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Abstract 

A distributed operating system provides a process 
abstraction and primitives for communication between 
processes. A distributed programming language 
regularizes the use of the primitives, making them 
both safer and more convenient. The level of 
abstraction of the primitives, and therefore the division 
of labor between the operating system and the 
language support routines, has serious ramifications 
for efficiency and flexibility. Experience with three 
implementations of the LYNX distributed 
programming language suggests that functions that 
can be implemented on either side of the interface are 
best left to the language run-time package. 

1. Introduction 

Recent years have seen the development of a large 
number of distributed programming languages and an 
equally large number of distributed operating systems. 
While there are exceptions to the rule, it is generally 
true that individual research groups have focused on a 
single language, a single operating system, or a single 
language/O.S. pair. Relatively little attention has been 
devoted to the relationship between languages and O.S. 
kernels in a distributed setting. 

Amoeba [Mullender and Tanenbaum, 1984], 
Demos-MP [Powell and Miller, 19831, Locus [Walker et 
aI., 19831, and the V kernel [Cheriton and Zwaenepoel, 
19831 are among the better-known distributed 
operating systems. Each bypasses language issues by 
relying on a simple library-routine interface to kernel 
communication primitives. Eden [Black, 19851 and 
Cedar [Swinehart et aI., 19851 have both devoted a 
considerable amount of attention to programming 
language issues, but each is very much a single­
language system. The Accent project at CMU [Rashid 
and Robertson, 19811 is perhaps the only well-known 
effort to support more than one programming language 
on a single underlying kernal. Even so, Accent is only 
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able to achieve its multi-lingual character by insisting 
on a single, universal model of interprocess 
communication based on remote procedure calls [Jones 
et aI., 19851. Languages with other models of process 
interaction are not considered. 

In the language community, it is unusual to find 
implementations of the same distributed programming 
language for more than one operating system, or 
inde:d for any existing operating system. Dedicated, 
speCIal-purpose kernels are under construction for 
Argus [Liskov and Scheifler, 19831, SR [Andrews, 
1982; Andrews and Olsson, 19851, and NIL [Strom and 
Yemini, 1983; 19851. Several dedicated 
implementations have been designed for Linda 
[Carriero and Gelernter, 1985; Gelernter, 19841. No 
distributed implementations have yet appeared for 
Ada [United States Department of Defense, 19831. 

If parallel or distributed hardware is to be used for 
general-purpose computing, we must eventually learn 
how to support multiple languages efficiently on a 
single operating system. Toward that end, it is worth 
considering the division oflabor between the language 
run-time package and the underlying kernel. Which 
functions belong on which side of the interface? What 
is the appropriate level of abstraction for universal 
primitives? Answers to these questions will depend in 
large part on experience with a variety of 
language/a .S. pairs. 

This paper reports on implementstions of the LYNX 
distributed programming language for three existing, 
but radically different, distributed operating systems. 
To the surprise of the implemen tors, the 
implementation effort turned out to be substantially 
easier for kernels with low-level primitives. If 
confirmed by similar results with other languages, the 
lessons provided by work on LYNX should be of 
considerable value in the design offuture systems. 

The first implementstion of LYNX was constructed 
during 1983 and 1984 at the University of Wisconsin, 
where it runs under the Charlotte distributed 
operating system [Artsy et aI., 1986; Finkel et aI., 
19831 on the Crystal mUlticomputer [DeWitt et aI., 
19841. The second implementation was designed, but 
never actually built, for Kepecs and Solomon's SODA 
[Kepecs, 1984; Kepecs and Solomon, 19851. A third 
implementation has recently been released at the 
University of Rochester, where it runs on BBN 
Butterfly multiprocessors [BBN, 1986] under the 
Chrysalis operating system. 

Section 2 of this paper summarizes the features of 
LYNX that have an impact on the services needed from 
a distributed operating system kernel. Sections 3, 4, 
and 5 describe the three LYNX implementations, 
comparing them one to the other. The final section 
discusses possible lessons to be learned from the 
comparison. 
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2. LYNX Overview 

The LYNX programming language is not itself the 
subject of this article. Language features and their 
rationale are described in detail elsewhere [Scott and 
Finkel, 1984; Scott, 1985; 1986l. For present purposes, 
it suffices to say that LYNX was designed to support 
the loosely-coupled style of programming encouraged 
by a distributed operating system. Unlike most 
existing languages, LYNX extends the advantages of 
high-level communication facilities to processes 
designed in isolation, and compiled and loaded at 
disparate times. LYNX supports interaction not only 
between the pieces of a multi-process application, but 
also between separate applications and between user 
programs and long. lived system servers. 

, 
Processes in LYNX execute in parallel, possibly on 

separate processors. There is no provision for shared 
memory. Interprocess communication uses a 
mechanism similar to remote procedure calls (RPC), on 
virtual circui ts called links. Links are two-directional 
and have a single process at each end. Each process 
may be divided into an arbitrary number of threads of 
control, but the threads execute in mutual exclusion 
and may be managed by the language run·time 
package, much like the coroutines of Modula-2 [Wirth, 
1985l. 

2.1 Communication Characteristics 

(The following paragraphs describe the 
communication behavior of LYNX processes. The 
description does not provide much insight into the way 
that LYNX programmers think about their programs. 
The intent is to describe the externally-visible 
characteristics of a process that must be supported by 
kernel primitives.) 

Messages in LYNX are not received asynchro. 
nously. They are queued instead, on a link-by-link 
basis. Each link end has one queue for incoming 
requests and another for incoming replies. Messages 
are received from a queue only when the queue is open 
and the process that owns its end has reached a well· 
defined block point. Request queues may be opened or 
closed under explicit process control. Reply queues are 
opened when a request has been sent and a reply is 
expected. The set of open queues may therefore vary 
from one block point to the next. 

A blocked process waits until one of its previously. 
sent messages has been received, or until an incoming 
message is available in at least one of its open queues. 
In the latter case, the process chooses a non·empty 
queue, receives that queue's first message, and 
executes through to the next block point. For the sake 
of fairness, an implementation must guarantee that no 
queue is ignored forever. 

Messages in the same queue are received in the 
order sent. Each message blocks the sending coroutine 
within the sending process. The process must be 
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notified when messages are received in order to 
unblock appropriate coroutines. It is therefore possible 
for an implementation to rely upon a stop-and-wait 
protocol wi th no actual buffering of messages in 
transit. Request and reply queues can be implemented 
by lists of blocked coroutines in the run-time package 
for each sending process. 

The most challenging feature of links, from an 
implementor's point of view, is the provision for moving 
their ends. Any message, request or reply, can contain 
references to an arbitrary number of link ends. 
Language semantics specify that receipt of such a 
message has the side effect of moving the specified ends 
from the sending process to the receiver. The process at 
the far end of each moved link must be oblivious to the 
move, even if it is currently relocating its end as well. 
In Figure I, for example, processes A and D are moving 
their ends of link 3, independently, in such a way that 
what used to connect A to D will now connect B to C. 

It is best to think of a link as a flexible hose. A 
message put in one end will eventually be delivered to 
whatever process happens to be at the other end. The 
queues of available but un-received messages for each 
end are associated with the link itself, not with any 
process. A moved link may therefore (logically at least) 
have messages inside, waiting to be received at the 
moving end. In keeping with the comment above about 
stop-and-wait protocols, and to prevent complete 
anarchy, a process is not permitted to move a link on 
which it has sent unreceived messages, or on which it 
owes a reply for an already-received request. 

2.2 Kernel Requirements 

To permit an implementation of LYNX, an 
operating system kernel must provide processes, 
communication primitives, and a naming mechanism 
that can be used to build links. The major questions for 
the designer are then: (1) how are links to be 
represented? and (2) how are RPC-style request and 
reply messages to be transmitted on those links? It 

message o link 1 0 
:------------------ .... 

message 

link 3 

Figure 1: Link Moving at Both Ends 



must be possible to move links without losing 
messages. In addition, the termination of a process 
must destroy all the links attached to that process. Any 
attempt to send or receive a message on a link that has 
been destroyed must fail in a way that can be reflected 
back into the user program as a run-time exception. 

3. The Charlotte Implementation 

3.1 Overview of Charlotte 

Charlotte [Artsy et aI., 1986; Finkel et aI., 19831 
runs on the Crystal multicomputer [DeWitt et aI., 
19841, a collection of 20 VAX 11/750 node machines 
connected by a 10-Mbitlsecond token ring from Proteon 
Corporation. 

The Charlotte kernel is replicated on each node. It 
provides direct support for both processes and links. 
Charlotte links were the original motivation for the 
circuit abstraction in LYNX. As in the language, 
Charlotte links are two directional, with a single 
process at each end. As in the language, Charlotte 
links can be created, destroyed, and moved from one 
process to another. Charlotte even guarantees that 
process termination destroys all of the process's links. 
It was originally expected that the implementation of 
LYNX-style interprocess communication would be 
almost trivial. As described in the rest of this section, 
that expectation turned out to be naive. 

Kernel calls in Charlotte include the following: 

MakeLink (var end1, end2: link) 
Create a link and return references to its ends. 

Destroy (myend : link) 
Destroy the link with a given end. 

Send (L : link; buffer : address; length : integer; 
enclosure: link) 

Start a send activity on a given link end, 
optionally enclosing one end of some other link. 

Receive (L : link; buffer: address; length: integer) 
Start a receive activity on a given link end. 

Cancel (L : link; d : direction) 
Attempt to cancel a previously-started send or 
receive activity. 

Wait (var e : description) 
Wait for an activity to complete, and return its 
description Oink end, direction,length, enclosure). 

All calls return a status code. All but Wait are 
guaranteed to complete in a bounded amount of time. 
Wait blocks the caller until an activity completes. 

The Charlotte kernel matches send and receive 
activities. It allows only one outstanding activity in 
each direction on a given end of a link. Completion 
must be reported by Wait before another similar 
activity can be started. 
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3.2 Implementation of LYNX 

The language run-time package represents every 
LYNX link with a Charlotte link. It uses the activities 
of the Charlotte kernel to simulate the request and 
reply queues described in Section 2.1. It starts a send 
activity on a link whenever a process attempts to send 
a request or reply message. It starts a receive activity 
on a link when the corresponding request or reply 
queue is opened, ifboth were closed before. It attempts 
to cancel a previous-started receive activity when a 
process closes its request queue, if the reply queue is 
also closed. The multiplexing of request and reply 
queues onto receive activities was a major source of 
problems for the implementation effort. A second 
source of problems was the inability to enclose more 
than one link in a single Charlotte message. 

3.3 Screening Messages 

For the vast majority of remote operations, only two 
Charlotte messages are required: one for the request 
and one for the reply. Complications arise, however, in 
a number of special cases. Suppose that process A 
requests a remote operation on link L. 

0'----L-~0 
request 

--------------------i> 

Process B receives the request and begins serving the 
operation. A now expects a reply on L and starts a 
receive activity with the kernel. Now suppose that 
before replying B requests another operation on L, in 
the reverse direction (the coroutine mechanism 
mentioned in Section 2 makes such a scenario entirely 
plausible). A will receive B's request before the reply it 
wanted. Since A may not be willing to serve requests 
on L at this point in time (its request queue is closed), 
B is not able to assume that its request is being served 
simply because A has received it. 

A similar problem arises if A opens its request 
queue and then closes it again, before reaching a block 
point. In the interests of concurrency, the run-time 
support routines will have posted a Receive with the 
kernel as Soon as the queue was opened. When the 
queue is closed, they will attempt to cancel the Receive. 
If B has requested an operation in the meantime, the 
Cancel will fail. The next time A's run-time package 
calls Wait, it will obtain notification of the request from 
B, a message it does not want. Delaying the start of 
receive activities until a block point does not help. A 
must still start activities for all its open queues. It will 
continue execution after a message is received from 
exactly one of those queues. Before reaching the next 
block point, it may change the set of messages it is 
willing to receive. 

It is tempting to let A buffer unwanted messages 
until it is again willing to receive from B, but such a 



solution is impossible for two reasons. First, the 
occurrence of exceptions in LYNX csn require A to 
cancel an outstanding Send on L. If B has already 
received the message (inadvertently) and is buffering it 
internally, the Cancel cannot succeed. Second, the 
scenario in which A receives a request but wants a 
reply can be repeated an arbitrary number of times, 
and A cannot be expected to provide an arbitrary 
amount of buffer space. 

A must return unwanted messages to B. In 
addition to the request and reply messages needed in 
simple situations, the implementation now requires a 
retry message. Retry is a negative acknowledgment. 
It can be used in the second scenario above, when A has 
closed its request queue after receiving an unwanted 
message. Since A will have no Receive outstanding, the 
re-sent message from B will be delayed by the kernel 
until the queue is re-opened. 

In the first scenario, unfortunately, A will still have 
a Receive posted for the reply it wants from B. If A 
simply returned requests to B in retry messages, it 
might be subjected to an arbitrary number of 
retransmissions. To prevent these retransmissions we 
must introduce the forbid and allow messages. 
Forbid denies a process the right to send requests (it is 
still free to send replies). Allow restores that right. 
Retry is equivalent to forbid followed by allow. It can 
be considered an optimization for use in cases where no 
replies are expected, so retransmitted requests will be 
delayed by the kernel. 

Both forbid and -retry return any link end that was 
enclosed in the unwanted message. A process that has 
received a forbid message keeps a Receive posted on the 
link in hopes of receiving an allow message. (This of 
course makes it vulnerable to receiving unwanted 
messages itself.) A process that has sent a forbid 
message remembers that it has done so and sends an 
allow message as soon as it is either willing to receive 
requests (its request queue is open) or has no Receive 
outstanding (so the kernel will delay all messages). 

3.4 Moving Multiple Links 

To move more than one link end with a single 
LYNX message, a request or reply must be broken into 
several Charlotte messages. The first packet contains 
non-link data, together with the first enclosure. 
Additional enclosures are passed in empty enc 
messages (see Figure 2). For requests, the receiver 
must return an explicit goahead message after the 
first packet so the sender can tell that the request is 
wanted. No goa head is needed for requests with zero or 
one enclosures, and none is needed for replies, since a 
reply is always wanted. 

One consequence of packetizing LYNX messages is 
that links enclosed in unsuccessful messages may be 
lost. Consider the following chain of events: 

a) Process A sends a request to process B, enclosing 
the end of a link. 
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0f---_L_~® 

simple case 

request 
connect .-------------------. accept 

reply .. --------------------
compute 
reply 

multiple enclosures 

connect 
request 

--------------------. accept 
goahead .. --------------------

enc 
--------------------. . . . 

enc -- ------------------. 
reply compute 

.. -------------------- reply 
enc .. --------------------. . . 
enc .. --------------------

Figure 2: Link Enclosure Protocol 

b) B receives the request unintentionally; inspection 
of the code allows one to prove that only replies were 
wanted. 

c) The sending coroutine in A feels an exception, 
aborting the request. 

d) B crashes before it can send the enclosure back to A 
in a forbid message. From the point of view of 
language semantics, the message to B was never 
received, yet the enclosure has been lost. Under 
such circumstances the Charlotte implementation 
cannot conform to the language reference manual. 

The Charlotte implementation also disagrees with 
the language definition when a coroutine that is 
waiting for a reply message is aborted by a local 
exception. On the other end of the link the server 
should feel an exception when it attempts to send a no­
longer-wanted reply. Such exceptions are not provided 
under Charlotte because they would require a final, 
top-level acknowledgment for reply messages, 
increasing message traffic by 50%. 



3.5 Measurements 

The language run-time package for Charlotte 
consists of just over 4000 lines of C and 200 lines of 
VAX assembler, compiling to about 21K of object code 
and data. Of this totsl, approximately 45% is devoted 
to the communication routines that interact with the 
Charlotte kernel, including perhaps 5K for unwanted 
messages and multiple enclosures. Much of this space 
could be saved with a more appropriate kernel 
interface. 

A simple remote operation (no enclosures) requires 
approximately 57 ms with no data transfer and about 
65 ms with 1000 bytes of parameters in both directions. 
C programs that make the same series of kernel calls 
require 55 and 60 ms, respectively. In addition to being 
rather slow, the Charlotte kernel is highly sensitive to 
the ordering of kernel calls and to the interleaving of 
calls by independent processes. Performance figures 
should therefore be regarded as suggestive, not 
definitive. The difference in timings between LYNX 
and C programs is due to efforts on the part of the run­
time package to gather and scatter parameters, block 
and unblock coroutines, establish default exception 
handlers, enforce flow control, perform type checking, 
update tables for enclosed links, and make sure the 
links are valid. 

4. The SODA Implementation 

4.1 Overview of SODA 

As part of his Ph.D. research, Jonathan Kepecs set 
out to design a minimal kernel for a multicomputer 
[Kepecs, 1984; Kepecs and Solomon, 19851. His 
"Simplified Operating System for Distributed 
Applications" might better be described as a 
communications protocol for use on a broadcast 
medium with a very large number of heterogeneous 
nodes. 

Each node on a SODA network consists of two 
processors: a client processor, and an associated 
kernel processor. The kernel processors are all alike. 
They are connected to the network and communicate 
with their client processors through shared memory 
and interrupts. Nodes are expected to be more 
numerous than processes, so client processors are not 
multi-programmed. 

Every SODA process has a unique id_ It also 
advertises a collection of names to which it is willing 
to respond. There is a kernel call to generate new 
names, unique over space and time. The discover 
kernel call uses unreliable broadcast in an attempt to 
find a process that has advertised a given name. 

Processes do not necessarily send messages, rather 
they request the transfer of data. A process that is 
interested in communication specifies a name, a 
process id, a small amount of out-of-band information, 
the number of bytes it would like to send and the 
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number it is willing to receive. Since either of the last 
two numbers can be zero, a process can request to send 
data, receive data, neither, or both. The four varieties 
of request are termed put, get, signal, and exchange, 
respectively. 

Processes are informed of interesting events by 
means of software interrupts. Each process establishes 
a single handler which it can close temporarily when 
it needs to mask out interrupts. A process feels a 
software interrupt when its id and one of its advertised 
names are specified in a request from some other 
process. The handler is provided with the id of the 
requester and the arguments of the request, including 
the out-of-band information. The interrupted process is 
free to save the information for future reference. 

At any time, a process can accept a request that 
was made of it at some time in the past. When it does 
so, the request is completed (data is transferred in both 
directions simultaneously), and the requester feels a 
software interrupt informing it of the completion and 
providing it with a small amount of out-of-band 
information from the accepter. Like the requester, the 
accepter specifies buffer sizes. The amount of data 
transferred in each direction is the smaller of the 
specified amounts. 

Completion interrupts are queued when a handler 
is busy or closed. Requests are delayed; the requesting 
kernel retries periodically in an attempt to get through 
(the requesting user can proceed). If a process dies 
before accepting a request, the requester feels an 
in terru pt that informs it of the crash. 

4.2 A Different Approach to Links 

A link in SODA can be represented by a pair of 
unique names, one for each end. A process that owns 
an end of a link advertises the associated name. Every 
process knows the names of the link ends it owns. 
Every process keeps a hint as to the current location of 
the far end of each of its links. The hints can be wrong, 
but are expected to work most of the time. 

A process that wants to send a LYNX message, 
either a request or a reply, initiates a SODA put to the 
process it thinks is on the other end of the link. A 
process moves link ends by enclosing their names in a 
message. When the message is SODA-accepted by the 
receiver, the ends are understood to have moved. 
Processes on the fixed ends of moved links will have 
incorrect hints. 

A process that wants to receive a LYNX message, 
either a request or a reply, initiates a SODA signal to 
the process it thinks is on the other end of the link. The 
purpose of the signal is allow the aspiring receiver to 
tell if its link is destroyed or if its chosen sender dies. 
In the latter case, the receiver will feel an interrupt 
informing it of the crash. In the former case, we 
require a process that destroys a link to accept any 
previously-posted status signal on its end, mentioning 
the destruction in the out-of-band information. We also 



require (tto accept any outstanding put request, but 
with a Zero-length buffer, and again mentioning the 
destruction in the out-of-band information. After 
clearing the signals and puts, the process can 
unadvertise the name of the end and forget that it 
ever existed. 

Suppose now that process A has a link L to process 
C and that it sends its end to process B. 

L 

o 0 
·-~-eg~-----· 

o 
before 

If C wants to send or receive on L, but B terminates 
after receiving L from A, then C must be informed of 
the termination so it knows that L has been destroyed. 
C will have had a SODA request posted with A. A 
must accept this request so that C knows to watch B 
instead. We therefore adopt the rule that a process 
that moves a link end must accept any previously­
posted SODA request from the other end, just as it 
must when it destroys the link. It specifies a zero­
length buffer and uses the out-of-band information to 
tell the other process where it moved its end. In the 
above example, C will re-start its request with B 
instead of A. 

The amount of work involved in moving a link end 
is very arnall, since accepting a request does not even 
block the accepter. More than one link can be enclosed 
in the same message with no more difficulty than a 
single end. If the fixed end of a moving link is not in 
active use, there is no expense involved at all. In the 
above example, if C receives a SODA request from B, it 
will know that L has moved. 

The only real problems occur when an end of a 
dormant link is moved. In our example, if L is first 
used by C after it is moved, C will make a SODA 
request of A, not B, since its hint is out-of-date. There 
must be a way to fix the hint. If each process keeps a 
cache of links it has known about recently, and keeps 
the names of those links advertised, then A may 
remember it sent L to B, and can tell C where it went. 
If A has forgotten, C can use the discover command in 
an attempt to find a process that knows about the far 
endofL. 
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A process that is unable to find the far end of a link 
must assume it has been destroyed. If L exists, the 
heuristics of caching and broadcast should suffice to 
find it in the vast majority of cases. If the failure rate is 
comparable to that of other "acceptable" errors, such as 
garbled messages with "valid" checksums, then the 
heuristics may indeed be all we ever need. 

Without an actual implementation to measure, and 
without reasonable assumptions about the reliability 
of SODA broadcasts, it is impossible to predict the 
success rate of the heuristics. The SODA discover 
primitive might be especially strained by node crashes, 
since they would tend to precipitate a large number of 
broadcast searches for lost links. If the heuristics 
failed too often, a fall-back mechanism would be 
needed. 

Several absolute algorithms can be devised for 
finding missing links. Perhaps the simplest looks like 
this: 

• Every process advertises a freeze name. When 
C discovers its hint for L is bad, it posts a SODA 
request on the freeze name of every process 
currently in existence (SODA makes it easy to 
guess their ids). It includes the name of L in the 
request. 

• Each process accepts a freeze request 
immediately, ceases execution of everying but 
its own searches (if any), increments a counter, 
and posts an unfreeze request with C. Ifithas a 
hint for L, it includes that hint in the freeze 
accept or the unfreeze request. 

• When C obtains a new hint or has unsuccessfully 
queried everyone, it accepts the unfreeze 
requests. When a frozen process feels an 
interrupt indicating that its unfreeze request 
has been accepted or that C has crashed, it 
decrements its counter. If the counter hits zero, 
it continues execution. The existence of the 
counter permits multiple concurrent searches. 

This algorithm has the considerable disadvantage of 
bringing every LYNX process in existence to a 
temporary halt. On the other hand, it is simple, and 
should only be needed when a node crashes or a 
destroyed link goes unused for so long that everyone 
has forgotten about it. 

4.3 Potential Problems 

As mentioned in the introduction, the SODA 
version of LYNX was designed on paper only. An 
actual implementation would need to address a number 
of potential problems. To begin with, SODA places a 
small, but unspecified, limit on the size of the out-of­
band information for request and accept. If all the self­
descriptive information included in messages under 
Charlotte were to be provided out-of-band, a minimum 
of about 48 bits would be needed. With fewer bits 



available, some information would have to be included 
in the messages themselves, as in Charlotte. 

A second potential problem with SODA involves 
another unspecified constant: the permissible number 
of outstanding requests between a given pair of 
processes. The implementation described in the 
previous section would work easily if the limit were 
large enough to accommodate three requests for every 
link between the processes (a LYNX-request put, a 
LYNX-reply put, and a status signal). Since reply 
messages are always wanted (or can at least be 
discarded if unwanted), the implementation could 
make do with two outstanding requests per link and a 
single extra for replies. Too small a limit on 
outstanding requests would leave the possibility of 
deadlock when many links connect the same pair of 
processes. In practice, a limit of a half a dozen or so is 
unlikely to be exceeded (it implies an improbable 
concentration of simultaneously-active resources in a 
single process), but there is no way to reflect the limit 
to the user in a semantically-meaningful way. 
Correctness would start to depend on global 
characteristics of the process-interconnection graph. 

4.4 Predicted Measurements 

Space requirements for run-time support under 
SODA would reflect the lack of special cases for 
handling unwanted messages and multiple enclosures. 
Given the amount of code devoted to such problems in 
the Charlotte implementation, it seems reasonable to 
expect a savings on the order of 4K bytes. 

For simple messages, run-time routines under 
SODA would need to perform most of the same 
functions as their counterparts for Charlotte. 
Preliminary results with the Butterfly implementation 
(described in the following section) suggest that the 
lack of special cases might save some time in 
conditional branches and subroutine calls, but 
relatively major differences in run-time package 
overhead appear to be unlikely. 

Overall performance, including kernel overhead, is 
harder to predict. Charlotte has a considerable 
hardware advantage: the only implementation of 
SODA ran on a collection of PDP-1l/23's with a 1-
MbitJsecond CSMA bus. SODA, on the other hand, was 
designed with speed in mind. Experimental figures 
reveal that for small messages SODA was three times 
as fast as Charlotte. (The difference is less dramatic for 
larger messages; SODA's slow network exacted a 
heavy toll. The figures break even somewhere between 
1K and 2K bytes.) Charlotte programmers made a 
deliberate decision to sacrifice efficiency in order to 
keep the project manageable. A SODA version of 
LYNX might well be intrinsically faster than a 
comparable version for Charlotte. 

5. The Chrysalis Implementation 

5.1 Overview of Chrysalis 

The BBN Butterfly Parallel Processor [BBN, 1986] 
is a MC68000-based shared-memory multiprocessor. 
The Chrysalis ~perating system provides primitives, 
many of them In microcode, for the management of 
system abstractions. Among these abstractions are 
processes, memory objects, event blocks, and dual 
queues. 

Each process runs in an address space that can span 
as many as one or two hundred memory objects. Each 
memory object can be mapped into the address spaces 
of an arbitrary number of processes. Synchronization of 
access to shared memory is achieved through use of the 
event blocks and dual queues. 

An event block is similar to a binary semaphore, 
except that (1) a 32-bit datum can be provided to the V 
operation, to be returned by a subsequent P, and (2) 
only the owner of an event block can waitfor the event 
to be posted. Any process that knows the name of the 
event can perform the post operation. The most 
common use of event blocks is in conjunction with dual 
queues. 

A dual queue is so named because of its ability to 
hold either data or event block names. A queue 
containing data is a simple bounded buffer, and 
enqueue and dequeue operations proceed as one would 
expect. Once a queue becomes empty, however, 
subsequent dequeue operations actually enqueue event 
block names, on which the calling processes can wait. 
An enqueue operation on a queue containing event 
block names actually posts a queued event instead of 
adding its datum to the queue. 
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5.2 A Third Approach to Links 

In the Butterfly implementation of LYNX, every 
process allocates a single dual queue and event block 
through which to receive notifications of messages sent 
and received. A link is represented by a memory 
object, mapped into the address spaces of the two 
connected processes. The memory object contains buffer 
space for a single request and a single reply in each 
direction. It also contains a set of flag bits and the 
names of the dual queues for the processes at each end 
of the link .. When a process gathers a message into a 
buffer or scatters a message out of a buffer into local 
variables, it sets a flag in the link object (atomically) 
and then enqueues a notice of its activity on the dual 
queue for the process at the other end of the link. When 
the process reaches a block point it attempts to dequeue 
a notice from its own dual queue, waiting if the queue 
is empty. 

As in the SODA implementation, link movement 
relies on a system of hints. Both the dual queue names 
in link objects and the notices on the dual queues 
themselves are considered to be hints. Absolute 



information about which link ends belong to which 
processes is known only to the owners of the ends. 
Absolute information about the availability of 
messages in buffers is contained only in the link object 
flags. Whenever a process dequeues a notice from its 
dual queue it checks to see that it owns the mentioned 
link end and that the appropriate flag is set in the 
corresponding object. If either check fails, the notice is 
discarded. Every change to a flag is eventually 
reflected by a notice on the appropriate dual queue, but 
not every dual queue notice reflects a change to a flag. 
A link is moved by passing the (address-space­
independent) name of its memory object in a message. 
When the message is received, the sending process 
removes the memory object from its address space. The 
receiving process maps the object into its address space, 
changes the information in the object to name its own 
dual queue, and then inspects the flags. It enqueues 
notices on its own dual queue for any of the flags that 
are set. 

Primitives provided by Chrysalis make atomic 
changes to flags extremely inexpensive. Atomic 
changes to quantities larger than 16 bits (including 
dual queue names) are relatively costly. The recipient 
of a moved link therefore writes the name of its dual 
queue into the new memory object in a non-atomic 
fashion. It is possible that the process at the non­
moving end of the link will read an invalid name, but 
only after setting flags. Since the recipient completes 
its update of the dual-queue name before inspecting the 
flags, changes are never overlooked. 

Chrysalis keeps a reference count for each memory 
object. To destroy a link, the process at either end sets 
a flag bit in the link object, enqueues a notice on the 
dual queue for the process at the other end, unmaps the 
link object from its address space, and informs 
Chrysalis that the object can be deallocated when its 
reference count reaches zero. When the process at the 
far end dequeues the destruction notice from its dual 
queue, it confirms the notice by checking it against the 
appropriate flag and then unmaps the link object. At 
this point Chrysalis notices that the reference count 
has reached zero, and the object is reclaimed. 

Before terminating, each process destroys all of its 
links. Chrysalis allows a process to catch all 
exceptional conditions that might cause premature 
termination, including memory protection faults, so 
even erroneous processes can clean up their links 
before going away. Processor failures are currently not 
detected. 

5.3 Preliminary Measurements 

The Chrysalis implementation of LYNX has only 
recently become available. Its run-time package 
consists of approximately 3600 lines of C and 200 lines 
of assembler, compiling to 15 or 16K bytes of object 
code and data on the 68000. Both measures are 
appreciably smaller than the respective figures for the 
Charlotte implementation. 
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Message transmission times are also faster on the 
Butterfly, by more than an order of magnitude. Recent 
tests indicate that a simple remote operation requires 
about 2.4 ms with no data transfer and about 4.6 ms 
with 1000 bytes of parameters in both directions. Code 
tuning and protocol optimizations now under 
development are likely to improve both figures by 30 to 
40%. 

6. Discussion 

Even though the Charlotte kernel provides a 
higher-level interface than does either SODA or 
Chrysalis, and even though the communication 
mechanisms of LYNX were patterned in large part on 
the primitives provided by Charlotte, the 
implementations of LYNX for the latter two systems 
are smaller, simpler, and faster. Some of the difference 
can be attributed to duplication of effort between the 
kernel and the language run-time package. Such 
duplication is the usual target of so-called end-to-end 
arguments [Saltzer et aI., 19841. Among other things, 
end-to-end arguments observe that each level of a 
layered software system can only eliminate errors that 
can be described in the context of the interface to the 
level above. Overall reliability must be ensured at the 
application level. Since end-to-end checks generally 
catch all errors, low-level checks are redundant. They 
are justified only if errors occur frequently enough to 
make early detection essential. 

LYNX routines never pass Charlotte an invalid link 
end. They never specify an impossible buffer address or 
length. They never try to send on a moving end or 
enclose an end on itself. To a certain extent they 
provide their own top-level acknowledgments, in the 
form of goahead, retry, and forbid messages, and in the 
confirmation of operation names and types implied by a 
reply message. They would provide additional 
acknowledgments for the replies themselves if they 
were not so expensive. For the users of LYNX, 
Charlotte wastes time by checking these things itself. 

Duplication alone, however, cannot account for the 
wide disparity in complexity and efficiency between 
the three LYNX implementations. Most of the 
differences appear to be due to the difficulty of 
adapting higher-level Charlotte primitives to the needs 
of an application for which they are almost, but not 
quite, correct. In comparison to Charlotte, the 
language run-time packages for SODA and Chrysalis 
can 

1) move more than one link in a message; 

2) be sure that all received messages are wanted; 

3) recover the enclosures in aborted messages; 

4) detect all the exceptional conditions described in 
the language definition, without any extra 
acknowledgments. 



These advantages obtain precisely because the 
facilities for managing virtual circuits and for 
screening incoming messages are not provided by the 
kernel. By moving these functions into the language 
run-time package, SODA and Chrysalis allow the 
implementation to be tuned specifically to LYNX. In 
addition, by maintaining the flexibility of the kernel 
interface they permit equally efficient implemen­
tations of a wide variety of other distributed languages, 
with entirely different needs. 

It should be emphasized that Charlotte was not 
originally intended to support a distributed 
programming language. Like the designers of most 
similar systems, the Charlotte group expected 
applications to be written directly on top of the kernel. 
Without the benefits of a high-level language, most 
programmers probably would prefer the comparatively 
powerful facilities of Charlotte to the comparatively 
primitive facilities of SODA or Chrysalis. With a 
language, however, the level of abstraction of 
underlying software is no longer of concern to the 
average programmer. 

For the consideration of designers of future 
languages and systems, we can cast our experience 
with LYNX in the form of the following three lessons: 

Lesson One: Hints can be better than absolutes. 

The maintenance of consistent, up-to-date, 
distributed information is often more trouble than it 
is worth. It can be considerably easier to rely on a 
system of hints, so long as they usually work, and so 
long as we can tell when they fail. 

The Charlotte kernel admits that a link end has 
been moved only when all three parties agree. The 
protocol for obtaining such agreement was a major 
source of problems in the kernel, particularly in the 
presence of failures and simultaneously-moving 
ends [Artily et aI., 19B41. The implementation of 
links on top of SODA and Chrysalis was 
comparatively easy. It is likely that the Charlotte 
kernel itself would be simplified considerably by 
using hints when moving links. 

Lesson Two: Screening belongs in the application 
layer. 

Every reliable protocol needs top-level 
acknowledgments. A distributed operating system 
can attempt to circumvent this rule by allowing a 
user program to describe in advance the sorts of 
messages it would be willing to acknowledge if they 
arrived. The kernel can then issue 
acknowledgments on the user's behalf. The shortcut 
only works if failures do not occur between the user 
and the kernel, and if the descriptive facilities in 
the kernel interface are sufficiently rich to specify 
precisely which messages are wanted. In LYNX, 
the termination of a coroutine that was waiting for 
a reply can be considered to be a "failure" between 
the user and the kernel. More important, the 
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descriptive mechanisms of Charlotte are unable to 
distinguish between requests and replies on the 
same link. 

SODA provides a very general mechanism for 
screening messages. Instead of asking the user to 
describe its screening function, SODA allows it to 
provide that function itself. In effect, it replaces a 
static description of desired messages with a formal 
subroutine that can be called when a message 
arrives. Chrysalis provides no messages at all, but 
its shared-memory operations can be used to build 
whatever style of screening is desired. 

Lesson Three: Simple primitives are best. 

From the point of view of the language 
implementor, the "ideal operating system" probably 
lies at one of two extremes: it either provides 
everything the language needs, or else provides 
almost nothing, but in a flexible and efficient form. 
A kernel that provides some of what the language 
needs, but not all, is likely to be both awkward and 
slow: awkward because it has sacrificed the 
flexibility of the more primitive system, slow 
because it has sacrificed its simplicity. Clearly, 
Charlotte could be modified to support all that 
LYNX requires. The changes, however, would not 
be trivial. Moreover, they would probably make 
Charlotte significantly larger and slower, and 
would undoubtedly leave out something that some 
other language would want. 

A high-level interface is only useful to those 
applications for which its abstractions are appro­
priate. An application that requires only a subset of 
the features provided by an underlying layer of 
software must generally pay for the whole set 
anyway. An application that requires features 
hidden by an underlying layer may be difficult or 
impossible to build. For general-purpose computing 
a distributed operating system must support a wide 
variety of languages and applications. In such an 
environment the kernel interface will need to be 
relatively primitive. 
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