loop
accept transfer (buffer) on producer; reply;
consume {buffer);
end;
end consumer.

9.2. Bounded Buffer

Everyone’s favorite example, the bounded buffer smooths out fluctuations
in the relative speeds of producers and consumers. [t demonstrates implicit

receipt of requests.

module buffer (producer, consumer : link);

const

size = whatever;
type

dala = whatever;
var

buf : array [1..size] of data;
firstfree, lastfree : {!1..size];
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entry put (info : data);

begin
await firstfree < > lastiree;
buflfirstfree] := info;
firstfree := firstfree mod size + 1;
reply;

end pul;

entry get : data;

begin
await (lastfree mod size + 1} <> firstiree;
lastfree := lastfree mod size + 1;
reply (bufflastfreel]);

end gel;

begin
firstirec 1= 1;
lastfree : = size;
bind producer to put;
bind consumer to get;
end buffer.

To use the code above, a producer and consumer must aclively request the
service of the buffer. Such requests are appropriale if both parties know that an
intermediary exists. The buffer may be thought of as a *‘mail-drop.”” It gen-
eralizes easily lo serve an arbitrary number of producers and consumers. 1f the
bufler is optional, however, or if it is to be spliced into the connection between
an unsuspecting producer/consumer pair, then a different approach is needed.
The version below is compatible with the code in section 9.1. The version above

was not.
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module buffer (producer, consumer : link);

const

size = whaltever;
type

data = whalever;
var

buf : array [1..size] of daia;
firstfree, lastfree : [1..size];

entry transfer (info : data);

begin
await firstfree <> lasifree;
buf[firsifree] := info;
firstfree ;= firstfree mod size + 1;
reply;

end transfer;

begin
firstfree ;= 1;
lastfree = size;
bind producer to transfer;
loop
await (lastfree mod size + 1) < > firstfree;
connect transfer (buf[lasdree] | ) on consumer;
lastfree := lastfree mod size + 1;
end;
end buffer.

9.3. Priority Scheduler

The priority scheduler was described in section 2.6.2 of chapter 1. It
schedules a resource among a community of clients, highest priority first. Each
client calls schedule_me to obtain access to the resource. It calls im_done 1o make
the resource available to others. For the sake of simplicity, I assume that the

priorities of separate clients are distinct. The program is overly simplistic in that

holding it.
module scheduler (creator, resource : link);

type priority = whatever;
var available : Boolean;

module priority_queue;
import

priority;

export

insert, delete, top;

procedure insert (level : priority);
begin

- - add new level 1o queue
end insert;

procedure delete (level : priority);
begin

-~ remove old level from queue
end delete;

function top : priority;
begin

— = return highest priority in queue
end top;

begin - — priority queue

- — (nitialize queue w empty

end priority_queue;

entry im_done (returned : link); forward;
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it incorporates no mechanism to recover the resource if a client terminates while
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entry schedule_me (level : priority) : link;
begin
insert (level);
await available and level = top;
available = false;
unbind curlink from schedule_me;
bind curlink to im_done;
reply (resource);
delete (level);
end schedule_me;

entry im.done; - - (returned : link);
begin
unbind curlink from im_done;
bind curlink to schedule_me;
available := true;
resource 1= returned;
reply;
end im._done;

entry newclient (client : fink);
begin

reply;

bind client to schedule_me;
end newclient;

begin
bind crealor to newclient;
available 1= true;

end scheduler.

9.4, Readers and Writers

The readers/writers problem is well-known and has many variants {33].

The solution presented here avoids starvation of either readers or wrilers.
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module readwrite (creator ; link);

const maxwriters = whatever;
type ticket = [0..maxwriters];
var
free, current : ticket;
- — wrilers lake tickels like the ones at a bakery.
— ~— free is the next available number;
- current is the one now being served.
readers, wrilers, waitingreaders, waitingwriters : integer;
~— writers is always 0 or 1.

entry doread; — — should have arguments
begin

-~ whatever;
end doread;

entry dowrite; - ~ should have arguments
begin

— — whatever;
end dowrite;

entry startread; forward; entry startwrite; forward;
entry endread; forward; entry endwrite; forward;

entry startread;
begin
if waitingwriters = 0 and writers = 0 then
readers := readers + 1;
else
wailingreaders ;= waitingreaders + 1;
await waitingreaders = 0;
end;
unbind curlink from startwrite, startread;
bind curlink to doread, endread;
reply;
end startread;



entry startwrite;
var
turn : ticket;
begin
if readers = 0 and writers = 0 then
writers := writers + I
else
waitingwriters := waitingwriters + 1
turn := free; frec := free mod maxwriters + 1;
await currenl = turn;
end;
unbind curlink from startread, startwrite;
bind curlink to doread, dowrite, endwrite;
reply;
end startwrite;

entry endread;
begin
unbind curlink from doread, endread;
bind curlink to startread, startwrite;
readers := readers - 1,
if readers = O then
if waitingwriters <> 0 then
writers ;= |;
waitingwriters := wailingwriters — 1;
current ;= current mod maxwriters + 1;
end;
end;
reply;
end endread;
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entry endwrite;
begin
unbind curlink from doread, dowrite, endwrite;
bind curlink to startread, startwrile;
writers ;= writers — 1
if waitingreaders <> 0 then
readers 1= wailingreaders;
waitingreaders := 0;
elsif waitingwriters <> 0 then
writers ;= |
waitingwriters 1= waitingwriters — 1;
current := current mod maxwriters +
end;
reply;
end endwrite;

[

entry newclient (client : link);
begin

reply;

bind client to startread, startwrite;
end newclient;

begin - -- initialization
readers 1= 0; writers 1= 0;
waitingreaders := 0; waitingwriters := 0;
current := Q; free 1= 1;

bind creator to newclient;
end readwrite.
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Chapter 3

Rationale

1. Introduction

The preceding chapter sketched an overview of LYNX. This chapter
explains the rationale behind the design. Some of the features of LYNX are
unique; others were chosen from among the possibilities presented by existing
languages. Unique featsres are the result of major design decisions. They are
discussed in section 2. Minor decisions are discussed in section 3. The con-

cluding section describes practical experience building servers with LYNX.

2. Major Decisions

Every language is heavily influenced by the perspective of its designer(s).
The languages of chapter | grew out of efforts 10 generalize existing sequential
languages, first to multiple processes, then 1o multiple processors. LYNX was
approached from an entirely different direction. 1t began with the distributed
processes and worked lo increase their effectiveness through high-level language

support.

Previous languages introduced new models for distributed computation.
Aiming for elegance, they attempted 1o guess which small set of concepts would
prove to be fundamental. In so doing they ofien unified concepts that arc better
kept distinct. By contrast, LYNX captures a model that was already in use. It
supports the concepts that proved fundamental in the construction of servers for

Charlotte. The most important of these concepts are the process, the link, and
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the thread of control.

Processes are central; they are what makes distributed programs special.
Discussion of LYNX divides naturally into two subtopics: features that support
inleraction between processes and features that supporl computation within
processes. Links are the key to the former topic; threads of control are the key to

the latter.

2.1. Links

Links are a tool for representing distributed resources. A resource is a
fundamental concept. 1t is an abstraction, defined by the semantics of its external
interface and approached conceptually as a single entity. The definition of a
resource is entirely in the hands of the programmer who creates it. Examples of
resources include open files, query processors, physical devices, data streams,
and available blocks of memory. The interface to a resource may include an
arbitrary number of remote operations. An open file, for example, may be

defined by the semantics of read, write, seek, and close operations.

Recent sequential languages have provided explicit support for data abstrac-
tion. Modula modules {115], Ada packages [108], and Clu clusters [78] are
obvious examples. Sequential mechanisms for abstraction, however, do not gen-
eralize easily to the distributed case. They are compiicated by the need to share
resources among more than one loosely-coupled process. Several issues are

involved.
® Reconfiguration

Resources move. It must be possible 1o pass a resource from one process

1o another and to change the implementation of a resource without the
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knowledge of the processes that use it.

° Naming
A resource needs a single name that is independent of its implementation.
Process names cannot be used because a single process may implement an
arbitrary number of resources. Operation names cannot be used because a
single resource may provide an arbitrary number of operations in its exter-
nal interface.

° Type Checking
Operations on resources are at least as complicated as procedure calls. In
fact, since resources change location at run time, their operations are as
complicated as calls to formal procedures. Type checking is cruciai. It
guarantees that a resource and its users never misinterprel one another.

®  Protection
Even if processes interpret each other correctly, they still cannot trust each
other. Neither the process that implements a resource nor the process that

uses it can afford to be damaged by the other’s bad behavior.

In light of these issues, links appear ideally suited to representing distri-
buted resources.  As first-class objects they are easily created, destroyed, stored
in data structures, passed to subroutines, or moved from one process to another.
Their names are independent both of the processes that implement them and the
operations they support. A client may hold a link to onc of a community of
servers. The servers may cooperale lo implement a resource. They may pass
their end of the client’s link around among themselves in order to balance their
workload or to connect the client to the member of their group most appropriate

for serving its requests at a particular point in time. The client need not even be
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aware of such goings on.

Names for links are uniform in the sense that there is no need to differen-
tiate, as one must in Ada, between communication paths that are statically
declared and those that are accessed through pointers. Moreover, links are one-
one paths; a server is free to choose the clients with which it is willing to com-
municate at any particular time. It is free to consider clients as a group by gath-
ering their links together in a set and by binding them 1o the same entries. It is
never forced, however, to accept a request from a arbitrary source that happens

to know its address.

Dynamic binding of links to entries is a simple but effective means of pro-
viding protection.  As demonstrated in the priority scheduler and readers/writers
examples of chapter 2 (sections 9.3 and 9.4), bindings can be used to control the
access of particular clients to particular operations. With many-one paths no
such control is possible. Ada, for example, can only enforce a sofution to the

readers/writers problem by resorting to a system of keys [1 13).8

The protection afforded by links is not, of course, complete. In particular,
though a process can make or break bindings on a link-by-link basis, it has no
way of knowing which process is attached to the far end of any link. It is not
even informed when an end moves. In one sense, a link is like a capability: it
allows its holder to request operations on a resource. In another sense, it is a
coarser mechanism that requires access lists for fine-grained protection. The

rights 1o specific operations are controlled by servers through bindings; they are

8 The **solution’ in reference [63] (page 11-11) fimits each process o one
read or write operation per prolected session. it does not generalize to applica-
tions in which processes gain access, perform a series of operations, and then
release the resource.
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not a property of links. Links also differ from capabilities in that they can never

be copied and can always be moved.

Protection could be increased by distinguishing between the server end
and the client end of a link. The inability of a server 1o tell when far ends move
is after all a direct consequence of link symmetry. If links were asymmetric one
could allow the server ends to move without notice, yet require permission (or at
feast provide notification) when client ends move. Such a scheme has several
disadvantages. Foremost among them is its complexity. Two different types of
link variable would be required, one to access each type of end. Connect would
require a link to a server. Accepy, bind, and unbind would require a link lo a
client. Newlink would return one link of each type. Destroy would take an argu-
ment of either type. The semantics of enclosures would depend on which end
was enclosed; special rules would apply to the movement of links that connected
to servers. Finally, communication between peers iwho often make requests of

cach other) would suddenly require pairs of links, one for each direction.

Symmetric links strike a compromise between absoluie protection on the
one hand and simplicity and flexibility on the other. They provide a process with
complete run-lime control over its connections to the rest of the world, but limit
its knowledge about the world to what it hears in messages. A process can con-
found its peers by restricting the types of requests it is willing 1o accept, but the
consequences are far from cawstrophic. Exceptions are the most serious result,
and exceptions can be caught. Even an uncaught exception kills only the thread

that ignores in?

9 Admittedly, a malicious process can serve requesis and provide erroneous
results. No language can prevent it from doing so.
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To a large extent, links are an exercise in late binding. Since the links in
communication stalements are variables, requests are not bound to communica-
tion paths until the moment they are sent. Since the far end of a link can be
moved, requests are not bound to receiving processes until the moment they are
received. Since the set of valid operations depends on outstanding bindings and
accepts, requests are not bound to receiving threads of control until afier they
have been examined by the receiving process. Only after a thread has been
chosen can a request be bound to the types it must contain. Checks must be per-
formed on a message-by-message basis. (Low-cost techniques are discussed in

chapter 4, section 3.3.)

Several of the languages in chapter 1 provide late binding for communica-
tion paths. Ada [108], Argus [82, 84], and Mesa [74, 89] provide variables that
hold a reference to a process. NIL [27, 105] provides variables that hold a refer-
ence to a single operation. SR [4, 5] provides capabilities that hold references to
a ser of operations, perhaps in different processes. Each of these languages
allows references to be passed in messages. Each checks its types at compile
time. To permit such checking, each assigns types to the variables that access
communication paths. Variables of different types have incompatibie values. By
contrast, the dynamic type checking of LYNX has two major advantages:

(1) A process can hold a large number of links without being aware of the
types of messages they may eventually carry. A name server, for example,
can keep a link to each registered process, even though many such
processes will have been created fong after the name server was compiled

and placed in operation.
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(2) A process can use the same link for different types of messages at different
times, or even at the same time. A server capable of responding to several
radically different types of requests need not create an artificial, and highly
complicated, variant record type in order to describe the message it expects

to receive.

LYNX type checking also differs from that of previous languages in its use
of structural equivalence ( [50], p. 92). The alternative, name equivalence,
requires the compiler to maintain a global name space for types. Beyond the
traditional advantages and disadvantages of each approach [107], two specifically

distributed concerns motivated the adoption of structural equivalence for LYNX,

(1) A global name space requires a substantial amount of bookkeeping, particu-
larly if it is to be maintained on more than one machine. While the task is
certainly not impossible, the relative scarcity of compilers that enforce
name equivalence across compilation units suggests that it is not trivial,

either.

(2) Compilers that do enforce name equivalence across compilation units usu-
ally do so by affixing time stamps to files of declarations {89, 108, 117]. A
change or addition to one declaration in a file appears to modify the others.
A globai name space for distributed programs can be expected to devote a
file 10 the interface for each distributed resource. Mechanisms can be dev-
ised to allow simple extensions 10 an interface [76], but certain enhance-
ments will inevitably invalidate all the users of a resource. In a tightly-
coupled program, enhancements o onc compilation unit may force the
unnecessary recompilation of others. In a loosely-coupled system,

enhancements 1o a process like the file server may force the recompilation
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of every program in existence.

The Charlotte implementation of LYNX, described in the following
chapier, uses name equivalence for types within each process. The decision to do
so was based primarily on expediency: name equivalence was easier to imple-
ment. For the issues that LYNX addresses, the intra-process type checking

mechanism is more or less irrelevant.

2.2. Threads of Control

Even on a single machine many processes can most casily be written as a
collection of largely independent threads of control. Language designers have
recognized this fact for many years (see chapter 1, section 4.1), and have often
allowed more than one thread to operate inside a single module and share that
module’s data. The threads have been designed to operate in simulated parallel,
that is, as if they werce running simultaneously on separate processors with access

{0 & common store.

In Argus [82, 84], StarMod [31, 32], and SR {4, 5] a resource is an isolated
module. SR calls such modules resources; Argus calls them guardians and
StarMod calls them processor modules. Each module is implemented by one
or more processes. Semantics specify that the processes execute in parallel, but
implementation considerations preclude their assignment to separaie physical
machines. In effect, the ‘‘processes’ of Argus, SR, and SiarMod are the
threads of control of LYNX. Guardians, resources, and processor modules

correspond to LYNX processes.

Ada allows data to be shared by arbitrary processes (called tasks). It has

no notion of modules that are inherently disjoint. An Ada implementation must
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either simulate shared data across machine boundaries or eise specify that only
processes that share no data can be placed on separate machines. In cither case,
language semantics specify that processes execute in parallel.

While simulated parallelism may be aesthetically pleasing, it does not reflect
the nature of the underlying hardware. On a single machine, only one thread of
control can execute at a time. There is no inherent need for synchronization of
simple operations on shared dala. By pretending that separate threads can exe-
cute in parallel, language designers introduce race conditions that should not
even exist; they force the programmer o provide explicit synchronization for

even the most basic operations.

In Extended CLU ( [79, 80], the predecessor to Argus) and in StarMod,
monitors and semaphores are used o protect shared data. These mechanisms are
provided in addition to those already needed for inter-module interaction. They

lead 1o two very different forms of synchronization in almost every program.

In Ada and SR, processes with access 10 common data synchronize their
operations with the same message-passing primitives used for inter-module

interaction. Small-grain protection of simple variables is therefore rather costly.

Argus sidesteps the whole question of concurrent access with a powerful
(and complicated) transaction mechanism that serializes even large-grain opera-
tions. Programmers have complete control over the exact meaning of atomicity
for individual data types [110, 111]. Such an approach may prove ideal for the
on-line transaction systems that Argus is intended to support. It is not appropri-
ate for the comparatively low-level operations of operating system servers.
Servers might choose to implement a transaction mechanism for processes that

want one. They must, however, be prepared to interact with arbitrary clients. In
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an environment where transactions are not a fundamental concept, servers cannot

afford to rely on transactions themselves.

A much more attractive approach (o intra-module concurrency can be seen
in the semantics of Brinch Hansen’s Distributed Processes {22]. Instead of pre-
tending that entry procedures can execute concurrently, the DP proposal provides
for each module to conlain a single process. The process jumps back and forth
between its initialization code and the various entry procedures only when
blocked by a Boolean guard. Race conditions are impossible. The comparativeiy
simple await statement suffices to order the executions of entry procedures,
There is no need for monitors, semaphores, alomic data, or expensive message
passing.

An important goal of LYNX is to provide safe and convenient mechanisms
that accurately reflect the structure of the underlying system. In keeping with
this goal, LYNX adopts the semantics of entry procedures in Distributed

Processes, with six extensions:

{1) Messages can be received explicitly, as well as implicitly.

{2) Entry procedures can reply before terminating.

(3) New threads of control can be created locally, as well as remotely.
{4) Blocked threads can be interrupted by exceptions.

(5) A process can accept external requests while waiting for the reply to a

request of its own.
(6) Modules and procedures can nest without restriction,

The last extension is, perhaps, the most controversial. As in Ada, it allows

the sharing of non-local, non-global dawa. Techniques for managing the neces-
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sary tree of activation records are well understood [16). They are discussed
briefly in section 3.1 of chapter 4 and in section 7 of the appendix. Activation
records for any subroutine that may not return before -the next context switch
must be allocated from a heap. Even the best storage allocator will require more
time than is devoted to incrementing the stack pointer in more conventional
languages. The allocator will not, however, require more time than is often
devoted to saving line numbers and other debugging information when subrou-
tines are called. The automatic management of state for independent conversa-
tions is cerwinly worth at least as much effort as the maintenance of data for

post-mortem dumps.

Admittedly, the mutual exclusion of threads in LYNX prevents race condi-
uons only between context switches. In effect, LYNX code consists of a series of
critical sections, separated by blocking slatements. Since context swilches can
occur inside subroutines, it <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>