
Experience with Charlotte: 
Simplicity versus Function 

In a Distributed Operating System 
by 

Raphael A. Finkel 
Michael L. Scott 

William K. Kalsow 
Yeshayhu Artsy, Hung-Yang Chang, Prasun Dewan, Aaron J. Gordon 

Bryan Rosenburg, Marvin H. Solomon, Cui-Qing Yang 

Computer Sciences Technical Report #653 
July 1986 



Experience with Charlotte: 
Simplicity versus Function 

in a Distributed Operating System 

Raphael A. Finkel 
Michael L. Scott 

William K. Kalsow 

Yeshayahu Artsy, Hung-Yang Chang, Prasun Dewan, Aaron J. Gordon, 
Bryan Rosenburg, Marvin H. Solomon, Cui-Qing Yang 

University of Wisconsin - Madison 
1210 W. Dayton Street 

Madison, WI 53706 

This paper presents a retrospective view of the Charlotte distributed operating system, which is 
intended as a testbed for developing techniques and tools for exploiting large-grain parallelism to solve 
computation-intensive problems. Charlotte was constructed over the course of approximately 5 years, 
going through several distinct versions as the underlying hardware and our ideas for implementation 
changed. Charlotte rests on several underlying design decisions: (1) it is a software layer on the Crystal 
multicomputer, (2) processes do not share memory, (3) communication is on reliable, symmetric, bi­
directional paths named by capabilities, and (4) absolute information is stored at each end of a communica­
tion path. Our implementation taught us that our dual goals of simplicity and function were not easily 
reached. In particular, the issue of simplicity is quite complex; quests for simplicity in various areas often 
conflict with each other. This paper explores how the design decisions we made to satisfy our goals 
incurred implementation cost and required extra levels of software, but resulted in a high-quality testbed 
for experimentation in distributed algorithm design. 





Simplicity versus Fuuction 

Experience with Charlotte: 

* Simplicity versus Function in a Distributed Operating System 

1. Introduction 

1 

Charlotte is a distributed operating system currently in production use at the University of 

Wisconsin-Madison [Artsy84,Artsy86]. Charlotte is intended as a testbed for developing techniques and 

tools for exploiting large-grain parallelism to solve computation-intensive problems. It runs on the Crystal 

network [DeWitt84], which contains 20 VAX-ll/750 computers interconnected by an 80 Mbps token ring. 

Charlotte was constructed over the course of approximately 5 years, going through several distinct versions 

as the underlying hardware and our ideas for implementation changed. This paper presents a retrospective 

view of the Charlotte project. 

Our starting point was a set of axioms that defined the environment of the project, goals that defined 

our hopes, and design decisions that helped us to reach those goals. Our implementation taught us that the 

goals are not easily reached. In particular, the issue of simplicity is quite complex; quests for simplicity in 

various areas often conflict with each other. The purpose of this paper is to explain the lessons we learned 

and motivate the steps we took while learning those lessons. 

The axioms that constrained Charlotte's design were: 

• Charlotte will run on a multicomputer. A multicomputer is a collection of conventional comput-

ers, each with its own memory, connected by a communications device. The tradeoffs between mul-

ticomputers and mUltiprocessors, which share memory, include scalability (multicomputers have a 

greater potential), grain of parallelism (multicomputers are suited only to large-grain parallelism), 

and expense (it seems less expensive to build a multicomputer). 

• Charlotte must support a wide variety of application programs. Since the field of distributed 

computing is still young, we did not want to limit ourselves to client-server, pipeline, master-slave, 

or other communication paradigms and algorithm structures. 

* This work was supported in part by NSF grant MCS-81 05904, Arpa contract number N0014-82-C-2087, a Bell Telephone La­
boratories Doctoral Scholarship, and a Tektronics Doctoral Fellowship. 



2 Charlotte 

• Policies and mechanisms will be clearly separated. In order to experiment with policies, we did 

not want to embed them in the core of the operating system. Instead, we decided to place mechan­

isms in a kernel that is replicated on each machine. Policies are governed by utility processes whose 

location is generally irrelevant to the objects that they govern. 

Our overall goals were simplicity and function: 

• Charlotte will provide adequate function. The communication facilities of Charlotte should be 

appropriate to application programs covering various communication paradigms. This function 

should allow graceful degradation if some machines fail. 

• Charlotte will be simple. Both the kernel and the utility processes should have this property. Sim­

plicity has many dimensions. We intended Charlotte to be minimal, in the sense that it would not 

provide features that were not needed, and efficient, in the sense that the primitives could be executed 

quickly. We were also concerned that Charlotte be both easily implemented and easily used. As 

we will see, we were only partially successful in meeting these latter goals. 

Our axioms and goals are not unique to Charlotte. The Accent system [Rashid81], Eden [Almes85], 

V kernel [Cheriton83], Medusa [Ousterhout80], StarOS [Jones79], DemoslMP [poweIl83], Amoeba 

[Tanenbaum81], and a host of other operating systems have started with similar intentions. Other projects 

have tried to support distributed algorithms with languages instead of operating systems. Argus 

[Liskov83], Nrr... [Strom83], SR [Andrews82] and Ada [United States Department of Defense83] are 

examples of this approach. 

Charlotte is unique in the design decisions we made. Our initial design decisions included the fol­

lowing: 

• Processes do not share memory. This decision allows us to make inter-process communication 

completely location independent. It mirrors the fact that Charlotte runs on a multicomputer. 

• Communication is on reliable, symmetric, bi-directional paths named by capabilities. Two-way 

paths are justified below. The use of capabilities (described more fully below) promotes an object­

based model for clients and servers. Processes exercise control over who may send them messages. 

An action by one process cannot damage another, so long as the second takes basic precautions. 



Simplicity versus Function 3 

Capability-based naming also facilitates experimentation in migration for load balancing. 

• Absolute information is stored at each end of a communication path. The information describes 

the machine, process, and path number of the other end of the path, and is stored in the kernel. Our 

choice of absolute information is not necessitated by the communication semantics we chose. The 

alternative (used in V kernel, for example), is to store hints at each end of the path, and to use broad­

cast as a fallback strategy when the hints fail. 

The resulting operating system fulfills our goal of function and simplicity in some ways but not in 

others. The purpose of this paper is to see how the design decisions we made to satisfy our axioms and 

goals incurred implementation cost and required extra levels of software. 

In section 2, we describe the IPC semantics of Charlotte. Although these semantics were intended to 

be simple, it turned out that supposedly orthogonal features interacted in complex ways. Section 3 shows 

how those semantics require a complex implementation. Application programmers found that while the 

IPC semantics make it possible to write highly concurrent programs, they also make it easy to commit sub­

tle programming errors. Section 4 describes some of those errors and how they arise. To reduce the fre­

quency of errors, we designed a programming language to regularize the use of Charlotte's primitives. 

Section 5 describes the language and how it makes programming easier and more secure. Section 6 

describes the lessons that we gained from our experience. 

2. Charlotte interprocess communication 

The distinctive features of Charlotte IPC are duplex connections (links), dynamic link transfer, lack 

of buffering, nonblocking send and receive, synchronous wait, ability to cancel pending operations, and 

selectivity of receipt. We discuss each feature in tum. Detailed descriptions can be found elsewhere 

[Finkel83, Artsy86]. By way of summary, we start with a list of the Charlotte communication primitives. 

MakeLink (var endl, end2 : link) 

Create a link and return references to its ends. 

Destroy (myend : link) 

Destroy the link with a given end. 



4 Charlotte 

Send (L : link; buffer: address; length: integer; enclosure: 

link)" Post a send operation on a given link end, optionally enclosing another link end. 

Receive (L : link; buffer: address; length: integer) 

Post a receive operation on a given link end. L can be a specific link or an "any link" flag. 

Cancel (L : link; d : direction) 

Attempt to cancel a previously-started Send or Receive operation. 

Wait (L : link; d : direction; var e : description) 

Wait for an operation to complete. L can be a specific link or an "any link" flag. The direc­

tion can be Sent, Received, or either. The description returns the success or failure of the 

awaited operation, as well as its link, direction, number of bytes transferred, and the enclosed 

link (if any). 

GetResult (L : link; d : direction; var e : description) 

Ask for the information returned by Wait, but do not block if the operation has not completed. 

GetResult is a polling mechanism. 

All calls return a status code. All but Wait are guaranteed to complete in a bounded amount of time. 

The kernel matches Send and Receive operations. A match occurs if a Send and Receive request 

have been posted (and not cancelled) on opposite ends of the same link. Charlotte allows only one out­

standing request in each direction on a given link. This restriction makes it impossible for an over-eager 

producer to overwhelm the kernel with requests. Completion must be reported by Wail before another 

similar request can be started. Buffers are managed by user processes in their own address spaces. Results 

are unpredictable if a process accesses a buffer between the starting of an operation and the notification of 

its completion. 

Connections 

Charlotte processes communicate by messages sent on links. A link is a software abstraction that 

represents a communications channel between two proceses. Each of the two processes has a capability to 

its end of the link. This capability confers the right to send and receive messages on that link. These rights 

cannot be duplicated, restricted or amplified. As we will see, they can be transferred, but there is at most 



Simplicity versus Function 5 

one capability in existence to any link end. Messages may be sent simultaneously in both directions on a 

single link. 

We chose duplex links because our experience with Roscoe/Arachne [Solomon79], a predecessor to 

Charlotte, indicated several shortcomings of uni-directionallinks. First, client-server, master-slave, and 

remote-procedure-call situations all require information to flow in both directions. Even pipelines may 

require reverse flow for exception reporting. With uni-directionallinks, processes must manage link pairs, 

or reply links must be created, used once, and then discarded. Bi-directional links allow reverse traffic 

with no such penalty. Second, the kernel at a receiving end sometimes needs to know the location of the 

sending end, for example to warn the sending end that the receiving end has terminated or moved. In 

Arachne, Demos [Baskett77], and Demos/MP [powe1183], all of which use uni-directionallinks, the infor­

mation stored at the receiving end of a link is not enough to find the sending ends. Bi-directional links 

offer the opportunity to maintain information at both ends to facilitate sending such information. 

Link motion 

A process can transfer possession of any link ends it holds by enclosing it in a message sent across a 

different link. The recipient of that message then gains possession of that link end. The sending process 

loses its ownership. While one end of a link is moving, the process at the other end may still post Send or 

Receive requests and can even move or destroy its end. Transfer of a link end is seen as an atomic action 

by processes. Link motion provides function (ability to change communication structures dynamically) 

while attempting to maintain simplicity (no effect on the stationary end). The goals of function and simpli­

city in the interface presented to processes was achieved at the expense of a rather complicated implemen­

tation, as discussed below. 

Kernel buffering 

An unlimited number of intermediate buffers would offer the highest degree of concurrency between 

senders and receivers. In practice, a system can only provide a finite number of buffers to store messages. 

A buffer pool requires deadlock prevention or detection techniques. 

We felt that is is far easier to handle buffer allocation within the domain of each process instead of 

within th kernel. Therefore, the Charlotte kernel provides no buffering. This decision fits our simplicity 



6 Charlotte 

goals of minimality and ease of implementation. We will see in the next section that a small cache allows 

an efficient implementation. Since there are no kernel buffers, Charlotte does not need to place any limit 

on the size of messages. 

Synchronization 

Basic communication activities never block. The Send and Receive service calls initiate communica­

tion but do not wait for completion. In this way, a process may post Send or Receive requests on many 

links without waiting for any to finish. This design allows processes to perform useful work while com­

munication is in progress. In particular, servers can respond to clients without fear that a slow client will 

block the server. 

Posting a Send or Receive is synchronous (a process knows at what time the request was posted), but 

completion is inherently asynchronous (the data transfer may occur at any time in the future.) Charlotte 

provides three facilities for dealing with this asynchrony. First, versions of Send and Receive are available 

that block until they complete. Second, a process may explicitly wait for a Send or Receive to finish. 

Third, a process may poll the completion status of a Send or Receive. We also considered a fourth 

notification facility, software interrupts, but such a facility would have clashed with the blocking primitives 

we had, and it would have been difficult to use, because Charlotte provides no shared-memory synchroni­

zation primitives. 

Request cancelling 

A Receive or Send operation may be cancelled before it has completed. The Cancel request will fail 

if the operation has already been paired with a matching operation on the other end of the link. 

Cancellation is useful in several situations. A server may grow impatient if its response to a client 

has not been accepted after a reasonable amount of time. A sender may discover a more up-to-date version 

of data it is trying to Send. A receiver may decide it is willing to accept a message that requires a buffer 

larger than the one provided by its current Receive. A server that keeps Receives posted as a matter of 

course may decide it no longer wants messages on some particular link. These last two scenarios arise in 

the run-time support routines for the LYNX language, described in section 5. 



Simplicity versus Function 7 

Message filtering 

The Receive and Wait requests can specify a single link end or all link ends owned by the caller. We 

considered allowing more general sets of link-ends but rejected this feature for reasons of simplicity. Wait 

can also specify whether a Send or Receive event (or either) is to be awaited. 

3. Implementation 

Charlotte is implemented on the Crystal multicomputer [DeWitt84], a collection of Digital 

VAX-ll/750s connected by a high-speed token ring. Charlotte resides above a communication package 

called the nugget [Cook83], which provides a reliable, packetized, inter-machine transmission service. 

Charlotte's kernel implements the abstractions of processes and links. In order to provide the facilities 

described earlier, kernels use a lower-level communication protocol. Significant events for this protocol 

include messages received from remote kernels and requests from local processes. 

The protocol can be described in terms of scenarios of increasing complexity. In general, the kernel 

attempts to match Send and Receive requests on opposite ends of a link. When it succeeds in doing so it 

transfers the contents of the message and moves the enclosed link-end, if any. 

The simplest case arises when a Send is posted with no enclosure, and the matching Receive is 

already pending. In this case, the sending kernel transmits one packet to the receiving kernel and the latter 

responds with an acknowledgment. If the matching Receive is posted after the packet arrives, the message 

may still be held in a cache on the receiving kernel, so the acknowledgement can still be sent. If the mes­

sage is no longer in the cache, the receiving kernel asks the sending kernel to retransmit it. 

Extra complexity is introduced by messages too large to fit in a single packet. (The nugget imposes a 

limit of about 2KB.) In this case the receiving kernel acknowledges the first packet, the sending kernel 

sends the rest, and the receiving kernel returns a single acknowledgement for all. 

Still further complexity is introduced by cancelling Send and Receive requests. The request might be 

in any of several states, such as pending, matched, in transit, aborted, or completed. An already-matched 

transaction might even be cancelled by both ends at once. 



8 Charlotte 

Link movement and destruction introduce added complexity, especially when both occur at the same 

time. Link destruction is straightforward if the link is idle. If the remote end has a request pending, the 

situation becomes slightly more complex. If that request is a Send with an enclosed link-end, or if the 

remote end is itself in motion, the situation becomes even more complex. Such cases will also occur when 

a process terminates unexpectedly. We discuss these complex scenarios and present the protocol else­

where [Artsy84]. 

As we mentioned earlier, Charlotte attempts to keep both ends of a link consistent. Link movement 

therefore requires that a third party (the kernel of the other end of the link that is moving) be informed. 

That third party may have a pending Send or Receive of its own. The protocol must also deal with both 

ends moving simultaneously. 

Our initial simple set of operations turned out to have complex interrelations. An action taken at one 

end of a link can happen when the other end is in any state. Since Send and Receive do not block the caller, 

the local end of the link may also be in many states. A significant amount of co-ordination is needed to 

make sure each end of the link holds consistent information. The fact that either end can destroy a link and 

that communication travels in both directions means that propagation of information can interfere in arbi­

trary ways with communication in progress. 

We designed the implementation so that all cases, both simple and complex, could be handled in a 

regular manner. The protocol is managed by a hand-built, table-driven finite state automaton. The states of 

the automaton reflect the status of a link. The inputs to the automaton are requests from processes and 

packets from remote kernels. We enumerated cases and manually simulated them in an attempt to verify 

the correct behavior of the protocol. The kernel uses twenty message types, six of which represent process 

requests, and the rest of which represent kernel-kernel messages. As is true in other systems [Boch­

mann77] the number of states is large. To keep the complexity manageable we built four independent 

automata for different functions: Send, Receive, Destroy, and Move. These automata interact in only a few 

cases. Destroying a link, for example, affects its Send state. Cancellation is implemented in the Send and 

Receive automata. 

We also reduced the number of states with a method described by Danthine [Danthine76] and others 

[Bochmann78] in which some information is encoded in global variables. The variables are only consulted 



Simplicity versus Function 9 

for particularly complex cases. 

Our automata have approximately 250 non-error entries, for each of which an action is prescribed. 

Often, same action applies to several different entries; the total number of actions is about 100. The sim­

plest actions consist of a single operation, such as sending a completion acknowledgment. The most com­

plex action checks five variables and selects one of several operations. 

The kernel itself is implemented as a collection of non-preemptable Modula processes [FinkeI83b], 

which we call tasks to distinguish them from user and utility processes. These tasks communicate via 

queues of work requests. The Automaton task implements all four automata. All process requests are first 

verified by the Envelope task. Communication requests are then forwarded to the automaton's work 

queue. Two tasks deal with information flow to and from the nugget. Other tasks are responsible for main­

taining the clock, collecting statistics, and checking to make sure that other nodes are alive. Processes run 

only when kernel tasks have nothing to do. 

This division of labor simplifies the implementation. We have found the kernel relatively easy to 

maintain. Most errors can be isolated to a specific action. Modifications are usually isolated to just a few 

actions. In particular, we implemented process migration as an incremental modification of Charlotte 

without needing to modify the automata in any substatial way [Artsy86b]. 

On the other hand, bugs continue to be discovered as less-frequently used states are entered. These 

bugs are usually not protocol errors, but rather omission of necessary record-keeping details. The complete 

kernel-kernel protocol is almost beyond comprehension by a single person. In this sense, Charlotte has 

failed to achieve simplicity. 

We have found that our originally simple semantics have required occasional revision and elucida­

tion as we encountered new situations. The resulting semantics are quite complex. Occasionally, we 

decided to disallow certain combinations instead of defining the semantics. For example, we prohibit a 

Receive(Any) in the presence of any other Receive. 

A major lesson that we draw from our implementation is that it is difficult to juggle simplicity and 

function, especially when the starting point is a set of seemingly independent axioms defining the process­

kernel communications interface. One danger is that implementing this interface will introduce complexi-



10 Charlotte 

ties, some of which must be reflected back to the interface design. Another danger is that the interface will 

not fit the needs of actual applications. Other starting points have different dangers. For example, starting 

with a language design (such as NIL or Argus) is more likely to serve applications well, but is riskier with 

respect to efficient implementation. 

Further lessons were learned by building the utility processes that control policy on Charlotte. The 

next section describes what we found. 

4. Programming in Charlotte 

We alileam when writing programs for the first time that it is almost impossible to avoid bugs. The 

problem appears to be much worse in a distributed environment. In addition to logical errors within a pro­

cess, there are also errors in the way processes deal with each other. In particular, an ordering error is an 

error caused by the relative order in which operations occur [Gordon85]. In Charlotte, the principal order­

ing error that processes are likely to commit is using a receive buffer or modifying a send buffer before the 

associated Receive or Send operation has finished. 

We found that writing utility processes is not easy. Timing errors are only part of the problem. 

Sequential languages with service calls for communication services are not particularly suited to writing 

these programs. Not only is type checking a problem across modules (like other operating systems, Char­

lotte does not try to prevent or detect type mismatches), but flow of control within a single process can be a 

headache. A server that manages several clients has to maintain several conversations, each with its own 

state. One way to deal with this complexity is to create a separate worker process for each active client. 

Each worker is restricted to one conversation and may use blocking communication. This approach has 

been described by Liskov, Herlihy, and Gilbert [Liskov83b, Liskov84]. Charlotte (like other similar 

operating systems) does not promote this style for several reasons. First, process initiation is expensive, 

mostly because policy is involved (on which machine should the process be started, and where in memory), 

so a policy process must be consulted. Second, the workers cannot share space, since Charlotte does not 

provide shared memory. (It would have been helpful if Charlotte provided light-weight processes that 

share memory, in addition to its heavy-weight ones, which don't. Argus [Liskov83] and Amoeba [Tanen­

baum81] provide such a facility.) 



Simplicity versus Function 11 

Instead of using multiple workers, Charlotte utilities are written in a conventional sequential 

language (a Modula subset) using non-blocking communication in a single server. This approach leads to 

several serious problems. 

• Servers devote a considerable amount of effort to packing and unpacking message buffers. The stan­

dard technique uses type casts to overlay a record structure on an array of bytes. Program variables 

are assigned to or copied from appropriate fields of the record. The code is awkward at best and 

depends for correctness on programming conventions that are not enforced by the compiler. Errors 

due to incorrect interpretation of messages have been relatively few, but they are very hard to find. 

• Every kernel call returns a status variable whose value indicates whether the requested operation suc­

ceeded or failed. Different sorts of failures result in different values. A well-written program must 

inspect every status variable and be prepared to deal appropriately with every possible value. It is 

not unusual for 25 or 30% of a carefully-written server to be devoted to error checking and handling. 

Even an ordinary client must explicitly handle error returns, if only to terminate when a problem 

occurs. 

• Conversations between servers and clients often require a long series of messages. A typical conver­

sation with a file server, for example, begins with a request to open a file, continues with an arbitrary 

sequence of read, write, and seek requests, and ends with a request to close the file. The flow of con­

trol for a single conversation could be described by simple, straight-line code except for the fact that 

the server cannot afford to wait in the middle of that code for a message to be delivered. We haven't 

discovered a programming style that makes the explicit interleaving of separate conversations easy to 

read and understand. 

This last problem is probably the most serious, at least for writing utility processes. In order to max­

imize concurrency and protect themselves from misbehaving clients, Charlotte servers break the code that 

manages a conversation into many small pieces, separated by requests for communication. They invoke 

the pieces individually so that conversations can be interleaved. Every Charlotte server shares the follow­

ing overall structure: 



12 

begin 
initialize 
loop 

wait for a communication request to complete 
find the conversation waiting for this communication 
case request.type of 

A: 
restore state of conversation 
compute 
start new request 
save state 

B: 

end case 
end loop 

end. 

Charlotte 

The flow of control for a typical conversation is hidden by the global loop. This style of programming is 

hard to write and harder to read. 

The lesson that we learn from this discussion is that providing adequate function does not automati-

cally make facilities easy to use. It is natural for operating systems to provide communication facilities 

through service calls, but it is not necessarily natural for programs to operate at that level. The hardest 

problems seem to arise in servers. Clients are more straightforward to write, since the server-specific pro-

tocol can be packaged into a library routine that makes communication look like procedure calls (at the 

expense of blocking during all calls to servers). 

There are two ways out of the difficulty. One is to provide a higher level of service in the kernel, 

such as light-weight processes. We suspect this alternative will be complex and difficult to implement. 

The other is to layer a higher-level interface upon the communication primitives. The next section 

describes this direction. 

5. The LYNX programming language 

In order to overcome the difficulties described above, we have developed the LYNX language. It is 

described in full detail elsewhere [Scott84, Scott85]. LYNX differs from most other distributed languages 

we have surveyed [Scott84b] in three major areas: 

• Processes and Modules. Processes and modules in LYNX reflect the structure of a multicomputer. 

Modules may nest, but only within a machine; no module can cross the boundaries between 



Simplicity versus Function 13 

machines. Each outermost module is inhabited by a single process. Processes share no memory. 

They are managed by the operating system kernel and execute in parallel. Multiple threads of con­

trol within a process are managed by the language run-time system, but there is no pretense of paral­

lelism among them. 

• Communication Paths and Naming. LYNX provides Charlotte links as first-class language 

objects. The programmer has complete run-time control over the binding of links to processes and 

binding of names to links. The resulting flexibility allows links to be used for reconfigurable, type­

checked connections between very loosely-coupled processes - processes written and loaded at 

widely disparate times. 

• Syntax for Message Receipt. Messages in LYNX may be received explicitly by any thread of con­

trol. They may also be received implicitly, creating new threads that execute entry procedures. 

Processes can decide at run time which approach(es) to use when, and on which links. 

Each LYNX process begins with a single thread of control. It can create new threads locally or can 

arrange for them to be created in response to messages from other processes. Separate threads do not exe­

cute in parallel; a given process continues to execute a given thread until it blocks. It then takes up some 

other thread where it last left off. If all threads are blocked for communication, then the process waits for a 

message to be sent or received. 

In a server, each thread of control is used to manage a single conversation with a client Conversa­

tions may be subdivided by creating new threads at inner levels of lexical nesting. The activation records 

accessible at any given time will form a tree, with a separate thread corresponding to each leaf. 

A link variable in LYNX accesses one end of a link, much like a pointer accesses an object in Pascal 

[Jensen74]. The distinguished value "nolink" is the only link constant. Built-in functions allow new links 

to be created and old ones to be destroyed. (Neither end of a destroyed link is usable.) 

Objects of any data type can be sent in messages. If a message includes link variables or structures 

containing link variables, then the link ends referenced by those variables are moved to the receiving pro­

cess. Link variables in the sender that refer to those ends become dangling references; a runtime error 

results from any attempt to use them. 



14 Charlotte 

Message transmission looks like a remote procedure call; the sending thread of control dispatches a 

request message and waits for a reply from the receiver. An active thread can serve a request by execut­

ing an Ada-like [United States Department of Defense83] accept statement. A process can also arrange 

to receive requests implicitly by binding a link to an entry procedure. 

Bind and unbind are executable commands. A link may be bound to more than one entry. The 

bindings need not be created at the same time. A bound link can even be used in subsequent accept state­

ments. These provisions make it possible semantically for separate threads to carry on independent 

conversations on the same link at approximately the same time. 

When all threads in a process are blocked, the run-time support routines attempt to receive a request 

on any of the links for which there are bindings or outstanding accepts. The operation name contained in 

the message is matched against those of the accepts and the bound entries to decide whether to resume an 

existing thread or create a new one. Bindings or accepts that cause ambiguity are treated as run-time 

errors. 

LYNX enforces structural type equivalence on inter-process calls. A novel mechanism for self­

descriptive messages [Scott84c] allows the checking to be performed efficiently on a message-by-message 

basis. An exception handling mechanism 1) permits recovery from errors that arise in the course of mes­

sage passing, and 2) allows one thread to interrupt another. 

Our initial experience with LYNX has shown several results, some of which were unexpected: 

• It is far easier to write servers in LYNX than in a sequential language with calls to Charlotte primi­

tives. The LYNX code is also easier to read and understand. LYNX implementations of servers use 

less than half as many lines of source code. 

• Despite the fact that much of the design of LYNX was motivated by the primitives of Charlotte, the 

actual process of implementation proved to be quite difficult. A paper implementation of LYNX 

built on SODA, a "Simplified Operating system for Distributed Applications," was in some ways 

considerably simpler. 

Problems with the implementation for Charlotte were two-fold. First, LYNX requires greater selec­

tivity than Charlotte provides for choosing an incoming message. Second, LYNX permits an arbitrary 



Simplicity versus Function 15 

number of links to be enclosed in a message, while Charlotte supports only one. The simplicity that the 

Charlotte design attempted to capture turned out to provide not quite the right function. 

On the other hand, LYNX has been a success. We have used it to reimplement most of the utility 

processes as well as a host of distributed applications, including numerical applications (the Simplex 

method), AI techniques (ray tracing, Prolog), data structures (nearest neighbor search in k-d trees, B+ 

trees), and graph algorithms (spanning tree, travelling salesman) [FinkeI86,FinkeI86b]. The Charlotte link 

concept, as represented in LYNX, turns out to be a valuable way to represent resources and algorithm 

structure. This vindicates our original choice of bi-directionallinks. 

6. Conclusions 

We have learned the following important lessons from our experiences. 

• Simple primitives interact in complex ways. At first glance, separating the posting of a Send from 

the notification of its completion might be expected to simplify the kernel by lowering the level of its 

primitive operations. This separation, however, introduces complexities when taken together with 

the ability to destroy a link. Similarly, the ability to pass a link in a message seems to be a simple 

idea, but it becomes complex if both ends are in motion at the same time. 

• It is not easy to make use of asynchronous primitives. The combination of nonblocking 

Send /Receive and the lack of buffering in the kernel makes it easy to overwrite a buffer. 

• Appropriate higher-level tools mitigate the programming problems. We have mentioned LYNX 

as one such tool. In addition, library packages that understand how to talk to servers make writing 

clients much easier. We have also implemented a connector process that supervises the initial inter­

connection of cooperating processes. The Matchmaker service in Accent [Rashid81] serves a similar 

function. 

• Absolute distributed information is hard to maintain. Absolute, up-to-date, consistent, distri­

buted information can be more trouble than it is worth. It may be considerably easier to rely on a 

system of hints, so long as they usually work, and so long as we can get correct information (perhaps 

at additional cost) when they fail. 



16 Charlotte 

• Screening belongs in the application layer. Every reliable protocol needs top-level acknowledg­

ments [Saltzer84]. A distributed operating system can attempt to circumvent this rule by allowing a 

user program to describe in advance the sorts of messages it would be willing to acknowledge if they 

arrived. The kernel can then issue acknowledgments on the user's behalf. This trick only works if 

failures do not occur between the user and the kernel and if the descriptive facilities in the kernel 

interface are sufficiently rich to specify precisely which messages are wanted. For implementing 

LYNX, the descriptive mechanisms of Charlotte were not rich enough. 

• Middle-level primitives are usually at the wrong level. From the point of view of the language 

implementer, the application developer, and even the operating-system designer, the "ideal operat­

ing system" probably lies at one of two extremes: it either supports the language or application 

directly, or it provides only a minimal sufficient set of primitives. Providing direct support to one 

particular application (like a programming language) is likely to make the kernel less appropriate for 

other applications. 

Our initial decision to provide links was motivated by our perception that they would regularize com­

munication, thus making programs easy to write. We did not foresee the complexity of implementing 

links. We managed to create a fairly efficient implementation, but the underlying protocol has an enor­

mous number of states. The process-migration protocol [Artsy86b], which supplements the IPC protocol, 

did not add significant complexity. Links do regularize communication, but the !PC semantics we chose do 

not lend themselves to programming ease. The problem was especially severe when we wrote server 

processes. Although we had enough power to write efficient servers, it was hard to write the programs 

correctly. Writing programs whose IPC is restricted to operating-system primitives is like writing pro­

grams whose control structures are restricted to the gOIO statement. We devised LYNX to provide a more 

comfortable medium. We found that Charlotte's IPC, although sufficiently powerful, was not sufficiently 

low-level to implement LYNX easily. On the other hand, LYNX vindicates our original choice of bi­

directional links. They provide an elegant way to describe resources. 

On the whole, Charlotte has lived within its constraints and achieved its goals. Charlotte provides a 

functioning framework for writing distributed applications, and many projects are underway in designing 

such applications. LYNX has been valuable beyond the multicomputer framework in which it was 



Simplicity versus Function 17 

developed; it has been successfully ported to the Butterfly machine [Scott86]. Given LYNX, library rou-

tines, and our connector facility, it is fairly easy to write correct and intelligible applications. 

7. References 

Almes85. 
Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe, "The Eden System: A Technical 
Review," IEEE Transactions of Software Engineering SE-ll(l) pp. 43-59 (January 1985). 

Andrews82. 
Andrews, G. R, "The Distributed programming language SR - mechanisms, design and implemen­
tation," Software-Practice and Experience 12 pp. 719-753 (1982). 

Artsy84. 
Artsy, Y., H-Y Chang, and R Finkel, "Charlotte: design and implementation of a distributed ker­
nel," Computer Sciences Technical Report #554, University of Wisconsin-Madison (August 1984). 

Artsy86. 
Artsy, Y., H-Y Chang, and R Finkel, "Interprocess communication in Charlotte," IEEE Software, 
(Accepted subject to revision) (July 1986). 

Artsy86b. 
Artsy, Y., H-Y Chang, and R Finkel, "Processes migrate in Charlotte," Computer Sciences Techni­
cal Report (in preparation), University of Wisconsin-Madison (August 1986). 

Baskett77. 
Baskett, F., J. H. Howard, and J. T. Montague, "Task communication in Demos," Proceedings of 
the SixthACM Symposium on Operating Systems Principles, pp. 23-31 (November-1977). 

Bochmann77 . 
Bochmann, G. V. and J. Gescei, G. V. Bochmann, and C. A. Sunshine, "Formal methods in com­
munication protocol design," IEEE Transactions on Communication Com-28(4) pp. 624-631 IFIP, 
North-Holland, (April 1980). 

Bochmann78. 
Bochmann, G. V., "Finite State Description of Communication Protocol," Computer Networks 2 pp. 
361-372 (1978). 

Cheriton83. 
Cheriton, D. Rand W. Zwaenepoel, "The Distributed V Kernel and its Performance for Diskless 
Workstations," Proceedings of the Ninth ACM Symposium on Operating Systems Principles, pp. 
128-139 (In ACM Operating Systems Review 17:5) (10-13 October 1983). 

Cook83. 
Cook, R, R Finkel, D. DeWitt, L. Landweber, and T. Virgilio, "The Crystal nugget: Part I of the 
first report on the Crystal project," Technical Report 499, Computer Sciences Department, Univer­
sity of Wisconsin (April 1983). 

Danthine76. 
Danthine, A. and J. Bremer, "An Axiomatic Description of the Transport Protocol of Cyclades," 
Professional Conference on Computer Networks and Teleprocessing, (March 1976). 

DeWitt84. 
DeWitt, D., R Finkel, and M. Solomon, "The Crystal multicomputer: Design and implementation 
experience," Technical Report 553 (To appear, IEEE Transactions on Software Engineering) , 
University of Wisconsin-Madison Computer Sciences (September 1984). 

Finkel83. 
Finkel, R, M. Solomon, D. DeWitt, and L. Landweber, "The Charlotte Distributed Operating Sys­
tem: Part IV of the first report on the crystal project," Technical Report 502, University of 
Wisconsin-Madison Computer Sciences (October 1983). 



18 Charlotte 

Finkel83b. 
Finkel, R, R Cook, D. DeWitt, N. Hall, and L. Landweber, "Wisconsin Modula: Part III of the first 
report on the crystal project," Computer Sciences Technical Report #501, University of 
Wisconsin-Madison (April 1983). 

Finkel86. 
Finkel, R A., A. P. Anantharaman, S. Dasgupta, T. S. Goradia, P. Kaikini, C-P Ng, M. Subbarao, G. 
A. Venkatesh, S. Verma, and K. A. Vora, "Experience with Crystal, Charlotte, and Lynx," Com­
puter Sciences Technical Report #630, University of Wisconsin-Madison (February 1986). 

Finkel86b. 
Finkel, R A., B. Barzideh, C. W. Bhide, M-O Lam, D. Nelson, R Polisetty, S. Rajaraman, I. Stein­
bergl, and G. A. Venakatesh, "Experience with Crystal, Charlotte, and Lynx: Second Report," 
Computer Sciences Technical Report #649, University of Wisconsin-Madison (July 1986). 

Gordon85. 
Gordon, A. J., Ordering errors in distributed programs (ph.D. thesis) (May 1985). 

Jensen74. 
Jensen, K. and N. Wirth, "Pascal: User Manual and Report," Lecture Notes in Computer Science, 
(18) Springer-Verlag, (1974). 

Jones79. 
Jones, A. K., R. J. Jr. Chansler, I. Durham, K. Schwans, and S. R Vegdahl, "StarOS, a multiproces­
sor operating system for the support of task forces," Proc. 7th Symposium on Operating Systems 
Principles, pp. 117-127 (December 1979). 

Kepecs84. 
Kepecs, J. H. and M. H. Solomon, "SODA: A simplified operating system for distributed applica­
tions," Third Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, 
(Aug 27-29, 1984). 

Liskov83. 
Liskov, B. and R Scheifler, "Guardians and actions: Linguistic support for robust, distributed pro­
grams," ACM TOPLAS 5(3) pp. 381-404 (July 1983). 

Liskov83b. 
Liskov, B. and M. Herlihy, "Issues in process and communication structure for distributed pro­
grams," Proceedings of the Third IEEE Symposium on Reliability in Distributed Software and Data­
base Systems, pp. 123-132 (October 1983). 

Liskov84. 
Liskov, B., M. Herlihy, and L. Gilbert, "Limitations of remote procedure call and static process 
structure for distributed computing," Programming Methodology Group Memo 41, Laboratory for 
Computer Science, MIT (September 1984). 

Ousterhout80. 
Ousterhout, J. K., D. A. Scelza, and S. S. Pradeep, "Medusa: An experiment in distributed operating 
system structure," CACM 23(2) pp. 92-105 (February 1980). 

Powe1l83. 
Powell, M. L. and B. P. Miller, "Process migration in DEMOS/MP," Proceedings of the NinthACM 
Symposium on Operating Systems Principles, pp. 110-118 (In ACM Operating Systems Review 17:5) 
(10-13 October 1983). 

Rashid81. 
Rashid, R F. and G. G. Robertson, "Accent: A communication oriented network operating system 
kernel," Proceedings of the Eighth ACM Symposium on Operating Systems Principles, pp. 64-75 
(14-16 December 1981). 

Saltzer84. 
Saltzer, J. H., D. P. Reed, and D. D. Clark, "End-to-end arguments in system design," ACM TOCS 
2(4) pp. 277-288 (November 1984). 



Simplicity versus Function 19 

Scou84. 
Scou, M. L. and R. A. Finkel, "LYNX: A dynamic distributed programming language," 19841nter­
national Conference on Parallel Processing, (August, 1984). 

Scott84b. 
Scou, M. L., "A framework for the evaluation of high-level languages for distributed computing," 
Computer Sciences Technical Report #563, University of Wisconsin-Madison (October 1984). 

Scott84c. 
Scott, M. L. and R. A. Finkel, "A simple mechanism for type security across compilation units," 
Computer Sciences Technical Report #541, University of Wisconsin-Madison (May 1984). 

Scott85. 
Scott, M. L., "Design and implementation of a distributed systems language," Ph. D. Thesis, Techn­
ical Report #596, University of Wisconsin-Madison (May 1985). 

Scou86. 
Scott, M. L., "Lynx reference manual," BPR 7, Computer Science Department, University of 
Rochester (March 1986). 

Solomon79. 
Solomon, M. H. and R. A. Finkel, "The Roscoe distributed operating system," Proc. 7th Symposium 
on Operating Systems Principles, pp. 108-114 (December 1979). 

Strom83. 
Strom, R. E. and S. Yemini, "NIL: An integrated language and system for distributed program­
ming," Proceedings of the SIGPLAN '83 Symposium on Programming Language Issues in Software 
Systems, pp. 73-82 (In ACM SIGPLAN Notices 18:6 (June 1983» (27-29 June 1983). 

Tanenbaum 8 1. 
Tanenbaum, A. S. and S. J. Mullender, "An overview of the amoeba distributed operating system," 
ACM Operating Systems Review 15(3) pp. 51-64 (July 1981). 

United States Department of Defense83. 
United States Department of Defense" "Reference Manual for the Ada Programming Language," 
ANSI/WL-STD-1815A·1983 (February 1983). 


