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passing instead. The alternatives proposed to date show a remarkable degree of 

diversity. This survey attempts to deal with that diversity by developing a frame­

work for the study of distributed programming languages. The framework allows 

existing languages to be compared for semantic (as opposed to purely cosmetic) 

differences. It also facilitates the exploration of new and genuinely different pos-

sibilities. 

Section 2 presents the framework. Section 3 uses that framework to 

describe a number of existing languages. No attempt is made to survey tech­

niques for managing shared data. (Good surveys have appeared elsewhere 16].) 

The evaluations are intentionally biased towards languages that lend themselves to 

implementation on top of a distributed operating system, where message passing 

is the only means of process interaction. 

2. The Framework 

This section discusses major issues in distributed language design: 

processes and modules 
communication paths and naming 

- synchronization 
implicit and explicit message receipt 
message screening and multiple rendezvous 

- miscellany: shared data, asynchronous receipt, timeout, reliability 

The list is Incomplete. The intent is to focus on those Issues that have the most 

profound effects on the flavor of a language or about which there is the most 

controversy in the current literature. 
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2.1. Processes and Modules 

A process is a logical thread of control. It is the working of a processor, 

the execution of a block of code. A process is described by a state vector that 

specilies its' position in its code, the values of its data, and the status of its inter­

faces to the rest of the world. 

A module is a syntactic construct that encapsulates data and procedures. A 

module is a closed scope. It presents a limited interface to the outside world and 

hides the details of its internal operation. 

In a sense, a module is a logical computer and a process is what that com­

puter does. Several language designers have chosen to associate exactly one pro­

cess with each module, confusing the difference between the two. It is possible 

to design languages in which there may be more than one process within a 

module, or in which a process may travel between modules. Such languages 

may pretend that the processes within a module execute concurrently, or they 

may acknowledge that the processes take turns. In the lalter case the language 

semantics must specify the circumstanc:es under which execution switches from 

one process to another. In the former case the language must provide some 

other mechanism for synchronizing access to shared data. 

Modules are static objects in that they are defined when a program is writ­

ten. Some languages permit them to be nested like Algol blocks; others inSist 

they be disjoint. In some cases, it may be possible to create new instances of a 

module at run time. Separate instances have separate sets of data. 

Some languages insist that the number of processes in a program be fixed 

at compile time. Others allow new processes to be created during execution. 

Some languages insist that a program's processes form a hierarchy. Special 
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dom. There is no general mechanism for guarding clauses with Boolean expres-

sions. 

3.7. PUTS and ZENO 

PUTS [39] is an acronym for "Programming Language in the Sky," an 

ambitious attempt at advanced language design. In the area of distributed com­

puting, it envisions a framework in which a' computation may involve processes 

written in multiple languages, executing on heterogeneous machines. ZENO [9] 

is a single language based heavily on the PUTS design. lIS syntax is borrowed 

from Euclid [73]. 

A ZENO program consists of a collection of ~odules that may be instan­

tiated to create processes. Processes are assigned names at the time of their crea­

tion. They are independent equals. A process dies when it reaches the end of ilS 

code. It may die earlier if it wishes, but it cannot be killed from oulSide. There 

is no shared data. Receive is explicit. Send is non-blocking and buffered. There 

is only one path into each process, but each message includes a special trans­

action slot to help in selective receipt. A sender names the receiver explicitly. 

The receiver lists the senders and transaction numbers of the messages it is wil­

ling to receive. There is no other means of message screening - no other form 

of guards. As in CSP (section 3.4), forcing receivers to name senders makes it 

difficult to write servers. A "pending" function allows a process to determine 

whether messages from a particular sender, about a particular transaction, are 

waiting to be received. 

The most unusual feature of PUTS/ZENO is the structure of its messages. 

In contrast to most proposals, there is no strong typing of interprocess communi­

cation. Messages are constructed much like the property lists of USP [93]. 
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They consist of name/value pairs. A process is free to examine the message slolS 

that interest it. It is oblivious to the existence of others. 

In keeping with its multi-language, multi-hardware approach, PUTS prohi­

bits the transmission of all but simple types. ZENO is more flexible. 

Recent extensions to PUTS [38] are designed to simplify the organization 

of large distributed systems and to increase their reliability. Cooperating 

processes are tagged as members of a single activity. A given process may 

belong to more than one activity. It enjoys a special relationship with ilS peers: it 

may respond automatically to changes in their Status. Activities are supported by 

built-in atomic transactions, much like those of Argus (section 3.8). 

3.8. Extended CLU and Argus 

Extended CLU [79,80] is designed to be suitable for use on a long-haul 

network. It includes extensive features for ensuring reliability in the face of 

hardware failures, and provides for the transmission of abstract data types 

between heterogeneous machines [55]. The language makes no assumptions 

about the integrity of communications or the order in which messages arrive. 

The fundamental units of an Extended CLU program are called guardians. 

A guardian is a module; it resides on a single machine. A guardian may contain 

any number of processes. Guardians do not nest. Processes within the same 

guardian may share data. They use monitors for synchronization. All interac­

tion among processes in separate guardians is by means of message passing. 

Receive is explicit. Send is non-blocking and buffered. Each guardian pro­

vides ports to which its peers may address messages. New instances of a guard­

ian may be created at run time. New port names are created for each instance. 

































































































Comments in L YN X begin with' - - ' and extend through end-of-line. 

COMMENT = 

- - ( NOT ( \n ) ) '" 

Comments are treated like while space. 

Numeric constants can he expressed in oClal, decimal, or hexadecimal. 

NUMBER = 

o ( 0 I ocuiig!!) * I 
decdigit I 0 I decdig!t) * I 
/I ( 0 I hexdigit) * 

where 
ocuiigit = '1' . .' 7' 
decdigit = '1' .. '9' 
hexdigit = '1' . .'9', 'A' . .'F', 'a' . .'P 

13S 

Character and string constants are delimited by single and double quotes, 

respectively. Non-printing characters may be indicated by the single-letter 

backslash-escapcs of C (\b, \n, \r, \l), or by numbers (as defined above) delim­

ited by a pair of backslashes (as in \/171'\ for the delete character). Single quotes 

in character constants and double quotes in string constants are indicated by" 

and \", respectively. Backslashes are indicated by·\\. Backslashes not accounted 

for by any of the preceding rules are ignored.!5 

15 These conventions agree with C except in the form of numeric escapes. 

CHARCONST = 
, ( 

NOT ( , , \ , \n , nonprinI) I 
\ NOT ( /I , 0 , decdigiI, \n , nonprinI) I 
\ number \ 

) , 

STRINGCONST = 
" ( 

NOT ( " , \ , \n , 1l0nprilll) I 
\ NOT ( /I , 0 , decdigit, \n , Ilonprillt) I 
\ number \ 

) * " 
where 
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Ilonprinrindicates the Ascii characters with codes 1..8,11..31, and 127 
decdigit is as above 
number is as defined for the token' 'number" 

Keywords are: 

ACCEPT AND ARRAY AWAIT 

BEGIN BIND CALL CASE 

CONNECT CONST DO ELSE 

ELSIF END ENTRY EXCEPTION 

EXIT EXPORT EXTERNAL FOREACH 

FORWARD FROM FUNCTION IF 

IMPORT IN LOOP HOD 

MODULE NOT OF ON 

OR OTHERWISE PROCEDURE RAISE 

READ RECEIVE RECORD REMOTE 

REPEAT REPLY RETURN REVERSE 

SEND SET THEN TO 

TYPE UNBIND UNTIL VAR 

WHEN WHILE WITH WRITE 

After excluding keywords, identifiers are strings of letters, digits, and 

underscores that do not begin with a digit and do not end with an underscore. 

Case is not significant in identifiers, except when significance is imposed from 

outside by .associating names in the language with external objects. 
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minus sign (-) can also be a unary operator, if there is no expression to its 

immediate left. Otherwise, it is a binary operator, Binary operators have two 

operands: the expressions to their left and fight. The rest of the operators in the 

above list are binary, 

5.4.1. Opera lor Precedence 

In the absence of parentheses, operands and o~rators arc grouped together 

according to the following levels of precedence. 

Loosest grouping 

OR 
AND 

< <= >= > <> 
+ -- (binary) 

'" MOD I 
NOT - (unary) 

Tightest grouping 

Operators of equal precedence associate from left to right. 

5.4.2. Operator Semantics 

For the purposes of this section, define the base of any type except a 

subrange to be the type itself. Define the base of a subrange to be the base 01 the 

subrange's parent type. 

NOT 

is a unary operator whose operand must have, base type Boolean. "NOT 

expr" is an expression of type Boolean whose value is the negation of the 

value of expr. 
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AND and OR 

are binary operators whose operands must have base type Boolean. "exprl 

AND expr2" and "exprJ OR expr2" are expressions of type Boolean 

whose values are the logical and and or, respectively, of the values of their 

operands. 

(Unary) -

is an operator whose operand must have base type integer." expr" is an 

expression of type integer whose value is the additive inverse of the value of 

expr. 

+, - , and '" 

are binary operators whose operands must be sets, or else of base type 

integer. If exprl and expr2 are of base type integer, then "exprJ + 

expr2," "exprl _. expr2," and "exprl ,', expr2" are expressions of type 

integer whose values are the sum, difference, and product, respectively, of 

the values of their operands. The VAX implementation performs these 

operations in two's complement arithmetic with no checks for overOow, 

If expr J and expr2 are sets, then "expr 1 + expr2," "expr 1 - expr2," and 

"exprl ,', expr2" are expressions whose values are the union, difference, 

and intersection, respectively, of the values of the operands. If neither 

operand has a provisional type, then the types must be the same, and the 

type of the expression will be the same as well. If exactly one operand has 

a provisional type, then it is coerced to the type of the other operand, if pos­

sible. The coercion is not permilled if 1) the two operands have different 

component base types, or 2) the bounds of the component type of the provi­

sional operand do not lie within the bounds of the component type of the 
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awaiLstmt ::= AWAIT expr 

The expression must be of type Boolean. The current thread will not continue 

until the expression is true. If it is false when first encountered, it must be 

changed by a different thread. 

6.11. Compound Statement 

A compound statement is a delimited list of statements with an optional set 

of exception handlers. 

compoun<Lstml 
han<LlisLopt 

when_clause 
morc-whens 

morc-handlers 

exception 

:: = BEGIN stmLlisLop han<LlisLopt END 
:: = when_clause morc-handlers 

WHEN exception morc-whens DO stmLlisLopt 
, exception morc-whens 

:: = when_clause more_handlers 

:: = expr iden Lopt 

Compound statements comprise the bodies of subroutines, modules, and entries. 

They may also be nested anywhere a statement can occur. 

Each exception handler consists of a series of when clauses and a statement 

list. As mentioned in section 3.4, an exception is either an expression of type 

link followed by the name of a buill-in exception class, or a name introduced in 

an exception declaration. The exceptions in the when clauses of a given com­

pound statement need not be distinct. When an exception arises, the first clause 

that matches the exception will be used. Exceptions are discussed in more detail 

in section 7.2. 
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6.12. Raise Statement 

Some exceptions occur spontaneously in the course of communication on 

links. Others arc caused by execution of the raise statement. 

:: = RAISE exception 

An exception associated with a link end is raised in the current thread of control. 

An exception introduced by an exception declaration is raised in each thread with 

an active handler for it. 

6.13. Input/Output Statements 

Input and output statements read and write Ascii data on the standard input 

and output streams. In the Charlotte implementation, these streams connect to 

the (possibly virtual) console terminal of the local node. 

io 

deLlisLopt 

designator-list 
des_IisLtail 

WRITE ( expr-list ) 
READ ( expr des_lisLopt ) 
designator-list 

:: = designator des_IisLtail 
, designator des_IisLtail 

The parameters of read and write have the same format as those of the scallfand 

prillt[ routines in C. The first argument must be a string constant or an array 

whose clements have base type char. The rest of the arguments must be scalars 

or strings. The second and subsequent arguments to read are automatically 

passed by reference. 
































