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Abstract 

In intensive work over a four-week period in the summer of 1986, seven 
problems were studied and implemented on the Butterfly. The problems were 
Inspired by various capabilities in computer vision, and were proposed as 
benchmarks for a DARPA worksho{' on parallel architectures. They were: 
convolution and zero-crossing detectlOn for edges, edge tracking, connected 
component labeling, hough transform, three computational geometry problems 
(convex hull, voronoi diagram, and minimum spanning tree), three-dimensional 
visibility calculations, subgraph isomorphism and minimum cost path calculation. 
BPRs 10,11, and 14 are detailed reports on three of the problems. BPR13 contains 
the conclusions of the study and writeups of the work not covered in other BPRs. 

This work was supported in part by the Defense Advanced Research Projects Agency 
U.S. Army Topographic Labs under grant number DACA76-85-C-0001 and in part 
by the National Science Foundation under grant number DCR-8320136. 
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The University of Rochester's response to the DARPA Architecture 
Workshop Benchmark Study request was a three-week period of activity, 
commenced from a standing start with the arrival of the problem specifications 
(Chapter 2). During this time the researchers had to make difficult technical 
decisions very quickly and to implement and run experiments under severe time 
pressure. Often sub-optimal methods were chosen for practical reasons. Some of 
the work has led to internal technical reports, and much of the work is being 
followed up and will appear in more finished form elsewhere. The contents of this 
report represent a snapshot of work not currently written up elsewhere, as of our 
self-imposed deadline of 1 September 1986 (The Architecture Workshop was later 
rescheduled to mid-November 1986). 

The contents of this report represent preliminary work, and should not be 
considered our best or final answers to the various levels of problems raised by the 
Benchmark Study. 

2. The Study 

Rochester's DARPA Architecture Workshop Benchmark Study is made up of 
several chapters, each written by an individual or a small group. This, Chapter 1, 
gives an overview of the work and the resulting conclusions. Chapter 2 is a 
formatted version of the original memo that gave the problem specifications. 

The remainder of this document, Chapters 3-9, along with separate Computer 
Science Department Butterfly Project Reports, (numbers 10, 11, and 14) detail 
technical aspects of our work on individual problems. Generally there is one 
chapter per problem, except that we used the connected components algorithm 
(Problem 2, described in BPR II) to do edge-following (problem l.c.) as well. 
Thus Chapter 3 gives results on edge-finding and zero-crossing detection, while 
Chapter 4 (BPR 11) discusses the work on edge-following and connected 
components. Chapte 5 is equivalent to BPR 10 and Chapter 8 is equivalent to 
BPR 14. 

3. The Effort 

Over a three-week period, several students and faculty at the University of 
Rochester's Computer Science Department worked on the seven architecture 
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benchmarks proposed by Rosenfeld, Squires, and Simpson (Chapter 2). Because 
of the short time and limited personnel resources available, the results reported 
here should not be considered as our last word on any of the problems. We did, 
however, find the exercise to be stimulating and a good investment Our report 
takes the form of this brief summary document and a collection of chapters 
written by individuals and small groups who addressed individual problems. 

Those directly involved in the effort were two staff members, five faculty 
members, and six graduate students varying from pre-first-year to third year in the 
areas of artificial intelligence, systems, and theory. The concentration of work was 
relatively intense, varying from approximately 20% effort to 75% effort per person 
over the three weeks. 

Rochester's place in the Strategic Computing program is to investigate and 
build programming environments for parallel vision. With this charter, we felt 
that the more benchmark implementations we could build the better. Further, in 
the area of programming advanced parallel architectures, often interesting software 
engin~ring must be done to improve implementations in the face of performance 
facts. We believe that theoretical or simulated results, while safer to propound, 
are of limited interest Beyond our desire to get programs running, our goals were 
diverse. 

(1) The primary goal is to evaluate the Butterfly Parallel Processor architecture 
and its existing software resources. 

(2) Some of us wanted to use and test utilities we had already developed (e.g. the 
BIFF utilities used for the edge-finding task and the UNION-FIND package 
used for connected component labelling.) 

(3) Some wanted to code applications in recently-implemented parallel languages 
and program libraries (e.g. LYNX was used in the triangle visibility task, and 
the Structured Message Passing library was used in the shortest path 
problem). 

(4) Some wanted to modify and extend existing projects (e.g. the undirected 
edge-detector extension for the Hough transform task. Another example was 
an experimental modification of a clustering program to do the minimum 
spanning tree task -- that work is not reported here.) 

(5) Some wanted to explore the mapping of current parallel algorithms from the 
theoretical literature onto parallel architectures, and to open research avenues 
in this direction (e.g. the subgraph isomorphism task, which has already 
generated interesting new scientific results, and the computational geometry 
tasks). 

There was little problem in implementing most of the problems. All told, 
four programming environments were used: 

(1) C and raw Chrysalis (the Butterfly operating system) 

(2) The Uniform System of BBN 



(3) Structured Message Passing (developed at Rochester) 
(4) LYNX (ported to the Butterfly at Rochester). 
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The programmers ranged from naive first-time users of the Butterfly to highly 
experienced and sophisticated programmers who could (and did) modify system 
internals to improve performance. 

4. The Problems 
The original problem statements appear in the next chapter. Detailed write

ups of our approach to and results on the problems follow in separate chapters. 
The problem statements were followed as closely as made sense given the scientific 
goals of the study. For example, in the triangle visibility problem, floating point 
was not used because the inefficient software implementation of floating point 
would distort the interesting statistics. (The Butterfly does in fact need the 
Hoating Point Platform upgrade if it is to be useful in serious scientific 
computing.) In the convex hull problem we went to a larger-than-specified 
problem size because of results with sequential implementations, and in the graph 
isomorphism problem we used a smaller problem size than specified for technical 
reasons. An ambiguity in the shortest path problem statement was interpreted in a 
way that was not advantageous to the Butterfly architecture but seemed to be 
indicated by the "hint" in the problem statement, and which was more practical 
given the time constraints. Wherever we have changed a problem specification we 
have tried to explain why, and tried to indicate responsibly what the consequences 
of literal interpretation would have been. 

We chose the Butterfly several years ago because, among other things, its 
hardware architecture imposed the least constraint on the abstract models of 
computation it supported. Thus mapping problems onto the Butterfly is a doubly 
interesting exercise. There is a theoretical phase in which a good algorithm (using 
one or another abstract computational model) is chosen and the abstract model is 
matched with a Butterfly programming environment Then there is an engineering 
phase in which the implemention is built and made efficient. The best results 
occur when both these phases are done well. In this set of problems sometimes 
the first phase went well but the second phase was not attempted (as in the 
geometry problems we did not implement) or needs more work (as in the triangle 
visibility problem). Also there were some cases in which the first phase was given 
short shrift because it looked like a research problem (e.g. the subgraph 
isomorphism problem), but the second phase was done very stylishly. 

The computational domain of the benchmark was not one that could fully 
take advantage of the Butterfly's MIMD architecture. One computational aspect 
lacking in the benchmark problems is the case of a cooperating set of independent 
programs, such as occurs in client-server models. The benchmark tested 
performance. (of programmers, languages, architectures, operating systems. 
programming environments) on single algorithms solving easily-stated problems. 
This limitation is worth noting since. in advanced systems, cooperation and 
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communication between basically independent processes will be important Also 
the benchmark problems were small compared to a working AI system. Another 
set of benchmark problems to illuminate these issues could be proposed .and might 
include construction of a file system, or a system in which results of disparate, 
asynchronously computed results are merged. 

Within its limited perspective, the benchmark did comprise a diverse and 
challenging set of problems, and allowed us to reach several conclusions. For 
details on the technical approaches, performance, and individual conclusions, see 
the following chapters. The next section gives some highlights of our observations. 

5. Observations 
. It is difficult to boil down the diversity of our results into a small set of out

of-context conclusions. Nevertheless, the following observations seem safe. 

(1) During the last year, advances made at BBN and at the University of 
Rochester have made the Butterfly much easier to program under several 
complementary models of computation. A programmer starting with only a 
knowledge of standard sequential programming can now produce parallel 
programs (in the Uniform System or Structured Message Passing) in a day or 
two. Alternatively, knowing a modem language like Ada would make 
learning LYNX, and subsequent Butterfly programming, quite easy. 

(2) The Butterfly can be efficiently (as well as easily) programmed using several 
"virtual architectures" (models of parallel computation). 

(3) The Butterfly architecture can implement a wide variety of abstract parallel 
models of computation. Further, the combination of significant local memory 
and quickly accessible "shared" memory gives the capability for several 
complementary types of parallelism working together. While programming 
environments that emphasize one or another parallel model are available now, 
a single environment that gives the programmer access to a mix of 
computational models is not. The subgraph isomorphism problem illustrates 
one case in which a mix would have been useful. At Rochester the PSYCHE 
project has the goal of providing unified support for a variety of parallel 
computation models, including both shared memory and message-passsing. 

(4) For serious work in the area of scientific computation covered in the 
benchmark, and probably for general programs, the new Butterfly Floating 
Point Platform is a necessity. Both floating point operations and integer 
multiplies are a serious bottleneck (see the Hough Transform Problem). 

(5) Microcode support for debugging and performance monitoring would be a 
significant improvement There would be considerable payoff in a small 
microcode fix to provide 32-bit atomic operations. One specific (and easy) 
upgrade would be microcode hooks to allow logging atomic operations. This 
facility would allow a reliable record of the order that processes enqueued 
entries on dual queues. 
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(6) Memory management is a serious problem. The scarcity of Segment 
Attribute Registers makes their management a major concern. The inability 
of the 68000 to do demand paging is also awkward (here again the problem is 
solved by the Floating Point Platform upgrade). Very large memory objects 
(larger than one physical memory) are an interesting issue that a few groups 
are working on -- some benchmark problems (e.g. shortest path) expose the 
desirability of a clean solution for the large object problem. 

(7) A switch that supported simultaneous communication with several 
destinations would improve the implementation of broadcast or multicast 
communication used in many algorithms. A combining switch might reduce 
memory contention, but its efficacy is a research issue. 

(8) The Uniform System really provides a global shared name space, not a shared 
memory. To achieve good speedup of parallel algorithms, local memory must 
be used to avoid memory contention. Even knowing the standard tricks is 
not enough to guarantee good performance. The Hough Transform chapter 
provides an interesting example evolution of program ameliorations. A 
"shared memory" (as in the planned Monarch) would seem to support 
Uniform System style programming better. However, it is doubtful that 
remote memory can ever be made as fast as local memory, and so the local
global question cannot be avoided. A very fast block-transfer capability 
would improve matters in the current architecture, and would not close off 
any options in the computational models the Butterfly would support. 
However, the block-transfer fix does not address the local-global conflict at 
the conceptual level. Similarly, the fast-switch "shared-memory" does not 
solve the local-global conflict at the technical level. What is needed perhaps 
is continued diversification of the abstract models of computation available 
and in the programming environments that support them. 

(9) Amdahl's law is important, and any serial program behavior has serious 
adverse consequences in speedup performance. Such serialization sometimes 
hides in the system software and special effort (and talent) are required to 
avoid or fix it (e.g. the parallel memory allocation modification introduced in 
the convex hull implementation). The timings shown in Chapter 4 (BPR 11, 
connected components) and Chapter 7 (triangle visibility) are revealing. 
Systems code to allocate memory and replicate data dominates times if it is 
not parallel. 

(10) Software to support (efficiently) many more processes than processors on the 
Butterfly would make implementing a great many important algorithms 
easier. There are many algorithms in which a process is dynamically allocated 
to each problem object (e.g. the nodes of a graph), for large numbers of 
objects. The Uniform System does not answer because it is unable to do 
process synchronization: processes cannot be blocked, unscheduled, 
awakened, etc. One reasonable response to this need would be a 
programming environment such as Concurrent Euclid (Ada would be usable 
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but not as good), with monitors or a similar means of concurrency 
control/encapsulation. The actual composition of the envitoIl11ient is a 
research issue, but it may be necessary to have something like a full blown 
object-oriented system in which tasks are represented as first class entities 
encapsulating data, code, and process. 

6. Concluding· Remarks 
The Benchmark Study was a stimulating exercise that served several purposes 

at Rochester. It has led to new software utilities, to new understandings of 
Butterfly strengths and weaknesses, to applications for new programming 
environments developed at Rochester, and to new research avenues in parallel 
algorithm theory and development It has encouraged us that our work in 
building programming environments for the Butterfly has been effective. 

Several of the benchmark problems (e.g. the geometry problems) were useful 
but uncomfortable because they underlined current weak points in the 
programming systems we have. The graph algorithms need a high degree of cheap 
(i.e .. not SMP or LYNX) parallelism that is independent (i.e. not US-style) -- thus 
they exposed fruitful areas for future research. We welcome such problems. Our 
goal is to get the most out of the flexible MIMD architectures of the future, and 
"counterexamples" to current solutions are always interesting and important We 
believe that one of the most promising and important research areas centers 
around the goal of a single programming environment that can take advantage of 
the potential for several sorts of parallelism in tightly-coupled MIMD computers, 
and we are now working actively in in that area 

We believe that much can and will be gained by continuing with the method 
we have been pursuing at Rochester -- a symbiosis of theoretical, systems, and 
applications research. We shall continue to build systems for internal and external 
use that incorporate our theoretical insights and meet the needs of applications. 
With the basic research underlying the systems, and with the systems as tools, we 
and others will move forward toward understanding and controlling state-of-the
art parallel programming systems. 



Chapter Two: Problem Specifications 
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DRAFT 

MEMO TO: Designers of architectures for image understanding (IV) 

FROM: Azriel Rosenfeld, Bob Simpson, Steve Squires 

SUBJECf: New architectures for IU 

DARPA plans to hold a workshop during the week of Sep- tember 8 in 
Mclean, Virginia to discuss what the next steps should be in developing IU 
architectures that could be available to researchers by the 1990's. 

A lot is known about architectures for low-level vision, but we need to 
move toward systems that can handle the total vision problem, including both the 
low- and high- level ends as well as the interface between the two. 

Appended to this memo is a set of "benchmark" IU problems. We have 
tried to define them as precisely as pos- sible, so as to make it possible to predict 
how a given sys- tern would perform on them. (We have provided some refer
ences to the relevant literature for your convenience.) 

You are invited to make such predictions for your (existing or proposed) 
systems, and to prepare a short paper documenting the results. This paper should 
be sent to us for distribution to the Workshop attendees by mid August, so 
everyone will have a chance to evaluate the results and dis- cuss them at the 
Workshop. If your system is not very effi- cient at some of the tasks, you may 
wish to indicate how you would improve or augment it to make it more efficient 

We look forward to hearing from you and to seeing you at the Workshop. 
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Appendix: IU benchmarks 

(1) Edge detection 
In this task, assume that the input is an 8-bit digital image of size 512 x 512 
pixels. 

a) Convolve the image with an 11 x 11 sampled "Laplacian" operator [I]. 
(Results within 5 pixels of the image border can be ignored.) 

b) Detect zero-crossings of the output of the operation, i.e. pixels at which 
the output is positive but which have neighbors where the output is 
negative. 

c) Such pixels lie on the borders of regions where the Laplacian is positive. 
Output sequences of the coordinates of these pixels that lie along the 
borders (On border following see [2], Section 11.2.2.) 

(2) Connected component labeling 
Here the input is a I-bit digital image of size 512 x 512 pixels. The output 
is a 512 x 512 array of nonnegative integers in which 

a) pixels that were O's in the input image have value 0 

b) pixels that were 1's in the input image have positive values; two such pixels 
have the same value if and only if they belong to the same connected 
component of 1's in the input image. 

On connected component labeling see [2], Section 11.3.1.) 

(3) Hough transform 
The input is a I-bit digital image of size 512 x 512. Assume that the 
origin (0,0) image is at the lower left-hand comer of the image, with the 
x-axis along the bottom row. The output is a 180 x 512 array of nonnegative 
integers constructed as follows: For each pixel (x,y) having value 1 in the 
input image, and each i, 0 « i « 180, add 1 to the output image in position 
(ij), where j is the perpendicular distance (rounded to the nearest integer) 
from (0,0) to the line through (x,y) making angle i-degrees with the x-axis 
(measured counterclockwise). (This output is a type of Hough transform; if 
the input image has many collinear 1's, they will give rise to a high-valued 
peak in the output image. On Hough transforms see [2], Section 10.3.3.) 

(4) Geometrical constructions 
The input is a set S of 1000 real coordinate pairs, defining a set of 1000 
points in the plane, selected at random, with each coordinate in the range 
[0,1000]. Several outputs are required 

a) An ordered list of the pairs that lie on the boundary of the convex hull of S, 
in sequence around the boundary. (On convex hulls see [31, Chapters 3-4.) 

b) The Voronoi diagram of S, defined by the set of coordinates of its 
vertices, the set of pairs of vertices that are joined by edges, and the set of 
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rays emanating from vertices and not terminating at another vertex. (On 
Voronoi diagrams see [3]. Section 5.5.) 

c) The minimal spanning tree of S. defined by the set of pairs of points of S 
that are joined by edges of the tree. (On minimal spanning trees see [3]. 
Section 6.1.) 

(5) Visibility 
The input is a set of 1000 triples of triples of real coordinates 
«r.s.t).(u.v.w).(x.y.x». defining 1000 opaque triangles in three-dimensional 
space. selected at random with each coordinate in the range [0,1000]. The 
output is a list of vertices of the triangles that are visible from (0.0.0). 

(6) Graph matching 
The input is a graph G having 100 vertices. each joined by an edge to 10 
other vertices selected at random. and another graph H having 30 vertices. 
each joined by an edge to 3 other vertices selected at random. The output is 
a list of the occurrences of (an isomorphic image of) H as a subgraph of G. 
As a variation on this task. suppose the vertices (and edges) of G and H 
have real-valued labels in some bounded range; then the output is that 
occurrence (if any) of H as a subgraph of G for which the sum of the 
absolute differences between corresponding pairs of labels is a minimum. 

(7) Minimum-cost path 
The input is a graph G having 1000 vertices. each joined by an edge to 
100 other vertices selected at random. and where each edge has a 
nonnegative real- valued weight in some bounded range. Given two 
vertices P.Q of G. the problem is to find a path from P to Q along which 
the sum of the weights is minimum. (Dynamic programming may be used. 
if desired.) 
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The task is to detect edges in an eight-bit digital image of size 5U x 5U pixels. It is 
divided into three steps : convolution with an 11 x 11 Laplacian-of-Gaussian operator, 
zero crossing detection, and chain encoding sequences of connected zero crossings. In 
these experiments steps a) and b) were handled using image processing utility functions 
from the Butterfly IFF (BIFF) image processing library [3]. Step c) was performed by a 
special purpose routine adapted from a connected component labelling function. The 
test image was a densely textured natural scene in which approximately 25% of the pixels 
in the zero crossing image were ones. Our conclusions, briefly, are that for the 119-node 
Butterfly 

a) convolution takes 3.48 seconds, 

b) zero crossing detection takes 0.16 seconds, and 

c) finding chain codes for lines takes 1.47 seconds for this image. 

These times are for computational kernels; they do not include time to load the image, 
allocate memory for the output, et cetera. The sections that follow present 
implementation details and benchmarks for the first two steps. The third is described in 
the attached Butterfly Project Report [2]. 

2. Convolution 

The convolution was performed by convolve(), the library version of the BIFF utility 
iffconvolve. Convolve() uses the Uniform System library [I] to perform a parallel FOR 
loop over rows of the output image. Each process created in this way does a sequential 
loop over rows of the mask; for each mask row it makes local copies of the appropriate 
mask and image rows and then does a linear convolution of the copied rows into a local 
array of 32-bit accumulators. Finally, it divides each accumulator by the user-supplied 
divisor and copies it to the output image. 

It is easy to see that in order to produce an output, convolve() must perform 
(5022)(112) = 30,492,484 multiplications. (The first term involves 502 rather than 5U 
because we ignore outputs within five pixels of the border.) Because it does so many 
multiplications, the execution time of convolve() is dominated by the 68ooo's 
multiplication time. Unfortunately the current Butterfly C compiler generates a call to an 
integer (32-bit) multiply routine even when the arguments are both shorts. Figure 1 
shows timings and speedup curves for four versions of iffconvolve running an 11 by 11 
mask on a 512 by 5U image. The first is coded in standard optimized C. The second 
replaces the multiplication in the innermost loop with a call to an assembly language 
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short multiply routine. For the third, we edited the compiler's assembly language output 
to replace the subroutine call with an in-line short multiply instruction. This is the 
version normally kept in the BIFF library. In the last version we replaced the multiply 
instruction with an addition. This gives an incorrect output, but indicates the sort of 
performance we might expect from a Butterfly with a fast full-parallel multiplier. 

The convolve() routine is written to be as general as possible and therefor does not 
take advantage of some features of the problem as stated. First, the 11 by 11 mask to be 
used is known at compile time. This makes it possible to avoid copying the mask rows 
into local memory at execution time. The copy operation is quite fast, so we would 
expect the principal effect of this change to be a reduction in memory contention. The 
speedup curves of Figure 1 indicate that memory contention is not a serious problem for 
convolve(), so the net effect would be minor. Second, the mask is symmetrical. By 
factoring appropriately, the number of multiplies that the convolver must do can be cut 
almost in half. For example, a process working on input rows 0 through 10 would add 
row 10 to row 0, row 9 to row 1 et cetera, and then convolve rows 0 through 5 with rows 
o through 5 of the mask. Figure 2 shows the effect of these optimizations on the standard 
and simulated fast multiply versions of convolve(). 

It should be noted that if we are willing to accept an approximation to the laplacian 
of a gaussian, we can speed the computation up substantially. Since gaussian masks are 
x-y separable, we can reduce convolution with an llxU mask to two convolutions with 
llx1 masks. We can take advantage of symmetry as before, so that for each convolution 
we do 6 multiplies and 11 adds per pixel. The cost of an llxlI gaussian convolution 
then becomes a mere 3,084,288 multiplies and 5,654,528 additions. We can compute the 
laplacian of the result by convolving with a 3x3 laplacian approximator. However, this 
method gives a relatively poor approximation to the truth. Better, though slightly more 
expensive, is to use the Difference of Gaussian (DOG) approximation, which requires 
two llxlI convolutions followed by a pointwise difference. We have not benchmarked 
this method, but expect that it would reduce execution times by at least a factor of three 
(to about 1.1 seconds) based on the relative numbers of operations. 

3. Zero Crossing Detection 

For zero crossing detection we use the BIFF utility zerocr(). Zerocr() is written as a 
parallel FOR loop over output scan lines. Each row process reads in the corresponding 
input row and its two neighbors (the top and bottom rows are handled specially). For 
every positive pixel in the input row it examines the eight neighbors and stores a one in a 

-local array if any of them is negative - otherwise it stores a zero. Finally it copies the 
local array into the output array. Timings are shown in Figure 3. 



16 

References 

l. BBN Laboratories, The Unifonn System Approach To Programming the Butterfly 
Parallel Processor, Version I, Oct 1985. 

2. L. Bukys, Connected Component Labelling and Border Following on the BBN 
Butterfl:YPaiallel ProCesSor, Butterfly Project Report 11, University of Rochester, 
Computer Science Department, Aug 1986. 

3. T. 1. Olson, An Image Processing Package for the BBN Butterfly Parallel Processor, 
Butterfly Project Report 9, University of Rochester, Computer Science Department, 
Aug 1986. 



120 

100 

80 

60 

40 

20 

0 

0 
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Figure 2: Optimized Iffconvolve 
convolving 11 x 11 delsqg with 512x512 natural image 
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The following amelioration to the inner loop of the llx11 Laplacian 
convolution approximately halved the time needed for this portion of the 
benchmark, from 6.11 seconds to 3.48 seconds. 

In the basic convolution multiply and add stage, every point (x, y) in the 
output can be computed by the expression 

for row = 0 to 10 
for col = 0 to 10 

tmp = tmp + mask(row, col)*image(y + row, x + col) 

which requires 121 adds and multiplies. We can use the symmetry properties of 
the mask to reduce the work. First, rewriting the above gives 

for col = 0 to 10 tmp = tmp + mask(5, col)*irnage(y+5, x + col) 
for row = Ot04 

for col = 0 to 10 
tmp = tmp + 

mask(row, col)*image(y + row, x + col) + 
mask(10-row, col)*image(y+ 10-row, x + col); 

Since mask(lO-row, col) = = mask(row, col), we can write this as 

for col = 0 to 10 tmp = tmp + mask(5, col)*image(y + 5, x + col) 
for row = 0 to 4 

for col = 0 to 10 
tmp = tmp + 

mask(row, col)*(image(y+row, x+col) + image(y+ lO-ro\\-, x +col); 

which takes the same number of adds but only 66 multiplies. We can do even 
better by realizing that we're going to do this at every point along a row. That 
means we can precompute the image row sums once and for all. That is, to 
compute row y in output, sum rows y and y+ 10, y+ 1 and y+9, ... , y+4 and 
y + 6, and include row y + 5 to get a 6 row by n column matrix. Then simply 
convolve with the bottom 6 rows of the mask. 

In summary, the standard convolution for 512x512 image and llx11 mask, 
ignoring dropping edge outputs is 
502x502x11x11 = 30,492,484 mpys and adds. 

Using the symmetry of the mask, the code above reduces the counts to 
502x512x5 = 1,285,120 adds to make the 502 6x512 matrices, plus 
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502x502xllx6 = 16,632,264 mpys and adds to do the individual convolutions. 

So multiplies are reduced by almost half. 

We can take further advantage of the available symmetries by folding the 
6x 11 mask we use in the implementation above around the middle column. This 
cuts the number of multiplies to 502x502x6x6 = 9,072,144. Similarly, by folding 
the 6x6 mask around its diagonal we can reduce the number of multiplies to 21 
per mask, giving 502x502x21 = 5,292,084 for the total. Unfortunately the number 
of additions stays constant at about 16M, and the loops and indexing become 
complex, so it is not clear that these refinements will actually improve execution 
times. These techniques are applicable to any rotationally symmetric mask, so if 
they do prove worthwhile we will probably put a special convolution routine into 
the BIFF library for rotationally symmetric masks. 
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The approach that we took in investigating the suitability of the ButterHy architecture for the 
geometric problems was to attempt the parallelization of good sequential algorithms for those same 
problems. Thorough discussions of such sequential algorithms for computational geometry may 
be found in [MeI84] and [PS86]. In [ACG *85] Aggarwal et al sketched some parallel algorithms 
for computational geometry derived from these sequential algorithms. Problems they addressed 
included the computation of two-dimensional convex hulls, Voronoi diagrams, and other problems. 
The model of computation that they used is the concurrent-read, exclusive-write (CREW) variant 
of the PRAM model of computation. Thp methods used by Aggarwal et al (at least for convex 
hull and the Voronoi diagram) are the parallelization of optimal sequential algorithms. We use a 
similar approach, but directed not towards the theoretically interesting questions of optimality in 
the asymptotic sense and of membership in well-known complexity classes (e.g. NC), rather towards 
achieving good performance when implemented on the ButterHy. In particular, we are using these 
problems as an opportunity to explore how to map algorithms designed for abstract models of parallel 
computation onto a physically realized parallel architecture. 

2 Salient Aspects of the Butterfly Architecture. 

Each node on the ButterHy consists of a processor and a megabyte of memory local to that node. 
In addition, the nodes are connected with a "butterHy" (hence the name) interconnection network 
that allows each node to access the memory of the others. The interconnection network resolves 
contending attempts to access each memory module by serializing those attempts. Because of the 
large granularity of the memory modules this "hidden" serialization of contending access attempts 
can be a major problem with the approach of attempting to adapt PRAM algorithms that assume 
the possibility of very fine grained parallelism. We believe that the investigatioll of data structures 
that can be shared with low contention among a reasonable number of processors to achieve medium 
scale parallelism on such a machine is an area for potentially fruitful research. 

The architecture seen by an application programmer is not determined solely by the underlying 
hardware, rather by a combination of hardware and the software architecture of the operating system 
cum programming environment. The latter can have as much or more of an effect as the former on the 
successful implementation of an algorithm on a particular machine. The quality of the programming 
environment affects both the ease of implementation as well as how well the underlying machine is 
used [Sny86]. 

Of the programming environments currently available on the Butterfly we chose the Uniform 
System because it most closely resembles the PRAM model. In the course of this exerecise we 
encountered the following specific problematic aspects of the Uniform System: 

• The Uniform System appears to have been designed to be used in a style in which memory is 
statically allocated when the application is initialized and in which there is a small number of 
generators that spawn a large number of tasks. In contrast, the geometric problems naturally 
seem to fit into a style that uses dynamic memory allocation and in which tasks are spawned 
dynamically a few at a time as a program executes its recursive algorithm. There appear to 
be substantial penalties for using this latter style in the Uniform System. 

1 
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• The geometric problems all involve the construction of a graph with some specified properties 
from a set of input points. An efficient parallel program to solve such problems must have 
efficient parallel implementations of the abstract data types set and graph. A natural repre
sentation of a graph is as some form of dynamic list structure. One consequence 9! this is that 
either the system or the application program should provide efficient parallel memory manage
ment. The global memory management provided by the Uniform System is in fact sequential. 
Thus, even a program that appears to be parallel can in fact be serialized by system code. We 
provided our own parallel memory management, but this illustrates how easy it is for implicit 
serialization to be introduced by the programming environment. 

• Another consequence of using dynamic list data structures is the need to provide concurrency 
control for the elements. It is possible to do concurrency control in the Uniform System but it 
is awkward. The natural way of doing this is to incorporate the concurrency control mechanism 
in the programming language. 

• The assignment of processors to tasks must be made more efficient and flexible. Task startup 
can introduce a substantial amount of overhead that can wipe out the benefits of fine and 
medium grain parallelism. In addition, we discovered that the implementation of task schedul
ing task allocation scheme can force a processor to be idle when it is not logically required by 
the application to be so and there is useful work it could do. 

These factors contribute to the difficulty of using the Butterfly hardware architecture effectively. 
This illustrates the need for improved parallel programming environments as well as the need for 
those environments to provide the programmer with an accurate and detailed enough model of 
computation to guide intelligent choices in implementation. 

Because our interest in these exercises is the investigation of the problem of mapping abstract 
algorithms onto the Butterfly we emphasized general implementations rather than attempting to 
tune the programs to exploit specific details of the problem statement(s). Thus, we are at least as 
interested in very large numbers of points distributed in arbitrary regions as we are in small numbers 
of points distributed uniformly in a square. 

3 An Abstract Convex Hull Algorithm. 

We concentrated our efforts on understanding the design and implementation of a parallel two
dimensional convex hull program. Most of the issues that would arise in the implempntation of 
programs to solve the other problems appear in the convex hull problem and. in the li,nitpd time 
available, we deemed it more important to understand one implementation than to dilute our efforts 
by attempting "quick and dirty" implementations of all of the geometric problems. 

Our approach is similar to that proposed by Aggarwal et al, but is an attempt to exploit the 
bounded, medium-grained parallelism found on a Butterfly. It is a parallelization of the Quickhull 
[PS86] algorithm. Our parallel implementation has the following steps: 

1. Select the maximum and minimum elements along some direction using as much parallelism 
as is effectively available. We assume that there are N points and that we can use P procesors 
effectively. Each processor is given a subset of approximately N / P elements of which it finds 
the maximum and minimum elements. The global maximum and minimum is computed from 
the subset values using the usual PRAM trick of combining the subset extrema using binary 
trees. The useful (non-iWerhead) part of this step requires time proportional to N / P + logP. 

2. H the initial points are A and B. then the initial approximation to the hull is the ordered list 
of the directed line segments AB and BA. The remaining points are partitioned into two sets. 
one above AB and the other above BA. This is done in parallel, with each processor working 
on a subset of the input. To allow for parallel partitioning, a set of points can be represented 
as a tree of variable length arrays (sub-buckets) of points. The partitioning is done by having 
each processor copy its part of the input local memory using a block transfer. It then scans 
it's input sequentially while locally building its part of the output set consisting of those points 
above the specified line. The other points are discarded from the set because they can not 
contribute to the hull at this location. The sub-sets from each process are merged in parallel 
into the output trees. The reason for using a tree rather than a simple linked list is to allow for 

2 
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efficient parallel access and to allow each internal node of the tree to keep a count of the points 
that it contains. As each sub-set is constructed the point furthest from the line is found. The 
local extrema are also combined in the binary tree to find the global extremem. This point is 
on the convex hull. The time for one of these steps is proportional to N / P + log P. 

3. At any time the current approximation to the hull is kept as a doubly-linked list of points. All 
of the as yet unknown points on the hull are outside this approximation so the points within 
it can be discarded. Furthermore, any point that can possibly be added to the hull between a 
pair of points in the current approximation must be above the line of support through them. 
When a newly found hull point is added to the list it replaces one of the line segments on the 
approximation with two others. A new task is created for each of these. Each task takes as 
its input a new line segment and the set of points above the old segment. It selects the set of 
points above its line segment and finds the extremal point with respect to that segment. This 
point is guaranteed to be on the convex and when added to the approximation initiates the 
next level of recursion. Each branch of the recursion terminates when its input is the empty 
set. 
These sub-problems generated by the recursion are solved in parallel. As above, selection and 
maximum are done in parallel if the size of the input set is large enough. If the largest sub
problem of each step in the recursion is a bounded fraction of the size of its parent problem 
then the total depth of the tree will be proportional to log H where H is the number of points 
on the hull. Since the expected number of hull points will be proportional to log N [PS86j the 
total expected time to execute the algorithm should be proportional to log log N (N / P + log P). 

Note that the problem statement says that the points are distributed uniformly in a square and 
that there are only 1000 of them. By [PS86j this means that the expected number of points on the 
hull will be approximately twenty. Given the granularity of parallelism available on the Butterfly 
this is a very small problem instance and it is difficult to justify a parallel solution for it. We have 
therefore taken the licence to solve much larger problem instances and to look at other distributions 
of the points. 

Although we have not attempted to tune the program to take advantage of the details of the 
problem statement, we are taking advantage of the square region by using the line x = y to determine 
the direction in which to search for the initial extremal points. 

Note also that our initial implementation does not use the above mentioned "tree of arrays" 
representation of a set. As a result there may be contention for adding points to the set. This 
contention may be contributing a linear time component to the running times. Once we have had 
the time to run the experiments needed to understand the current implementation better we can 
experiment with changing the representation of a set. 

4 Evaluation of the Convex Hull Program. 

It is difficult to evaluate the effectiveness of parallelism in geometry problems because the sequential 
Quickhull algorithm is so good.· Craig McGowan provided the following set of single processor 
Quickhull timings (in seconds) obtained on several varieties of Sun workstation. 

Points 2/50,4 Meg 2/1202 Meg 3/160C, 4 Meg 
100 0.02 0.Q2 0.01 
200 0.04 0.04 0.02 
500 0.08 0.08 0.03 

1000 0.16 0.16 0.05 
2000 0.34 0.34 0.09 
5000 0.84 0.84 0.24 

10000 1.66 1.66 0.48 
20000 3.34 3.34 0.98 
50000 8.16 8.16 2.42 

100000 16.30 16.30 4.87 
200000 32.64 50.74 9.72 
500000 182.95 308.51 37.23 
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These are Stuart Friedberg's comments on these experiments: 

1. This Quickhull program is a CPU-bound task that carefully avoids 32-bit multiplies and 
. floating point operations. The Sun·3's are roughly 4 times faster than Sun-2's. For CPU
bound tasks with int or long multiplies or with floating point, the Sun-3's should do even better. 
A simple program profiler for the Butterfly indicates that some programs spend more than 95 
percent of their time in Chrysalis doing the software integer multiply necessary to compute 
array indicies. The 68020 processor, unlike the 68000 has a hardware 32-bit multiply. Thus it 
appears that a processor upgrade could have a significant impact upon execution speeds. The 
addition of a 68881 floating point coprocessor could have an even greater effect on speed in 
computations in which floating point and trigonometric functions are common. 

2. The Sun 2/120's are Multibus-based, while 2/50's don't even have a bus. This makes 10 
comparisons hard between them and a Sun-3/160C, which is VMEbus-based. However, we can 
see that when both the 2/50 and 3/160C with the same amount of memory are thrashing, the 
Sun-3 still runs 6 times faster. It would be interesting to see a comparison between a /120 and 
a /160 with the same amount of memory and the same processor type. 

Despite the excellent performance of the sequential algorithm the parallel version was able to use 
some parallelism effectively. Given our initial implementation using the sequential memory allocator, 
a Butterfly computes the convex hull of 10000 points in the following times: 

Processors Time Speedup 
1 7.60 1.00 
2 4.31 1.76 
3 3.22 2.35 
4 2.54 2.99 
5 2.06 3.68 
6 1.81 4.18 
7 1.73 4.38 
8 1.54 4.91 
9 1.48 5.13 

10 1.42 5.32 
11 1.20 6.32 
12 1.24 6.11 
13 1.37 5.52 
14 1.17 6.44 
15 1.20 6.33 
16 1.15 6.60 

These times (in seconds) reflect the actual computation time, excluding the time to load the 
program and the input data. As expected. the high overhead of managing the parallel implementation 
limits the amount of effective parallelism obtainable. Furthermore, the execution times do not 
decrease monotonically as processors are added. The source of this is likely to be some kind of 
scheduling or concurrency control artifact introducing serialization in a way that is very sensitive to 
the number of processors. 

Note that a single Butterfly node executes the parallel implementation at about one sixth of the 
speed of a Sun 2 executing the straightforward sequential implementation. Part of the difference 
is due to hardware differences and part is due to overhead in accomodating potential parallelism. 
When 8 nodes are allocated to the problem the Butterfly outperforms the Sun 2. but at no point 
can it compete with the Sun 3. It is difficult to overcome the handicaps of lower single processor 
and memory speeds combined with the disadvantage of not having powerful parallel arithmetic in 
hardware. 

To reduce the total amount of overhead and to eliminate a known significant source of "hidden" 
serialization a second version of the program was written that incorporated its own parallel memory 
management package. This second implementation performed as follows: 

4 
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Number of Points 
1000 5000 10000 

Processors Time Speedup Time Speedup Time Speedup 
1 1.08 0.99 4.29 1.0 8.01 0.99 
2 .60 1.78 2.4 1.78 4.33 1.84 
3 .46 2.30 1.8 2.38 3.27 2.44 
4 .32 3.28 1.37 3.12 2.46 3.25 
5 .29 3.70 1.16 3.68 2.00 3.99 
6 .25 4.25 1.02 4.18 1.81 4.42 
7 .26 4.09 .91 4.7 1.61 4.96 
8 .24 4.36 .83 5.14 1.46 5.47 
9 .22 4.87 .77 5.53 1.35 5.89 

10 .22 4.75 .74 5.8 1.28 6.25 
11 .20 5.20 .7 6.12 1.20 6.62 
12 .20 5.38 .67 6.37 1.14 7.00 
13 .19 5.48 .63 6.71 1.11 7.20 
14 .20 5.31 .62 6.89 1.08 7.40 
15 .19 5.46 .61 6.93 1.04 7.65 
16 .19 5.42 .62 6.82 1.03 7.73 
17 .18 5.83 .62 6.88 1.02 7.79 
18 .19 5.54 .60 7.05 .99 8.06 
19 .17 6.14 .6 7.05 .98 8.11 
20 .17 6.00 .6 7.10 .97 8.19 

The improved program is faster than the original. is able to use more processors effectively on 
average, and as processors are added the running time decreases. 

5 The Voronoi Diagram. 

Rather than compute the Voronoi diagram directly we would compute its dual, the Delaunay tri
angulation. We expect that a straightforward recursive parallelization can be performed upon the 
divide and conquer Delaunay triangulation program of Lee and Schacter [L880]. We believe that 
this is the approach appropriate for the Butterfly. 

The problem with this is that the final merge step will take time proportional to v'N on average. 
If all partitions are made so as to keep the merges proportional to boundary length, such as by 
alternating in the X and Y directions then the expected time could be O(log N v'N). The question 
is whether or not this can be improved on the Butterfly. The Aggarwal et al paper sketched a parallel 
merge step using O(/ogN) time and O(N) processors. Thus, it is clear that the merge can be sped 
up aymptotically on a PRAM. but at the moment it is not clear how to program it and how to design 
the data structures on the Butterfly so as to simulate the fine granularity implied by their paper. 

The "divide" step of the algorithm requires partitioning the points into linearly separable sub
sets. In sequential implementations this is done by sorting the points along one of the coordinate 
axes. There is at the moment no general purpose sorting package for the Butterfly. Sorting is one 
of the most studied and fundamental computational problems, the fact that we still do not have 
a good, implemented solution on the Butterfly is indicative of the lack of maturity of the software 
environment on the machine. 

6 The Euclidian Minimum Spanning Tree. 

The EMST can be easily derived in sequential time proportional to N from the Voronoi diagram 
(Delaunay triangulation) [PS86] since the edges of the tree will be a subset of the edges of the 
triangulation. 

Kwan and Ruzzo [KR84] survey "edge-adaptive" parallel algorithms for computing minimum 
spanning trees of arbitrary graphs. These have running times in the CREW PRAM model of 
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O(ElogN/P. Since the edges that need to be considered are a sub-set of the edges of the De
launay triangulation the cost for the Euclidian minimum spanning tree once the triangulation is 
found will be O(N log N). As with the other two problems, this presupposes that we will be able to 
program efficiently shareable data structures representing dynamic graphs. 

An alternative to using a PRAM -style algorithm would be to use Bentley's [Ben80] optimal 
algorithm that uses N / log N processors in a fixed interconnection network. Since log 1000·~ 10 the 
a program that finds the EMST for 1000 nodes would potentially map very well onto a Butterfly of 
100 nodes. In contrast to the PRAM algorithms mentioned above, Bentley's algorithm is designed 
for a set of simple processing elements that communicate over a fixed interconnection network. In 
particular, it is suitable for a VLSI implementation. While this avoids the problem of designing 
shareable dynamic data structures for graphs, the algorithm assumes a fine grained parallelism 
that depends upon very efficient inter-processor communication. As mentioned elsewhere in this 
collection of reports the SMP programming environment provides interprocessor communication in 
approximately two milliseconds. This is still too large in comparison to the amount of computation to 
be done .at each node per message. The effect of communication overhead can be reduced by blocking 
several logical messages per physical message, but this increases the complexity of the programming 
effort. What seems to be needed here is some form of inter-processor $treams interface. 
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The problem as stated is ambiguous. We take it to mean "report visible 
vertices". The size of the problem was well-chosen, providing a reasonable 
exercise that exposed limitations in algorithms and data structures. The problem 
specifies floating point, but we use integers. The lack of hardware 32-bit 
arithmetic in the 68000 is enough to confuse the architectural issues, and the lack 
of floating point is such an obvious and important one that it should not be 
further folded into the problem. There is evidence that even the integer 
multiplication in array index calculations on the 68000 is inefficient enough to 
distort the architectural picture. Since there is an easy fix to this problem on the 
Butterfly, issues such as contention, the number of processes supported, and so 
forth are more interesting. 

2. The Approach 

A shared memory, SIMD-like, Uniform System virtual architecture fits with 
the algorithm we chose to implement, which is a quadratic all-against-all 
comparision of points against triangles for visibility. Below we discuss variations 
on this theme, and give the justification for the approach that we ultimately 
implemented. There is of course substantial room for more work on this 
algorithm, and there are other approaches as well. 

3. Three Algorithms 

We describe two algorithms, PointTriO and TriTriO, and a hybrid variant 
PointTriO is basic. 

PointTri{points, Triangles) 
{ 
for_each Point 

. foCeach Triangle 
if Occludes(Triangle, Point) mark Point "Hidden"; 

} 

PointTriO can be enhanced in obvious ways to prune the full 3N2 search: In 
OccludesO, quit early and continue the loop as soon as it is determined that a 
triangle cannot hide a point As soon as a point is found to be occluded, break 
the inner loop. Fmpirically, it seems this pruning gives a factor of two speedup 
(random inputs) over the full search. This speedup motivates TriTriO, which 
removes (a subset of) occluded triangles as well as occluded points from 
consideration, thus cutting down on the length of both inner and outer loops. 
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3.1. Point against Triangle 

For Point TriO, computation falls into two stages, called 1 and 3 for 
consistency with TriTriO. 

(1) Stage 1 is a linear setup stage in which four planes are calculated for each 
triangle: the plane in which the triangle lies and the plane through the origin 
and each triangle side. These planes are kept together as a row in a Triangle 
array, and each poiIlt is a row in a Point array. 

(2) Stage 3 is the quadratic (doubly-nested foUoop) comparison of points with 
triangles referred to above. Occluded points are marked "Hidden." 

3.2. Triangle against Triangle 

In TriTriO, Stage 1 has more to do, there is a Stage 2, and Stage 3 is more 
complicated. The idea is to sort triangles by order of their likelihood of obscuring 
other triangles, and to consider them in this order, getting the maximum pruning 
advantage. The right quantity to sort on is the amount of volume in the (1000 x 
1000 x 1(00) cube of space shadowed by a triangle (hidden by it from the origin). 
A quick approximation to this volume is quite good enough (details below). 

(1) Stage 1 computes the triangle's approximate shadowed volume as well as its 
planes. 

(2) Stage 2 sorts triangles by their approximate shadowed volume. 

(3) Stage 3 calculates hidden points and a subset of hidden triangles: triangles 
and points each have a "Hidden" mark. Without solving the full hidden line 
problem, it is safe to mark a triangle "Hidden" if it is hidden by another 
single triangle. The control structure of the nested loops is slightly more 
complex because of the extra break condition (a triangle is hidden). The 
same Occluded(Point,Triangle) function is stiI1 the inner-loop workhorse. 

3.3. Hybrid" Point against Sorted Triangles 

The idea here is add TriTriO's Stage 2 to PointTriO, to sort triangles by 
shadowed volume, again hoping the extra work pays for itself with an increased 
pruning factor. 

4. Some Geometric Details 

Points are represented by three integers (x,y,z), planes by four integers 
(A,B,C,D) from the plane equation Ax+ By+Gz+ D. For Stage I, if u and , are 
"triangle edge" vectors (the difference between two vertex points) then uX, is a 
vector (A ,B ,G), giving three plane coordinates. The fourth coordinate is given by 
D =-(x,y,z}(A,B,G). A,B,G,D need not be scaled to make (A,B,G) a unit 
vector for the purposes of this work, and integer arithmetic is sufficient to hold all 
significant digits. Further, for the edge plane calculations the origin is a vertex, so 
u and v are just triangle vertices and D=O. 
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For Stage 2, the triple product V = xXy·z gives a volume proportional to 
that enclosed between the origin and the triangle. The strange quantity e, simply 
the sum of all the nine x, y, and z components of the three vertex points, is taken 
approximately to vary monotonically with the distance from the origin to the 
centroid of the triangle. (V /e 3}- V is the final approximation of trucated 
shadowed volume, up to some scaling constants. The cost of the whole 
approximation is 17 multiplies and 14 adds. 

This approximation was compared with a much more elaborate one that 
projects the triangle onto the unit sphere, computes the area of the resulting 
triangle, computes the centroid exactly, and then computes the shadowed volume 
fairly precisely truncated by a sphere of radius 1.42. PointTri was modified to do 
a non-pruned triangle-point computation and to report how many points were 
occluded by each triangle. This information· was used to establish the "correct" 
order for the triangles -- increasing number of occluded points. The sort by both 
the shadowed-volume criteria was quite successful and yielded a (surprisingly) 
good approximation to the "correct" sort The availability of a relatively cheap 
and effective sorting criterion paved the way for a fair experimental investigation 
of the sort's utility, which was easier than a responsible theoretical analysis. 

For Stage 3, the central visibility calculation for point x and triangle 
(A ,B,C,n) is d = x·(A,B ,C) + n. If the d for any of the four planes is negative 
(with my sign conventions) the point is on the unshadowed side of the plane. 
Thus in the worst (point hidden) case there are three multiplies, three adds and a 
comparison for one plane (with nonzero D) and three multiplies, two adds, and a 
comparision for each of three planes (with D zero). Any negative result terminates 
the calculation with a "Not Hidden By This Triangle" result 

5. Early Experiments 
Uniprocessor implementations of the three algorithms established that the 

pruning accomplished by TriTriO and the Hybrid PointTriO was not worth the 
effort Sorting was done by the UNIX qsortO utility. With TriTriO in the worst 
case, three times the number of points must be checked as in PointTriO, and the 
number of triangles that are wholly hidden by other single triangles is not very 
large. The Hybrid algorithm produced times comparable with PointTriO, but up 
to l300 points no clear dominance was established, so it appears that sorting just 
pays for itself in the Hybrid PointTriO. Of course a fast parallel sort could change 
the results on the Butterfly. The linear Stage 1 (setting up the geometry) is, as 
expected, extremely fast compared to the quadratic Stage 3. The pruning 
provided by quitting early in the Stage 3 of PointTryO yields about a factor of two 
in speed. 

6. Initial Uniform System Implementations 
The algorithm PointTriO lends itself naturally to a Uniform System 

implementation. The Uniform System gives parallel for-loop capability. The 
implementation simply parallelized the main loops in Stages 1 and 3. The 
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resulting code came to 450 lines for Stage 1 and 185 lines for Stage 3. It was run 
in several versions on the three Butterfly Parallel Processors at the University of 
Rochester. Representative code appears in the last section. 

Version 1 scattered the (point, visibility) and triangle arrays as usual. Version 
2 locally cached the row pointers to these arrays. Version 3 locally stored the 
point coordinates and cached the row pointers to the triangle and visibility arrays. 

7. Times 
Comparative timing shows that the VAX 750 is approximately 10 times as fast 

on this job as a single node in our (not Hoating-point platform) Butterfly 
computer. 

1000 Triangles 
V AX and Butterfly (Version 1) Times 

Configuration Time in Seconds 
1 VAX 111750 97 
1 BHy Node 1035 
2 BHy Nodes 520 
4 BHy Nodes 261 
8 BHy Nodes 131 
16 BHy Nodes 67 
32 BHy Nodes 35 
64 BHy Nodes 25 

1000 Triangles on Butterfly (8 Nodes) 
Effect of Caching (Versions 1. 2. 3) 

Caching Version Time in Seconds 
8 Nodes. Version 1 131 
8 Nodes. Version 2 (row ptrs) 79 
8 Nodes. Version 3 (Vers. 2 + points) 67 

8. Further Uniform System Implementations 
Two revised versions of the PointTriO algorithm were implemented by Bukys 

with improved results. Some of the improvements are due to the release of the 
new Butterfly compiler; others are due to some tuning of the implementation. 

The mlijor difference between this implementation and the previous ones is 
the memory-sharing strategy. Since the algorithm uses a brute-force O(n2) 
strategy. each point-processing step may access every triangle data structure. 
These computations will clearly run fastest when every processor has its own local 
copy of the data structures describing triangle geometry. Such sharing is possible 
because the data strctures are computed only once and can be treated as read-only 
and static thereafter. Unfortunately. it takes time to replicate the data structures. 
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This program illustrates the resulting tradeoff dramatically: Replicating read-only 
data takes some time, but makes the computation run fast; sharing some data 
reduces replication overhead but increases computation time due to remote 
references and (perhaps) memory contention. 

Further, the method of replication has a significant impact on runtime. The 
Uniform System implements two mechanisms for-automatic replication: 
SharePtrAndBlk, which makes all copies from a single master, and ShareSM, 
which makes copies from previous copies, distributing the replication load among 
memories in a tree-like fashion with resulting logarithmic speedup. While the two 
procedures implement essentially the same function, their performance varies 
drastically. In the table below, compare the times in the rows "replicate triangle 
POints" and "replicate planes" for the two implementations. Experiments have 
shown that the simple SharePtrAndBlk procedure works well for small pieces of 
data (under 2200 bytes), while the fancier ShareSM begins paying for itself for 
pieces of data larger than that Unfortunately, the current Uniform System 
package provides the ShareSM procedure in a form suitable only for sharing row 
pointers of matrices. It would be a good idea to make both Share procedures use 
a data-size criterion for choosing replication method. 

The following table breaks down the time spent in different phases of the 
computation for a 100-processor run of the algorithm. The final times were 6.5 
seconds and 4.1 seconds, with the difference mainly accounted for by the different 
system calls implementing replication (shown in the "replicate planes" row. A 
constant 1.4 seconds is spent in generating the data (serially for replicability). The 
table illustrates that in the two computational steps (compute triangle parameters 
and detemine obscuration of points by triangles) typical speedups were almost 
linear (note the processor efficiencies of between 69% and 86% in the rows "make 
triangle and edge planes" and "visibility"), even with 100 processors running. 
However, the cost of replication is significant, and actually slows down the 
computation in the SharePtrAndBlk implementation for large numbers of 
processors. See the listing of times and graphs below. An obvious further tuning 
is to explore the tradeoff and find the amount of maximally efficient sharing. 
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Times for 100 Processors, 1000 Triangles 

step 
SharePtrAndBlkO ShareSMO 
effcy time(secs) effcy time(secs) 

initialize benchmark (100 procs) - 4.186 - 4.200 

allocate triangle pts 3.9% .000 3.9% .000 
make 1000 random triaI!gles 3.9% 1.473 4.0% 1.463 
replicate triangle points .1% .669 1.1% .l24 
allocate planes, replicate ptrs 1.1% .026 1.0% .030 
make triangle & edge Jllanes 74.1% .035 68.7% .033 
replicate planes .1% 2.368 .6% .590 
visibility: 256 points visible 86.4% 1.839 77.0% 1.852 
FreeAll 2.3% .048 .6% .062 
TOTAL (w/o initialization) 25.2% 6.458 34.6% 4.154 

Speedup Graphs for Triangle Visibility 
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The graphs above were produced from the following raw data. 

Raw Data for SharePtrAndBlk version: 

(4) time == 676665 ticks == 42.29 sec; ep == 3.9; eft' == 0.9999 
(8) time == 332146 ticks == 20.75 sec; ep == 8.1; eft' == 1.0186 
[16J time == 188039 ticks == 11.75 sec; ep == 14.3; eft' == .8996 
(32) time = 120625 ticks = 7.53 sec; ep == 22.4; elf == .7012 
(64) time = 99205 ticks == 6.20 sec; ep = 27.2; elf = .4263 
[100] time = 107235 ticks == 6.70 sec; ep = 25.2; elf == .2524 

RawData forShareSM version: 

(4) time = 610096 ticks == 38.13 sec; ep = 3.9; elf = 0.9999 
[8] time == 324462 ticks = 20.27 sec; ep = 7.5; elf == .9401 
[16] time = 184055 ticks = 11.50 sec; ep = 13.2; elf = .8286 
(32) time == 113449 ticks == 7.09 sec; ep = 21.5; elf = .6722 
[64] time = 79820 ticks == 4.98 sec; ep = 30.5; elf = .4777 
(100) time == 70453 ticks = 4.40 sec; ep == 34.6; elf == .3463 

9. A Pipeline Algorithm in LYNX 
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A systolic approach to solving the triangles problem was suggested by Peter 
Dibble and refined and implemented by Michael Scott. Triangles are fed into one 
end of a process pipeline. When they emerge at the other end, their vertices are 
marked "visible" or "hidden." In the simplest version of the algorithm, there are 
an equal number of triangles and processes. A special process feeds the head of 
the pipeline with triangles whose vertices are all marked "visible." An additional, 
marker triangle is fed through last Before the pipeline begins operation, a 
preliminary phase of the algorithm precomputes, in parallel, the coefficients of 
plane equations that will be needed to determine if a point is obscured. 

Each pipeline process keeps the first triangle that reaches it It passes 
subsequent triangles on to its successor, marking as hidden any previously-visible 
vertices that are obscured by the original triangle it kept When the marker 
triangle arrives, the process passes its personal triangle on to its successor, followed 
by the marker. Triangles emerging from the end of the pipeline have been 
compared against every other triangle. 

An optimized version of the algorithm attempts to hasten comparisons that 
are most likely to find obscured points. In addition to computing plane equations, 
the initialization phase also computes the approximate volume of space shaded by 
each triangle. Each pipeline process compares the shaded volume of each newly
received triangle against the shaded volume of its personal triangle. If the new 
triangle is "bigger," it swaps them, keeping the new triangle and passing the old 
on to its successor. 
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The optimization is particularly important in practice, as there are many fewer 
processors than triangles. If each of the early stages of the pipeline is run on a 
different processor, and if each of the triangles in those early stages shadows a 
large volume of space, then the odds are good that relatively few obscuration tests 
will be needed in later stages of the pipeline. 

Scott coded the pipeline algorithm in LYNX, a message-based language 
available on the Butterfly here at Rochester. The original version, with one 
process per triangle, does not accommodate large problem instances, because of 
operating-system limitations on the number of processes per processor. Scott then 
made a second implementation in which the pipeline, having exhausted processors, 
doubles back through existing processes as many times as necessary to provide one 
stage per triangle. If there are K processors, then processor I contains stages I, 
2K-/+l, 2K+/, 4K-/+l, 

The multiple-stages-per-process implementation is significantly more 
complicated that the original version. It has uncovered a bug in the Chrysalis 
operating system which, in the limited time available to us, we have not yet been 
able to correct. For 200 triangles (the largest problem size that does not trigger 
the Chrysalis bug), the algorithm completes in about IS seconds with a 100-
processor pipeline. 

10. Architectural Implications 
Floating point processing (and hardware integer processing) is necessary. 

BBN currently provides an upgrade package (M68020-68881 daughter board) that 
we hope to acquire. 

The Butterfly can present many abstract architectures to the user. For the 
Uniform System algorithm, a high-level and fairly superficial list of observations 
follows. In the US, memory allocation causes dramatic serialization: Parallel 
allocation would help. Carla Ellis and Tom Olson at Rochester are studying that 
problem. A geometric coprocessor or preprocessor for fast computation of 
trigonometric, roots, vector and matrix operations would be useful (the WARP 
comes to mind here). Better debugging support, from symbolic tools down to 
certain microcode enhancements would speed the development cycle. A 
combining switch would reduce memory contention, which may be a bottleneck in 
this computation. 

The ability to share (copy) data quickly between processors would make a 
significant difference in this implementation, since in the final versions much data 
copying was done to increase the locality of computations on individual nodes. 
There is clearly a tradeoff in the current architecture between memory contention 
and the cost of massive data copying. 

Serialization within the system is costly. Some of it can be avoided by the 
clever user, but some of it (such as memory allocation) should be paralleJized by 
the system. 
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In the LYNX algorithm. we believe that the inefficiency of the pipeline is due 
primarily to the relative expense of sending a message (on the order of 2 or 3 
milliseconds) compared to the amount of real work performed per message. To 
amortize the cost {)f message-passing. we would need in a practical implementation 
to pass more than one triangle in each message. Like the need to package more 
than one pipeline stage in a process. the need to package more than one triangle 
in a message complicates the implementation considerably. and suggests that the 
parallelism of the pipeline is too fine-grained for effective expression in LYNX. 
Unfortunately. there is no software package currently available on the Butterfly 
that supports orders of magnitude more processes than processors. The Uniform 
System does not count in this regard because its tasks cannot be suspended and 
are therefore able to synchronize only by busy-waiting. 

We haYe begun to realize that a large and important class of problems can be 
solved by devoting a process to each of a very large number of objects. Many 
parallel algorithms in the current literature are of this flavor: the geometric 
problems in the benchmark provide more examples. To aid in mapping 
algorithms from the literature onto the Butterfly. a language akin to Mesa or 
Concurrent Euclid would be a very useful tool. Ada would also work. though 
probably not as well. 

11. Stage 3, Version 3 or PointTriO and the Uniform System 

Besides making the inner loop of the computation explicit, this code segment 
illustrates several points. First, it shows that the Uniform System is easy to use: 
Both the US and SMP libraries give the new user very rapid startup. Second. it 
reveals that the Butterfly architecture is not actually a shared memory machine. 
There are several standard practices to reduce memory contention. the most 
common being local caching or copying of data. These practices acknowledge 
local memory. Below. local copies are made in the initializing routines 
GenericInitO and TInitO. and in the inner loop routine TriHidesPtQ. Also the 
point array ShrPtsD has been copied to every node. Further. US has some hidden 
serializations: the storage allocator works sequentially. using global locks. The 
AlIocateQ call in ForAllTrianglesO is natural but can (and should) be eliminated. 
Implicit in this example is that the ease of Butterfly programming and the 
flexibility of the architecture place a burden on the designer to come up with an 
efficient algorithm and data structures -- the architecture does not dictate them. 
/·············STAGE 1 NOT SHOWN HERE •••••••••••••••••••••••••••••• / 
/·············STAGE 3 -- CHECK POINTS AGAINST lRIANGLES··········· / 

CheckPointsQ /·outer parallel for loop -- for all points • / 
{ 
GenOnIndex(GenericInit, ForAllTriangles. P. 3·(p->N»; 
} 

ForAllTriangles(Arg. PointNdx) /. inner loop -- for all triangles·/ 



Problem * Arg; 
int PointNdx; 
{ 
Problem *t; 
int i; 

t = (problem *) Allocate(sizeot{Problem»; 
,*this Allocate should be avoided: allocation is done serially *' 

t-) N = myproblem.N; 
t->ThisPointNdx = PointNdx; 
t-) Vis = myproblem.Yis; 
t-) Tris = myproblem.Tris; 
t-)ThisVis = -1; '*create problem structure *' 

GenOnindex(TInit, TriHidesPt, t, t-)N); '*parallel for loop *' 
} 

Tlnit(Arg) '* Standard practice. make local copies of 
global scattered data to avoid contention. In this case 
copy row pointers and problem structure *' 

Problem * Arg; 
{ 
static int *vis[pOINTS]; 
static int *tris[TRIANGLES]; 
block_copy(Arg, &MyTProb, sizeot{Problem»; 
block_copy(MyTProb.Tris, tris,(MyTProb.N)*sizeof( int *»; 
block_copy(MyTProb. Vis, vis,(MyTProb.N)*3*sizeof( int *»; 
MyTProb.Tris = tris; 
MyTProb. Vis = vis; 
} 
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TriHidesPt(Arg, TriNdx) '* inner loop computation: does triangle hide pt? *' 
Problem * Arg; 
int TriNdx; 

{ 
int offset, MyX, MyY, MyZ, PlaneNdx; 

if( MyTProb.ThisVis = = 0) return; '*is point already invisible? *' 

offset = (MyTProb.ThisPointNdx)*POINTCOLS; 
MyX = ShrPts[offset]; 
MyY = ShrPts[offset+ Y]; 
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MyZ = ShrPts[offseHZ]; I·get point x. y. z ·1 

blocICcopy(MyTProb.Tris[TriNdx].MyTriangle.(TRICOLS)·sizeottint»; 
I· make local copy of scattered data ·1 

itt (MyX • Coord(TRIPLANE,A) I· dotproduct with plane of triangle ·1 
+ MyY • Coord(TRIPLANE.B) 
+ MyZ • Coord(TRIPLANE,c) 
+ Coord(TRIPLANE.D»<= 0) 
return; I·not hidden -- quit ·1 

for (PlaneNdx = EDPLANEl; PlaneNdx <= EDPLANE3; PlaneNdx+ +) 
I·dot with 3 planes of edges ·1 

{ 
itt (MyX • Coord(planeNdx.A) 
+ MyY • Coord(PlaneNdx.B) 
+ MyZ • Coord(PlaneNdx.C) 
<= 0» 
return; I·quit early if not hidden· I 
} 

I·point hidden if get to here· I 
MyTProb.ThisVis = 0; 
MyTProb.Vis[MyTProb.ThisPointNdx][O] = 0; 

I·set local and global visibility ·1 

} I· end TriHidesPts ·1 

I····················MAIN ROUTINES ················1 
FullJobO 

{ 
MakeTrianglesQ; I·do Stage 1 ·1 
CheckPointsO; I· do Stage 3 -- see above ·1 
FreeAllO; I· clean up ·1 
} 

mainO 
{ 
InitializeUs(); I·Uniform System Initialize·1 
MakeShrPtsQ; I· generate random 3-D triangle vertices ·1 
TimeTest(SetUp. FuIlJob. MyTestPrint); 
I·run algorithm. get times on different numbers of processors ·1 

} 
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We describe an implementation of the minimum·cost path problem on the BBN 
Butterfly using the SMP message·passing library developed at the University of 
Rochester. The problem statement for finding the minimum-cost path is as follows: 

The input is a graph G having 1000 vertices, each joined by an edge to ]00 other vertices 
selected at random, and where each edge has a nonnegative real-valued weight in some 
bounded range. Given two vertices P.Q of G. the problem is to find a path from P to Q 
along which the sum of the weights is minimum. (Dynamic programming may be used, if 
desired) 

Given this problem statement, it is ambiguous 'as to whether we are required to solve 
the all-pairs-shortest-path problem, which then allows the user to query the result 
regarding individual pairs of nodes, or whether we are to solve the single-source-shortesr
path problem for a particular pair of nodes. Given that dynamic programming was 
specifically mentioned in the problem statement and is normally used to solve the all· 
pairs-shortest-path problem, we felt constrained to implement that problem, despite the 
fact that we believe the single-source-shortest-path problem has a more interesting parallel 
solution and would better exhibit the flexibility of the BB,\ Butterfly architecture. In the 
following sections we describe our parallelization of Floyd's algorithm for the all·pairs
shortest-path problem, an implementation of the algorithm on the Butterfly using the SMP 
message-passing library package, and our performance results. 

2. A ParaUelization of Floyd's Algorithm 

We chose to implement a parallel version of Floyd's dynamic programming solution 
to the all-pairs-shortest-parh problem [II. The input graph is represented by an adjacency 
matrix. An entry, [ijl, corresponds to the weight of the edge from vertex i to vertex j. 
Nonexistent edges are denoted by a symbol representing infinite distance. 

During execution each entry of the matrix corresponds to the cost of the minimum
cost path between two vertices. Initially, only those vertices that share an edge have a 
path of finite cost Floyd's algorithm iterates over each row of the matrix, finding 
successively lower cost paths. During the k'th iteration, the algorithm computes the cost 
of the minimum-cost path between all pairs of nodes, i and j, that pass through no vertex 
numbered greater than k. For a graph with N vertices, N iterations are necessary. 

Therefore, the algorithm is 0(N3). The code for the algorithm is as follows: 



for k : = I to N do 
for i : = I to N do 

for j : = I to N do 
if A[~ k] + A[k, j] < A[i, j} then 
A[~ j} : = A[~ k] + A[k, j] 

end if 
end for 

end for 
end for 
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An obvious parallelization of this algorithm results from treating each for loop as a 
parallel for loop. However, the granularity of the innermost loop is not large enough to 
justify the overhead of process allocation in the Butterfly. For this reason we chose to 
use the processing of an entire row as the unit of granularity for parallelism. We divided 
the problem matrix uniformly among the available processors, so that each processor has 
some subset of rows in the matrix. Since the size of the input graph is defined to be on 
the order of 1000 vertices, each processor must iterate over approximately 10 rows. The 
code for each process is: 

for k : = I to N do 
if row k is local then 

broadcast row k 
else 

receive row k 
end if 
for each local row i do 

for j : = J to N do 
if A[i, k] + A{k, j] < A[i, j] then 

A{i, j] : = A{i, k] + A{k, j] 
end if 

end for 
end for 

end for 

The primary data dependency in this algorithm is that all processes need a specific 
row at the same time, a row whose values are dependent on past computation. This 
synchronization constraint forces the processes in the algorithm to run in lockstep. On 
the k'th iteration, each process computes the optimal paths for its local rows using the 
values stored in row k. Computation cannot proceed until these values are known. The 
implementation, therefore, must have an efficient broadcast mechanism. For this reason, 
among others, we chose to implement the algorithm using the SMP library package. 
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3. An SMP Implementation of Floyd's Algorithm 

An implementation of the all-pairs-shortest-path problem was done in C using the 
SMP library package developed at the University of Rochester [3]. SMP is a message
based programming environment for the Butterfly. Processes are dynamically created 
within SMP families. Interprocess communication within a family is based on 
asynchronous message-passing (send/receive) according to a fixed communication 
topology. When using SMP the programmer sees a small set of procedure calls for 
creating processes, specifying interconnection topologies, and sending messages. The 
details of the Chrysalis operating system needed to implement processes and 
communication are hidden. The programmer is free to concentrate on the issues 
pertaining to the application, rather than the underlying primitives. 

There were several reasons for choosing SMP for this application. The most 
important reason is that our experience with a similar application [4] had shown that 
exploiting data locality could lead to significant performance advantages when compared 
with the shared memory approach of the Uniform System [2]. That is, storing a subset of 
the rows in memory local to the process that will modify those rows and exchanging rows 
in messages requires less communication than storing the rows in a globally shared 
memory. Another reason for using SMP is that broadcast communication, which is used 
in our algorithm, is directly supported. Finally, we were able to use this application to 
gain additional experience with SMP. 

Our parallel version of Floyd's algorithm does not make f\11I use of the tree of 
dynamic process structures available in SMP. In our implementation, a single parent 
process is responsible for creating a child process on each processor. Each child process 
is given some subset of the rows in the initial adjacenq matrix. On the k'th iteration, 
each child process receives a message containing row k and computes new values for its 
local rows. The process containing row k + 1 then broadcasts that row to all its siblings to 
start the next iteration. 

The send primitive of SMP accepts a list of destination processes, therefore, both 
broadcast and multicast can be done directly in SMP. The SMP implementation of send 
is such that the cost of sending to one sibling (or to the parent) is the same as sending to 
100 siblings. In each case, the message is copied to a buffer local to the sending process 
and flags are set indicating the intended recipients. Using the SMP receive primitive, 
destination processes can inspect the shared buffer to determine if there is a message 
directed to them. If so, the message is copied into the local memory of the receiving 
process. 

One of the problems with broadcasting in SMP is that the Butterfly provides no 
hardware support for simultaneous communication with multiple destinations. In SMP 
each potential recipient of a message must map the message buffer into its local address 
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space to check for a message. Since each process in our algorithm is expecting to receive 
rows from every other process, the source list of each receive operation is very long. All 
the processes listed in the source list will have their message buffers mapped into the 
local address space during each iteration. This turns out to be extremely time consuming 
when the list is very long and, in an early implementation of our algorithm, was a 
dominating factor. Fortunately, we were able to exploit the inherent synchronization in 
our algorithm to reduce the overhead of broadcasting by minimizing the number of 
buffers examined on each iteration. 

On each iteration, every process expects to receive a particular row. Despite the fact 
that rows are broadcast, the source for each row is known. Hence, in our 
implementation, we invoke the receive operation on the k'th iteration with a source list of 
size 1, namely, the process containing row k. This way, only one message buffer is 
mapped into the local address space on each iteration. We were able to improve 
performance by 50% using this approach. The performance of the resulting 
implementation is summarized in the next section. 

4. Performance Results 

The program to solve the all-pairs-shortest-path problem was developed on a host 
Vax 111750 and downloaded to the Butterfly for execution. A sequential version was also 
implemented on a SUN workstation for comparison purposes. Coding and debugging 
the application program required about one week of effort by a graduate student; some 
additional time was spent debugging the SMP library. 

For the purposes of the benchmark experiments, random graphs of various sizes 
were generated. We performed detailed experiments using two graphs: Gl, a random 
graph containing 100 vertices with 10 edges per vertex, and G2, a random graph 
containing 300 vertices with 30 edges per vertex. We did not perform any experiments 
with the graph size given in the problem statement, 1000 vertices with 100 edges per 
vertex, for two reasons: 

a) In order to demonstrate how well our implementation scales to multiple processors, 
we needed to run the algorithm with a varying number of processors and compare it 
to the single processor case. G2 requires 33 minutes of execution time on a single 
processor. By running significantly larger problems. we would be consuming a 
limited resource (Butterfly availability) and learn very little in return. 

b) The cost matrix for a graph with 1000 vertices requires 4MB. While our Butterfly 
does have 1MB on each node, Chrysalis does not have good tools for creating and 
manipulating large objects that span multiple processors. The extra programming 
effort necessary to run such a large problem was not warranted. 
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In each of our test runs, only 100 processors were used, even though 120 processors 
were available. We did this so that all of our graphs would be uniformly distributed 
among the available processors. In this way, we eliminated the "tail end" effects that 
might otherwise distort our measurements. 

Our performance results for finding the all-pairs-shortest-path solution for Gl and 
G2 on the Butterfly are shown in Figures 1-4. We have not included the initialization 
overhead in the results; only actual computation time was measured. The parent process 
in the SMP family was responsible for maintaining the timing results. All children 
synchronize with the parent, the clock is initialized, and all processes then begin 
computing. The results show the elapsed time between clock initialization and the final 
response from child processes. 

These same graphs were also run on a SUN 2150 workstation with 4MB of memory 
and a Vax 111750 with 2MB of memory. Gl took 44.5 seconds on the SUN, 158 seconds 
on the Vax, and 69 seconds on a single Butterfly processor. G2 took 1205 seconds on the 
SUN, 2787 seconds on the Vax, and 1907 seconds on a single Butterfly processor. As can 
be seen in Figure 1, a small graph of 100 vertices can efficiently use 25 processors on the 
Butterfly (19 effective processors); additional processors do not provide much 
improvement in performance. The larger graph, G2, can make use of all 100 processors. 
In either case, only 2 Butterfly nodes are needed to significantly improve upon the 
sequential version on both the SUN and Vax. 

5. Conclusions 

To summarize the results of our experience with the all-pairs-shortest-path problem: 
a parallel version of Floyd's algorithm was easily implemented using SMP on the 
Butterfly and the resulting performance demonstrated nearly linear speedup using up to 
100 processors. What follows are some comments about the choice of algorithm, 
software, and architecture. 

The dynamic programming approach to the all-pairs-shortest-path problem is ideally 
suited to a vector machine; the Butterfly Parallel Processor has no special capability in 
this regard. Nevertheless, we felt this would be the easiest solution to implement in the 
limited time available. The fact that we were able to implement a solution to this 
problem on the Butterfly in a short period of time, a solution that demonstrated nearly 
linear speedup over the sequential version for large graphs, gives some measure of the 
flexibility of the Butterfly architecture. It would have been interesting to compare our 
experiences on this problem with similar experiences on the single-source-shortest-path 
problem, a similar problem with a more interesting parallel solution. Time did not permit 
this comparison, 

Our experiences with the SMP system were very positive. A new graduate student 
was able to implement Floyd's algorithm in about one week of effort. The SMP library 
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dramatically reduces the learning curve for the Butterfly. However, the SMP library was 
only recently released, and we did encounter a few system bugs. All of the bugs were 
repaired in the same week. This effort did point out the need for some optimizations 
when handling source and destination lists in an SMP broadcast We expect this will lead 
to slight modifications in the way SMP treats such lists. We also plan to add some 
additional routines that help in performing timing tests. 

Our biggest problems with the Butterfly architecture continue to be related to 
memory management, in particular, the lack of segment attribute registers (SARs). SAR 
management was the source of most of the SMP bugs and is also the main difficulty in 
manipulating large objects. However, as we have gained more experience with the 
Butterfly, we have accumulated tools and techniques for solving most of the problems 
associated with SAR management (For example, SMP incorporates a SAR cache for 
message buffers.) We expect that continued experimentation will yield additional 
solutions. 
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