88 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

Language Support for Loosely Coupled Distributed
Programs

MICHAEL L. SCOTT, MEMBER IEEE

Abstract—A distributed operating system encourages a style of pro-
gramming in which independently developed processes interact in a
nontrivial fashion at run time. Server processes, for example, must
deal with clients that they do not understand, and certainly cannot
trust. Interprocess communications can be written in a traditional, se-
quential language with direct calls to kernel primitives, but the result
is both cumbersome and error-prone. Convenience and safety are of-
fered by the many distributed languages proposed to date, but in a
form too inflexible for anything other than the pieces of a single dis-
tributed program. A new language known as LYNX overcomes the dis-
advantages of both these previous approaches. Novel features of LYNX
address problems encountered in the course of practical experience,
writing distributed programs without high-level language support.
Chief among these features are a virtual circuit abstraction called the
link, and an unconventional coroutine mechanism that allows a server
to maintain nested contexts for interleaved conversations with an ar-
bitrary number of clients.

Index Terms—Coroutines, distributed computing, late binding, links,
LYNX, message passing, process independence, programming lan-
guages.

I. INTRODUCTION

DVANCES in parallel architectures have spurred the

development of a wide variety of distributed operat-
ing systems [6], [8], [30], [34], {35], [44]. Much of the
functionality in these systems is provided outside the (rep-
licated) kernel, by so-called system servers. Servers in-
teract with users in precisely the same way that users in-
teract with one another, making the distinction between
application and system software increasingly unclear. A
programming language for distributed computing must
support safe, convenient communication for a dynami-
cally changing mix of loosely coupled processes—pro-
cesses designed in isolation, and compiled and loaded at
disparate times.

Under a distributed operating system, a process inter-
acts with its environment through messages, much as a
sequential process interacts with its environment through
operations on files. It is tempting to presume that lan-

Manuscript received January 31, 1986; revised June 16, 1986. At the
University of Wisconsin, this work was supported in part by the National
Science Foundation under Grant MCS-8105904, the Defense Advanced
Research Projects Agency under Contract N0014-82-C-2087, and a Bell
Telephone Laboratories Doctoral Scholarship. At the University of Roch-
ester, this work was supported in part by the National Science Foundation
under Grant DCR-8320136 and the Defense Advanced Research Projects
Agency under Contract DACA76-85-C-0001.

The author is with the Department of Computer Science, University of
Rochester, Rochester, NY 14627.

IEEE Log Number 8611365.

guage features for message passing could reflect under-
lying communication primitives as easily as the 1/O state-
ments of a sequential language reflect underlying file
operations. While such a direct mapping might be possi-
ble for processes whose interactions are limited to file-like
operations, it is not possible for processes in general or
for servers in particular. The extra complexity of IPC can
be ascribed to several causes:

1) Convenience and Safety: Interprocess communica-
tion is more structured than are file operations. The re-
mote requests of servers and multiprocess user programs
resemble procedure calls more than they resemble the
transfer of uninterpreted streams of bytes. Processes need
to be able to send and receive arbitrary collections of pro-
gram variables, including those with structured types,
without sacrificing type checking and without explicitly
packing and unpacking buffers.

2) Error Handling and Protection: Interprocess com-
munication is more error-prone than are file operations.
Both hardware and software may fail. Software is a par-
ticular problem, since communicating processes cannot in
general trust each other. A traditional file is, at least log-
ically, a trusted, passive entity whose behavior is deter-
mined by the operations performed upon it. A connection
to an arbitrary process displays much more nondetermin-
istic behavior.

Fault-tolerant algorithms may allow a server to recover
from many kinds of failures. The server must be able to
detect those failures at the language level. It must not be
vulnerable to erroneous or malicious behavior on the part
of clients. Errors in communication with any one partic-
ular client must not affect the service provided to others.

3) Concurrent Conversations: While a conventional
sequential program typically has nothing interesting to do
while waiting for a file operation to complete (save per-
haps for preparing the next file operation in high-perfor-
mance double-buffered applications), a server usually does
have other work to do while waiting for communication
to complete. Certainly, a server must never be blocked
indefinitely while waiting for action on the part of an un-
trustworthy client. Unfortunately, straightforward repre-
sentation of remote operations will generally entail wait-
ing for results to be returned. As described by Liskov,
Herlihy, and Gilbert [28], [29], efficiency and clarity may
best be realized with a dynamic set of tasks within a
server, one for each uncompleted request.

0098-5589/87/0100-0088$01.00 © 1987 IEEE

SCOTT: LANGUAGE SUPPORT FOR DISTRIBUTED PROGRAMS

Practical experience testifies to the significance of these
issues. The Charlotte distributed operating system at the
University of Wisconsin [14] is a case in point. Charlotte
servers include a process and memory manager (the
starter), a command interpreter, a process interconnector,
two kinds of file servers, a name server (the switch-
board), and a terminal driver. The original versions of
these servers were written in a conventional sequential
language with ordinary subroutine calls for access to the
operating system kernel. As work progressed, serious
problems arose. Those problems can be attributed directly
to the issues just described:

® Programmers devoted a considerable amount of ef-
fort to packing and unpacking message buffers. The stan-
dard technique used type casts to overlay a record struc-
ture on an array of bytes. Program variables were assigned
to or copied from appropriate fields of the record. The
code was awkward at best and depended for correctness
on programming conventions that were not enforced by
the compiler. Errors due to incorrect interpretation of
messages were relatively few, but very hard to find.

® Every Charlotte kernel call returns a status variable
whose value indicates whether the requested operation
succeeded or failed. Different sorts of failures result in
different values. A well-written program must inspect
every status variable and be prepared to deal appropriately
with every possible value. It was not unusual for 30 per-
cent of a carefully written server to be devoted to error
checking and handling.

o Conversations between servers and clients often re-
quire a long series of messages. A typical conversation
with a file server, for example, begins with a request to
open a file, continues with an arbitrary sequence of read,
write, and seek requests, and ends with a request to close
the file. The flow of control for a single conversation could
be described by simple straight-line code except for the
fact that the server cannot afford to wait in the middle of
that code for a message to be delivered. The explicit in-
terleaving of separate conversations is very hard to read
and understand.

The last problem was probably the most serious. In or-
der to maximize concurrency and protect servers from re-
calcitrant clients, Charlotte programmers were forced to
break the code that manages a conversation into many
small pieces, separated by requests for communication.
Servers would invoke the pieces individually so that con-
versations interleaved. Every Charlotte server developed
the following overall structure:

begin
initialize
loop
wait for a communication request
to complete
determine the conversation to which
it applies
case request.type of
A:

89

restore state of conversation
compute
start new request
save state
B:

end case
end loop
end.

The flow of control for a typical conversation is buried in
the state information, obscured by the global loop. The
program must save and restore that state in order to pre-
serve the data structures associated with each conversa-
tion and in order to keep track of the current point of ex-
ecution in what would ideally be straight-line code. Both
tasks would be handled implicitly if each conversation
were managed by an independent thread of control. Data
structures would be placed in local variables and the prog-
ress of the conversation would be reflected by its program
counter.

Previous research has addressed the complexity of IPC
in several different ways. The problem of buffer manage-
ment has been solved in several distributed systems by the
development of so-called stub routines to pack and un-
pack parameters. A language-specific tool generates stubs
automatically from interface descriptions. Birrell and
Nelson’s Lupine {4] and the Accent Matchmaker [23] are
particularly worthy of note. The technique works best in
languages that support procedures as first-class objects.
Safety depends on integrating the stub generator into the
compiler’s type-checking mechanism and on preventing
messages from being sent in any other way. If the lan-
guage provides facilities for exception handling, then the
second problem on the list above can be solved with stubs
as well.

Addressing the third problem requires multiple coop-
erating threads of control in a single address space. Such
threads are supported directly by the Amoeba distributed
operating system [30}, and may be realized through pro-
gramming conventions in any operating system that al-
lows processes to share memory. There is, however, a
nontrivial cost associated with scheduling a server’s tasks
at the operating-system level, since creating a task or
switching from one task to another requires a context
switch into and out of the kemel. The designers of the
Medusa distributed operating system [33] chose to imple-
ment coroutines at the user level rather than change the
set of processes (activities) in a server (task force) at run
time.

Although the first generation of Charlotte servers was
indeed completed successfully, it became clear that direct
use of system calls was an inadequate approach to writing
systems programs. A stub generator was not an attractive
alternative. Among other things, the language in which
we were working (Modula-1 [13]) provided neither ex-
ceptions nor formal procedures, and its mechanism for
blocking and unblocking threads of control was poorly

90 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

suited for writing a message dispatcher. Moreover, no
other more suitable language was available on our ma-
chines. Since we were faced with the prospect of writing
a compiler and run-time package in any event, we under-
took to design a language that would overcome the dis-
advantages of the existing environment while sacrificing
as few of its advantages as possible. In particular, we
wished to obtain the benefits of high-level naming, type
checking, exception handling, and automatic manage-
ment of context while still allowing processes to be de-
veloped in mutual isolation, without the need for com-
piler-enforced global context.

Section II of this paper outlines the motivational factors
that distinguish our work from that of previous language
designers. Section III introduces a language we call
LYNX. Rationale for the more important features of the
language is provided in Section IV, together with com-
parisons to previous research. The conclusion summa-
rizes the significance of LYNX and discusses future plans.

II. MOTIVATION

The complexity of interprocess communication has mo-
tivated the design of a large number of distributed pro-
gramming languages. Work is still active on such lan-
guages and language tools as the Accent Matchmaker
[23], Ada® [43], Argus [27], CSP [21], EPL [6], Linda
[18], NIL [40], [41], SR [1], [2], and Cedar [42] (with
Nelson’s RPC [4], [31]). In the terminology of the pre-
vious section, most of the designs are convenient and safe.
Their communication statements refer directly to program
variables and they insist on type security for messages.
Several provide special mechanisms for error handling and
recovery. Most allow a process to be subdivided into more
than one thread of control. None, however, appears to
have been designed with independent processes in mind.

Return for a moment to the analogy between file oper-
ations and interprocess communication. Imagine a time-
sharing system in which every data format in the file sys-
tem must be declared in a database of types. Imagine that
files are segregated according to the types they contain,
and that consistency of access is enforced at compile time
by checking programs against the database. If the file sys-
tem is distributed across a local area network, imagine
that the database must be kept consistent across machines.
A file system along these lines could almost certainly be
built, but its complexity and clumsiness hardly seem worth
the security provided. Programmers routinely rely upon
compile-time type checking for temporary files that are
used in the course of a single run of a single program, but
we suspect that they would balk at the need to do so for
all files in all applications.

Similarly, we are inclined to doubt that compile-time
knowledge of communication topology and types will be
appropriate under all circumstances. From the point of
view of a systems programmer, the principal disadvantage
of existing distributed languages is a matter of orienta-

®Ada is a registered trademark of the U.S. Department of Defense (Ada
Joint Program Office).

tion. Language designers have tended to think in terms of
communication between the pieces of a single distributed
program, rather than between processes that are really
separate programs. The network of process interconnec-
tions, for example, must sometimes (as in CSP) be stati-
cally declared. Even if connections can be changed dy-
namically, it is generally necessary for any process that
participates in introducing one process to another to un-
derstand the types of any messages a newly created con-
nection may carry. Client processes can always choose
their servers, but servers are usually unable to distinguish
between clients, to provide them with differing levels of
service, or extend to them differing levels of trust. No
attempt is made to distinguish between local errors and
remote errors, or to protect a process from the latter. Type
checking is enforced by maintaining a global compiler
name space. Even a trivial change to an interface will
generally force the recompilation of every process that
uses it.

For distributed systems software, a language must
maintain the flexibility of explicit kernel calls while pro-
viding extensive features to handle errors, manage con-
versations, and make those calls convenient. A language
that accomplishes these aims is introduced in the follow-
ing section. The environment it provides is one in which
programs can be pieced together quickly and easily from
separately-developed processes, in the spirit of the well-
known but substantially simpler pipes of UNIX.™

The name of the language is derived from its use of
communication channels called links. Links are provided
as a built-in data type. A link is used to represent a re-
source. The ends of a link can be moved from one process
to another. Servers are free to rearrange their intercon-
nections in order to meet the needs of a changing user
community and in order to control access to the resources
they provide. Type security is enforced on a message-by-
message basis. Errors are deferred to exception handlers
outside the normal flow of execution. Multiple conver-
sations are supported by integrating the communication
facilities with the mechanism for creating new threads of
control.

III. LYNX OVERVIEW

Central to the philosophy of LYNX is the notion that
processes are independent entities. Each can be written,
compiled, linked, and loaded in total isolation, with no
information whatsoever about any other process. The
pieces of a single application, of course, will generally be
written with their peers in mind, but it is the goal of LYNX
to permit that mutual knowledge without requiring it for
processes whose interactions are much less formal and
structured.

Processes in LYNX execute in parallel, possibly on
processors that share no common memory. Processes in-
teract by sending messages on bidirectional communica-
tion links. Each process begins with an initial set of ar-

™UNIX is a trademark of AT&T Bell Laboratories.

SCOTT: LANGUAGE SUPPORT FOR DISTRIBUTED PROGRAMS

guments, presumably containing at least one link to
connect it to the rest of the world. Each link has a single
process at each end. As an example of a simple applica-
tion, consider a producer process that creates data of some
type and sends that data to a consumer. Each process be-
gins with a link to the other. The producer looks like this:

process producer (consumer : link);

type data = whatever;
entry transfer (info : data); remote;

function produce : data;
begin

-- whatever
end produce;

begin -- producer
loop
connect transfer (produce |) on consumer;
end;
end producer.

The basic syntax and scope rules of LYNX are similar
to those of Modula-2 [47]. Comments are defined as in
Ada [43]. The word entry introduces a template for a
remote operation. The general syntax is

entry opname (in__args) : out__types;

In this case, the transfer entry has no reply parameters.
The word remote indicates that the code for the operation
is provided somewhere else.

The connect statement is used to request a remote op-
eration. The vertical bar in the argument list separates re-
quest and reply parameters.

connect opname (expr__Jist|var__list)
on linkname;

The current thread of control in the sending process is
blocked until a reply message is received, even if the list
of reply parameters is empty. Our producer has only one
thread of control (more complicated examples appear be-
low), so in this case the process itself is blocked.

The consumer looks like this:

process consumer (producer : link);
type data = whatever;
entry transfer (info : data); remote;

procedure consume (info : data);
begin

-- whatever
end consume;

var buffer : data;

begin -- consumer
loop
accept transfer (buffer) on producer; reply;
consume (buffer);
end;
end consumer.

91

The accept statement is used to serve an opera-
tion requested by the process at the other end of a
link.

accept opname (var__/ist) on linkname;

reply (expr__list);

The reply statement returns its parameters to the process
at the other end of linkname and unblocks the thread of
control that requested the operation opname. The param-
eter types for opname must be defined by an entry dec-
laration.

In keeping with the notion of process independence,
neither the consumer nor the producer can name the other
directly. Each refers only to the link that connects them.
It is entirely possible that the consumer, having received
all the data it wants, might pass its end of the link on to
another process. Future requests for the transfer opera-
tion would be served by the new consumer. The producer
would never know anything had happened.

A variable of type link accesses one end of a physical
link, much as a pointer accesses an object in Pascal. Links
are created by a built-in-routine called newlink that re-
turns references to a new pair of ends. New links are usu-
ally created for one of two reasons: either one end is to
be passed to a newly created process, or else both ends
are to be passed to existing processes, to introduce each
to the other. To make these common cases easier to write,
newlink returns one of its results as a function value and
the other as a reference parameter.

A producer/consumer pair could be created in LYNX
with the following sequence of statements:

var L : link;

begin
startprocess ('‘consumer’’, newlink (L}});
startprocess (‘‘producer’’, L);

The strings ‘‘consumer’’ and ‘‘producer’ serve to
identify executable load images to the underlying oper-
ating system. The process that executes the startprocess
statement may well be part of the same application as the
processes it creates. Equally easily, it may be an operat-
ing-system process such as a command interpreter. In our
implementation for the BBN Butterfly machine [3], a pro-
ducer/consumer pair would be created in response to the
following series of commands to the Butterfly shell:

[llink AB
[1 xrun consumer @A
[1 xrun producer @B

Since messages are addressed to links, not processes, it
is not even necessary to connect the producer and con-
sumer directly. An extra process could be interposed for
the purpose of filtering or buffering the data. Neither the
producer nor the consumer would know of the interme-
diary’s existence.

92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

[1link ABCD

[1 xrun consumer @A

[1 xrun intermediary @B @C
[]1 xrun producer @D

There is another way to write the consumer in LYNX.
In the version above, the process contains a a single thread
of control that receives requests explicitly. We call the
alternative implicit receipt. Instead of running a single
thread in a loop, we can arrange for each appropriate re-
quest to create its own thread automatically. The code to
be executed by a newly created thread appears in the form
of a begin ... end block for an entry, in place of the
word remote.! The implicit-receipt version of our con-
sumer looks like this:

process consumer (producer : link};
type data = whatever;

procedure consume {info : data);
begin

-- whatever
end consume;

entry transfer (info : data);
begin

reply;

consume (info);
end transfer;

begin -- consumer
bind producer to transfer;
end consumer.

The reply statement appears here in the body of an en-
try, without a matching accept. As with explicit receipt,
it serves to unblock the thread of control that requested
the current operation. The producer shown above can be
used with either version of the consumer, without modi-
fication.

The bind statement serves to define an
request.

X3

appropriate’’

bind /ink__list to entry__list;

Each of the entries mentioned in a bind statement must
have a begin ... end block. A subsequent request on
one of the mentioned link ends for one of the mentioned
operations will create a new thread to execute the match-
ing entry. Bindings can also be broken:

unbind /ink__list from entry__list;

The ability to make and break bindings at run time is a
powerful mechanism for access control, as we shall see
below.

Entries may be declared at any level of lexical nesting.
Nonglobal data may therefore be shared by more than one

"The header of the entry can still serve as the template for connect and
accept statements; the word remote merely allows the code to be omitted
when the current process does not provide the operation through implicit
receipt.

thread of control. A newly created thread begins execu-
tion in the naming environment of the bind statement that
permitted its creation. The activation records accessible
at any given time will form a tree (a cactus stack [20]),
with a separate thread corresponding to each leaf. From
the point of view of any one thread, the path back to the
root looks like a normal stack. To simplify reclamation of
stack frames, a thread is not allowed to leave a given scope
until any descendant threads still active in that scope have
completed.

A reply statement can occur anywhere inside an entry;
the thread that executes it continues to exist until it reaches
the end of its code. Often a newly created thread will al-
locate new data structures, create some bindings for nested
threads, send a reply to indicate that it is ready, and then
continue to receive related requests throughout a lengthy
conversation. The file server example in section III-D will
contain such a thread for each of its open files.

The threads of control within a single process do not
execute in parallel; each process continues to execute a
single thread until it blocks.” The process then takes up
some other thread where it last left off. If no thread is
runnable, then the process waits until one is. In a sense,
the threads are coroutines, but the details of control trans-
fer are hidden in the run-time support package.

Although the implicit-receipt version of the consumer
will contain a thread for every invocation of the transfer
operation, it is likely that only one such thread will exist
at a time. For a slightly more complicated example, con-
sider the buffer process mentioned above. Interposed be-
tween a producer and consumer, the buffer serves to
smooth out fluctuations in their relative rates of speed.

process buffer (producer, consumer : link);
const
size = whatever;
type
data = whatever;
var
buf : array [1..size] of data;
firstfree, lastfree : [1..size];

entry transfer (info : data);
begin
await firstfree <> lastfree;
buf [firstfree] : = info;
firstfree : = firstfree % size + 1;
reply;
end transfer;

var info : data;
begin
firstfree := 1;
lastfree : = size;
bind producer to transfer;
loop

2The circumstances under which a thread may block are defined in Sec-
tion III-A.

SCOTT: LANGUAGE SUPPORT FOR DISTRIBUTED PROGRAMS

await lastfree % size + 1 <> firstfree;
lastfree : = lastfree % size + 1;
info : = buf[lastfree];
connect transfer (info |) on consumer;
end;
end buffer.

Here the header of the transfer entry serves to define
the structure of both incoming and outgoing transfer re-
quests. The await statement blocks the current thread un-
til the specified condition is true. There is no need to worry
about simultaneous access to buf, firstfree, or lastfree,
because the coroutine semantics guarantee that only one
thread can execute at a time.

A. Execution Details

Every LYNX process begins with a single thread of
control, executing the process’s main begin ... end
block. New threads are created in response to incoming
requests on links bound to entries, and may also be cre-
ated explicitly by executing a call (fork) statement in an
existing thread.

call entryname (expr__list|var__list);

As with connect, the calling thread is blocked until the
entry replies.

Context switches between threads happen only 1) at
connect, accept, reply, and call statements, 2) at
await statements, and 3) when the current thread reaches
the end of a scope in which descendant threads are still
active or in which bindings exist that might cause the cre-
ation of descendant threads.

A link end may be bound to more than one entry. The
bindings need not be created at the same time. A bound
end can even be used in subsequent accept statements.
These provisions make it possible for separate threads to
carry on independent conversations on the same link at
more or less the same time. The startprocess statement,
for example, might be implemented by sending a request
to a process manager written in LYNX. Each such request
might create a new thread of control within that manager.
Separate threads could share the same link between the
process manager and file server. Their requests to open
and read executable files would interleave transparently.

When all of a process’s threads are blocked, run-time
support routines attempt to receive a message on any of
the links for which there are outstanding accepts or bind-
ings, or on which replies are expected for outstanding
connects. Incoming replies can only have been sent in
response to an outgoing request. Each such reply can
therefore be delivered to an appropriate thread of control.
Incoming replies, by contrast, can be unexpected or un-
wanted. Competing goals come into play. On the one
hand, the implementation should detect (and reject) re-
quests for invalid or bogus operations. On the other hand,
it should distinguish such cases from requests for opera-
tions for which a server is not yet ready, but will be some-
time ‘‘soon.’” LYNX addresses these concerns by defin-

93

ing a valid request to be one for which the server will be
ready when all its threads are blocked.

Incoming messages are not examined until all threads
are blocked. The operation name of a request is compared
against those of the outstanding accepts and bindings for
its link. If a match is found, then an appropriate thread
can be made ready and execution can continue. If there
are no accepts or bindings, then consideration of the
message is postponed. If accepts or bindings exist, but
none of them match the request, then the message is dis-
carded and an INVALID__OPERATION exception is
raised in the thread that executed the connect statement
at the other end of the link. Exceptions are discussed in
more detail in Section III-D.

One consequence of the above rules is that there is no
way in LYNX to receive a message asynchronously. Real-
time device control cannot be programmed, nor can any
algorithm in which incoming messages must interrupt the
execution of lower-priority ‘‘background’” computation.
There are currently no plans to accommodate LYNX to
hard real-time constraints. For less demanding applica-
tions, a low-cost polling function can be used by a back-
ground thread to relinquish control when higher-priority
messages arrive. The built-in function idle returns false
whenever the communication for which another thread is
waiting has completed. Otherwise it returns true. We have
used the idle function in a distributed game-playing pro-
gram based on Fishburn’s algorithms for alpha-beta search
[17]. Threads that are evaluating pieces of the game tree
execute the statement

await idle;

at the top of an outer loop. Messages containing updated
alpha-beta values (for better game-tree pruning) are there-
fore received within a reasonable amount of time. Eval-
uation of idle is fast enough that performance does not
suffer.

B. Link Movement

Much of the power of LYNX derives from the ability
to move the ends of links. Language semantics specify
that every link end is accessible to only one process at a
time. If a data structure containing one or more link vari-
ables is enclosed in a message, then the transmission of
that message will have the side effect of moving the ref-
erenced link ends from the sending process to the re-
ceiver. The semantics of this feature are somewhat subtle.
Suppose process A has a link variable X that accesses the
‘‘green’’ end of link L. Now suppose A sends X to process
B, which receives it into link variable Y. Once the transfer
has occurred, Y can be used to access the green end of L,
but X is a dangling reference. Loosely speaking, the
sender of a link variable loses access to the end of the link
involved.

We have seen (in the producer/consumer example) how
moving links are used to establish connections between
newly created processes. They can be used at other times
as well. A link between a server and a client can be passed

94 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

on to a new client when the first one does not need it any
more. It can also be passed on to a new server (function-
ally equivalent to the old one, presumably) in order to
balance work load or otherwise improve performance. A
name server process can even keep a database of server
names and links. Clients in need of a particular service
can ask the name server for a link on which to request that
service.

To facilitate use of a name server, we have established
a convention for introducing a new client to a server that
can support more than one client at a time. Each such
server binds its name-server link to a newclient entry.

entry newclient (client : link);

When asked for a link to, say, a mail server, the name
server creates a new link, passes one end to the mail server
in a request for the newclient operation, and returns the
other end to the client. In the newclient entry, the mail
server binds the newly received client link to some “‘stan-
dard”’ set of entries.

C. Access Control

Unlike most distributed languages, LYNX allows a
server to control precisely which clients have access to
the operations it provides. By making and breaking bind-
ings at run time, a process can enforce a simple and highly
effective form of access control. Consider, for example,
the famous readers/writers problem [11]. A server con-
trols a resource that behaves like a large collection of data.
Two operations are provided: reading and writing indi-
vidual data items. More than one client may read at once,
but for the sake of consistency a writer requires exclusive
access to the entire data structure. Each client performs
its operations in the course of read or read/write sessions.
It begins a session by requesting permission to read or
write. It ends a session by informing the server that it is
through. Each process is guaranteed that no one else will
perform a write operation while it is in the middle of its
current session. Each writer is also guaranteed that no one
else will perform a read operation. Most important, the
decision as to which data to read or write is allowed to
depend on the results of previous read operations; a client
need not know exactly what it wants to read or write at
the time it begins its session.

Here is a solution in LYNX:

process readwrite (firstclient : link);

var readers, writers : integer;
-- writers is always O or 1.

entry doread; -- should have arguments
begin

-- whatever,;
end doread;

entry dowrite; -- should have arguments
begin

-- whatever;
end dowrite;

entry startread; forward;
entry startwrite; forward;
entry endread; forward;
entry endwrite; forward;

entry startread;
begin
await writers = 0;
readers +:= 1;
unbind curlink from startwrite, startread;
bind curlink to doread, endread;
reply;
end startread;

entry startwrite;

begin
await readers = O and writers = O;
writers +:=1;
unbind curlink from startread, startwrite;
bind curlink to doread, dowrite, endwrite;
reply;

end startwrite;

entry endread;

begin
unbind curlink from doread, endread;
bind curlink to startread, startwrite;
readers —:= 1;
reply;

end endread;

entry endwrite;

begin
unbind curlink from doread, dowrite,
endwrite;
bind curlink to startread, startwrite;
writers —:= 1;
reply;

end endwrite;

entry newclient (client : link);
begin

reply;

bind client to newclient, startread, startwrite;
end newclient;

begin -- initialization
readers := O; writers := 0;
call newclient (firstclient |);
end readwrite.

To simplify presentation, we have not worried in this
example about starvation of either readers or writers. A
more careful solution would require some 30 lines of ad-
ditional code (and would in almost any language). Global
variables would keep track of how many readers and writ-
ers were waiting to get access. Await statements would
be modified to take these variables into account. Start-
read would block when there were waiting writers. End-
write would unblock waiting readers first.

By making and breaking bindings, the server is able to

SCOTT: LANGUAGE SUPPORT FOR DISTRIBUTED PROGRAMS

ensure that clients are physically unable to perform op-
erations for which they have not obtained authorization.
The built-in function curlink returns a reference to the
link on which the request message arrived for the closest
lexically enclosing entry (in this case the current entry).
From the point of view of a reader, a typical session would
look something like this:

connect startread on RWIink;

-- series of (possibly interrelated)
-- doread requests

connect endread on RWIlink;

A read/write session looks like this:

connect startwrite on RWIink;

-- series of (possibly interrelated)
-- doread and dowrite requests
connect endwrite on RWIink;

Any client that requests read or write operations without
obtaining permission, or that requests a startread, start-
write, endread, or endwrite operation out of order will
feel an INVALID__OPERATION exception.

The newclient convention has been used in this ex-
ample. We have written the server to take a single initial
argument: a link to a single client. Additional clients are
introduced by invocations of newclient over links from
existing clients. We have used the call statement to es-
tablish the same bindings for the initial client as are es-
tablished for late-comers.

D. Exceptions

LYNX provides an exception handling mechanism to
1) cope with exceptional conditions that arise in the course
of message passing, and 2) allow one thread to interrupt
another. Exception handlers may be attached to any be-
gin . . . end block. Such blocks comprise the bodies of
procedures, entries, processes, and modules, and may also
be inserted anywhere a statement is allowed. The syntax
is

begin
when exception __list do

when exception__list do

end;

A handler (when clause) is executed in place of the por-

95

tion of its begin . .. end block that had yet to be exe-
cuted when the exception occurred.

Built-in exceptions are provided for a number of con-
ditions:

® Failure of the operation name of a message to match
an accept or binding on the far end of the link.

® Type clash between the sender and receiver of a mes-
sage.

® Termination of a receiving thread that has not yet re-
plied.

® Destruction of a link on which a thread is trying to
send or receive.

All of a process’s links are destroyed when it terminates
or crashes. Additional exceptions can be defined by the
programmer.

A built-in exception is raised in the current thread of
control when one of the above conditions prevents that
thread’s normal continuation. Both built-in and user-de-
fined exceptions can also appear in an explicit raise state-
ment. In either case, the search for an appropriate handler
begins in the current block. If that block has no handler,
the exception is raised in the next enclosing block, or in
the previous scope on the dynamic chain if the block is a
procedure or function. Propagation halts at the scope in
which the thread began. If the exception is not handled at
that level, then the thread is aborted. If the propagation
of an exception escapes the scope of an accept state-
ment, or if an exception is not handled at the outermost
scope of an entry that has not yet replied, then an excep-
tion is raised in the appropriate thread in the requesting
process as well. If the propagation escapes a scope in
which nested threads are still active, those threads are
aborted recursively.

In addition to the raise statement, LYNX provides an
announce statement to allow one thread to interrupt an-
other. An announced exception is felt by all and only
those threads that have declared a handler for it in some
scope on their current dynamic chain. (This may or may
not include the current thread.) Since handlers refer to
them by name, announced exceptions must be declared
in a scope visible to all the threads that use them. The
coroutine semantics guarantee that threads feel exceptions
only when blocked.

Announced exceptions are useful for protocols in
which one thread may discover that the communication
for which another thread is waiting is no longer appropri-
ate (or possible). One example is found in a stream-based
file server. The code below sketches the form that such a
server might take.

1 process fileserver (switchboard : link);
2 type string = whatever; bytes = whatever;

[S 00— V]

exception seeking;

entry open (filename : string; readflag, writeflag, seekflag : Boolean) : link;
var filelnk : link; readptr, writeptr : integer;

6 procedure put (data : bytes; filename : string; writeptr : integer);

96 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13

external;
function get (filename : string; readptr : integer) : bytes; external;
function available (filename : string) : Boolean; external;

entry writeseek (newptr : integer);
begin

writeptr : = newptr; reply;
end writeseek;

entry stream (data : bytes);
begin

put (data, filename, writeptr); writeptr +:= 1; reply;
end stream; E

entry readseek {newptr : integer);
begin
readptr := newptr; announce seeking; reply;

end readseek;
begin -- open
if available (filename) then
reply (newlink (filelnk); -- release client
readptr := O; writeptr := O;
if writeflag then
if seekflag then bind fileInk to writeseek; end;
bind filelnk to stream;
end;

if readflag then
if seekflag then bind filelnk to readseek; end;
loop
begin
connect stream (get (filename, readptr) |) on filelnk;
readptr +:= 1;
when seeking do
-- nothing; try again at new location
when REMOTE__ DESTROYED do
exit; -- leave loop
end;
end; -- loop
end; -- if readflag
else -- not available
reply (nolink); -- release client
end;
-- control will not leave ‘open’ until nested entries have died
end open;

entry newclient (client:link};
begin

bind client to newclient, open; reply;
end newclient;

begin -- main

bind switchboard to newclient;
end fileserver.

. NO. 1, JANUARY 1987

Like the readwrite server, the file server begins with server a link to a new client (line 48), the file server binds
a single initial link. Here we have assumed that the link that link to an entry procedure for each of the services it
is attached to a name server (the switchboard), and not provides. One of those entries, for opening files, is shown

to an ordinary client. When the switchboard sends the file in this example. (lines 3-47).

SCOTT: LANGUAGE SUPPORT FOR DISTRIBUTED PROGRAMS

Open files are represented by links. Within the server,
each file link is managed by a separate thread of control.
New threads are created in response to open requests.
After verifying that its physical file exists (line 23), each
thread creates a new link (line 24) and returns one end to
its client. It then binds the other end to appropriate sub-
entries. Among these subentries, context is maintained
automatically from one request to the next. As suggested
by Black [5], bulk data transfers are initiated by the pro-
ducer (with connect) and accepted by the consumer.
As we have seen, this asymmetry allows the transparent
insertion of an intermediate filter or buffer. When a file is
opened for writing the server plays the role of consumer.
When a file is opened for reading the server plays the role
of producer. Seek requests are handled by raising an ex-
ception (line 20, caught at line 36) in the file-server thread
that is attempting to send data out over the link.

Clients close their files by destroying the corresponding
links.> A thread that tries to use a destroyed link feels a
REMOTE__DESTROYED exception (caught at line 38
in the file server). Bindings for a destroyed link are bro-
ken automatically. These mechanisms suffice in this ex-
ample to clean up the context for a file.

IV. DiscussioN

Every language is heavily influenced by the perspective
of its designer(s). Existing distributed languages grew out
of efforts to generalize sequential languages, first to mul-
tiple processes, then to multiple processors. LYNX
evolved in the opposite direction. It began with the dis-
tributed processes and worked to increase their effective-
ness through high-level language support.

Aiming for elegance, previous languages attempted to
invent a small set of fundamental concepts. Many of their
decisions would be inappropriate for the style of program-
ming to which we had grown accustomed under Char-
lotte. Resources, for example, are often confused with
either processes or operations. CSP and EPL support re-
mote naming at the level of an entire process only. They
fail to recognize that a process may implement an arbi-
trary number of resources. NIL and SR (and in some sense
Ada, Argus, and Cedar as well) provide capability vari-
ables that permit naming at the level of individual oper-
ations, but since a resource may support more than one
operation, these capabilities must be packaged up in rec-
ords. Only SR allows a server to provide separate in-
stances of the same operation for separate resources.*
Similar confusion between processes and threads has
caused designers to forbid the existence of multiple
threads (as in CSP and NIL), or to specify that threads
may execute in parallel (as in Ada, Argus, Cedar, EPL,
Linda, and SR). The first extreme complicates the man-

3Destroy is a built-in procedure that takes a single parameter of type
link. Variables accessing either end of a destroyed link become dangling
references.

“N.B.: SR terminology differs from that used here. What we call a pro-
cess is called a resource in SR. What we call a thread is called a process.
Our notion of resource has no direct analog.

97

agement of context; the second requires special mechan-
isms to protect shared data.

That existing distributed languages should be inappro-
priate for the server programs of a particular operating
system should not be especially surprising. These lan-
guages have, for the most part, been designed to address
the following question: ‘‘Here is an important applica-
tion; how can we run it on multiple machines?’” LYNX
attempts to address the complementary question: ‘‘Here
are some programs already in use on multiple machines;
how can we impose some structure on their interactions?’’

A distributed operating system like Charlotte (or like
any of the others in the references) can be used for embed-
ded applications. It can also be used for a dynamically
changing mix of smaller applications, in the style of con-
ventional time-sharing. LYNX is based on the assumption
that largely unrelated processes may need to communicate
from time to time, and that high-level language support
can make that communication both safer and more con-
venient.

The notion of process independence is to a large extent
the legacy of UNIX [36]. It is certainly not the only way
to go about building software, but it is one that has proven
highly successful for sequential computation and that
merits consideration for parallel environments as well.
Much of the power and popularity of UNIX derives from
the ability to piece together applications from a large col-
lection of small but general tools. LYNX maintains this
level of flexibility while providing mechanisms to manage
the extra complexity of a parallel environment. Chief
among these mechanisms are the link and the thread of
control. Links support interaction between processes;
threads of control support management of context within
processes.

A. Links

Links are a tool for representing distributed resources.
A resource is a fundmental concept. It is an abstraction,
defined by the semantics of its external interface and
thought of conceptually as a single entity. The definition
of a resource is entirely in the hands of the programmer
who creates it. Examples of resources include files, query
processors, physical devices, data streams, and available
blocks of memory. The interface to a resource may in-
clude an arbitrary number of remote operations. An open
file, for example, may be defined by the semantics of read,
write, seek, and close operations.

Recent sequential languages have provided explicit
support for data abstraction. Modula modules [47], Ada
packages [43], and Clu clusters [26] are obvious exam-
ples. Sequential mechanisms for abstraction, however, do
not generalize easily to the distributed case. They are
complicated by the need to share resources among more
than one loosely coupled process. Several issues are in-
volved:

® Reconfiguration: Resources move. It must be possi-
ble to pass a resource from one process to another and to

98 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

change the implementation of a resource without the
knowledge of the processes that use it.

® Naming: A resource needs a single name that is in-
dependent of its implementation. Process names cannot
be used because a single process may implement an ar-
bitrary number of resources. Operation names cannot be
used because a single resource may provide an arbitrary
number of operations in its external interface.

® Type Checking: Operations on resources are at least
as complicated as procedure calls. In fact, since resources
change location at run time, their operations are as com-
plicated as calls to formal procedures. Type checking is
crucial. It helps to ensure that a resource and its users do
not misinterpret one another.

® Protection: Even if processes interpret each other
correctly, they still cannot trust each other. Neither the
process that implements a resource nor the process that
uses it can afford to be damaged by the other’s incorrect
behavior.

In light of these issues, links appear ideally suited to
representing distributed resources. As first-class objects
they are easily created, destroyed, stored in data struc-
tures, passed to subroutines, or moved from one process
to another. Their names are independent both of the pro-
cesses that implement them and the operations they sup-
port. A client may hold a link to one of a community of
servers. The servers may cooperate to implement a re-
source. They may pass their end of the client’s link around
among themselves in order to balance their workload or
to connect the client to the member of their group most
appropriate for serving its requests at a particular point in
time. The client need not even be aware of such goings
on.

Names for links are uniform in the sense that there is
no need to differentiate, as one must in Ada, for example,
between communication paths that are statically declared
and those that are accessed through pointers. Moreover,
links are one-one paths; a server is free to choose the
clients with which it is willing to communicate at any par-
ticular time. It can consider clients as a group by gather-
ing their links together in a set and by binding them to the
same entries. It is never forced, however, to accept a re-
quest from an arbitrary source that happens to know its
address.

Dynamic binding of links to entries is a simple but ef-
fective means of providing protection. As demonstrated
in the readers/writers example of Section III-C, bindings
can be used to control the access of particular clients to
particular operations. With many-one paths no such con-
trol is possible. Ada, for example, can only enforce a so-
lution to the readers/writers problem by resorting to a sys-
tem of keys [46].°

The protection afforded by links is not, of course, com-
plete. In particular, although a process can make or break

>The “‘solution’” in [22, p. 11:11] limits each process to one read or
write operation per protected session. It does not generalize to applications
in which processes gain access, perform a series of operations, and then
release the resource.

bindings on a link-by-link basis, it has no way of knowing
which process is attached to the far end of any link. It is
not even informed when an end moves. In one sense, a
link is like a capability: it allows its holder to request op-
erations on a resource. In another sense, it is a coarser
mechanism that requires access lists for fine-grained pro-
tection. The rights to specific operations are controlled by
servers through bindings; they are not a property of links.
Links also differ from capabilities in that they can never
be copied and can always be moved.

Protection could be increased by distinguishing be-
tween the server end and the client end of a link. The
inability of a server to tell when far ends move is after all
a direct consequence of link symmetry. If links were
asymmetric one could allow the server ends to move with-
out notice, yet require permission (or at least provide no-
tification) when client ends move. Such a scheme has
several disadvantages. Foremost among them is its com-
plexity. Two different types of link variable would be re-
quired, one to access each type of end. Connect would
require a link to a server. Accept, bind, and unbind
would require a link to a client. Newlink would return
one link of each type. Destroy would take an argument
of either type. The semantics of link movement would
depend on which end was enclosed; special rules would
apply to the movement of ends attached to clients. Fi-
nally, communication between peers (who often make re-
quests of each other) would suddenly require pairs of
links, one for each direction.

Symmetric links strike a compromise between absolute
protection on the one hand and simplicity and flexibility
on the other. They provide a process with complete run-
time control over its connections to the rest of the world,
but limit its knowledge about the world to what it hears
in messages. A process can confound its peers by restrict-
ing the types of requests it is willing to accept, but the
consequences are far from catastrophic. Exceptions are
the most serious result, and exceptions can be caught.
Even an uncaught exception kills only the thread that ig-
nores it.°

To a large extent, links are an exercise in late binding.
Since the links in communication statements are vari-
ables, requests are not bound to communication paths un-
til the moment they are sent. Since the far end of a link
can be moved, requests are not bound to receiving pro-
cesses until the moment they are received. Since the set
of valid operations depends on outstanding bindings and
accepts, requests are not bound to receiving threads of
control until after they have been examined by the receiv-
ing process. Only after a thread has been chosen can a
request be bound to the types it must contain. Checks must
be performed on a message-by-message basis.’

Several existing languages provide late binding for

®Admittedly, a malicious process can serve requests and provide erro-
neous results. No language can prevent it from doing so.

"We have used a technique based on hashing to minimize the cost of
run-time checks [38]. The expense per message is less than 10 micro-
seconds.

SCOTT: LANGUAGE SUPPORT FOR DISTRIBUTED PROGRAMS

communication paths. Ada, Argus, Cedar, and SR pro-
vide variables that hold a reference to a process. NIL and
SR provide variables that hold a reference to a single op-
eration. Each of these languages allows references to be
passed in messages. Each checks its types at compile time.
To permit such checking, each assigns types to the vari-
ables that access communication paths. Variables of dif-
ferent types have incompatible values. By contrast, the
dynamic type checking of LYNX has two major advan-
tages:

1) A process can hold a large number of links without
being aware of the types of messages they may eventually
carry. A name server, for example, can keep a link to
each registered process, even though many such processes
will have been created long after the name server was
compiled and placed in operation.

2) A process can use the same link for different types
of messages at different times, or even at the same time.
A link can change roles dynamically without forcing a
server to deal explicitly with inappropriate requests.

LYNX type checking also differs from that of previous
languages in its use of structural equivalence [19; p. 92].
The alternative, name equivalence, requires the compiler
to maintain a global name space for types. Two specifi-
cally distributed concerns motivated the adoption of
structural equivalence for LYNX:

1) A global name space requires a substantial amount
of bookkeeping, particularly if it is to be maintained on
more than one machine. While the task is certainly not
impossible, the relative scarcity of compilers that enforce
name equivalence across compilation units suggests that
it is not trivial, either.

2) Compilers that do enforce name equivalence across
compilation units usually do so by affixing time stamps to
files of declarations. A change or addition to one decla-
ration in a file appears to modify the others. A global
name space for distributed programs can be expected to
devote a file to the interface for each distributed resource.
Mechanisms can be devised to allow simple extensions to
an interface, but certain enhancements will inevi-
tably invalidate all the users of a resource. In a tightly
coupled program, enhancements to one compilation unit
may force the unnecessary recompilation of others. In a
loosely coupled system, enhancements to a process like
the file server may force the recompilation of every pro-
gram in existence.

Dynamic checking has been used in conjunction with a
global name space for types in EPL. The Eden designers
call this method abstract typing [6]. The compiler veri-
fies that each request for a remote operation agrees with
the declaration of that operation in the name space. Only
when the request occurs at run time, however, does EPL
check to see that the requestor and provider of an opera-
tion were compiled with the same declaration. LYNX dif-
fers from this approach only in that it uses the structure
of message parameters, rather than the globally unique
location of a declaration, as the basis of type compatibil-
ity. Such errors as two requests in the same process for

99

the same operation but with different parameter types are
still caught at compile time.

Probably the most serious problem with run-time
checking is that programming errors that would have been
caught at compile time in other languages may not be no-
ticed until significantly later in LYNX or EPL. We have
accepted this cost in LYNX as the price of flexibility. As
a practical matter, we tend to follow the Eden style, com-
piling individual processes on the basis of shared files of
declarations. Although type clashes can in principle be
announced at run time, it seldom happens in practice.

A second, serious cost of the LYNX approach to types
is the less-than-perfect checking implied by structural
equivalence. Variables with the same arrangement of
components will be accepted as compatible even if the
abstract meanings of those components are completely
unrelated. This cost, too, we have been willing to accept,
with the understanding that no type system, no matter how
exacting, will ensure that messages are meaningful. The
goal of type checking is to reduce the likelihood of data
misinterpretation, not to eliminate it altogether.

B. Threads of Control

Even on a single machine many processes can most eas-
ily be written as a collection of largely independent threads
of control. Language designers have recognized this fact
for many years. Such relatively early languages as Algol-
68, PL/I, and SIMULA allow more than one thread to
operate inside a single module and share that module’s
data. The threads are designed to operate in simulated
parallel, that is, as if they were running simultaneously
on separate processors with access to a common store.

In Argus, Cedar, EPL, and SR, a resource is an isolated
module. Argus calls such modules guardians; Cedar calls
them modules, EPL calls them objects, and SR calls them
resources. Each module is inhabited by one or more pro-
cesses. Semantics specify that the processes execute in
parallel, but implementation considerations prevent their
assignment to machines that share no memory. In effect,
the ‘‘processes’’ of these other languages are the threads
of control of LYNX. Guardians, modules, objects, and
resources correspond to LYNX processes.

Ada allows data to be shared by arbitrary processes
(tasks) that execute in parallel. It has no notion of mod-
ules that are inherently disjoint. In the absence of a shared-
memory architecture, an Ada implementation must either
simulate shared data across machine boundaries or else
specify that only processes that share no data can be placed
on separate machines. The former option is facilitated by
semantics that require consistency for shared data only
when tasks are synchronized.

While simulated parallelism may be aesthetically pleas-
ing, it does not reflect the nature of most underlying hard-
ware. On a single machine, only one thread of control can
execute at a time. There is no inherent need for synchro-
nization of simple operations on shared data. By pretend-
ing that separate threads can execute in parallel, language
designers introduce race conditions that should not even

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. |, JANUARY 1987

exist; they force the programmer to provide explicit syn-
chronization for even the most basic operations.

In EPL and Cedar, monitors and semaphores are used
to protect shared data. These mechanisms are provided in
addition to those already needed for intermodule interac-
tion. They lead to two very different forms of synchroni-
zation in almost every program.

In Ada, Linda, and SR, processes with access to com-
mon data synchronize their operations with the same mes-
sage-passing primitives used for intermodule interaction.
Small-grain protection of simple variables is therefore
rather costly.

Argus sidesteps the whole question of concurrent ac-
cess with a powerful (and complicated) transaction
mechanism that provides the appearance of serial execu-
tion for even large-grain operations. Programmers have
complete control over the exact meaning of atomicity for
individual data types [45]. Such an approach may prove
ideal for the on-line transaction systems that Argus is in-
tended to support. It is not appropriate for the compara-
tively low-level operations of operating system servers.
Servers might choose to implement a transaction mecha-
nism for processes that want one. They must, however,
be prepared to interact with arbitrary clients. In an envi-
ronment where transactions are not a fundamental con-
cept, servers cannot afford to rely on transactions them-
selves.

A much more attractive approach to intramodule con-
currency can be seen in the semantics of Brinch Hansen’s
Distributed Processes [7]. Instead of pretending that entry
procedures can execute concurrently, the DP proposal
provides for each module to contain a single process. The
process jumps back and forth between its initialization
code and the various entry procedures only when blocked
by a Boolean guard. Race conditions are impossible. The
comparatively simple await statement suffices to order
the executions of entry procedures. There is no need for
monitors, semaphores, atomic data, or expensive message
passing. Similar semantics are provided by the Amoeba
distributed operating system [30], where each process is
composed of a set of tasks that share data but execute in
mutual exclusion.

An important goal of LYNX is to provide safe and con-
venient mechanisms that accurately reflect the structure of
the underlying system. In keeping with this goal, LYNX
adopts the semantics of entry procedures in Distributed
Processes, with six extensions:

1) Requests can be received explicitly (with accept),
as well as implicitly (through bindings).

2) Entry procedures can reply before terminating.

3) New threads of control can be created locally, as
well as remotely.

4) Blocked threads can be interrupted by exceptions.

5) A process can accept external requests while waiting
for the reply to a request of its own.

6) Modules, procedures, and entries can nest without
restriction.

The last extension is, perhaps, the most controversial.

As in Ada, it allows the sharing of nonlocal, nonglobal
data. Techniques for managing the necessary tree of ac-
tivation records are well understood [20]. Activation rec-
ords for any subroutine that might not return before the
next context switch must be allocated from a heap. Allo-
cators for this purpose have been built before [25], with
excellent performance.

Admittedly, the mutual exclusion of threads in LYNX
prevents race conditions only between context switches.
In effect, LYNX code consists of a series of critical sec-
tions, separated by blocking statements. Since context
switches can occur inside subroutines, it is not even im-
mediately obvious where those blocking statements are.
The compiler can be expected to help to some extent by
producing listings in which each (potentially) blocking
statement is marked. Experience to date has not uncov-
ered a serious need for interthread synchronization across
blocking statements. For those cases that do arise, a sim-
ple Boolean variable in an await statement performs the
work of a semaphore.

C. Explicit and Implicit Message Receipt

LYNX provides two very different means of receiving
messages: the accept statement and the mechanism of
bindings. The former allows messages to be received ex-
plicitly; the latter allows them to be received implicitly.
Rationale for providing both options is discussed in detail
elsewhere [37]. The gist of the argument is that each ap-
proach has applications for which it is appropriate and
others for which it is both awkward and confusing.

Implicit receipt reflects the externally driven nature of
most servers. It recognizes that many processes are essen-
tially passive, sitting idle until called from outside. With
implicit receipt, the programmer can allow servers to con-
verse with arbitrary numbers of clients without guessing
how many threads to allocate ahead of time and without
replicating code in every server to create new threads dy-
namically.

Explicit receipt is most useful for the exchange of mes-
sages between active, cooperating peers. Its use was dem-
onstrated by the producer and consumer of Section III.

Some existing languages, notably StarMod [9], [10],
already provide both explicit and implicit receipt. LYNX
goes one step farther by allowing a process to decide at
run time which form(s) to use when, and on which links.

D. Experience

An implementation of LYNX for Charlotte has been in
use since 1984. It runs on the University of Wisconsin’s
Crystal multicomputer [12]. A second, paper design was
created for the SODA distributed operating system de-
signed by Jonathan Kepecs [24]. A third implementation
is now in use at the University of Rochester, where it runs
on the BBN Butterfly Parallel Processor [3]. Details can
be found in [39].

At Wisconsin, the standard Charlotte servers were orig-
inally written in Modula ([13], sequential features only)
with direct calls to the IPC primitives of the kernel. Many

SCOTT: LANGUAGE SUPPORT FOR DISTRIBUTED PROGRAMS

of those servers have now been written in LYNX. Several
conclusions can be drawn:

® LYNX programs are considerably easier to write than
their sequential counterparts. The Modula fileserver was
written and rewritten several times over a period of about
two years. It was a constant source of trouble. The LYNX
fileserver was written in two weeks. It would have re-
quired even less time had the LYNX run-time package
already been debugged.

¢ The source for LYNX programs is considerably
shorter than equivalent sequential code. The new file-
server is just over 300 lines long. The original is just un-
der 1000 lines.®

® LYNX programs are considerably easier to read than
their sequential counterparts. While this is a highly sub-
jective measure, it appears to reflect the consensus of pro-
grammers who have examined both versions.

® LYNX can be implemented at acceptable cost. For
Charlotte, the overhead of the language run-time package
added less than 10 percent to the transmission times for
messages (while simultaneously adding a significant
amount of functionality). On the Butterfly, simple remote
operations complete in just over 2 milliseconds. Code
tuning and protocol optimizations now under develop-
ment are likely to improve this figure by 30-40 percent.
In several cases, reimplementation of a server in LYNX
has led to significantly faster code, because programmers
are no longer tempted to simplify their task by waiting for
the completion of individual communication requests.

V. CONCLUSION

In comparison to a sequential language that performs
communication through library routines or through direct
calls to operating-system primitives, LYNX supports

e direct use of program variables in communication
statements

® secure type checking

e thorough error checking, with exception handlers
outside the normal flow of control

® automatic management of concurrent conversations.

In comparison to previous distributed languages, LYNX
obtains these benefits without sacrificing the flexibility
needed for loosely coupled applications. LYNX supports

dynamic binding of links to processes
dynamic binding of types to links
abstraction of distributed resources
protection from errors in remote processes.

In addition, LYNX refiects the structure of most distrib-
uted hardware by differentiating between processes, which

80bject code from LYNX tends to be about 50 percent larger than its
sequential counterpart. The difference can be attributed to default excep-
tion handlers, descriptive information for entries and messages, initializa-
tion, management of the environment tree, and run-time checks on sub-
ranges, sets, case statements, and function calls. In addition, every LYNX
program is linked to a substantial amount of run-time support code: the
message dispatcher, communication routines, and code to manage excep-
tions and threads.

101

execute in parallel and pass messages, and threads of con-
trol, which share memory and execute in mutual exclu-
sion.

Even for the pieces of a single distributed program,
LYNX offers some advantages over most previous pro-
posals. By providing both explicit and implicit receipt,
LYNX admits a wide range of communication styles. By
allowing dynamic binding of links to entry procedures,
LYNX provides access control for such applications as
the readers/writers problem. By integrating implicit re-
ceipt with the creation of threads, LYNX supports com-
munication between processes and management of con-
text within processes with an economy of syntax. By
relying on structural type equivalence for messages,
LYNX avoids unnecessary recompilations when defini-
tions change.

Support for tightly coupled programs, however, is not
central to the goals of LYNX. The real significance of the
language is in areas outside the focus of previous re-
search. LYNX supports applications for which other lan-
guages were never intended. It adapts the advantages of
a high-level language to processes designed in nearly total
isolation.

Ongoing work with LYNX is focused on two fronts:
mechanisms and implementation. For the former, re-
searchers at both Wisconsin and Rochester are working to
evaluate the language through practical experience [15],
[16]. Several enhancements have already been suggested:

® A cobegin construct may be offered as an additional
means of creating new threads of control. Such a con-
struct would, for example, allow a thread to request op-
erations on two different links when order is unimportant.
As currently defined, LYNX requires the thread to specify
an arbitrary order, or else create subthreads through calls
to entries that are separated lexically from the principal
flow of control.

¢ For the Butterfly, mechanisms may be added to take
more direct advantage of the shared-memory architecture.
It is currently possible for two processes to obtain pointers
(from the operating system) to a shared block of Butterfly
memory. Communication over links can then be used to
synchronize access. Changes to the language might sup-
port this sharing in a more safe and structured way. Al-
ternatively, the semantics of mutual exclusion of threads
might be relaxed in favor of parallel execution. Such a
change would represent a significant departure from the
philosophy of Section IV-B, but might be of use in a num-
ber of emerging hardware configurations, including net-
works of multiprocessor workstations. Finally, it might
be possible to design a compiler that would permit non-
interfering threads to execute in parallel without changing
the language semantics. It is unclear exactly how much
parallelism could be exploited in this fashion. The pros-
pect is reminiscent of past attempts to discover parallel-
ism in ordinary sequential languages [32], and may be ill-
advised.

¢ Farther down the road, the entire notion of links
might be removed from the language itself and placed un-

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

der user control. There is some reason to be skeptical of
any ‘‘systems’’ language that requires ‘‘a fixed, hidden,
and large so-called run-time package [48].”” With suitable
facilities for data and control abstraction, such IPC facil-
ities as connect, accept, and bind might be provided
by library routines. We have been pleased by the effec-
tiveness of links, but have no illusions that they are the
only useful abstraction for distributed computing. In the
context of work on the Butterfly we have begun to inves-
tigate the extent to which a wide variety of programming
models, from pure shared memory through connection-
less message passing, might be made to coexist within a
single, common framework for interprocess interaction.
Such a goal would be facilitated by a language in which
users could choose the model most appropriate for the ap-
plication at hand.

The research on implementation techniques is particu-
larly concerned with the speed of message passing. We
are experimenting with novel data structures and algo-
rithms to enhance the efficiency of common communica-
tion patterns. In addition, we are exploring the relation-
ship between efficiency and the level of abstraction of
kernel primitives. Preliminary comparisons among the
Charlotte/Crystal, SODA, and Butterfly implementations
suggest that efficiency is best achieved with a compara-
tively low-level interface between the language and the
operating system [39]. Through extensive profiling and
examination of code paths, we hope to obtain a detailed
analysis of message overhead and of the inherent limits
on its speed.

The design of LYNX was an exercise in practical prob-
lem-solving. The language must therefore be judged on
the basis of the solutions it provides. Only long-term ex-
perience can support a final verdict. New problems will
undoubtedly arise and will in turn provide the impetus for
additional research. At present, however, the evidence
suggests that LYNX is a success.

ACKNOWLEDGMENT

Much of the research described in this paper was con-
ducted in the course of doctoral studies at the University
of Wisconsin under the supervision of Associate Profes-
sor R. Finkel. Critical comments from the referees led to
significant improvements over an earlier draft.

REFERENCES

[1} G. R. Andrews, ‘‘The distributed programming language SR—Mech-
anisms, design and implementation,’’ Software—Practice and Expe-
rience, vol. 12, pp. 719-753, 1982.

{2] G. R. Andrews and R. A. Olsson, ‘‘The evolution of the SR lan-
guage,’’ Dep. Comput. Sci., Univ. Arizona, Tech. Rep. TR 85-22,
Oct. 14, 1985.

[3] BBN Laboratories, ‘Butterfly® parallel processor overview,”’ Rep.
6148, Version 1, Cambridge, MA, Mar. 6, 1986.

[4]1 A. D. Birrell and B. J. Nelson, ‘‘Implementing remote procedure
calls,”” ACM Trans. Comput. Syst., vol. 2, no. 1, pp. 39-59, Feb.
1984. Originally presented at the Ninth ACM Symp. Operat. Syst.
Principles, Oct. 10-13, 1983.

[5] A. P. Black, *‘An asymmetric stream communication system,’” in
Proc. Ninth ACM Symp. Operat. Syst. Principles, Oct. 10-13, 1983,
pp- 4-10. In ACM Operat. Syst. Rev., vol. 17, no. 5, 1983.

{6] —, ‘‘Supporting distributed applications: Experience with Eden,”’
in Proc. Tenth ACM Symp. Operat. Syst. Principles, Dec. 1-4, 1985,
pp. 181-193.

[7} P. Brinch Hansen, ‘‘Distributed processes: A concurrent program-
ming concept,”” Commun. ACM, vol. 21, no. 11, pp. 934-941, Nov.
1978.

[8] D. R. Cheriton and W. Zwaenepoel, ‘‘The distributed V kernel and
its performance for diskless workstations,’” in Proc. Ninth ACM Symp.
Operat. Syst. Principles, Oct. 10-13, 1983, pp. 129-140. In ACM
Operat. Syst. Rev., vol. 17, no. 5, 1983.

[9] R. P. Cook, ‘‘*Mod—A language for distributed programming,”’
IEEE Trans. Software Eng., vol. SE-6, pp. 563-571, Nov. 1980.

[10] —, ““The StarMod distributed programming system,’” in Proc. IEEE
COMPCON Fall 1980, Sept. 1980, pp. 729-735.

[11] P. J. Courtois, F. Heymans, and D. L. Parnas, ‘‘Concurrent control
with ‘readers’ and ‘writers’,”’ Commun. ACM, vol. 14, no. 10, pp.

' 667-668, Oct. 1971.

[12] D. J. DeWitt, R. Finkel, and M. Solomon, ‘‘The CRYSTAL multi-
computer: Design and implementation experience,”” Dep. Comput.
Sci., Univ. Wisconsin—Madison, Tech. Rep. 553, Sept. 1984.

{13] R. Finkel, R. Cook, D. DeWitt, N. Hall, and L. Landweber, ‘‘Wis-
consin Modula: Part III of the first report on the crystal project,”’
Dep. Comput. Sci., Univ. Wisconsin—Madison, Tech. Rep. 501,
Apr. 1983.

[14] R. Finkel, M. Solomon, D. DeWitt, and L. Landweber, ‘‘The Char-
lotte distributed operating system: Part IV of the first report on the
Crystal project,”” Dep. Comput. Sci., Univ. Wisconsin—Madison,
Tech. Rep. 502, Oct. 1983.

[15] R. Finkel, A. P. Anantharaman, S. Dasgupta, T. S. Goradia, P. Kai-
kini, C.-P. Ng, M. Subbarao, G. A. Venkatesh, S. Verma, and K.
A. Vora, “‘Experience with Crystal, Charlotte, and LYNX,’’ Dep.
Comput. Sci., Univ. Wisconsin—Madison, Tech. Rep. 630, Feb.
1986.

{16] R. Finkel, B. Barzideh, C. W. Bhide, M.-O. Lam, D. Nelson, R.
Polisetty, S. Rajaraman, 1. Steinberg, and G. A. Venkatesh, ‘‘Ex-
perience with Crystal, Charlotte, and LYNX: Second report,”’ Dep.
Comput. Sci., Univ. Wisconsin—Madison, Tech. Rep. 649, July
1986.

[17] J. P. Fishburn, ‘‘An analysis of speedup in parallel algorithms,”’
Ph.D. dissertation, Dep. Comput. Sci., Univ. Wisconsin—Madison,
Tech. Rep. 431, May 1981.

[18] D. Gelemnter, ‘‘Generative communication in Linda,”” ACM Trans.
Program. Lang. Syst., vol. 7, no. 1, pp. 80-112, Jan. 1985.

[19] C. Ghezzi and M. Jazayeri, Programming Language Concepts.
York: Wiley, 1982.

[20] E. A. Hauck and B. A. Dent, ‘‘Burroughs’ B6500/B7500 stack mech-
anism,”’ in Proc. AFIPS Spring Joint Comput. Conf., vol. 32, 1968,
pp. 245-251. Also in Computer Structures: Principles and Examples,
D. P. Siewiorek, C. G. Bell, and A. Newell, Eds. New York:
McGraw-Hill, 1982, ch. 16, pp. 244-250.

[21] C. A. R. Hoare, ‘‘Communicating sequential processes,”’ Commun.
ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.

[22] J. D. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-Brueckner,
O. Roubine, and B. A. Wichmann, ‘‘Rationale for the design of the
Ada® programming languge,”” ACM SIGPLAN Notices, vol. 14, no.
6, June 1979.

[23] M. B. Jones, R. F. Rashid, and M. R. Thompson, ‘‘Matchmaker: An
interface specification language for distributed processing,’” in Conf.
Rec. Twelfth Annu. ACM Symp. Principles of Program. Lang., Jan.
1985, pp. 225-235.

[24] J. Kepecs and M. Solomon, ‘‘SODA: A simplified operating system
for distributed applications,’” ACM Operat. Syst. Rev., vol. 19, no.
4, pp. 45-56, Oct. 1985. Originally presented at the Third ACM SI-
GACT/SIGOPS Symp. Principles of Distributed Comput., Aug. 27-
29, 1984.

[25] B. W. Lampson and D. D. Redell, ‘‘Experience with processes and
monitors in Mesa,”’ Commun. ACM, vol. 23, no. 2, pp. 105-117,
Feb. 1980.

[26] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, ‘‘Abstraction
mgechanisms in CLU,”” Commun. ACM, vol. 20, pp. 564-576, Aug.
1977.

[27] B. Liskov and R. Scheifler, ‘‘Guardians and actions: Linguistic sup-
port for robust, distributed programs,’” ACM Trans. Program. Lang.
Syst., vol. 5, no. 3, pp. 381-404, July 1983.

[28] B. Liskov and M. Herlihy, *‘Issues in process and communication
structure for distributed programs,”’ in Proc. Third IEEE Symp. Rel.
in Distributed Software and Database Syst., Oct. 1983, pp. 123-132.

New

SCOTT: LANGUAGE SUPPORT FOR DISTRIBUTED PROGRAMS

[29] B. Liskov, M. Herlihy, and L. Gilbert, ‘‘Limitations of remote pro-
cedure call and static process structure for distributed computing,”’
Lab. Comput. Sci., M.I.T., Programming Methodology Group Memo
41, Sept. 1984, revised Oct. 1985.

[30] S. J. Mullender and A. S. Tanenbaum, ‘‘The design of a capability-
based distributed operating system,’’ Centre Math. and Comput. Sci.,
Amsterdam, The Netherlands, Rep. CS-R8418, 1984.

{31] B. J. Nelson, ‘‘Remote procedure call,”” Ph.D. dissertation, Carne-
gie-Mellon Univ., Tech. Rep. CMU-CS-81-119, 1981.

[32] A. Nicolau, ‘‘Uniform parallelism exploitation in ordinary pro-
grams,'’ in Proc. 1985 Int. Conf. Parallel Processing, Aug. 20-23,
1985, pp. 614-618.

[33]) J. D. Ousterhout, D. A. Scelza, and S. S. Pradeep, ‘‘Medusa: An
experiment in distributed operating system structure,”” Commun.
ACM, vol. 23, no. 2, pp. 92-104, Feb. 1980.

[34] M. L. Powell and B. P. Miller, ‘‘Process migration in DEMOS/MP,”’
in Proc. Ninth ACM Symp. Operat. Syst. Principles, Oct. 10-13,
1983, pp. 110-118. In ACM Operat. Syst. Rev., vol. 17, no. 5, 1983.

[35] R. F. Rashid and G. G. Robertson, ‘‘Accent: A communication ori-
ented network operating system kernel,”’ in Proc. Eighth ACM Symp.
Operat. Syst. Principles, Dec. 14-16, 1981, pp. 64-75.

[36] D. M. Ritchie and K. Thompson, ‘‘The UNIX time sharing system,’’
Commun. ACM, vol. 17, no. 7, pp. 365-375, July 1974.

[37) M. L. Scott, ‘‘Messages v. remote procedures is a false dichotomy,’”
ACM SIGPLAN Notices, vol. 18, no. 5, pp. 57-62, May 1983.

[38] M. L. Scottand R. A. Finkel, ‘‘A simple mechanism for type security
across compilation units,”” Dep. Comput. Sci., Univ. Wisconsin—
Madison, Tech. Rep. 541, May 1984. Revised version to appear in
IEEE Trans. Software Eng.

[39] M. L. Scott, ‘‘The interface between distributed operating system and
high-level programming language,’’ in Proc. 1986 Int. Conf. Parallel
Processing, Aug. 19-22, 1986, pp. 242-249.

{40] R. E. Strom and S. Yemini, ‘‘NIL: An integrated language and sys-
tem for distributed programming,’’ in Proc. SIGPLAN '83 Symp.
Program. Lang. Issues in Software Syst., June 27-29, 1983, pp. 73-
82. In ACM SIGPLAN Notices, vol. 18, no. 6, 1983.

[41] R. E. Strom and S. Yemini, ‘‘The NIL distributed systems program-
ming language: A status report,”” ACM SIGPLAN Notices, vol. 20,
no. 5, pp. 36-44, May 1985.

{42] D. C. Swinehart, P. T. Zellweger, and R. B. Hagmann, ‘‘The struc-
ture of Cedar,”’ in Proc. ACM SIGPLAN 85 Symp. Lang. Issues in

103

Program. Environments, June 25-28, 1985, pp. 230-244. In ACM
SIGPLAN Notices, vol. 20, no. 7, July 1985.

[43] United States Dep. Defense, ‘‘Referencé Manual for the Ada® Pro-
gramming Language,”” ANSI/MIL-STD-1815A-1983, Feb. 17, 1983.

[44] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel, ‘*The LO-
CUS distributed operating system,’” in Proc. Ninth ACM Symp. Op-
erat. Syst. Principles, Oct. 10-13, 1983, pp. 49-70. In ACM Operat.
Syst. Rev., vol. 17, no. 5, 1983.

[45] W. Weihl and B. Liskov, ‘‘Specification and implementation of re-
silient, atomic data types,’’ in Proc. SIGPLAN ’83 Symp. Program.
Lang. Issues in Software Syst., June 27-29, 1983, pp. 53-64. In ACM
SIGPLAN Notices, vol. 18, no. 6, 1983.

{46} J. Welsh and A. Lister, ‘‘A comparative study of task communication
in Ada,”’ Software—Practice and Experience, vol. 11, pp. 257-290,
1981.

[47] N. Wirth, Programming in Modula-2, 3rd corrected ed. (Texts and
Monographs in Computer Science, D. Gries, Ed.). Berlin: Springer-
Verlag, 1985.

[48] —, ‘‘From programming language design to computer construc-
tion,”” (The 1984 Turing Award Lecture), Commun. ACM, vol. 28,
no. 2, pp. 159-164, Feb. 1985.

Michael L. Scott (5°85-M’85) received the B.A.
degree in mathematics and computer science and
the M.S. and Ph.D. degrees in computer science
from the University of Wisconsin—Madison, in
1980, 1982, and 1985, respectively.

He is now an Assistant Professor in the De-
partment of Computer Science at the University
of Rochester, Rochester, NY. His research fo-
cuses on programming languages, operating sys-
tems, and program development tools for distrib-

g uted and parallel computing. He is one of the
leaders of Rochester’s Butterfly research group, which is building systems
software for a 128-processor MC68000-based machine.

Dr. Scott is a member of the Association for Computing Machinery, the
Union of Concerned Scientists, and Computer Professionals for Social Re-
sponsibility.

