
Butterfly Project Report
7

LYNX Reference Manual

Michael L. Scott

Revised Version: August 1986

Computer Science Department
University of Rochester

Rochester, NY 14627

LYNX Reference Manual

Michael L. Scott

March 1986
revised August 1986

ABSTRACT

LYNX is a message-based distributed programming language with novel facilities for communica­
tion between processes and for management of context within processes. LYNX was first imple­
mented on the Crystal multicomputer at the University of Wisconsin. It has subsequently been
poned to the Butterfly Parallel Proce.ssor at the University of Rochester.

This manual is intended for serious users of the Butterfly implementation. At the time of its writ­
ing it constitutes the de facIo standard on the syntax and semantics of LYNX. It also describes
ways in which the Butterfly implementation differs from the standard. and in which that implemen­
tation resolves issues that the standard leaves undefined.

This work was supponed in part by :"iSF grant number OCR -8320136
and by DARPA contract number DACA76-85-C-OOOl.

ii

CONTENTS

I. Lexical Conventions ... 1
2. Types .. 2

2.1. Pre-defined Types .. 3
2.2. Enumerations ... 3
2.3. Subranges .. 3
2.4. Array Types .. 4
2.5. Record Types ... 4
2.6. Set Types ... 4
2.7. Pointer Types ... 5

3. Declarations ... 5
3.1. Use Clauses ... 5
3.2. Types ... 6
3.3. Constants ... 6
3.4. Variab les 6
3.5. Exceptions ... 6
3.6. Subroutines 6
3.7. Entries .. 7
3.8. Modules ... 8

4. Scope .. 8
5. Expressions .. 9

5.1. Atoms .. 9
5.2. Set Expressions .. 9
5.3. Function Calls .. 9
5.4. Operators ... 10

5.4.1. Operator Precedence .. 10
5.4.2. Operator Semantics .. 10

6. Statements .. 12
6.1. Assignment Statement .. 12
6.2. Procedure Call .. 13
6.3. If Statement .. 13
6.4. Case Statement ... 13
6.5. Loop Statements .. 14

6.5.1. Forever Loop ... 14
6.5.2. While Loop .. 14
6.5.3. Repeat Loop .. 14
6.5.4. Foreach Loop .. 14

6.6. Exit Statement .. 15
6.7. Return Statement ... 15
6.8. With Statement .. 15
6.9. Bind and Unbind Statements .. 15
6.10. Await Statement ... 16
6.11. Compound Statement ... 16
6.12. Raise Statement ... 16

iii

6.13. Input/Output Statements ... 16
6.14. StartProcess Statement .. 17
6.15. Communication Statements ... 17

6.15.1. Connect and Call Statements ... 17
6.15.2. Accept Statement .. 17
6.15.3. Reply Statement .. 18
6.15.4. Communication Rules ... 18
6.15.5. Enclosures .. 18

7. Execution ... 19
7.1. Blocking Statements .. 20
7.2. Exception Handling ... 20

8. Separate Compilation ... 22
9. Pre-defined Identifiers .. 23
10. Collected Syntax ... 24

Butterfly LYNX Compiler Manual Page ... 27

1

1. Lexical Conventions

A LYNX program is a sequence of characters from the Ascii character set. Characters are
scanned by the compiler from left to right and are grouped together in tokens. Some tokens are
valid prefixes of longer tokens. In such cases, the compiler finds tokens of maximal length.
Tokens can be separated by white space (spaces. tabs (\t), and new lines (\n». White space has no
other meaning.

Many tokens are simple symbols:

, I @
() 1 { } $
+ * / %
< <= >= > = 0 X ->

& 1\ « »
.- +.-.- -:= *:= /.-.- %:=
f:= &.- 1\. _ «:= »:= .- .-

Others are more complicated. All can be defined by regular expressions.

In the following, italics are used for intermediate definitions. Parentheses are used for
grouping. Vertical bars are used for alternation. Other adjacent symbols are meant to be con'
catenated. The function NOT indicates complementation with respect to the Ascii character set.
Epsilon (e) denotes the empty string.

Comments in LYNX begin with '--' and extend through end·of·line.

COMMENT =
-- (NOT (\n)) *

Comments are treated like white space.

Integer constants can be expressed in octal. decimal. or hexadecimal.

NUMBER =
o (0, octdigit) *'
decdigit (0, decdigit) * ,
(0' hexdigit) *

where
octdigit = '1' .. '7'
decdigit = '1'.:9'
hexdigit = '1'.:9', 'A'.:F', 'a'.:r

Real number constants can be expressed with or without a scale factor.

REALNUMBER =
(0 , decdigit) + . (0 , decdigit) + (scale/actor! e)

where
scale/actor = (E, e)(+ , - , e)(0, decdigit) +

Character and string constants are delimited by single and double quotes, respectively.
Non'printing characters may be indicated by the single' letter backslash·escapes of C (\b, \n, \r,
\t), or by numbers (as defined above) delimited by a pair of backslashes (as in \#7f\ for the delete
character). Single quotes in character constants and double quotes in string constants are indicated
by \' and \", respectively. Backslashes are indicated by \\. Backslashes not accounted for by any
of the preceding rules are ignored.l

1 These conventions agree with C except in the form of numeric escapes.

CHARCONST =
, (

NOT (, , \, \n , nonprint) I
\ NOT (# , 0 , decdigit , \n , nonprint) I
\ number \

) ,
STRINGCONST = .. (

NOT (.. , \ , \n , nonprint) I
\ NOT (# , 0 , decdigit , \n , nonprint) I
\ number \

)*"
where

nonprint indicates the Ascii characters with codes 0,.8, 11.,31, and 127
decdigit is as above
number is as defined for the token "number"

Keywords are:

ACCEPT AND ANNOUNCE ARRAY
AWAIT BEGIN BIND CALL
CASE CONNECT CONST 00
ELSE ELSIF END ENTRY
EXCEPTION EXIT EXPORT EXTERNAL
FOREACH FORWARD FROM FUNCTION
HEADER IF IMPORT IN
LIBRARY LOOP MODULE NOT
OF ON OR OTHERWISE
PROCEDURE PROCESS RAISE READ
RECORD REMOTE REPEAT REPLY
RERAISE RETURN REVERSE SET
ST ARTPROCESS THEN TO TYPE
UNBIND UNTIL USE VAR
WHEN WHILE WITH WRITE

2

After excluding keywords, identifiers are strings ofletters, digits, and underscores that do not
begin with a digit and do not end with an underscore. Case is not significant in identifiers, except
when significance is imposed from outside by associating names in the language with external
objects.

IDENTIFIER =
letter I (

)
where

(letterl -)
(letter I _ . digit) *
(letterl digit)

letter = 'A'.:Z', 'a' . .'z·
digit = '0' . .'9'

2. Types

A type is a set of values and a mapping from those values to representations in memory.
Types are useful for restricting the values that can be used in various contexts. Several types are
pre-defined. Others are described with type constructors.

type :: = IDENTIFIER I enullLtype I subLtype
:: = array_type I recor<i..type I seLtype

3

Pointer types will be added in a future version of LYNX.

2.1. Pre-defined Types

integer

char

consists of as many distinct values as can be represented in a single word. Its values lie in a
contiguous range centered approximately at the origin (-2147483648 through 2147483647 on
the Butterfly).

consists of the Ascii characters. Char variables occupy one byte on the Butterfly.

Boolean

real

link

consists of the truth values. True and false are pre-defined constants of type Boolean.
Boolean variables occupy one byte on the Butterfly, where true and false are represented by 1
and 0, respectively.

consists of a very large number of floating point approximations to real numbers. On the
Butterfly, real variables occupy 8 bytes and are compatible with double variables in C.

consists of references to the ends of communication channels. Link values are created at run
time. A given end of a given link is accessible to only one process at a time. Links are dis­
cussed in detail in the context of communication statements in section 6.15.

Nolink is a pre-defined constant of type link. The value nolink can be assigned into or com­
pared against the contents of a link variable, but is usable for nothing else. Link variables
occupy one byte on the Butterfly.

2.2. Enumerations

The values of an enumeration type have a one-one correspondence with the first few non-
negative integers.

enullLtype
idenLlist
i<i..lisLtaii

:: = (idenLlist)
:: = IDENTIFIER i<i..lisLtaii
:: = , idenLlist! e

The identifiers in the list name the values of the type. Enumeration variables occupy four bytes on
the Butterfly.

2.3. Subranges

A type can be declared to be a subrange of any existing scalar type. The existing type is
called the parent type of the subrange. Scalar types are integers, chars, Booleans, enumerations,
and sub ranges.

subctype ::= range
range ::= [expr .. expr I

The range expressions must have values that can be determined at compile time. They cannot
involve function calls. Subrange variables occupy one, two, or four bytes on the Butterfly, depend­
ing on whether or not their bounds fall in the ranges -128 . .l27, - 32768 .. 32767, or
- 2147483648 . .2147483647, respectively.

4

2.4. Array Types

The values of an array type are ordered lists of values of the array's element type. The
length of each list is the number of distinct values of the array's index type.

array_type :: = ARRAY type OF type

The type that follows the word ARRAY is the index type. The second type is the element type.
The index type must be scalar.

A variable of an array type thus consists of many smaller variables, called the elements of
the array. The element variables have names: if expr is an expression whose type is the index type
of array "foo" and whose value isn, then "foo [exprj" is a name for the nth element of foo,

The elements of an array are stored in consecutive locations in memory, The location of the
first element is the same as the location of the array, There is no special syntax for multi­
dimensional arrays. The programmer can of course declare arrays of arrays and access their ele­
ments as "name [row] [column]."

2.5. Record Types

A record is a list of named fields. The values of a record type are lists of values of the types
of the fields.

reconLtype
fielc:LlisLopt
field

vnLlisLopt
variant
componenLiist
comp-1isLtaii
component
componenLtail

::= RECORD fielc:LlisLopt END
:: = field fielc:LlisLopt I e
:: = idenLiist : type; I ;
::= CASE IDENTIFIER: type OF vnLlisLopt END:
:: = variant vnLlisLopt I e
:: = {componenLiist} field . .JisLopt
:: = component comp_lisLtail
:: = ,component comp_liSLtaill e
:: = expr componenLtail
:: = .. expr I e

A variable of a record type thus consists of a collection of smaller variables. one for each
field of the record. Each of these smaller variables has a name. The name is created by appending
a period and the name of the field to the name of the record variable.

The word CASE introduces a variant portion of a record. All variants have the same loca­
tion. Only one variant is valid at a time.

The identifier following the word CASE is the name of a special field called the tag of the
variant portion of the record. The tag must have a scalar type. It determines which variant is valid
at a particular point in time. The component list of each variant lists the values of the tag for
which the variant is valid. The lists must be disjoint. Their component expressions must have
values that can be determined at compile time. They cannot involve function calls. On the
Butterfly, their values must fit in 16 bits.

On the Butterfly, records have the same representation in memory as C structs and unions.

2.6. Set Types

The values of a set type are unordered sets of values of the set's component type.

seLtype :: = SET OF type

The component type must be scalar or link.

On the Butterfly, every set variable occupies 16 bytes. The component type of a set (if other
than link), must have no more than 128 elements. For sets of subranges of integers, the subrange
bounds must lie between 0 and 127, inclusive.

5

2.7. Pointer Types

The values of a pointer type are references to variables whose type is the pointer's referenced
type.

ptLtype ::= @ type

If "foo" is the name of a variable of type @ p/ype. then "foo@" is a name for the variable of type
plype pointed to by foo. Values for pointer variables are created with the unary prefix operator
"@" (see section 5.4.2). If foo has not been aSSigned a value, or if the variable pointed to by foo
was a parameter or local variable of a function, procedure, or entry that has since completed execu­
tion. then the effect of referring to foo@ is undefined.

On the Butterfly, pointers occupy 4 bytes and have the same representation as in C.

3. Declarations

Identifiers denote constants, types, variables, exceptions, labels, modules, subroutines,
entries, libraries, and processes. Several identifiers are pre-defined; all others must be declared by
the programmer. Identifiers exported from a module (sections 3.8 and 4) appear in the export list
before they are defined. All other identifiers must be defined before they are used.

Labels are declared by their appearance between dollar signs ($) at the beginning of a loop
or a compound statement. Variables that are parameters to a process, subroutine, or entry are
declared by their appearance in the corresponding header. Variables that are indices for foreach
loops are declared by their appearance after the keyword "foreach." All other identifiers must be
declared in a declaration section.

dec-.SeC :: = declaration dec_sec I e
declaration :: = CaNST constanLdec consLdectail

:: = TYPE typLdec tYPLdectail
:: = VAR variable_dec var_dectail
:: = EXCEPTION idenLlist ;
:: = subroutine..hdr ; body ;
:: = entry.-hdr ; body;
::= module;

Declaration sections appear after the headers of processes, libraries, library header files,2
modules, subroutines, and entries. Within a declaration section, declarations can appear in any
order, an arbitrary number of times.

3.1. Use Gauses

Use clauses support separate compilation. A use clause can appear only in the declaration
section inunediately following the header of a process, library, or library header file. The use
clause instructs the compiler to (recursively) include the declarations found in the header files for
the libraries named in the identifier list. Identifiers from a header file are treated as if they had
been declared at the location of the use clause.

Since a library header file can itself contain use clauses, the compiler may need to search out
an arbitrary graph of files. To ensure termination. and to prevent name conllicts when the same
file is reached on separate paths, the compiler must ignore second and subsequent uses of the same
library. Use clauses are therefore idempotent; the same library can be "used" an arbitrary number
of times in the same declaration section. Further details on separate compilation are provided in
section 8.

2 The word "header" has two meanings in this manual. To a LYNX programmer, a header is one of the three
varieties of progranLunit (the other two are the process and the library). This manual uses the phrase "library header file"
for this first meaning. It uses the word "header" by itself to describe the introductory line of a process, library, library
header file. module, subroutine, or entry.

6

3.2. Types

A type may have any number of names. There are five built-in types. They all have default
names (section 2.1). Additional names, both for built-in types and for constructed types, are intro­
duced by type declarations. Types must have names to be used in type casts (section 5.1) or in the
headers for subroutines or entries.

type_dec
tYPLdectail

:: = IDENTIFIER = type; I ;
:: = typLdec tYPLdectail1 £

Type checking in LYNX is based on structural equivalence. Separate lexical occurrences of
a type constructor describe the same constructed type, if the constituent types are the same.

3.3. Constants

Constant declarations introduce names for string constants or for values of pre' defined real
or scalar types.

constanLdec
consLdectail

::= IDENTIFIER = expr; I;
:: = constanLdec consLdectail1 £

The expression must have a value that can be determined at compile time. It cannot involve func'
tion calls. If the expression is a string constan~ then the declared constant has the type "ARRAY
[O .. n] of char," where n is the number of characters in the string. Byte n is a null (Ascii 0).

3.4. Variables

Variable declarations reserve memory locations, introduce names for those locations, and
associate types with the names.

variabILdec :: = idenLlist : type ; I ;
vaLdectail :: = variablLdec var_dectaill £

The name of a variable refers either to the location of the variable or to the value stored at that
location (its contents), depending on context The type of a variable restricts the values that can be
stored at its location. It is a programming error to refer to the contents of a variable before storing
a value at its location.

3.5. Exceptions

There are several pre-defined exceptions (see section 7.2). Additional exceptions are intro­
duced by exception declarations. When execution enters the scope of an exception declaration,
each identifier in the declaration's identifier list becomes the (only) name for a new exception.
Like variables, exceptions in different activations of the same function, procedure, entry, or module
are distinct

Exceptions are used only in when clauses (section 6.11) and raise and announce statements
(section 6.12).

3.6. Subroutines

Subroutines are parameterized sequences of statements.

subroutine...hdr

arg.JisLopt
morLrrLformals
mode
formal
fulLtype_opt
body

:: == PROCEDURE IDENTIFIER arg.JisLopt
::== FUNCTION IDENTIFIER arg.JisLopt fulLtYPLopt
:: == (mode formal morLrrLformals) I £

:: == ; mode formal more-ITLformals I £

::== VARI CONSTI £

:: == idenUist: IDENTIFIER
:: == : IDENTIFIER I £

::== decsec compoun<Lstmt IDENTIFIER
::== FORWARD I EXTERNAL

7

The name of the subroutine follows the keyword PROCEDURE or FUNCTION. The idemifier at
the end of a non-trivial subroutine body must match the name of the subroutine.

The argument list specifies formal parameters for the subroutine. together with the modes
and type names of those parameters. Within the compound statement of a subroutine body,
parameters may be used like any other variables. VAR parameters are passed by reference. Plain
parameters are passed by value. The contents of CONST parameters cannot be modified. CONST
parameters are passed by reference on the Butterfly.

Functions yield a value whose type name follows the argumem list. Procedures do not yield
a value.

A FORWARD subroutine body indicates that the subroutine will be declared again later in
the same scope, with a non-trivial body. The second declaration must omit the argument list and
function type (This restriction may be lifted in future versions of LYNX).

An EXTERNAL subroutine body indicates that the subroutine is external to LYNX and
must be found by the linker. On the Butterfly. case is significant in the names of external subrou­
tines.

3.7. Entries

An entry resembles a procedure.

entry..hdr :: == ENTRY IDENTIFIER ilLargs...opt ouLtypes...opt
ilLargs...opt :: == (formal formaLtail II £

formaLtail :: == ; formal formaLtail1 £

ouLtypes...opt :: == : idenUist! e

The name of the entry follows the keyword ENTR Y. As with subroutines, the identifier at the end
of a non-trivial body must match the name of the entry.

An entry cannot be declared EXTERNAL, but it can be declared FORWARD or
REMOTE.

body ::== REMOTE

A REMOTE body indicates that the entry may de declared again (minus in arguments and aul
types, but with non-trivial body) in the same scope. Unlike FORWARD, REMOTE does not
require the later declaration.

The in arguments and oUI types of an entry are templates for the request and reply messages
of a remote operation. REMOTE entry bodies allow the programmer to declare operations pro­
vided by other processes, or by accept statements in the current process (see section 6.15.2). Non­
trivial entry bodies contain a sequence of statements in which the in arguments of the entry can be
used like any other variables. Through the use of the bind statement (section 6.9), the programmer
can arrange for an entry to be executed automatically in response to incoming requests.

The Butterfly implementation limits the size of messages. As of this writing, the limit is
2000 bytes for each request and 2000 bytes for each reply.

3.8. Modules

Modules are an
scope of identifiers.

module

impOrLpt
exporLpt
cpcLstmLopt

8

encapsulation mechanism for structuring programs and for limiting the

:: = MODULE IDENTIFIER; imporLpt exporLpt
dec_sec cpcLstmLopt IDENTIFIER

:: = IMPORT idenLiist ; I e
::= EXPORT idenLiist; Ie
:: = compouncLstmt I END

The compound statement of a module, if it has one, is called the module's initialization
code. For consistency with the terms for subroutines and entries, it is occasionally called the
module's body as well. The purpose of import and export lists is explained in the following sec­
tion,

4_ Scope

Declaration sections appear near the beginning of every block. Blocks are subroutines,
entries, and modules.

Declarations introduce meanings for identifiers. Identifiers can have different meanings at
different places in a program. The portion of a program in which a particular meaning holds is
called that meaning's scope. The scope of a meaning extends from the declaration of its identifier
to the end of the block in which that declaration appears, W1U! four exceptions:

(1) If a nested block contains a declaration of the same identifier, or if a with statement or labeled
statement introduces a new meaning for the identifier (see sections 6.5.4, 6.6, and 6.8), then
the scope of the outer meaning does not include the scope of the inner meaning.

(2) A meaning does not extend into any nested module unless that meaning is pre-defined (see
section 9), or unless its identifier is explicitly imported into the module. The names of the
values of an enumeration type are imported into a module automatically when their type is
imported. If a subrange of an enumeration type is imported, then only the names of the
values spanned by the subrange are imported.

(3) If a module explicitly exports an identifier, then the meaning of that identifier extends from
its declaration inside the module to the end of the enclOSing block (subject to exceptions (1)
and (2».

(4) The scope of a label or a foreach loop index extends from its declaration to the end of its
compound statement or loop, except when hidden as in (1) above.

Identifiers can be imported or exported repeatedly in a nested chain of modules. Appearances of
identifiers in import and export lists are idempotent; the same identifier can appear an arbitrary
number of times.

For the purpose of defining scopes, the formal parameters of a subroutine or entry are con­
sidered to be part of the declaration section immediately following their argument list. They are
not visible in as large a scope as is the name of their subroutine or entry.

Two record types visible at the same point in a program can have fields with the same name.
Otherwise, declarations of the same identifier must have disjoint scopes. In particular, simultane­
ously visible enumeration types cannot have values with the same name (This restriction may be
lifted in future versions of LYNX).

The environment of a particular thread of control at run time is a mapping from names to
their current meanings. New meanings appear whenever control enters a with statement, a labeled
statement, or the body of a module, subroutine, or entry. The affected identifiers are the names of
the with record fields, the label and/or index of the labeled statement, or the identifiers declared in
the immediately preceding declaration section. For a with statement or labeled statement, the

9

meanings disappear with the completion of the statement. For a subroutine or entry. the meanings
disappear with the completion of the body of the block. For a module. the meanings disappear
with the completion of the closest enclosing subroutine or entry. They may not be visible outside
the module. unless they are exported. For any particular thread. the appearance and disappearance
of meanings occurs in LIFO order (The same is not true of a process as a whole, as discussed in
section 7).

5. Expressions

An expression evaluates to a value at run time. Every expression has a type. Expressions
are composed of atoms, parentheses. function calls, explicit sets, and operators.

expr :: = UlLOP expr I expr bilLop expr I (expr)
:: = CONSTANT I set I designator ar~opt

5.1. Atoms

An atom is an explicit constant, or the name of a constant or variable.

designator :: = IDENTIFIER changeover
changeover :: = [expr I changeover I : IDENTIFIER changeover

:: = . IDENTIFIER changeover! @ changeover I e
ar~opt ::= e

The name of a constant or variable is an expression whose value is the value of the constant
or the contents of the variable and whose type is the type of the constant or variable. Within a
name, a period indicates selection of a field of a record. Brackets indicate selection of an element
of an array. An @ sign indicates dereference of a pointer. A colon indicates a type cast.

Type casts are allowed only on variables. A variable name followed by a type cast is the
name of an imaginary variable whose type is speCified by the cast, whose location is the same as
that of the original variable, and whose value is determined by interpreting the data at that loca­
tion. That value is implementation-dependent, and may be garbage.

5.2. Set Expressions

A set expression evaluates to a value of type "SET OF componenLlype." where
componenLlype is a subrange whose bounds are the lowest and highest possible values of any of
the component expressions or ranges. The set type is provisional in the sense that it may be
coerced to another type if context requires it.

set :: = { comp-.lisLopt }
comp-.lisLopt :: = componenLlist I e

The value of the set contains the value of each component expression and all values in each com­
ponent range.

5.3. Function Calls

The type of a function call is specified in the declaration of the function. The value is
obtained by invoking the function at run time.

ar~opt :: = (expr-.list)
expr-.list :: = expr expr-.lisLtail
expr-.lisLtail :: = . expdistj e

The expressions in the argument list are called actual parameters. They must agree in order and
number with the formal parameters of the function. Their types must be compatible with the types
of the formals. Type compatibility is discussed under assignment statements (section 6.1). A func'
tion call with no parameters looks like an atom.

10

The values of the actual parameters are used as initial values for the formal parameters of
the function. Actual parameters corresponding to VAR or CONST formal parameters must be
variables. The contents of actual parameters corresponding to V AR formal parameters may be
changed by invoking the function. The contents of actual parameters corresponding to value or
CONST formal parameters are not changed.

5.4. Operators

All operators are pre-defined. They are represented by the following tokens:

+
< <=

!
NOT AND

* >=
&

OR

/
>
A

IN

%
=
«
X

@
<>
»
->

NOT. @, and the tilde (-) are unary prefix operators. They have one operand each. the expression
to the right. The minus and percent signs (- and %) can also be unary operators, if there is no
expression to the immediate left Otherwise. they are binary infix operators. Binary operators have
two operands: the expressions to their left and right. The rest of the operators in the above list are
binary.

5.4.1. Operator Precedence

In the absence of parentheses. operands and operators are grouped together according to the
following levels of precedence:

Loosest grouping

OR
AND

< <= >= > = <> IN X ->
+ - (binary) & ! A

* / % (binary)
NOT - (unary) % (unary) @

Tightest grouping

Operators of equal precedence associate from left to right.

5.4.2. Operator Semantics

For the purposes of this section, define the base of any type except a subrange to be the
type itself. Define the base of a subrange to be the base of the subrange's parent type.

NOT
is a unary operator whose operand must have base type Boolean. "NOT expr" is an expres­
sion of type Boolean whose value is the negation of the value of expr.

AND and OR
are binary operators whose operands must have base type Boolean. "exprl AND expr 2" and
"exprl OR expr2" are expressions of type Boolean whose values are the logical and and or,
respectively, of the values of the operands. The Butterfly implementation performs short­
circuit evaluation.

(unary) -
is an operator whose operand must have base type integer or real. "- expr" is an expression
of type integer or real (as appropriate) whose value is the additive inverse of the value of expr.

11

+,-, and *
are binary operators. If neither of their operands is a pointer, then both operands must be
sets, or else of base type integer or real. If exprl and expr2 are of base type integer or real,
then "exprl + expr2," "exprl- expr2," and "exprl * expr2" are expressions of type integer
or real (as appropriate) whose values are the sum. difference, and product, respectively, of the
values of the operands. The Butterfly implementation performs integer arithmetic in two's
complement with no checks for overflow.

If exprl and expr2 are pointers, then their types must be the same, and "exprl - expr2" is an
expression of type integer whose value is the distance between the variables referenced by the
pointers, measured in multiples of the size of the variables. If exprl is a pointer and expr2
has base type integer, then "exprl - expr2," "exprl + expr2," and "expr2 + exprl" are
expressions of the same type as exprl whose values are references to the variables (if any)
located expr2 positions before or after the variable pointed to by exprl. Pointer arithmetic is
intended primarily for use within arrays. The results of arithmetic on pointers to variables
mat are not elements of the same array are implementation-dependent.

If exprl and expr2 are sets, then "exprl + expr2," "exprl - expr2, " and "exprl * expr2" are
expressions whose values are the union, difference, and intersection, respectively, of the values
of the operands. If neither operand has a provisional type, then me types must be the same,
and the type of the expression will be the same as well. If exactly one operand has a provi­
sional type. then it is coerced to the type of the other operand, if possible. The coercion is
not permitted if 1) the two operands have different component base types. or 2) the bounds of
the component type of the provisional operand do not lie wimin me bounds of the component
type of the other operand. If both operands have provisional types, then me bases of their
component types must be the same. and the expression has a new provisional type. The com­
ponent type of the expression has the same base as the component types of me operands. and
its bounds are the minimum and maximum of me bounds of the components of the operands.

/ is a binary operator whose operands must have base type integer or real. If exprl and
expr2 have base type real, then" exprl / expr2" is an expression of type real whose value is
me quotient obtained in dividing exprl by expr2. If exprl and expr2 have base type integer,
then" exprl / expr2" is an expression of type integer whose value is obtained by truncating
the quotient of exprl and expr2 toward zero.

(binary) %
is an operator whose operands must have base type integer. "exprl % expr2" is an expression
of type integer whose value is the remainder obtained in dividing exprl by expr2. The
remainder has the same sign as the dividend (in this case exprl), and does not depend on the
sign of the divisor (expr2). «exprl / expr2) * expr2) + (exprl % expr2) = exprl.

is a unary operator whose operand must have base type integer. "- expr" is an expression of
type integer whose value is the bitwise logical negation of the value of expr.

&, !. and /\
are binary operators whose operands must have base type integer. "exprl & expr2," "exprl !
expr2," and "exprl/\ expr2" are expressions of type integer whose values are the bitwise logi­
cal and, (inclusive) or, and exclusive or. respectively, of the values of the operands.

<, <=, >=, and>
are binary operators whose operands must be sets or pointers, or else have scalar or real base
types. If the operands are sets, then the type rules described under" +. -. and *" apply.
"setl op setl" is an expression of type Boolean whose value reflects the relationship between
the two sets. In the order of the heading above, the operators determine whether setl is a
proper subset, subset, superset, or proper superset of set2.

If the operands are scalars or reals. then their base types must be the same, and" exprl op
expr2" is an expression of type Boolean whose value indicates whether exprl is less than, less
than or equal to, greater than, or greater than or equal to expr2.

12

If the operands are pointers. then their types must be the same. and "exprl op expr2" is an
expression of type Boolean whose value indicates whether the location of exprl@ is less than.
less than or equal to. greater than. or greater than or equal to the location of expr2@. As
with pointer arithmetic. the results of comparing pointers to variables that are not elements of
the same array are implementation-dependent.

= and <>
are binary operators whose operands must be sets or pointers. be of type link, or have scalar
or real base types. If the operands are sets, then the type rules described under" +, -. and
." apply. If the operands are scalars or reals. then their base types must be the same. If the
operands are pointers, then their types must be the same. In all cases, "exprl op exprl" is an
expression of type Boolean whose value indicates whether exprl and expr 2 have the same
value.

X is a binary operator whose operands must have type link. "exprl X expr2" (read "exprl is
connected to expr 2") is an expression of type Boolean whose value indicates whether the
values of exprl and expr2 are references to opposite ends of the same link.

- > is a binary operator whose left operand must have type link and whose right operand must be
the name of an entry. "expr - > entryname" is an expression of type Boolean whose value
indicates whether the link end referenced by expr is bound to entry name. (Bindings are dis·
cussed in section 6.9.)

IN is a binary operator whose right operand must be a set whose component base type is the
same as the base type of the left operand. "exprl IN expr2" is an expression of type Boolean
whose value indicates whether the value of the left operand is an element of the value of the
right operand.

(unary) %
is an operator whose operand must be a set "% expr" is an expression of type integer whose
value is the set's cardinality - the number of elements in expr.

@ is a unary operator whose operand must be the name of a variable. (The variable can, of
course, be a field of a record, an element of an array. the result of a type cast or pointer
dereference, or any combination of the above.) If "foo" is the name of a variable of type
plype, then "@ foo" is an expression of type @ plype whose value is a reference to foo.

6. Statements

Statements accomplish the work of a program. They change the contents of variables. send
messages, and produce output data on the basis of internal calculations. incoming messages, and
input data.

stmt
nOlL.I'eply_stmt
simple-stmt

labele<Lstmt

:: = nOlL.I'eply-stmtj reply
:: = simple-Stmt IlabeLopt labele<Lstmt
:: = communication I io I bin<Lstmt I awaiLstmt
:: = iLstmt I case-stmt I with-Stmtl raise_stmt
:: = return-Stmt I exiLstmt
:: = designator des...stmLtail
:: = starLprocstmt I e
:: = loop_stmt I compoun<Lstmt

6.1. Assignment Statement

An assignment statement changes the contents of a variable.

des...stmLtail :: = assiglLop expr
assiglLop ::= := 1+:= 1-:= 1*:= 1 / := I %:=

::= !:= I &:= I A:= I «:= I »:=
The left-hand side of the assignment precedes the assignment operator. It must be the name of a

13

variable. The type of the expression on the right-hand side must be compatible with the type of the
left-hand side. For simple assignment (: ==), the value of the expression on the right-hand side
replaces the contents of the variable on the left-hand side. For the rest of the so-called assignment
operators, the statement "var op: == expr' is equivalent to "var : == var op expr," except that the
location of var is not computed twice, so execution is faster and side-effects, if any, happen only
once.

Every type is compatible with itself (compatibility is reflexive). A subrange and its parent
type are compatible with each other. Two subranges are compatible with each other if their parent
types are compatible and if their sets of values intersect (Run-time checks may be necessary to
guarantee that assignments produce valid values for the left-hand side). A string constant is com­
patible with any array whose elements have base type char. A long string may be truncated to fill
a small array. A short string may be extended with garbage to fill a large array. A provisional set
type is compatible with any type it could be coerced to match (Run-time checks may again be
necessary J. Types not covered by these rules are not compatible.

6.2. Procedure Call

Like a function call. a procedure call provides a set of actual parameters to be used for the
initial values of the formal parameters of the subroutine. Unlike a function. a procedure yields no
value.

deS-StmLtail :: == arg...opt

Actual parameters must agree in order and number with the formal parameters of the procedure.
Their types must be compatible with the types of the formals. Actual parameters corresponding to
VAR or CaNST formal parameters must be variables. The contents of actual parameters
corresponding to VAR formal parameters may be changed by calling the procedure. The contents
of actual parameters corresponding to value or CaNST formal parameters are not changed.

6.3. If Statement

An if statement contains one or more lists of statements, at most one of which is executed.
The choice between the lists is based on the values of one or more Boolean expressions.

iLstmt :: == IF expr THEN stmLlisLopt elsiUisLopt else_opt END
elsiUisLopt :: == ELSIF expr THEN stmLlisLopt elsiUisLopt I e
else_opt :: == ELSE stmLlisLopt I e
stmLlisLopt :: == stmt ; stmLlisLopt I e

The first statement list is executed if the first Boolean is true, the second if the second Boolean is
true, and so forth. The last list, if present, is executed if none of the Booleans are true.

6.4. Case Statement

Like an if statement, a case statement contains multiple lists of statements. It is intended for
the commonly-occurring situation in which the choice between lists is based on the value of a sin­
gle variable.

case..stmt
case...1isLopt
defaulLopt

:: == CASE expr OF case...1isLopt defaulLopt END
:: == {componenLlist} stmLlisLopt case...1isLopt I £

:: == OTHER WISE stmLlisLopt I £

The expression following the word CASE must be a scalar. The beginning of each arm of the case
statement has the same syntax as a set expression. The component lists must be disjoint. The
expressions they contain must have values that can be determined at compile time. They cannot
involve function calls.

Exactly one of the statement lists must be executed. If the value of the scalar expression is
found in one of the component lists. then the immediately following statement list is executed. If
the value is not found. then the statement list following the word OTHER WISE (if present) is

14

executed instead. If the value is not found and the OTHER WISE clause is missing, then an error
has occurred and execution must halt.

6.5. Loop Statements

Loop statements cause repetitive execution of a nested list of statements.

loop-stmt - whilLloop I foreacLloop I repeaUoop I forevcLloop

6.5.1. Forever Loop

Execution can only leave a forever loop by means of an exit statement. a return statement,
or an exception.

forever-1oop " - LOOP stmUiSLopt END

6.5.2. While Loop

The header of a while loop contains a Boolean expression.

whiluoop :: = WHILE expr DO stmUisLopt END

The expression is evaluated before every iteration of the loop. If its value is true. the statements
inside the loop are executed. If it is false. execution continues with the next statement following
the loop. If the value of the Boolean expression is false the first time it is examined. then the loop
is skipped in its entirety.

6.5.3. Repeat Loop

The footer of a repeat loop contains a Boolean expression.

repeaUoop :: = REPEAT stmUisLopt UNTIL expr

The expression is evaluated after every iteration of the loop. If its value is false. the statements
inside the loop are executed again. If it is true, execution continues with the next statement follow­
ing the loop. The statements inside a repeat loop are always executed at least once.

6.5.4. Foreach Loop

The header of a foreach loop introduces a new variable called the index of the loop.

foreach-1oop :: = FOREACH IDENTIFIER IN generator DO stmLlisLopt END
generator :: = set I range I designator I REVERSE reversible~en
reversible...gen :: = range I designator

The scope of the index is the statement list inside the loop. The type of the index is determined by
the loop's generator. A generator can be a range of values, a set expression, a name of a set vari-
able, or a name of a scalar type. .

The generator produces a sequence of values for the index. The statements inside the
foreach loop are executed once for each value. If the generator is a range of values, then the type
of the index will be the base type of the bounds of the range (The bounds must have the same
base type). The index takes on the values in the range in ascending or descending order. depend­
ing on whether the word REVERSE appears in the loop header. The range may be empty, in
which case the loop is skipped in its entirety.

If the generator is a set expression or a variable of a set type, then the type of the index is
the base type of the components of the set. The index takes on the values of the set in arbitrary
order.

If the generator is the name of a scalar type. then that type is the type of the index. The
index takes on the values of the type in ascending or descending order. depending on whether the
word REVERSE appears in the loop header.

15

The value of the index can be examined but not changed by the statements in the loop. It
cannot appear on the left-hand side of an assignment. nor can it be passed as a V AR parameter to
any procedure or function. nor can it appear among the request parameters of an accept statement
or the reply parameters of a connect or call statement

6.6. Exit Statement

A exit statement can only appear inside a loop or inner compound statement (not the body
of a subroutine, module. or entry). An exit statement causes control to jump to the statement
immediately following the loop or compound Slatement.

exiLstmt :: = EXIT idenLopt
idenLopt :: = IDENTIFIER / e

Any loop Slatement or compound statement can be preceded by a label.

labeLopt ::= $ IDENTIFIER $/ e

The scope of the identifier in a label is the statement list inside the immediately following loop or
compound statement. The identifier in an exit statement must have been introduced in a label.
Control jumps to the statement immediately following the labeled statement. If the identifier in
the exit statement is missing. then control jumps to the statement immediately following the closest
enclosing loop or compound statement.

6.7. Return Statement

A return statement can only appear inside a subroutine.

retul1LStmt :: = RETURN expLopt
expLopt :: = expr / e

If the subroutine is a function. then the return expression must be present. and must be
compatible with the type of the function. The function yields the value of the expression. and con­
trol returns to the evaluation of the expression in which the function call appeared. If control
reaches the end of the body of a function without encountering a return statement then an error
has occurred and execution must halt.

If the subroutine is a procedure. then the return expression must be missing. Control con­
tinues with the statement immediately following the procedure call. There is an implicit return
statement at the end of the body of every procedure.

6.8_ With Statement

A with statement makes it easier and more efficient to access the fields of a record.

witlLStmt :: = WITH designator DO strnLlisLopt END

The designator must be the name of a record variable. Within the statement list of the with state­
ment, the fields of the record can be named directly. without preceding them with the designator
and a period. The with statement constitutes a nested scope; any existing meanings for the names
of the fields will be hidden.

6_9. Bind and Unbind Statements

The bind statement associates link ends with entries and naming environments. The unbind
statement undoes associations.

bin<Lstmt :: = BIND expLlist TO idenLlist
:: = UNBIND expcJist FROM idenLlist

Each expression in the expression list must either be of type link or else be a set of component
base type link. Each identifier in the identifier list must be the name of an entry. Each mentioned

16

link end is bound (unbound) to (from) each mentioned entry. If any of the link values are not
valid, then an error has occurred and execution must halt.

Binding and unbinding are idempotent operations when performed by a single thread of
control; a thread does no harm by making the same binding twice. or by attempting to break a
non-existent binding. Conflicting bindings are a run-time error. If two threads attempt to bind the
same link end to different instances of the same entry (same entry lexically. but different environ­
ments). or if one or more threads attempt to bind the same link end to different entries with the
same name. then an error has occurred and execution must halt.

The purpose ofhndings is discussed under execution (section 7) below.

6.10. Await Statement

The await statement is used to suspend execution of the current thread of control until a
given condition holds.

awaiLstmt ::= AWAITexpr

The expression must be of type Boolean. The current thread will not continue until the expression
is true. If it is false when first encountered. it must be changed by a different thread.

6.11. Compound Statement

A compound statement is a delimited list of statements with an optional set of exception
handlers.

compoun<Lstmt :: = BEG IN stmUisLopt han<LlisLopt END
han<LlisLopt :: = wheILclause han<LlisLopt I e
wheILclause :: = WHEN exc.Jist DO stmUisLopt
exclist :: = idenUist I OTHERWISE

Compound statements comprise the bodies of subroutines. modules. and entries. They may also be
nested anywhere a statement can occur.

Each exception handler consists of a series of when clauses and a statement list. The
identifiers in the when clauses must be the names of exceptions. They must be distinct When an
exception arises. a when clause referring to that exception may be executed in place of the
remainder of the compound statemenc"s main statement list. Exceptions are discussed in more
detail in section 7.2.

6.12. Raise Statement

Some exceptions occur spontaneously in the course of communication on links (see section
7.2). Others are caused by execution of the raise. announce. or reraise statements.

raisC-Stmt :: = RAISE IDENTIFIER I ANNOUNCE IDENTIFIER I RERAISE

The identifier following the word RAISE or ANNOUNCE must be the name of an exception. "llie
raise statement causes its exception to arise in the current thread of control. The announce state­
ment causes its exception to arise in every thread that has an active handler for that exception.
The reraise statement can appear only in a handler. Its effect is the same as if the exception that
triggered execution of the current when clause had been raised in the absence of that clause.

6.13. Input/Output Statements

Input and output statements read and write Ascii data on the standard input and output
streams. In the Butterfly implementation, these streams are the normal Chrysalis stdin and stdoul.

io :: = WRITE (expLJist) I READ (expr..Jist)

The parameters of read and write have the same format as those of the scatifand prinifroutines in
C. The first argument must be a string constant or an array whose elements have base type char.

17

The rest of the arguments must be scalars or strings. The second and subsequent arguments to
read are automatically passed by reference.

6.14. StartProcess Statement

The startprocess statement IS used to create new processes (as opposed to new threads of
control within the current process).

starLproc-strnt :: = STARTPROCESS (expr.Jist)

The first argument must be a string constant or an array whose elements have base type char. The
implementation uses the string to find an executable version of a LYNX process. The rest of the
arguments are actual parameters for the process. They must agree in number, and be compatible
with. the formal parameters in the process header (see section 7),

6,15. Communication Statements

Communication statements use links to exchange messages with remote processes,

communication :: = calLstrnt I connecLstrnt I accepLstrnt

6,15.1. Connect and Call Statements

The connect statement requests a remote operation. The call statement invokes a local
operation.

calLstrnt
connecLstrnt
calLargLopt
calLargs

:: = CALL IDENTIFIER cdlLargLopt
:: = CONNECT IOE;-.ITIFIER calLargLopt ON expr
:: = (caiLargs H E

:: = expr.JisLopt I expclisLopt

The identifier following the word CONNECT or CALL must be the name of an entry. The final
expression of a connect statement must have type link.

The thread of control that executes a connect or call statement is called a client. The client
creates a request message from the actual parameters of the expression list, sends the message, and
waits for a reply message. The reply will contain new values for the actual parameters in the
second expression list. The request actual parameters must agree in number and order with the
formal parameters of the entry whose name follows the word CONNECT or CALL. Their types
must be compatible with those of the formals. The reply actual parameters must be the names of
variables. They must agree in number and order, and be compatible, with the reply types of the
entry.

6.15.2. Accept Statement

The accept statement allows a thread of control to serve a request from some other process
for a remote operation.

accepLstrnt
ILLs.JisLopt
reply

:: = ACCEPT IDENTIFIER arg...,opt ON expr : 1lJ_s.JisLopt reply
:: = nOllJeply-strnt : 1lJ_s.JiSLopt I E

:: = REPLY arg...,opt

The identifier following the word ACCEPT must be the name of an entry. The expression follow'
ing the word ON must have type link.

The thread of control that executes an accept statement is called a server. The server waits
for a request message from a client on the other end of the referenced link. When such a message
arrives, it will contain new values for the actual parameters in the designator list. The parameters
in that list must agree in number and order, and be compatible, with the parameters of the entry
whose name follows the word ACCEPT.

18

The server executes the statement list and returns a reply message to the client. The actual
parameters following the word REPLY must agree in number and order, and be compatible, with
the reply types of the entry whose name follows the word ACCEPT. The actuals are packaged
together to form the reply message. They are returned to the client on the link specified after the
word ON - the same link on which the request message arrived.

The syntax of the portion of an accept statement beginning with the word REPLY is a valid
statement in and of itself; therefore the statements inside the accept cannot include a reply.

6.15.3. Reply Statement

Accept statements provide for the explicit receipt of requests for remote operations. Entries
provide for implicit receipt Within the body of an entry, the reply portion of an accept statement
can appear by itself. Its actual parameters must agree in number and order, and be compatible,
with the return types of the entry in which the reply statement occurs. The reply message is
returned to the client on the same link on which the request message arrived.

If control reaches the end of an entry without replying, or if the thread of control executing
the entry attempts to reply more than once, then an error has occurred and execution must halt.

6.15.4. Communication Rules

Requests in the same direction on the same link are guaranteed to arrive in order. Replies
are also ordered, though not necessarily with respect to requests. Messages sent on different links
need not arrive in order, even if they involve the same pair of processes. Similarly, local destruc­
tion of a link may be noticed at the far end of the link in arbitrary order with respect to events on
other links.

If any of the following rules are broken. then an error has occurred and execution must halt.

(1) For all communication statements. the value of the expression that follows the word ON must
reference a valid link.

(2) A link end may not be enclosed in a message (see following section) if it is currently bound to
an entry, or if it is being used in a connect, accept, or reply statement, or if has been used (0

receive a request for which a reply is still owed. or if it has already been enclosed in another
message, even if that message has yet to be received.

(3) A link end may not appear in a connect, accept. or bind statement if it has been enclosed in
an outgoing message, even if that message has yet to be received.

6.15.5. Enclosures

There are no limitations on the data types that can appear in the argument lists of connect,
accept. and reply statements. In particular, references to links and data structures that contain
references to links can be transferred from one process to another.

If a link variable that references an end of a valid link is enclosed in a request or reply mes­
sage, then transmission of the message has the side effect of moving the referenced end to the
receiving process. The contents of the receiver's link variable are changed to be a valid reference
to the moved end of the link.

A link end that is enclosed in a message is made inaccessible to the sending process, unless
communication is interrupted by an exception. Link variables that referenced the end become
dangling references; their contents are no longer valid.

A process can own both ends of a link. If it sends a message to itself on that link, references
to any enclosures still become invalid. Just as if they had been sent to another process. Link vari­
ables that refer to enclosures in call statements or in replies from called entries do not become dan­
gling; they remain valid.

19

7. Execution
There is no notion of "program" in LYNX outside the scope of a process. Processes are

autonomous entities that communicate by means of messages.

process :: = PROCESS IDENTIFIER ilLargs-opt : deesec
cp<LstmLopt IDENTIFIER.

The formal parameters of a process must have pre-defined types (this restriction may be lifted in
future versions of LYNX). Link parameters provide the means for a process to communicate with
the rest of the world.

A process begins execution with a single thread of control. The task of that thread is to exe­
cute the process's main compound statement. Before doing so, the thread recursively executes the
initialization code of any nested modules. In general. a thread of control executes the initialization
code of a module immediately before executing the body of the subroutine. module. or entry in
which that module is declared.

New threads of control are created by instantiating entries. Entries are instantiated by call
statements and by the arrival of messages on link ends bound to entries.

The threads in a process do not execute in parallel. A process continues with a given thread
unul it blocks (Blocking statements are listed in section 7.1). It then switches context to another
thread. If no other thread is runnable. the process waits for an event. An event is the completion
of an outstanding connect or reply statement, or the arrival of an "appropriate" request. If no
events are expected. then deadlock of threads has occurred and execution must halt. Events occur
only when all threads are blocked.

The occurrence of an event always allows some thread to continue execution. Only one
event occurs at a time. The nature of the event determines which thread runs next. If a connect
or reply statement has completed. then the thread that executed that statement can continue. If a
request has arrived that matches the operation name and parameter types of an outstanding accept
statement. then the thread that executed that statement can continue. If a request has arrived that
matches the name and parameter types of an entry to which the message's link has been bound.
then a new thread of control is created to execute the entry with initial formal parameter values
taken from the message. These last two cases serve to define an appropriate request.

If a request arrives on a link end for which there are no outstanding accept statements or
bindings to entries. then consideration of the request is delayed until the next time all threads are
blocked (at which point it may be delayed again). If a request arrives on a link end for which
there are one or more outstanding accept statements or bindings. then the contents of the message
must be examined in order to determine whether the request is appropriate. If outstanding accept
statements or bindings exist. but the name of the requested operation matches none of them. then
the request is inappropriate. The INVALlD_OP exception is raised at the connect statement in the
client thread of control at the other end of the link. The local process continues to wait for an
event.

Since the client and server involved in a remote operation will in general be in different
processes. they will share no declarations. Run-time checking is necessary to ensure that they agree
on the number. order. and types of request and reply parameters. For two processes to communi­
cate. their respective entry headers must have the same formal parameter types. As in assignment
statements and calls to subroutines. the types of request and reply actual parameters need not be
the same as the types of the formals. so long as they are compatible (see section 6.1).

If a client requests an operation that the process on the other end of the link is willing to
serve (the operation name matches that of an outstanding accept statement or binding). but the
server would disagree about the number. order. or structure of the parameters of the request or
reply messages, then the request is inappropriate. The TYPE....CLASH exception is raised at the
connect statement in the client. As in the case of the INVALlD_OP exception. the server process
continues to wait for an event.

20

As mentioned in section 4, the meanings of identifiers visible to a given thread of control
come and go in LIFO order. Likewise, storage for the variables accessible to the thread can be
allocated and deallocated in LIFO order. Variables declared in a process or library are created
when their process is created. Parameters and variables declared local to a subroutine or entry are
created when control enters the body of their block. Variables declared immediately inside a
module are created when control enters the body of the closest enclosing subroutine, entry, library.
or process. Different instantiations of the same subroutine or entry do not share local variables.

Since a process may have many suspended threads of control at a given point in time. the
variables of a process as a whole cannot be managed on a stack. The creation of a new thread of
control in an entry creates a new branch in a run-time environment tree. The environment of a
thread created with a call statement is similar to that of a procedure: in addition to (new) local
variables. it shares the variables in enclosing blocks with its caller. The environment of a thread
created in response to a message on a bound link is the same as it would have been if the entry in
question had been called locally at the point the bind statement was executed.

Control is not allowed to return from a subroutine whose local variables are still accessible
to other threads of control or to potential threads that might be created in response to incoming
messages. Similarly, a thread does not terminate when it reaches the end of the body of its entry:
it too waits for nested threads to finish. A process terminates only after all its threadS have
finished. A thread that is waiting for nested threads does so at the very bottom of the block. after
the word END. Exception handlers for the block are no longer active.

7.1. Blocking Statements

The absence of asynchronous context switches allows the programmer to assume that data
structures remain consistent until the current thread of control blocks. A context switch between
the threads of a process can occur

(1) at every connect, call. accept. and reply statement,

(2) at every await statement.

(3) whenever the current thread terminates. and

(4) whenever control reaches the end of a subroutine. entry, or process whose local variables
remain accessible to other threads or potential threads.

[n the absence of exceptions, a thread that resumes execution after a context switch contin­
ues with the statement immediately following the statement that blocked. Functions must not con­
tain blocking statements or calls to subroutines whose execution may lead to a blocking statement.

7.2. Exception Handling

Exceptions interrupt the normal flow of control. Several exceptions are pre-defined. [n the
process of communication on link end L, the following may arise:

[NVALID_OP
Raised at a connect statement when the requested operation is not among those for which
there are accepts or bindings in the process on the far end of L.

TYPE....CLASH
Raised at a connect statement when the process on the far end of L is willing to serve the
requested operation, but the two processes disagree on the number, order, or types of the
request or reply parameters.

LOCALDESTROYED
Raised at connect, accept, or reply statements when the link end referenced by L is destroyed
by a thread of control in the local process.

REMOTE....DESTROYED
Raised at connect, accept, or reply statements when the other end of the link referenced by L

21

is destroyed by a thread in the process that owns it.

REMOTE....EXC
Raised at a connect statement when a remote operation was being served but the server thread
has felt an exception that prevents it from replying. Also raised at a reply statement when the
client thread has felt an exception that prevents it from receiving the reply.

Additional pre-defined exceptions may be provided by particular implementations. On the
Butterfly, there is a pre-defined exception for each of the standard Chrysalis throw codes
(IOFATAL, NOMEM, BADHANDLE, CONSISTENCY. FAILED. CHECK. and NOW A Y). A
throw in an external C routine propagates back into LYNX as a genuine exception. Non-standard
throw codes can be bound to LYNX exceptions by use of a significant comment (see the manual
page for further details). A throw whose code has not been associated with a LYNX exception is
treated like an exception for which the current thread has no handler. Divide-by-zero, bus error,
and other "spontaneous" throws that occur inside LYNX programs cannot be caught.

Exceptions occur only when raised or announced explicitly, or when all threads are blocked.
Raised exceptions are felt in a single thread. Announced exceptions may be felt in an arbitrary
number of threads at once. When an exception arises in a given thread, the handlers (when
clauses) of the closest enclosing compound statement are examined in order to see if one of them
matches the exception that arose. If a match is found. then the thread is moved to the beginning
of the matching handler and is ready to continue. The handler will be executed in place of the
portion of the compound statement that had yet to be executed when the exception occurred. A
WHEN OTHERWISE clause matches any exception.

If the closest enclosing compound statement has no handlers, or if none of them matches the
exception, then the exception propagates to the handlers of the next enclosing compound state­
ment If the propagation reaches the compound statement comprising the body of a subroutine.
then the exception is raised at the subroutine's point of call, and propagation continues. Any
nested threads that still have access to the local variables of the subroutine are aborted (recur­
sively). Likewise any bindings that might create such threads are broken.

The propagation of an exception stops when an appropriate handler is found or when the
body of an entry or process is reached. A thread with no appropriate handler is aborted. If propa'
gation escapes the scope of an accept statement, or if an exception remains unhandled in the body
of an entry that has not yet replied, then the pre-defined exception REMOTE....EXC is raised at the
corresponding connect statement in the process on the other end of the link.

In the absence of exceptions, when all threads are blocked, the occurrence of an event allows
exactly one thread to continue. With exceptions, however, more than one thread may be
unblocked at once. When a link is destroyed, for example, all threads waiting for the completion
of communication on the same end of that link are moved to the beginning of their handlers simul­
taneously. If one of the threads (the current one, in fact) is executing a function, or a routine that
was called (transitively) from a function, than that thread continues first Otherwise, an arbitrary
thread continues first. This rule ensures that thread switches never occur in functions or in any­
thing they call.

The announce statement causes its exception to arise in all and only those threads that have
an active handler for it. Once felt in a thread, an announced exception propagates like a raised
exception. The only difference is that the propagation will always encounter an appropriate
handler by the time it reaches the compound statement in which the thread originated. An OTH­
ERWISE handler does not count as active, but one that occurs between a specific handler (which
does count) and the point where the thread is blocked will catch the announced exception first.

When a connect, accept, or reply statement is interrupted by a programmer-defined excep­
tion, one of the following conditions will hold:

22

connect
1) The request has not been sent. The process at the other end of the link does not know
anything has happened.
2) The request has been received by the process at the far end of the link. It is now being
served. The reply message will be discarded when it arrives, and the server will feel the
REMOTILEXC exception.

accept
1) A request has nor been received. The process at the other end of the link does not know
anything has happened.
2) A request has been received. The connected thread (if it still exists) in the process at the
other end of the link will feel the REMOTLEXC exception.

reply
1) The reply has nor been received. The connected thread (if it still exists) in the process at
the other end of the link will feel the pre-defined exception REMOTF-EXC. If the server
thread attempts to reply again, then an error has occurred and execution must stop.
2) The reply has been received. The process at the other end of the link does not know any­
thing has happened.

In each case I), enclosed links still belong to the sending process. In each case 2), they now belong
to the receiver.

8. Separate Compilation

As described in section 3.l, the use clause allows a program to access a LYNX library,
Libraries have syntax similar to that of processes:

library ::= LIBRARY IDENTIFIER: de<:.-sec cp<LstmLopt IDENTIFIER.

Libraries and library header files can themselves contain use clauses. The compound statemem at
the end of a library is called its initialization code, Libraries are initialized in deterministic order.

Before executing its main initialization code, and before initializing nested modules, the ini­
tial thread of a process executes the compound statement of each library mentioned in the process's
use clauses, Likewise, before executing the initialization code of a library the thread executes the
compound statement of each additional use-ed library it has not already attempted to initialize.
More precisely, consider a directed graph in which nodes represent compilation units and arcs
represent the "uses" relation (A-)B iff A uses B). The initial thread of a process constructs a
depth-first search tree, rooted in the process itself. and executes the compound statements of the
libraries in preorder.

Each library has an associated header file:

header ::= HEADER IDENTIFIER: de<:.-sec END IDENTIFIER.

Header files may not include modules. The bodies of their entries must be missing. The bodies of
their subroutines must either be missing or EXTERNAL.

body ::= e
The declarations found in a header file are included automatically at the beginning of the
corresponding library. Subroutines with missing bodies are considered to have been declared
FORWARD. Entries are considered to have been declared REMOTE.

The Butterfly compiler expects libraries. headers, and processes to appear in separate files.
The name of a library file must be the name of the library, followed by ... x". The name of a
header file must be the name of the library, followed by ".h". Type checking is enforced by the
linker with naming conventions. The symbol-table name of any variable, subroutine, or entry
declared in a header file consists of its LYNX name concatenated with an underscore (_), a series
of characters that encode type information, and a second, final underscore. Type clashes between a
library and its users result in "undefined symbol" messages from lnk68.

23

To produce an executable program, the object file for a process must be linked with the
object files for all the libraries it uses, all the libraries they use, and so forth. The Butterfly com­
piler searches for such files automatically, first in the current directory, then in additional libraries
specified on the command line, and finally in so-called "standard" directories.

9. Pre-defined Identifiers

The following identifiers are pre-defined.

types: Boolean. integer. char, link
constants: true. false. no link
exceptions: TYPE-CLASH, INVALlD_OP, REMOTE..EXC.

functions:
procedures:

LOCALDESTROYED, REMOTE..DESTROYED
new link, valid. curlink, idle, exclink
destroy

Also, for the Butterfly:

exceptions: IOFATAL. NOMEM. BADHANDLE, CONSISTENCY.
FAILED, CHECK, NOW A Y

functions: exccode, exctext, excval

The types. constants, and exceptions have been discussed elsewhere.

The function "new link" takes a single reference parameter of type link and yields a value of
type link. The parameter and function value return references to the two ends of a new link,
created as a side effect

The function "valid" takes a single value parameter of type link and yields a value of type
Boolean. The value indicates whether the parameter accesses an end of a currently valid link that
can be used in communication or bindings.

The function "curlink" takes no parameters. It returns a value of type link. The value is a
reference to the link on which the request message arrived for the closest lexically-enclosing entry
(not necessarily the original entry for the current thread of control). If there is no enclOSing entry.
or if the closest enclosing entry was invoked locally with a call statement. then curl ink yields nol­
ink.

The functions "exclink," "exccode." "exctext," and "excval" take no parameters. Within the
statement list of a handler for a link-related exception, exclink returns a reference to the offending
link. The other three functions provide access to the parameters of a throw in an external C rou­
tine. Exccode and excval return integers. Exctext returns a pointer to a character (string). Exctext
is valid in handlers for ordinary exceptions as welL For these, and for throws with a null
throwtext. exctext returns the exception's character-string name, or (in the case of pre-defined
exceptions) a default description of the exception's significance.

The function "idle" takes no parameters. It returns a value of type Boolean. The value will
be true if there are no events ready to occur on any of the links owned by the current process.
The function can be used in a "background" thread to poll for incoming or outgoing messages, for
example by inserting

await idle;

at the top of a loop.

The procedure "destroy" takes a single value parameter of type link. It destroys the
corresponding link. Variables referencing the link become invalid in the process(es) at both ends.
An attempt to destroy a nil or dangling link is a no-op.

A ::= BI C

and

A ::= B
::= C

are shorthand for

A ::= B
A::= C

Epsilon (£) denotes the empty string_

accepLStmt
adcLop
arg.JisLopt
ar~opt

array_type
asSiglLOp

awaiLstmt
bilLOP
bincLstmt

body

calLargs
calLargs_opt
calLstmt
case_lisLopt
casc-stmt
changeover

communication
comp.JisLopt
comp.JisLtaii
component
componenUist
componenLtaii
compouncLstmt
connecLStmt
consLde~taii
constanLdec
cpcLstmLopt
dec....sec
declaration

defaulLopt
des....stmLtail
designator

:: = ACCEPT IDENTiFIFR ar~opt ON expr : lLes.JisLopt reply
::= +I-I&I!I~I«I»
:: = (mode formal more.JILformals) I e
:: = (expclist) 1 e
:: = ARRAY type OF type
--- --I +-~ 1--- r .--1 /-- r 010 --,,_ ._ ,_ ._ ._ ._ 7(._

--= '--I &--11\-= 1 «-= I »--" .. - ,-. . .-
:: = AWAIT expr
:: = OR 1 AND 1 reLop 1 adcLop 1 muLop
:: = BIND expr.Jist TO idenUist
:: = UNBIND expelist FROM idenUist
:: = dec_sec compouncLstmt IDENTIFIER
::= FORWARD 1 EXTERNAL 1 REMOTE 1 e
:: = expr.JisLopt I expr.JisLopt
:: = (caILargs) 1 e
:: = CALL IDENTIFIER calLargs....opt
:: = { componenUist } StmUiSLopt casc-lisLopt 1 e
:: = CASE expr OF case.JisLopt defaulLopt END
:: = [expr I changeover I : IDENTIFIER changeover
:: = _ IDENTIFIER changeover 1 @ changeover 1 e
:: = calLstmt I conneCLstmt I accepLstmt
:: = componenUist I e
:: = _ component comp_lisLtaill e
:: = expr componenLtaii
:: = component comp_lisLtaii
::= __ exprl e
:: = BEG IN stmUisLopt hancLlisLopt END
:: = CONNECT IDENTIFIER calLargs....opt ON expr
:: = constanLdec consLdec_taill e
:: = IDENTIFIER = expr ; 1 ;
:: = compouncLstmt 1 END
:: = declaration de~sec 1 e
:: = CONST constanLdec consLde~taii
:: = TYPE type_dec typLde~taii
:: = VAR variable_dec vacde~tail
:: = EXCEPTION idenUist ;
:: = subroutinC-hdr ; body;
:: = emry.J1dr; body;
::= module:
::= OTHERWISEstmUisLoptl e
:: = asSiglLOp expr 1 ar~opt
:: = IDENTIFIER changeover

24

elSLopt
elsiUisLopt
entry~dr
enum...type
exc.-list
exiLstmt
exp0rLpt
expr

expr.-list
expLlisLopt
expr.-lisLtail
expLopt
field

field.-iisLopt
foreaclLloop
forever.-loop
formal
formaLtaii
fulLtYPLopt
generawr
hand.-iisLopt
header
i<LlisLtail
idenLlist
idenLopt
iLstmt
impOrLpt
ilLargLopt
io
labeLopt
labele<Lstmt
library
loopJtmt
mode
module

morLtn..formals
muLop
lLfJ.-lisLopt
nOlLreplYJtmt
ouLtypeLopt
process

~rt~ program...unit
raiseJtmt
range
recor<Ltype
reLop
repeaLioop
reply
retuflLStmt

:: = ELSE stmLlisLopt] e
:: = ELSIF expr THEN stmLlisLopt elsiLlisLopt] e
::= ENTRY IDENTIFIER ilLargLopt OULtypeLopt
: : = (idenLiist)
:: = idenLlist] OTHER WISE
:: = EXIT idenLopt
::= EXPORT idenLlist:] e
:: = UlLOP expr] expr bilLOP expr] (expr)
:: = CONSTANT] set] designaror ar~opt
:: = expr expLlisLtail
:: = expLlist] e
:: = . expLlist] e
::=expr]e
:: = idenLlist : type;] ;
:: = CASE IDENTIFIER: type OF vnLlisLopt END;
:: = field field.-iisLopt] e
:: = FOREACH IDENTIFIER IN generaror DO stmLlisLopt END
:: = LOOP stmLlisLopt END
:: = idenLiist: IDENTIFIER
:: = ; formal formaL tail] e
:: = : IDENTIFIER] e
:: = set] range] designator] REVERSE reversible-1len
:: = whelLclause han<LlisLopt] e
:: = HEADER IDENTIFIER; decJec END IDENTIFIER.
:: = . idenLlist! e
:: = IDENTIFIER id.-iisLtaii
:: = IDENTIFIER] e
:: = IF expr THEN stmLlisLopt elsiUisLopt elsLopt END
:: = IMPORT idenLiist ;] e
:: = (formal formaLtaii)] e
:: = WRITE (expLlist)] READ (expr.-list)
::= $ IDENTIFIER $] e
:: = loop_stmt] compoundJtmt
:: = LIBRARY IDENTIFIER; dec-sec cp<LstmLopt IDENTIFIER.
:: = whiluoop] foreaclLloop] repeaLloop] forever.-loop
::= VAR] CONST] e
:: = MODULE IDENTIFIER; impofLpt exp0rLpt dec-sec

cp<LstmLopt IDENTIFIER
:: = ; mode formal moreJILformals] e
::= %]*] /
:: = nOlLreplYJtmt ; rLLs.JisLopt! e
:: = simplLstmt] labeLopt labeledJtmt
:: = : idenLlist! e
::= PROCESS IDENTIFIER ilLargLopt; dec-sec

cpdJtmLopt IDENTIFIER.
:: = process] library] header
:: = RAISE IDENTIFIER] ANNOUNCE IDENTIFIER] RERAISE
:: = [expr .. expr J
:: = RECORD field.-iisLopt END
::= <>] <] <=] >=] >] X] ->] IN] =
:: = REPEAT stmLlisLopt UNTIL expr
:: = REPL Y ar~opt
::= RETURN expLopt

25

reversible-ilen
set
seLtype
simpla..stmt

starLprocstmt
Stint

stmLlisLopt
subctype
subroutine-Ildr

type

type_dec
tYPLdectail
UlLOP
vacdectail
variablLdec
variant
vnLlisLOpt
whelLclause
while~oop
witlLstmt

:: = range I designator
::= {comp~isLopt}
:: = SET OF type
:: = communication I io I bincLstmt I awaiLstmt
:: = iLstmt I case_stmt I witlLstmt I raise-stmt
:: = retuflLstmt I exiLstmt
:: = designator des....stmLtail
:: = starLprocstmt! £

:: = STARTPROCESS (expr~ist)
:: = nOlLreply_stmt I reply
:: = stmt ; stmLlisLopt! £

::= range
:: = PROCEDURE IDENTIFIER arg..JisLopt
:: = FUNCTION IDENTIFIER arg..JisLopt fulLtype_opt
:: = IDENTIFIER I enUf!Ltype I subctype
:: = array_type I recorcLtype I seLtype
:: = IDENTIFIER = type; I ;
:: = type_dec type_dec tail I £

:: = NOT I-I -I % I @
:: = variable_dec vacdectaill £

:: = idenLlist: type; I ;
:: = {componenLlist} fiel~isLopt
:: = variant vnLlisLopt I £

:: = WHEN exc_list DO stmLlisLopt
:: = WHILE expr DO stmLlisLopt END
:: = WITH designator DO stmLlisLopt END

26

XC(l) USER COMMANDS XC(l)

NAME
xc - Butterfly LYNX compiler

SYNOPSIS
xc [option or file ... 1

DESCRIPTION
Xc is a compiler for the LYNX distributed programming language. Xc accepts several types of
arguments:

Arguments whose names end with '.x' are taken to be LYNX source files.

Arguments whose names end with '.c68' are taken to be intermediate C source files created by an
earlier run of xc under the -C option.

Arguments whose names end with '.s68' are taken to be intermediate assembler files created by an
earlier run of xc under the -8 option.

Arguments whose names end with' .068' or '.a68' are taken to be object files or object-file archives,
respectively.

Header files (for separate compilation of LYNX libraries) have names that end with '.h'. Headers
are not specified as arguments, but are parsed automatically at the beginning of the corresponding
'.x' library file and whenever they are mentioned in use clauses in other files.

Each '.x', '.c68', or '.s68' file is compiled to produce an object file whose name is the name of the
source with '.068' substituted for the original suffix. All object files are linked together to produce
a single executable file, named by default ·a.out.68'. Unless linking is supressed (with the -C, -8.
or -c options), the compiler automatically searches for, and links in. the object-file version of each
library mentioned in a use clause in one of the '.x' files. Object-file archives specified on the com­
mand line are searched (for unresolved references) in the order they appear among the other files.
If only one source file is specified, and if no object files or object-file archives are specified, then
the '.068' file produced from the source is deleted automatically (unless deletion is inhibited by the
-h option).

OPTIONS
The following options are interpreted by xc. Options and file arguments can be intermixed freely.

Compile standard input as if it were a '.x' file appearing at this point in the command
line.

-c Stop compilation of each argument after producing '.068' files.

-C Stop compilation of each argument after producing intermediate '.c68' and '.i' files.

-g Generate symbol table information needed by dbx(l). This option is of limited use,
since the symbol table will reflect the structure of the intermediate C files, not the
LYNX source.

-h Save intermediate files. This option is intended for debugging the compiler. It
prevents the automatic deletion of '.c68', '.i', and' .068' files. It also arranges for an
assembler listing to be saved in a '.168' file. The assembler listing is kept in lieu of a
'.s68' file. Unless linking is supressed (with the -C, -8, or -c options), symbol-table
information is saved in a pair of files whose names are created by appending the
suffixes '.syms' and '.map' to the name of the final executable file. with the Original '.68'
suffix, if any, deleted. The' .map' file contains a numerical-order name list, created by
nm68(l). The '.syms· file is created by splitsyms(I), for use by ddt.

- Idir Add dir to (the end of) the list of directories in which to search for library header files,
library object files, and include files whose names do not begin with '/'. The current
directory is searched before any of the directories on this list The standard directory
/usr/lynx/lib is searched after the directories on this list.

Sun Release 2.0 Last change: August 1986 1

XC(1)

FlLFS

USER COMMANDS XC(l)

-L Generate program listings on standard output.

-0 name Use 'name' instead of 'a.out.68' for the final executable file.

-0 Invoke an object-code improver. The -g option disables -0.

- R Do not generate code to perform run time checking of array SUbscripts, set elements,
and subranges.

-S Stop compilation of each argumem after producing intermediate' .s68' files.

-v Provide verbose description of compilation.

-w Suppress warning diagnostics.

The options -w, - L, and - R can be turned on and off by compiler directives in the source code
itself. LYNX compiler directives are significant comments. They have the form '--* os commem'
where the asterisk immediately follows the second hyphen, 0 is the option letter. and s is an
(immediately following) optional + or - sign. A plus turns the feature on; a minus turns it off. A
missing sign implies plus.

Two additional forms of directive are available. The significant commem
'--* include file comment' is used for source file inclusion. 'File' may not comain white space.
The significant comment '--* hint keyword comment' is used to make suggestions to the com­
piler in the spirit of Ada pragmas. Both the word 'include' and the word 'hint' can be abbreviated
to any prefix. The following keywords are current supported:

sequential
When specified immediately after the header of a forward or recursive procedure. indicates
that the routine will not cause context switches and can be optimized to avoid use of the
cactus stack.

anyargs Supresses checking of the number and types of initial arguments to the process. Can be
specified only if no arguments are declared. Meant for use with the processargs standard
library.

nothrows
When specified immediately after the header of an external procedure or function, indi­
cates that the routine will not cause any throws that the LYNX program is interested in
catching. Results in faster code.

throwcode <number>
Indicates that the most recently-declared LYNX exception should be associated with
Chrysalis throw code <number>. Throws of <number> in external routines will be
reflected into LYNX as if the exception had been raised.

file. x
file.h
file.c68
file.i
file.s68
file.l68
file.o68
prog.map
prog.syms
a.out.68

/usr/lynx/installed/xc
/usr/lynx/lib

source file
header file
intermediate C code file
intermediate C definitions file
intermediate assembler file
assembler listing file
Object file
name list output file
symbol table output file for ddt.
default executable file

compiler
standard LYNX library directory

Sun Release 2.0 Last change: August 1986 2

XC(I) USER COMMANDS XC(l)

lusr/butterfly/chrys/rel/libcs.a
Butterfly C library archive

See lusr/lynxlinstalled/paths.c for a list of additional files used by the compiler.

SEEAISO
cc68(I). Ink68(l). as68(1). dbx(I). prof(1). gprof(1)

M. L. Scott, "Language Support for Loosely-Coupled Distributed Programs." TR 183. Department
of Computer Science. University of Rochester, January 1986. Revised version to appear in IEEE
Transactions on Software Engineering, December 1986,

M. L. Scott, "LYNX Reference Manual." BPR 7, Department of Computer Science, University of
Rochester, March 1986_

DIAGNOSTICS

BUGS

Diagnostics produced by xc are intended to be self-explanatory. Considerable effort has been
devoted to making them more useful than those produced by cc68(1). Occasional messages may be
produced by the assembler or loader. In particular, type clashes between a LYNX library and its
users result in 'undefined symbol' errors from Ink68(1).

The symbol-table name of an object defined in a library consists of its LYNX name, concatenated
with an underscore (-J, a series of characters that encode the object's type, and a second, final
underscore. An undefined symbol ending with an underscore indicates either that a routine is
missing or else that it is declared differently in different compilation units. If nm68(1) reveals a
symbol that matches the undefined name up through the second-to-last underscore, then a type
clash has probably occurred. .

Command and source lines longer than about 125 characters are not accepted.

Particularly long sections of straight-line code may cause internal tables to overflow. This limita­
tion can be circumvented by breaking the code into two or more consecutive compound state­
ments_

Syntax errors near the beginning of libraries or near use clauses can confuse the syntax corrector.
To eliminate a "Parse Error In Corrected Input" message, fix the syntax error and recompile.

Two libraries that export a variable or exception with the same name will share the same data for
those objects.

Sun Release 2.0 Last change: August 1986 3

