
The Interface between
Distributed Operating System and

High-Level Programming Languaget

Michael L. Scott
Computer Science Department

Abstract

A distributed operating system provides a process
abstraction and primitives for communication between
processes. A distributed programming language
regularizes the use of the primitives, making them
both safer and more convenient. The level of
abstraction of the primitives, and therefore the division
of labor between the operating system and the
language support routines, has serious ramifications
for efficiency and flexibility. Experience with three
implementations of the LYNX distributed
programming language suggests that functions that
can be implemented on either side of the interface are
best left to the language run-time package.

1. Introduction

Recent years have seen the development of a large
number of distributed programming languages and an
equally large number of distributed operating systems.
While there are exceptions to the rule, it is generally
true that individual research groups have focused on a
single language, a single operating system, or a single
language/O.S. pair. Relatively little attention has been
devoted to the relationship between languages and O.S.
kernels in a distributed setting.

Amoeba [Mullender and Tanenbaum, 1984],
Demos-MP [Powell and Miller, 19831, Locus [Walker et
aI., 19831, and the V kernel [Cheriton and Zwaenepoel,
19831 are among the better-known distributed
operating systems. Each bypasses language issues by
relying on a simple library-routine interface to kernel
communication primitives. Eden [Black, 19851 and
Cedar [Swinehart et aI., 19851 have both devoted a
considerable amount of attention to programming
language issues, but each is very much a single­
language system. The Accent project at CMU [Rashid
and Robertson, 19811 is perhaps the only well-known
effort to support more than one programming language
on a single underlying kernal. Even so, Accent is only

tAt the University of Wisconsin, this work was
supported in part by the National Science Foundation
under Grant MCS-8105904, the Defense Advanced
Research Projects Agency under Contract N00014-82-
C-2087, and a Bell Telephone Laboratories Doctoral
Scholarship. At the University of Rochester, the work
is supported in part by the National Science
Foundation under Grant DCR-8320136 and the
Defense Advanced Research Projects Agency under
Contract DACA 76-85-C-OOOl.

26

able to achieve its multi-lingual character by insisting
on a single, universal model of interprocess
communication based on remote procedure calls [Jones
et aI., 19851. Languages with other models of process
interaction are not considered.

In the language community, it is unusual to find
implementations of the same distributed programming
language for more than one operating system, or
inde:d for any existing operating system. Dedicated,
speCIal-purpose kernels are under construction for
Argus [Liskov and Scheifler, 19831, SR [Andrews,
1982; Andrews and Olsson, 19851, and NIL [Strom and
Yemini, 1983; 19851. Several dedicated
implementations have been designed for Linda
[Carriero and Gelernter, 1985; Gelernter, 19841. No
distributed implementations have yet appeared for
Ada [United States Department of Defense, 19831.

If parallel or distributed hardware is to be used for
general-purpose computing, we must eventually learn
how to support multiple languages efficiently on a
single operating system. Toward that end, it is worth
considering the division oflabor between the language
run-time package and the underlying kernel. Which
functions belong on which side of the interface? What
is the appropriate level of abstraction for universal
primitives? Answers to these questions will depend in
large part on experience with a variety of
language/a .S. pairs.

This paper reports on implementstions of the LYNX
distributed programming language for three existing,
but radically different, distributed operating systems.
To the surprise of the implemen tors, the
implementation effort turned out to be substantially
easier for kernels with low-level primitives. If
confirmed by similar results with other languages, the
lessons provided by work on LYNX should be of
considerable value in the design offuture systems.

The first implementstion of LYNX was constructed
during 1983 and 1984 at the University of Wisconsin,
where it runs under the Charlotte distributed
operating system [Artsy et aI., 1986; Finkel et aI.,
19831 on the Crystal mUlticomputer [DeWitt et aI.,
19841. The second implementation was designed, but
never actually built, for Kepecs and Solomon's SODA
[Kepecs, 1984; Kepecs and Solomon, 19851. A third
implementation has recently been released at the
University of Rochester, where it runs on BBN
Butterfly multiprocessors [BBN, 1986] under the
Chrysalis operating system.

Section 2 of this paper summarizes the features of
LYNX that have an impact on the services needed from
a distributed operating system kernel. Sections 3, 4,
and 5 describe the three LYNX implementations,
comparing them one to the other. The final section
discusses possible lessons to be learned from the
comparison.

mls
1986-87 Univ. of Rochester Computer Science & Engineering Research Review

2. LYNX Overview

The LYNX programming language is not itself the
subject of this article. Language features and their
rationale are described in detail elsewhere [Scott and
Finkel, 1984; Scott, 1985; 1986l. For present purposes,
it suffices to say that LYNX was designed to support
the loosely-coupled style of programming encouraged
by a distributed operating system. Unlike most
existing languages, LYNX extends the advantages of
high-level communication facilities to processes
designed in isolation, and compiled and loaded at
disparate times. LYNX supports interaction not only
between the pieces of a multi-process application, but
also between separate applications and between user
programs and long. lived system servers.

,
Processes in LYNX execute in parallel, possibly on

separate processors. There is no provision for shared
memory. Interprocess communication uses a
mechanism similar to remote procedure calls (RPC), on
virtual circui ts called links. Links are two-directional
and have a single process at each end. Each process
may be divided into an arbitrary number of threads of
control, but the threads execute in mutual exclusion
and may be managed by the language run·time
package, much like the coroutines of Modula-2 [Wirth,
1985l.

2.1 Communication Characteristics

(The following paragraphs describe the
communication behavior of LYNX processes. The
description does not provide much insight into the way
that LYNX programmers think about their programs.
The intent is to describe the externally-visible
characteristics of a process that must be supported by
kernel primitives.)

Messages in LYNX are not received asynchro.
nously. They are queued instead, on a link-by-link
basis. Each link end has one queue for incoming
requests and another for incoming replies. Messages
are received from a queue only when the queue is open
and the process that owns its end has reached a well·
defined block point. Request queues may be opened or
closed under explicit process control. Reply queues are
opened when a request has been sent and a reply is
expected. The set of open queues may therefore vary
from one block point to the next.

A blocked process waits until one of its previously.
sent messages has been received, or until an incoming
message is available in at least one of its open queues.
In the latter case, the process chooses a non·empty
queue, receives that queue's first message, and
executes through to the next block point. For the sake
of fairness, an implementation must guarantee that no
queue is ignored forever.

Messages in the same queue are received in the
order sent. Each message blocks the sending coroutine
within the sending process. The process must be

27

notified when messages are received in order to
unblock appropriate coroutines. It is therefore possible
for an implementation to rely upon a stop-and-wait
protocol wi th no actual buffering of messages in
transit. Request and reply queues can be implemented
by lists of blocked coroutines in the run-time package
for each sending process.

The most challenging feature of links, from an
implementor's point of view, is the provision for moving
their ends. Any message, request or reply, can contain
references to an arbitrary number of link ends.
Language semantics specify that receipt of such a
message has the side effect of moving the specified ends
from the sending process to the receiver. The process at
the far end of each moved link must be oblivious to the
move, even if it is currently relocating its end as well.
In Figure I, for example, processes A and D are moving
their ends of link 3, independently, in such a way that
what used to connect A to D will now connect B to C.

It is best to think of a link as a flexible hose. A
message put in one end will eventually be delivered to
whatever process happens to be at the other end. The
queues of available but un-received messages for each
end are associated with the link itself, not with any
process. A moved link may therefore (logically at least)
have messages inside, waiting to be received at the
moving end. In keeping with the comment above about
stop-and-wait protocols, and to prevent complete
anarchy, a process is not permitted to move a link on
which it has sent unreceived messages, or on which it
owes a reply for an already-received request.

2.2 Kernel Requirements

To permit an implementation of LYNX, an
operating system kernel must provide processes,
communication primitives, and a naming mechanism
that can be used to build links. The major questions for
the designer are then: (1) how are links to be
represented? and (2) how are RPC-style request and
reply messages to be transmitted on those links? It

message o link 1 0
:------------------

message

link 3

Figure 1: Link Moving at Both Ends

must be possible to move links without losing
messages. In addition, the termination of a process
must destroy all the links attached to that process. Any
attempt to send or receive a message on a link that has
been destroyed must fail in a way that can be reflected
back into the user program as a run-time exception.

3. The Charlotte Implementation

3.1 Overview of Charlotte

Charlotte [Artsy et aI., 1986; Finkel et aI., 19831
runs on the Crystal multicomputer [DeWitt et aI.,
19841, a collection of 20 VAX 11/750 node machines
connected by a 10-Mbitlsecond token ring from Proteon
Corporation.

The Charlotte kernel is replicated on each node. It
provides direct support for both processes and links.
Charlotte links were the original motivation for the
circuit abstraction in LYNX. As in the language,
Charlotte links are two directional, with a single
process at each end. As in the language, Charlotte
links can be created, destroyed, and moved from one
process to another. Charlotte even guarantees that
process termination destroys all of the process's links.
It was originally expected that the implementation of
LYNX-style interprocess communication would be
almost trivial. As described in the rest of this section,
that expectation turned out to be naive.

Kernel calls in Charlotte include the following:

MakeLink (var end1, end2: link)
Create a link and return references to its ends.

Destroy (myend : link)
Destroy the link with a given end.

Send (L : link; buffer : address; length : integer;
enclosure: link)

Start a send activity on a given link end,
optionally enclosing one end of some other link.

Receive (L : link; buffer: address; length: integer)
Start a receive activity on a given link end.

Cancel (L : link; d : direction)
Attempt to cancel a previously-started send or
receive activity.

Wait (var e : description)
Wait for an activity to complete, and return its
description Oink end, direction,length, enclosure).

All calls return a status code. All but Wait are
guaranteed to complete in a bounded amount of time.
Wait blocks the caller until an activity completes.

The Charlotte kernel matches send and receive
activities. It allows only one outstanding activity in
each direction on a given end of a link. Completion
must be reported by Wait before another similar
activity can be started.

28

3.2 Implementation of LYNX

The language run-time package represents every
LYNX link with a Charlotte link. It uses the activities
of the Charlotte kernel to simulate the request and
reply queues described in Section 2.1. It starts a send
activity on a link whenever a process attempts to send
a request or reply message. It starts a receive activity
on a link when the corresponding request or reply
queue is opened, ifboth were closed before. It attempts
to cancel a previous-started receive activity when a
process closes its request queue, if the reply queue is
also closed. The multiplexing of request and reply
queues onto receive activities was a major source of
problems for the implementation effort. A second
source of problems was the inability to enclose more
than one link in a single Charlotte message.

3.3 Screening Messages

For the vast majority of remote operations, only two
Charlotte messages are required: one for the request
and one for the reply. Complications arise, however, in
a number of special cases. Suppose that process A
requests a remote operation on link L.

0'----L-~0
request

--------------------i>

Process B receives the request and begins serving the
operation. A now expects a reply on L and starts a
receive activity with the kernel. Now suppose that
before replying B requests another operation on L, in
the reverse direction (the coroutine mechanism
mentioned in Section 2 makes such a scenario entirely
plausible). A will receive B's request before the reply it
wanted. Since A may not be willing to serve requests
on L at this point in time (its request queue is closed),
B is not able to assume that its request is being served
simply because A has received it.

A similar problem arises if A opens its request
queue and then closes it again, before reaching a block
point. In the interests of concurrency, the run-time
support routines will have posted a Receive with the
kernel as Soon as the queue was opened. When the
queue is closed, they will attempt to cancel the Receive.
If B has requested an operation in the meantime, the
Cancel will fail. The next time A's run-time package
calls Wait, it will obtain notification of the request from
B, a message it does not want. Delaying the start of
receive activities until a block point does not help. A
must still start activities for all its open queues. It will
continue execution after a message is received from
exactly one of those queues. Before reaching the next
block point, it may change the set of messages it is
willing to receive.

It is tempting to let A buffer unwanted messages
until it is again willing to receive from B, but such a

solution is impossible for two reasons. First, the
occurrence of exceptions in LYNX csn require A to
cancel an outstanding Send on L. If B has already
received the message (inadvertently) and is buffering it
internally, the Cancel cannot succeed. Second, the
scenario in which A receives a request but wants a
reply can be repeated an arbitrary number of times,
and A cannot be expected to provide an arbitrary
amount of buffer space.

A must return unwanted messages to B. In
addition to the request and reply messages needed in
simple situations, the implementation now requires a
retry message. Retry is a negative acknowledgment.
It can be used in the second scenario above, when A has
closed its request queue after receiving an unwanted
message. Since A will have no Receive outstanding, the
re-sent message from B will be delayed by the kernel
until the queue is re-opened.

In the first scenario, unfortunately, A will still have
a Receive posted for the reply it wants from B. If A
simply returned requests to B in retry messages, it
might be subjected to an arbitrary number of
retransmissions. To prevent these retransmissions we
must introduce the forbid and allow messages.
Forbid denies a process the right to send requests (it is
still free to send replies). Allow restores that right.
Retry is equivalent to forbid followed by allow. It can
be considered an optimization for use in cases where no
replies are expected, so retransmitted requests will be
delayed by the kernel.

Both forbid and -retry return any link end that was
enclosed in the unwanted message. A process that has
received a forbid message keeps a Receive posted on the
link in hopes of receiving an allow message. (This of
course makes it vulnerable to receiving unwanted
messages itself.) A process that has sent a forbid
message remembers that it has done so and sends an
allow message as soon as it is either willing to receive
requests (its request queue is open) or has no Receive
outstanding (so the kernel will delay all messages).

3.4 Moving Multiple Links

To move more than one link end with a single
LYNX message, a request or reply must be broken into
several Charlotte messages. The first packet contains
non-link data, together with the first enclosure.
Additional enclosures are passed in empty enc
messages (see Figure 2). For requests, the receiver
must return an explicit goahead message after the
first packet so the sender can tell that the request is
wanted. No goa head is needed for requests with zero or
one enclosures, and none is needed for replies, since a
reply is always wanted.

One consequence of packetizing LYNX messages is
that links enclosed in unsuccessful messages may be
lost. Consider the following chain of events:

a) Process A sends a request to process B, enclosing
the end of a link.

29

0f---_L_~®

simple case

request
connect .-------------------. accept

reply .. --------------------
compute
reply

multiple enclosures

connect
request

--------------------. accept
goahead .. --------------------

enc
--------------------. . . .

enc -- ------------------.
reply compute

.. -------------------- reply
enc .. --------------------. . .
enc .. --------------------

Figure 2: Link Enclosure Protocol

b) B receives the request unintentionally; inspection
of the code allows one to prove that only replies were
wanted.

c) The sending coroutine in A feels an exception,
aborting the request.

d) B crashes before it can send the enclosure back to A
in a forbid message. From the point of view of
language semantics, the message to B was never
received, yet the enclosure has been lost. Under
such circumstances the Charlotte implementation
cannot conform to the language reference manual.

The Charlotte implementation also disagrees with
the language definition when a coroutine that is
waiting for a reply message is aborted by a local
exception. On the other end of the link the server
should feel an exception when it attempts to send a no­
longer-wanted reply. Such exceptions are not provided
under Charlotte because they would require a final,
top-level acknowledgment for reply messages,
increasing message traffic by 50%.

3.5 Measurements

The language run-time package for Charlotte
consists of just over 4000 lines of C and 200 lines of
VAX assembler, compiling to about 21K of object code
and data. Of this totsl, approximately 45% is devoted
to the communication routines that interact with the
Charlotte kernel, including perhaps 5K for unwanted
messages and multiple enclosures. Much of this space
could be saved with a more appropriate kernel
interface.

A simple remote operation (no enclosures) requires
approximately 57 ms with no data transfer and about
65 ms with 1000 bytes of parameters in both directions.
C programs that make the same series of kernel calls
require 55 and 60 ms, respectively. In addition to being
rather slow, the Charlotte kernel is highly sensitive to
the ordering of kernel calls and to the interleaving of
calls by independent processes. Performance figures
should therefore be regarded as suggestive, not
definitive. The difference in timings between LYNX
and C programs is due to efforts on the part of the run­
time package to gather and scatter parameters, block
and unblock coroutines, establish default exception
handlers, enforce flow control, perform type checking,
update tables for enclosed links, and make sure the
links are valid.

4. The SODA Implementation

4.1 Overview of SODA

As part of his Ph.D. research, Jonathan Kepecs set
out to design a minimal kernel for a multicomputer
[Kepecs, 1984; Kepecs and Solomon, 19851. His
"Simplified Operating System for Distributed
Applications" might better be described as a
communications protocol for use on a broadcast
medium with a very large number of heterogeneous
nodes.

Each node on a SODA network consists of two
processors: a client processor, and an associated
kernel processor. The kernel processors are all alike.
They are connected to the network and communicate
with their client processors through shared memory
and interrupts. Nodes are expected to be more
numerous than processes, so client processors are not
multi-programmed.

Every SODA process has a unique id_ It also
advertises a collection of names to which it is willing
to respond. There is a kernel call to generate new
names, unique over space and time. The discover
kernel call uses unreliable broadcast in an attempt to
find a process that has advertised a given name.

Processes do not necessarily send messages, rather
they request the transfer of data. A process that is
interested in communication specifies a name, a
process id, a small amount of out-of-band information,
the number of bytes it would like to send and the

30

number it is willing to receive. Since either of the last
two numbers can be zero, a process can request to send
data, receive data, neither, or both. The four varieties
of request are termed put, get, signal, and exchange,
respectively.

Processes are informed of interesting events by
means of software interrupts. Each process establishes
a single handler which it can close temporarily when
it needs to mask out interrupts. A process feels a
software interrupt when its id and one of its advertised
names are specified in a request from some other
process. The handler is provided with the id of the
requester and the arguments of the request, including
the out-of-band information. The interrupted process is
free to save the information for future reference.

At any time, a process can accept a request that
was made of it at some time in the past. When it does
so, the request is completed (data is transferred in both
directions simultaneously), and the requester feels a
software interrupt informing it of the completion and
providing it with a small amount of out-of-band
information from the accepter. Like the requester, the
accepter specifies buffer sizes. The amount of data
transferred in each direction is the smaller of the
specified amounts.

Completion interrupts are queued when a handler
is busy or closed. Requests are delayed; the requesting
kernel retries periodically in an attempt to get through
(the requesting user can proceed). If a process dies
before accepting a request, the requester feels an
in terru pt that informs it of the crash.

4.2 A Different Approach to Links

A link in SODA can be represented by a pair of
unique names, one for each end. A process that owns
an end of a link advertises the associated name. Every
process knows the names of the link ends it owns.
Every process keeps a hint as to the current location of
the far end of each of its links. The hints can be wrong,
but are expected to work most of the time.

A process that wants to send a LYNX message,
either a request or a reply, initiates a SODA put to the
process it thinks is on the other end of the link. A
process moves link ends by enclosing their names in a
message. When the message is SODA-accepted by the
receiver, the ends are understood to have moved.
Processes on the fixed ends of moved links will have
incorrect hints.

A process that wants to receive a LYNX message,
either a request or a reply, initiates a SODA signal to
the process it thinks is on the other end of the link. The
purpose of the signal is allow the aspiring receiver to
tell if its link is destroyed or if its chosen sender dies.
In the latter case, the receiver will feel an interrupt
informing it of the crash. In the former case, we
require a process that destroys a link to accept any
previously-posted status signal on its end, mentioning
the destruction in the out-of-band information. We also

require (tto accept any outstanding put request, but
with a Zero-length buffer, and again mentioning the
destruction in the out-of-band information. After
clearing the signals and puts, the process can
unadvertise the name of the end and forget that it
ever existed.

Suppose now that process A has a link L to process
C and that it sends its end to process B.

L

o 0
·-~-eg~-----·

o
before

If C wants to send or receive on L, but B terminates
after receiving L from A, then C must be informed of
the termination so it knows that L has been destroyed.
C will have had a SODA request posted with A. A
must accept this request so that C knows to watch B
instead. We therefore adopt the rule that a process
that moves a link end must accept any previously­
posted SODA request from the other end, just as it
must when it destroys the link. It specifies a zero­
length buffer and uses the out-of-band information to
tell the other process where it moved its end. In the
above example, C will re-start its request with B
instead of A.

The amount of work involved in moving a link end
is very arnall, since accepting a request does not even
block the accepter. More than one link can be enclosed
in the same message with no more difficulty than a
single end. If the fixed end of a moving link is not in
active use, there is no expense involved at all. In the
above example, if C receives a SODA request from B, it
will know that L has moved.

The only real problems occur when an end of a
dormant link is moved. In our example, if L is first
used by C after it is moved, C will make a SODA
request of A, not B, since its hint is out-of-date. There
must be a way to fix the hint. If each process keeps a
cache of links it has known about recently, and keeps
the names of those links advertised, then A may
remember it sent L to B, and can tell C where it went.
If A has forgotten, C can use the discover command in
an attempt to find a process that knows about the far
endofL.

31

A process that is unable to find the far end of a link
must assume it has been destroyed. If L exists, the
heuristics of caching and broadcast should suffice to
find it in the vast majority of cases. If the failure rate is
comparable to that of other "acceptable" errors, such as
garbled messages with "valid" checksums, then the
heuristics may indeed be all we ever need.

Without an actual implementation to measure, and
without reasonable assumptions about the reliability
of SODA broadcasts, it is impossible to predict the
success rate of the heuristics. The SODA discover
primitive might be especially strained by node crashes,
since they would tend to precipitate a large number of
broadcast searches for lost links. If the heuristics
failed too often, a fall-back mechanism would be
needed.

Several absolute algorithms can be devised for
finding missing links. Perhaps the simplest looks like
this:

• Every process advertises a freeze name. When
C discovers its hint for L is bad, it posts a SODA
request on the freeze name of every process
currently in existence (SODA makes it easy to
guess their ids). It includes the name of L in the
request.

• Each process accepts a freeze request
immediately, ceases execution of everying but
its own searches (if any), increments a counter,
and posts an unfreeze request with C. Ifithas a
hint for L, it includes that hint in the freeze
accept or the unfreeze request.

• When C obtains a new hint or has unsuccessfully
queried everyone, it accepts the unfreeze
requests. When a frozen process feels an
interrupt indicating that its unfreeze request
has been accepted or that C has crashed, it
decrements its counter. If the counter hits zero,
it continues execution. The existence of the
counter permits multiple concurrent searches.

This algorithm has the considerable disadvantage of
bringing every LYNX process in existence to a
temporary halt. On the other hand, it is simple, and
should only be needed when a node crashes or a
destroyed link goes unused for so long that everyone
has forgotten about it.

4.3 Potential Problems

As mentioned in the introduction, the SODA
version of LYNX was designed on paper only. An
actual implementation would need to address a number
of potential problems. To begin with, SODA places a
small, but unspecified, limit on the size of the out-of­
band information for request and accept. If all the self­
descriptive information included in messages under
Charlotte were to be provided out-of-band, a minimum
of about 48 bits would be needed. With fewer bits

available, some information would have to be included
in the messages themselves, as in Charlotte.

A second potential problem with SODA involves
another unspecified constant: the permissible number
of outstanding requests between a given pair of
processes. The implementation described in the
previous section would work easily if the limit were
large enough to accommodate three requests for every
link between the processes (a LYNX-request put, a
LYNX-reply put, and a status signal). Since reply
messages are always wanted (or can at least be
discarded if unwanted), the implementation could
make do with two outstanding requests per link and a
single extra for replies. Too small a limit on
outstanding requests would leave the possibility of
deadlock when many links connect the same pair of
processes. In practice, a limit of a half a dozen or so is
unlikely to be exceeded (it implies an improbable
concentration of simultaneously-active resources in a
single process), but there is no way to reflect the limit
to the user in a semantically-meaningful way.
Correctness would start to depend on global
characteristics of the process-interconnection graph.

4.4 Predicted Measurements

Space requirements for run-time support under
SODA would reflect the lack of special cases for
handling unwanted messages and multiple enclosures.
Given the amount of code devoted to such problems in
the Charlotte implementation, it seems reasonable to
expect a savings on the order of 4K bytes.

For simple messages, run-time routines under
SODA would need to perform most of the same
functions as their counterparts for Charlotte.
Preliminary results with the Butterfly implementation
(described in the following section) suggest that the
lack of special cases might save some time in
conditional branches and subroutine calls, but
relatively major differences in run-time package
overhead appear to be unlikely.

Overall performance, including kernel overhead, is
harder to predict. Charlotte has a considerable
hardware advantage: the only implementation of
SODA ran on a collection of PDP-1l/23's with a 1-
MbitJsecond CSMA bus. SODA, on the other hand, was
designed with speed in mind. Experimental figures
reveal that for small messages SODA was three times
as fast as Charlotte. (The difference is less dramatic for
larger messages; SODA's slow network exacted a
heavy toll. The figures break even somewhere between
1K and 2K bytes.) Charlotte programmers made a
deliberate decision to sacrifice efficiency in order to
keep the project manageable. A SODA version of
LYNX might well be intrinsically faster than a
comparable version for Charlotte.

5. The Chrysalis Implementation

5.1 Overview of Chrysalis

The BBN Butterfly Parallel Processor [BBN, 1986]
is a MC68000-based shared-memory multiprocessor.
The Chrysalis ~perating system provides primitives,
many of them In microcode, for the management of
system abstractions. Among these abstractions are
processes, memory objects, event blocks, and dual
queues.

Each process runs in an address space that can span
as many as one or two hundred memory objects. Each
memory object can be mapped into the address spaces
of an arbitrary number of processes. Synchronization of
access to shared memory is achieved through use of the
event blocks and dual queues.

An event block is similar to a binary semaphore,
except that (1) a 32-bit datum can be provided to the V
operation, to be returned by a subsequent P, and (2)
only the owner of an event block can waitfor the event
to be posted. Any process that knows the name of the
event can perform the post operation. The most
common use of event blocks is in conjunction with dual
queues.

A dual queue is so named because of its ability to
hold either data or event block names. A queue
containing data is a simple bounded buffer, and
enqueue and dequeue operations proceed as one would
expect. Once a queue becomes empty, however,
subsequent dequeue operations actually enqueue event
block names, on which the calling processes can wait.
An enqueue operation on a queue containing event
block names actually posts a queued event instead of
adding its datum to the queue.

32

5.2 A Third Approach to Links

In the Butterfly implementation of LYNX, every
process allocates a single dual queue and event block
through which to receive notifications of messages sent
and received. A link is represented by a memory
object, mapped into the address spaces of the two
connected processes. The memory object contains buffer
space for a single request and a single reply in each
direction. It also contains a set of flag bits and the
names of the dual queues for the processes at each end
of the link .. When a process gathers a message into a
buffer or scatters a message out of a buffer into local
variables, it sets a flag in the link object (atomically)
and then enqueues a notice of its activity on the dual
queue for the process at the other end of the link. When
the process reaches a block point it attempts to dequeue
a notice from its own dual queue, waiting if the queue
is empty.

As in the SODA implementation, link movement
relies on a system of hints. Both the dual queue names
in link objects and the notices on the dual queues
themselves are considered to be hints. Absolute

information about which link ends belong to which
processes is known only to the owners of the ends.
Absolute information about the availability of
messages in buffers is contained only in the link object
flags. Whenever a process dequeues a notice from its
dual queue it checks to see that it owns the mentioned
link end and that the appropriate flag is set in the
corresponding object. If either check fails, the notice is
discarded. Every change to a flag is eventually
reflected by a notice on the appropriate dual queue, but
not every dual queue notice reflects a change to a flag.
A link is moved by passing the (address-space­
independent) name of its memory object in a message.
When the message is received, the sending process
removes the memory object from its address space. The
receiving process maps the object into its address space,
changes the information in the object to name its own
dual queue, and then inspects the flags. It enqueues
notices on its own dual queue for any of the flags that
are set.

Primitives provided by Chrysalis make atomic
changes to flags extremely inexpensive. Atomic
changes to quantities larger than 16 bits (including
dual queue names) are relatively costly. The recipient
of a moved link therefore writes the name of its dual
queue into the new memory object in a non-atomic
fashion. It is possible that the process at the non­
moving end of the link will read an invalid name, but
only after setting flags. Since the recipient completes
its update of the dual-queue name before inspecting the
flags, changes are never overlooked.

Chrysalis keeps a reference count for each memory
object. To destroy a link, the process at either end sets
a flag bit in the link object, enqueues a notice on the
dual queue for the process at the other end, unmaps the
link object from its address space, and informs
Chrysalis that the object can be deallocated when its
reference count reaches zero. When the process at the
far end dequeues the destruction notice from its dual
queue, it confirms the notice by checking it against the
appropriate flag and then unmaps the link object. At
this point Chrysalis notices that the reference count
has reached zero, and the object is reclaimed.

Before terminating, each process destroys all of its
links. Chrysalis allows a process to catch all
exceptional conditions that might cause premature
termination, including memory protection faults, so
even erroneous processes can clean up their links
before going away. Processor failures are currently not
detected.

5.3 Preliminary Measurements

The Chrysalis implementation of LYNX has only
recently become available. Its run-time package
consists of approximately 3600 lines of C and 200 lines
of assembler, compiling to 15 or 16K bytes of object
code and data on the 68000. Both measures are
appreciably smaller than the respective figures for the
Charlotte implementation.

33

Message transmission times are also faster on the
Butterfly, by more than an order of magnitude. Recent
tests indicate that a simple remote operation requires
about 2.4 ms with no data transfer and about 4.6 ms
with 1000 bytes of parameters in both directions. Code
tuning and protocol optimizations now under
development are likely to improve both figures by 30 to
40%.

6. Discussion

Even though the Charlotte kernel provides a
higher-level interface than does either SODA or
Chrysalis, and even though the communication
mechanisms of LYNX were patterned in large part on
the primitives provided by Charlotte, the
implementations of LYNX for the latter two systems
are smaller, simpler, and faster. Some of the difference
can be attributed to duplication of effort between the
kernel and the language run-time package. Such
duplication is the usual target of so-called end-to-end
arguments [Saltzer et aI., 19841. Among other things,
end-to-end arguments observe that each level of a
layered software system can only eliminate errors that
can be described in the context of the interface to the
level above. Overall reliability must be ensured at the
application level. Since end-to-end checks generally
catch all errors, low-level checks are redundant. They
are justified only if errors occur frequently enough to
make early detection essential.

LYNX routines never pass Charlotte an invalid link
end. They never specify an impossible buffer address or
length. They never try to send on a moving end or
enclose an end on itself. To a certain extent they
provide their own top-level acknowledgments, in the
form of goahead, retry, and forbid messages, and in the
confirmation of operation names and types implied by a
reply message. They would provide additional
acknowledgments for the replies themselves if they
were not so expensive. For the users of LYNX,
Charlotte wastes time by checking these things itself.

Duplication alone, however, cannot account for the
wide disparity in complexity and efficiency between
the three LYNX implementations. Most of the
differences appear to be due to the difficulty of
adapting higher-level Charlotte primitives to the needs
of an application for which they are almost, but not
quite, correct. In comparison to Charlotte, the
language run-time packages for SODA and Chrysalis
can

1) move more than one link in a message;

2) be sure that all received messages are wanted;

3) recover the enclosures in aborted messages;

4) detect all the exceptional conditions described in
the language definition, without any extra
acknowledgments.

These advantages obtain precisely because the
facilities for managing virtual circuits and for
screening incoming messages are not provided by the
kernel. By moving these functions into the language
run-time package, SODA and Chrysalis allow the
implementation to be tuned specifically to LYNX. In
addition, by maintaining the flexibility of the kernel
interface they permit equally efficient implemen­
tations of a wide variety of other distributed languages,
with entirely different needs.

It should be emphasized that Charlotte was not
originally intended to support a distributed
programming language. Like the designers of most
similar systems, the Charlotte group expected
applications to be written directly on top of the kernel.
Without the benefits of a high-level language, most
programmers probably would prefer the comparatively
powerful facilities of Charlotte to the comparatively
primitive facilities of SODA or Chrysalis. With a
language, however, the level of abstraction of
underlying software is no longer of concern to the
average programmer.

For the consideration of designers of future
languages and systems, we can cast our experience
with LYNX in the form of the following three lessons:

Lesson One: Hints can be better than absolutes.

The maintenance of consistent, up-to-date,
distributed information is often more trouble than it
is worth. It can be considerably easier to rely on a
system of hints, so long as they usually work, and so
long as we can tell when they fail.

The Charlotte kernel admits that a link end has
been moved only when all three parties agree. The
protocol for obtaining such agreement was a major
source of problems in the kernel, particularly in the
presence of failures and simultaneously-moving
ends [Artily et aI., 19B41. The implementation of
links on top of SODA and Chrysalis was
comparatively easy. It is likely that the Charlotte
kernel itself would be simplified considerably by
using hints when moving links.

Lesson Two: Screening belongs in the application
layer.

Every reliable protocol needs top-level
acknowledgments. A distributed operating system
can attempt to circumvent this rule by allowing a
user program to describe in advance the sorts of
messages it would be willing to acknowledge if they
arrived. The kernel can then issue
acknowledgments on the user's behalf. The shortcut
only works if failures do not occur between the user
and the kernel, and if the descriptive facilities in
the kernel interface are sufficiently rich to specify
precisely which messages are wanted. In LYNX,
the termination of a coroutine that was waiting for
a reply can be considered to be a "failure" between
the user and the kernel. More important, the

34

descriptive mechanisms of Charlotte are unable to
distinguish between requests and replies on the
same link.

SODA provides a very general mechanism for
screening messages. Instead of asking the user to
describe its screening function, SODA allows it to
provide that function itself. In effect, it replaces a
static description of desired messages with a formal
subroutine that can be called when a message
arrives. Chrysalis provides no messages at all, but
its shared-memory operations can be used to build
whatever style of screening is desired.

Lesson Three: Simple primitives are best.

From the point of view of the language
implementor, the "ideal operating system" probably
lies at one of two extremes: it either provides
everything the language needs, or else provides
almost nothing, but in a flexible and efficient form.
A kernel that provides some of what the language
needs, but not all, is likely to be both awkward and
slow: awkward because it has sacrificed the
flexibility of the more primitive system, slow
because it has sacrificed its simplicity. Clearly,
Charlotte could be modified to support all that
LYNX requires. The changes, however, would not
be trivial. Moreover, they would probably make
Charlotte significantly larger and slower, and
would undoubtedly leave out something that some
other language would want.

A high-level interface is only useful to those
applications for which its abstractions are appro­
priate. An application that requires only a subset of
the features provided by an underlying layer of
software must generally pay for the whole set
anyway. An application that requires features
hidden by an underlying layer may be difficult or
impossible to build. For general-purpose computing
a distributed operating system must support a wide
variety of languages and applications. In such an
environment the kernel interface will need to be
relatively primitive.

7. Acknowledgments

Much of the research described in this article was
conducted in the course of doctoral studies at the
University of Wisconsin under the supervision of
Associate Professor Raphael Finkel.

8. References

Andrews, O.R., "The Distributed Programming
Language SR--Mechanisms, Design and Implementa­
tion," Software--Practice and Experience 12, pp. 719-
753,19B2.

Andrews, O.R. and R.A. Olsson, ''The Evolution of the
SR Language," TR 85-22, Department of Computer
Science, U. Arizona, October 1985.

Artsy, Y., H.-Y. Chang, and R. Finkel, "Charlotte:
Design and Implementation of a Distributed Kernel,"
Computer Sciences TR 554, U. Wisconsin--Madison,
August 1984.

Artsy, Y., H.-Y. Chang, and R. Finkel, "Interprocess
Communication in Charlotte," Computer Sciences TR
632, U. Wisconsin--Madison, February 1986; revised
version to appear in IEEE Software.

BBN Laboratories, "Butterfly<ll Parallel Processor
Overview," #6148, V. I, Cambridge, MA, March 1986.

Black, A.P., "Supporting Distributed Applications:
Experience with Eden," Proc., 10th ACM Symp. on
Operating Systems Principles, pp. 181-193, Dec. 1985,
in ACM Operating Systems Review 19, 5, Dec. 1985.

Carriero, N. and D. Gelernter, "The SINet's Linda
Kernel," Proc., 10th ACM Symp. on Operating Systems
Principles, December 1985; ACM TOCS 4, 2, pp. 110-
129, May 1986.

Cheriton, D.R. and W. Zwaenepoel, ''The Distributed V
Kernel and its Performance for Diskless Work­
stations," Proc., 9th ACM Symp. on Operating Systems
Principles, pp. 128-139, October 1983, in ACM
Operating Systems Review 17, 5,1983.

DeWitt, D.J., R. Finkel, and M. Solomon, "The
CRYSTAL Multicomputer: Design and Implemen­
tation Experience," Computer Sciences TR 553, U.
Wisconsin--Madison, September 1984.

Finkel, R, M. Solomon, D. DeWitt, and L. Landweber,
''The Charlotte Distributed Operating System: Part IV
of the First Report on the Crystal Project," Computer
Sciences TR 502, U. Wisconsin--Madison, Oct. 1983.

Gelernter, D., "Dynamic Global Name Spaces on
Network Computers," Proc., 1984 Int'l. Conf. on Par­
allel Processing, pp. 25-31, August 1984.

Jones, M.B., R.F. Rashid, and M.R. Thompson,
"Matchmaker: An Interface Specification Language for
Distributed Processing," Conference Record of the 12th
Annual ACM Symposium on Principles of
Programming Languages, pp. 225-235,January 1985.

Kepecs, J., "SODA: A Simplified Operating System for
Distributed Applications," Ph.D. Thesis, U.
Wisconsin--Madison, January 1984 (also as Computer
Sciences TR 527 by J. Kepecs and M. Solomon).

Kepecs, J. and M. Solomon," SODA: A Simplified
Operating System for Distributed Applications," 3rd
ACM SIGACTISIGOPS Symp. on Principles of
Distributed Computing, August 1984; ACM Operating
Systems Review 19, 4, pp. 45-56, October 1985.

Liskov, B. and R. Scheifler, "Guardians and Actions:
Linguistic Support for Robust, Distributed Program,"
ACM TOPLAS 5,3, pp. 381-404, July 1983.

35

Mullender, S.J. and A.S. Tanenbaum, ''The Design of a
Capability-Based Distributed Operating System,"
Report CS-R8418, Centre for Mathematics and
Computer Science, Amsterdam, the Netherlands, 1984.

Powell, M.L. and B.P. Miller, "Process Migration in
DEMOSIMP," Proc., 9th ACM Symp. on Operating
Systems Principles, pp. 110-118, October 1983, in ACM
Operating Systems Review 17, 5, 1983.

Rashid. R.F. and G.G. Robertson, "Accent: A
Communication Oriented Network Operating System
Kernel," Proc., 8th ACM Symp. on Operating Systems
Principles, pp. 64-75, December 1981.

Saltzer, J.H., D.P. Reed, and D.D. Clark, ''End-To-End
Arguments in System Design," ACM TOCS 2, 4, pp.
277-288, November 1984.

Scott, M.L. and R.A. Finkel, "LYNX: A Dynamic Dis­
tributed Programming Language," Proc., 1984 Int'l.
Conf. on Parallel Processing, pp. 395-401, August 1984.

Scott, M.L., "Design and Implementation of a
Distributed Systems Language," Ph.D. Thesis, TR 596,
U. Wisconsin--Madison, May 1985.

Scott, M.L., "Language Support for Loosely-Coupled
Distributed Programs," TR 183, Computer Science
Dept., U. Rochester, January 1986; revised for IEEE
Trans. Software Engineering, to appear, Dec. 1986.

Strom, R.E. and S. Yemini, "NIL: An Integrated
Language and System for Distributed Programming,"
Proc., SIGPLAN 83 Symposium on Programming
Language Issues in Software Systems, pp. 73-82, June
1983, in ACM SIGPLAN Notices 18, 6, June 1983.

Strom, R.E. and S. Yemini, "The NIL Distributed
Systems Programming Language: A Status Report,"
ACM SIGPLAN Notices 20, 5, pp. 36-44, May 1985.

Swinehart, D.C., P.T. Zellweger, and R.B. Hagmann,
''The Structure of Cedar," Proc., SIGPLAN '85 Symp.
on Language Issues in Programming Environments, pp.
230-244, June 1985, in ACM SIGPLAN Notices 20, 7,
July 1985.

United States Department of Defense, "Reference
Manual for the Ada<ll Programming Language"
(ANSIIMIL-STD-1815A-1983), February 1983.

Walker, B., G. Popek, R. English, C. Kline, and G.
Thiel, ''The LOCUS Distributed Operating System,"
Proc., 9th ACM Symp. on Operating Systems
Principles, pp. 49-70, October 1983, in ACM Operating
Systems Review 17, 5, 1983.

Wirth, N. Programming in Modula-2 (Third, Corrected
Edition). Texts and Monographs in Computer Science,
D. Gries (Ed). Berlin: Springer-Verlag, 1985.

