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ABSTRACT 

Many parallel algorithms require a collection of processes whose number is linear 
(or worse) in the size of the problem to be solved. Few programming environments 
support such flagrant parallelism. Most often each virtual process of a program 
corresponds to a single, expensive heavyweight entity supplied by the operating sys­
tem. Ant Farm is a library package for the BBN Butterfly Parallel Processor that 
allows programs to split computational effort across many lightweight threads of 
control. On each node of the Butterfly, Ant Farm provides for the execution and 
management of dozens, even hundreds, of threads. A full set of mechanisms is pro­
vided for location-transparent communication, sharing, and synchronization. This 
report describes the Ant Farm model, its implementation, and its programming inter­
face. 

This work was supported in part by NSF CER grant number DCR·8320136 DARPA BTL contract number 
DACA76-85.{:-OOOI, and an ffiM Faculty Development Award 
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1. Introduction 

Ant Fann is a library package developed at the University of Rochester for use on the BBN 
Butterfly Parallel Processor [2]. It is compatible with both C and Modula-2, and runs at present 
under BBN's Chrysalis operating system [1]. The goals of Ant Farm are to: 

(1) Provide a user-level programming environment that pennits the maximum possible 

number of lightweight processes (threads). The intent is to allow the programmer to 
choose a level of parallelism based on the needs of the application, rather than on con­
straints imposed by systems software. 

(2) Reduce and simplify the coding overhead necessary to write parallel programs on the 

Butterfly. 

(3) Provide primitives to support a variety of models of coordination and synchronization 

between threads. These include shared memory, Chrysalis events and dual queues, sema­
phores, and monitors. 

Several factors motivated the development of Ant Farm. A primary conclusion of 
Rochester's DARPA Benchmark study [4] was that there was a pressing need for a programming 
system that would support very many more processes than processors. Modula-2, ported to the 

Butterfly at Rochester [12] provides lightweight threads (coroutines), but their definition admits 
no true parallelism; each Modula-2 program lives inside a single Chrysalis process. Mechanisms 
for interaction between Chrysalis processes (e.g. SMP [8,10]) introduce a new communication 

model, one that differs radically from the existing mechanism for interaction between coroutines. 
At the other end of the spectrum, the lightweight task model of the BBN Unifonn System [3] pro­
vides no mechanism for synchronization between threads other than busy-waiting. Ant Fann was 
designed to combine the efficiency and high degree of virtual parallelism of the Unifonn System 
with the scheduler-based synchronization of full-fledged processes. 

Sections 2 and 3 of this report provide an overview of Ant Fann. Section 4 presents and 
explains an example application. Section 5 describes our implementation. Appendices I and 2 

contain copies of the Ant Fann interface description files for Modula-2 and C. 

2. The Ant Farm Model 

An Ant Farm program consists of a large collection of lightweight threads of control. Ini­
tially, at program startup, there is only one thread. Any existing thread can start new threads 

explicitly at any time. Any existing thread may also choose to tenninate itself. The program as a 
whole tenninates when the original thread (or another thread in the same virtual node) runs off 
the end of its program without explicitly tenninating. 

Ideally, threads would all run in a single shared address space and would make full use of 
all available processors at all times. In the context of the Butterfly, however, the code required to 
produce such complete location transparency would have entailed more complexity and run-time 
bookkeeping cost than we were willing to accept. We have therefore adopted the simplifying 
assumption that each thread is confined to a single "virtual node." Virtual nodes share a large, 
distributed heap in which data structures may be allocated at run time. The heap occupies the 
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same addresses on every node, so pointers into shared data structures can be passed between 
nodes without translation. It is usually best to create one virtual node per physical processor, 
though more or fewer can be used if desired. As described in section 5, each virtual node is 
implemented by a separate Chrysalis process. Ant Farm will make full use of available process­
ing power only when there is a runnable thread in some virtual node on every physical processor. 

A traditional sequential program has several distinct storage classes for memory, including 
"automatic" variables (allocated on the staCk), "own" variables (allocated statically, but visible 
only locally), global variables (also allocated statically), and dynamic variables (allocated from a 
heap). In addition, the Ant Farm library defines a new class of dynamic shared variables. All of 
the traditional classes are available in Ant Farm, in the sense that they are recognized by source 
language compilers. Only automatic and dynamic shared variables, however, are consistent with 
the Ant Farm model. Regular dynamic variables may also be used, so long as they are allocated 
and accessed by only a single thread. The use of own and global variables is strongly 
discouraged. 

The role played by the different storage classes should be familiar to any user of the Uni­
form System. Dynamic shared variables reside in the Ant Farm heap, and are accessible to 
threads on all virtual nodes. The other, traditional storage classes are accessible only to threads 
on the same virtual node. To the extent that they are of interest to more than one thread, they 
introduce a notion of semantic locality that Ant Farm is designed to avoid. Automatic variables 
pose no problem, since they correspond to an individual subroutine activation and thus by impli­
cation a thread. Own and global variables can provide the performance-conscious programmer 
with a cache for global information, but they must be used with care. 

To communicate between threads and synchronize access to the shared heap, Ant Farm 
comes with a variety of supplemental libraries. Those that exist at present are described in the 
following section. It is expected that others will be created over time. In all cases, synchroniza­
tion mechanisms are designed to work on a thread-by-thread basis; blocking calls do not delay 
the virtual node as a whole. Ant Farm transfers control to another thread whenever the current 
thread blocks. To maintain this behavior, it is imperative that all blocking operations be per­
formed through Ant Farm. Programmers should never call blocking Chrysalis operations 
directly. Spin locks should also be avoided; multiprogramming of physical processors raises the 
possibility of spinning on a lock held by a suspended virtual node. 

An Ant Farm program begins with a call to the EnterAntFarm library routine. 
EnterAntFarm takes two parameters: the number of virtual nodes in the program and the number 
of 64 Kbyte segments to be used for the Ant Farm heap. Passing a zero for either of these param­
eters results in the use of a default: one virtual node and one heap segment for every physical 
processor in the Chrysalis cluster. 

EnterAntFarm must be called directly from the main block of the program (not indirectly 
by a subroutine). Control returns to the original thread after completing initialization. Additional 
threads can then be created with the StartThread library routine. StartThread allows the user to 
specify the subroutine in which the new thread should begin execution, the size of its stack in 
bytes, the virtual node on which it should run (zero indicates the current virtual node), and the 
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value of a single parameter. The subroutine in which the thread begins should be written without 
parameters. It must also be declared at the outennost level of lexical nesting. The newly-created 
thread should call the function ThreadArgs to obtain the fourth parameter to StartThread. 
ThreadArgs must be called immediately; its return value is unpredictable after the first time the 
new thread blocks. Under most circumstances it is expected that the initial parameter will be a 
pointer to an argument block in the shared heap. 

Ant Farm also provides a function called WorkSpaceSize that returns the size in bytes of 

the stack of the current thread. Like ThreadArgs, WorkSpaceSize must be called immediately 
upon startup, before the thread first blocks. It is useful for programs in which threads create 
copies of themselves in a branching or pipelined fashion. Only the original thread needs to know 
the appropriate amount of space to allocate for its children; others simply pass on their own size. 

A thread can detennine its virtual node number by inspecting the global variable 
VNodeNum. The total number of virtual nodes can be found in the variable NumVNodes. The 
initial node is number 1; the others are numbered from 2 to NumVNodes. The standard idiom for 

starting an Ant Farm thread in Modula-2 is as follows: 

type argrecptr = pointer to argrec; 

var p : argrecptr; (* arguments pointer *) 

procedure foo: (* no parameters *) 

var args : argrecptr; 

begin 

args :- argrecptr (ThreadArgs ()): 

SHdeallocate Cargal; 
Terminate (); 

end fOOi 

p := SHallocate (TByteSize (argrec), nodenum): 

(* initialize p~ *) 

StartThread (foo. WSsize, nodenum, p); 

In C, the corresponding code looks like this: 

struct argrec *p; 

foo () 
{ 

struct argrec *args - (struct argrec *) ThreadArgs (); 

SHdeallocate (arga); 

Terminate (); 

p - SHallocate (sizeof (argrec), nodenum); 

(* initialize *p *) 

StartThread (foo, WSsize, nodenum, p); 
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The Tenninate routine should usually be called at the end of every thread. A thread that 
runs off the end of its program without calling Tenninate will tenninate the entire virtual node. If 
it is running on the original node, this will tenninate Ant Fann as a whole as well (though not 
very cleanly). A thread than wants to tenninate the entire program explicitly can do so by calling 
the TenninateAntFann routine. 

The SHallocate routine returns the address of a newly-allocated block of contiguous 
memory in the shared heap. Its two parameters specify the size of the block and its preferred 
location. SHallocate will choose a location more or less at random if its second parameter is zero 
or if insufficient space is available on the specified node. The code above attempts to allocate the 
argument block on the same node as the new thread on the assumption that the thread will be 
accessing its arguments more often that the creator did. The choice of where to start threads and 
where to allocate shared memory is entirely in the hands of the programmer; Ant Fann provides 
no help with the problems ofload balancing or locality. 

Ant Fann employs a non-preemptive scheduler on each virtual node. Transfers of control 
occur only when the current thread perfonns a blocking operation. As a rule, however, it is 
unwise to count on the lack of preemption to guarantee mutual exclusion. Data in the shared 
heap can be accessed by threads on multiple physical processors. Even within a single virtual 
node, it can be difficult to tell when a subroutine call might cause the current thread to block. 
Several of the basic Ant Fann operations contain block points, even though they are not explicitly 
related to synchronization. 

One consequence of the lack of preemption is that a thread perfonning low-priority "back­
ground" computation can starve the other threads on its node. Ant Fann provides a routine 
called Yield that allows the current thread to relinquish the processor temporarily in favor of 
some other runnable thread. Threads that have been blocked for a synchronization event that has 
since occurred are considered "runnable." Placing a call to Yield in the outer loop of a back­
ground thread allows it to poll for the runnability of other threads on its virtual node. 

Chrysalis-style exception handling (with catch and throw) is available in C, though not in 
Modula-2. Ant Fann routines are written not to throw (internal catch blocks arrange to return 
error statuses instead). A C program that uses throws should include catch blocks around the 
bodies of functions in which threads begin execution. A throw that escapes the original scope of 
a thread is likely to crash the virtual node. 

3. Synchronization Mechanisms 

Ant Fann currently provides four different synchronization libraries, for semaphores, 
events, dual queues, and monitors. Dual queues can be used in conjunction with the Ant Fann 
heap to provide several fonns of message passing. Additional libraries could easily be written to 
provide such additional mechanisms as path expressions, serializers, and conditional critical 
regions. The four existing libraries are described in the subsections below. Complete 
specifications of their C and Modula-2 interfaces are contained in the Appendix. The facilities 
for implementing additional libraries are described in section 5. 
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3.1. Semaphores 

Semaphores are one of the oldest synchronization mechanisms. and were first described by 
Dijkstra [5]. A semaphore has an integer value. and a pair of operations called P and V that can 
be used to change its value. (The letters P and V are mnemonic in Dutch, but that doesn't help 
much.) Both P and V take a single argument, the name of the semaphore. They operate atomi­
cally. Their actions are defined as follows: 

P: decrement the value of the semaphore; 
if the result is negative, then wait. 

V: increment the value of the semaphore; 
if the result is negative or zero, then unblock a waiting thread. 

A semaphore whose value is always less than or equal to one (a so-called binary semaphore) can 
be used as a simple lock. Threads perform P operations to acquire the lock, V operations to 
release the lock. 

In addition to P and V, Ant Farm provides three additional semaphore operations: 
MakeSem, DestroySem, and SemValue. MakeSem takes two arguments. The first is the max­
imum number of threads that can ever wait on the semaphore at once. The second is the 
semaphore's initial value. MakeSem returns a zero if no more semaphores can be created. Sem­
Value returns the current value of the semaphore. DestroySem fails fatally if any thread is wait­
ing on the semaphore. P and V fail fatally if the limit given to MakeSem is ever exceeded. 

3.2. Events 

Events are the basic synchronization primitive in Chrysalis. An event is similar to a binary 
semaphore. It provides two operations, WaitEvent and PostEvent, that resemble P and V, respec­
tively. The differences are: (I) though any process can post an event, only the owner of the 
event can wait, and (2) a 32-bit datum can be provided to the post operation, to be returned by a 
subsequent wait. The effect of the first difference on Ant Farm is that an event is owned by a par­
ticular virtual node, and only threads in that node can wait on it. 

In addition to WaitEvent and PostEvent, Ant Farm provides three additional event opera­
tions: MakeEvent, DestroyEvent, and PollEvent. MakeEvent takes one argument: the virtual 
node that will own the event. (If this argument is zero then the event is created on the current vir­
tual node.) It returns a zero if no more events can be created. DestroyEvent fails fatally if some 
thread is waiting for the event. PollEvent is a non-blocking version of WaitEvent. It returns a 
Boolean value. It takes as arguments both the name of the event and the name of a variable into 
which a result may be written_ If the event has been posted, it returns true and fills in the result 
with the value that would have been returned by WaitEvent. Otherwise it returns false. 

3.3. Dual Queues 
Dual queues are a Chrysalis-supported generalization of events. The name is derived from 

the implementation. in which buffers serve a dual purpose, holding either data or events. From 
the Ant Farm user's point of view, a dual queue is a queue of bounded length with two basic 
operations: EnqueueDualQueue and DequeueDualQueue. Each entry in the queue can hold one 
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32-bit datum. The enqueue operation fails fatally if the queue is full. The dequeue operation 
blocks if the queue is empty, and fails fatally if the number of waiting threads exceeds the size of 
the queue. 

Four additional operations are provided: MakeDualQueue, DestroyDualQueue, PollDual­
Queue, and DualQueueCount. MakeDualQueue takes one parameter: the maximum number of 
items to be held in the queue, which is also the maximum number of threads that can wait when 
the queue is empty. It returns a zero if no more queues can be created. DestroyDualQueue fails 
fatally if any thread is waiting to dequeue data. PollDualQueue is a non-blocking version of 
DequeueDualQueue. It returns a Boolean value. It takes two arguments: the name of the dual 
queue and the name of a variable into which a result may be written. If the queue is non-empty, it 
returns true and fills in the result with the value that would have been returned by DequeueDual­
Queue. Otherwise it returns false. The DualQueueCount operation returns the number of items 
in the queue or, if the queue is empty, the negative of the number of threads waiting to dequeue 
from it. Beware that a positive result does not necessarily mean that an immediately-subsequent 
dequeue operation will succeed without blocking; a thread in some other virtual node may inter­
vene. 

3.4. Monitors 
Monitors in Ant Farm provide the classic Hoare-style semantics [6] in a style reminiscent 

of monitored records in Mesa [11]. Conceptually, a monitor is like a locked room containing 
shared data. Only one thread is allowed inside the room at a time. The two most basic operations 
are therefore EnterMonitor and LeaveMonitor. EnterMonitor will block if the monitor is busy. 

The advantage of monitors over simple locks is that they make it possible for threads to 
synchronize on conditions that are more sophisticated than simple mutual exclusion. The creator 
of a monitor may specify that it is to contain a number of condition variables for synchroniza­
tion. Condition variables support two basic operations: WaitCondition and SignalCondition. 
WaitCondition always blocks. SignalCondition unblocks a waiting thread if there is one, and 
does nothing otherwise. The principal difference between condition variables and semaphores is 
that the V -like signal operation is lost if no thread is waiting. 

In keeping with Hoare's definition. a thread that is unblocked by a signal operation re­
acquires the monitor immediately. The thread that performed the signal operation steps outside 
temporarily and blocks. If there are threads awaiting entry to the monitor when the thread that is 
inside leaves (via LeaveMonitor or WaitCondition), the longest-waiting signaller is unblocked. If 
there are no waiting signallers, the thread that has been waiting longest for the EnterMonitor 
operation is unblocked instead. 

In addition to EnterMonitor, LeaveMonitor, WaitCondition, and SignalConsition, Ant 
Farm provides three additional operations: MakeMonitor, DestroyMonitor, and Condition Count. 
MakeMonitor takes two parameters: the number of condition variables to be associated with the 
monitor and the maximum number of threads that will ever use the monitor at once. It returns a 
zero if no more monitors can be created. DestroyMonitor fails fatally if any thread is waiting to 
enter the monitor or waiting on one of its condition variables. ConditionCount returns the 
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number of threads currently waiting on the condition. All three condition variable operations 
(SignalCondition, WaitCondition, and ConditionCount) take two parameters: the name of the 
monitor and the sequence number of the condition. WaitCondition, SignalCondition, and Enter­

Monitor fail fatally if the limit given to MakeMonitor is ever exceeded. The condition variables 
of a given monitor are numbered starting at zero. 

Ideally one would support monitors with a language that prevented access to the data of a 

monitor by threads that are outside. Unfortunately, there appears to be no way to achieve this 
goal in the context of a library package. It is thus the responsibility of the Ant Farm programmer 
to ensure that monitors are used correctly. The standard idiom for monitored data is to place it in 
a record whose first field is the monitor itself: 

type fooptr = pointer to faa: 

type faa - record (* monitored *) 

lock Monitor; 
data: ... 

end: 

Any operation that accesses the data should be bracketed with EnterMonitor and LeaveMonitor 

operations: 

var x : fooptr:, 

x :- fooptr (SHallocate (Tsize (faa), nodenum}); 
xA.lock :- MakeMonitor (numconds, numthreads); 

EnterMonitor (xA.lock): 

with x'" do 

(* access data *) 

end; 
LeaveMonitor (x .... lock): 

DestroyMonitor (x .... lock): 

While accessing the data, signal and wait operations are straightforward: 

SignalCondition (x"'. lock, condnum); 

WaitCondition (x .... lock, condnum): 

The corresponding C code looks very much the same: 

struct faa { 

Moni tor lock; 

*x: 

x - (struct faa *) SHallocate (sizeof (struct fool, nodenum}): 

x->lock - MakeMonitor (numconds, nurnthreads); 

EnterMonitor (x->lock): 

For the sake of readability, conditions should be identified by named constants. 
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4. A Simple Example 

Figures 1 and 2 contain an Ant Fann implementation of the Sieve of Eratosthenes, the clas­

sic algorithm to compute prime numbers [7, p. 394]. The sieve is not a particularly good algo­
rithm for generating primes from a computational point of view. It is also not a very good exam­

ple of parallel programming (at least not in the fonn presented here), because the amount of com­
putation perfonned between communication events is too small to make effective use of even the 
lightest of lightweight threads. On the other hand, the algorithm is non-trivial in the sense that it 
would take many, many lines of code to implement directly on top of Chrysalis. It is also not an 
obvious candidate for the Unifonn System, since its threads require a great deal of synchroniza­
tion. It displays good speedup as processors are added. It makes a good tutorial. 

The basic idea behind the algorithm is displayed in the following picture: 

I root I f--~{~I-~{~Jf--~{~I-~{~Jf------" ... 
The threads of the algorithm constitute a pipeline, each element of which contains a single prime. 
The root thread feeds all of the natural numbers (except 1!) into the pipeline one at a time. Each 
subsequent thread keeps the first number it receives (a prime), and passes through only those later 
numbers that are not divisible by the first. 

The code begins at line 66 (line 59 in C) with a call to EnterAntFann. The two zero 
parameters arrange for the default of one virtual node and heap segment per physical processor. 
The next two lines create a thread to print the primes as they are discovered, together with a dual 
queue to hold the inputs to that thread. The zero parameters in the call to StartThread indicate 
that the printer thread has no startup parameters and that it is to run on the same virtual node as 
the root thread. The printQ variable is shared between the root and printer threads, illustrating a 
legitimate use of static global variables. The root thread ignores the return values from its calls to 

resource-allocating subroutines. This is probably not good programming practice, but is almost 
certainly safe, since no other demands on those resources have yet been made. 

The code between lines 70 and 75 (63 and 68 in C) creates the first thread in the pipeline 
(the one that will hold the number 2). The argument block for that thread contains the name of 
the dual queue for the printer thread. It also contains the names of two events: one of which is 
used to pass numbers into the pipeline and the other of which is used for handshaking, to ack­
nowledge the receipt of a number and pennit the sender to continue. (Without such flow control, 
it would be possible for a thread to crash the program by posting an event a second time before its 
owner had awaited it.) The last three lines of the main program keep feeding numbers into the 
pipeline until it reaches MAXINT (which it won't) or until code somewhere else causes tennina­
tion (which it will). 

The real work of the program occurs in the Eratosthenes procedure, which is executed by 
the threads of the pipeline. Each thread begins by acquiring its arguments from the built-in 
ThreadArgs function. (Note that the Eratosthenes routine itself has no arguments.) In lines 30 

and 31 (21 and 22 in C) the thread acquires its prime, unblocks its predecessor (which has been 



1 module sieve: 

2 

3 from system import TByteSize, MAXINT: 
4 from io import writef, output; 

5 from AntFarm import EnterAntFarm, Start Thread, NumVNodes, VNodeNum, 
6 ThreadArgs, TerminateAntFarm: 
7 from Events import Event, MakeEvent, PostEvent, WaitEvent; 

10 

8 from DualQueues import Queue, MakeDualQueue, EnqueueDualQueue, DequeueDualQueue: 
9 from SHeap import SHallocate: 

10 

11 canst WSsize - 2000; (* bytes *) 

12 type argblkptr - pointer @nocheck to argblock: 

13 argblock - record 
14 forward, back : Event: 
15 home : Queue: 
16 end: 

17 

18 procedure NextNode (n : cardinal) 

19 begin 

20 return (n mod NumVNodes) +1; 

21 end NextNode: 

22 

23 procedure Eratosthenes; 

24 var 

25 args, suce : argblkptr: 

26 myprime, n, junk, nextVnode 

27 begin 

28 succ := nil; 

cardinal: 

cardinal; 

29 args:- argblkptr (ThreadArgs (»; 
30 rnyprirne:= WaitEvent (args~.forward); PostEvent (args~.back, 0); 
31 EnqueueOualQueue (args~.horne, myprime); 

32 loop 

33 

34 

35 
36 
37 

38 
39 

40 

41 
42 
43 
44 

45 

46 

n :- WaitEvent (args~.forward); PostEvent (args~.back, 0); 
if n mod myprime <> 0 then 

if succ - nil then 
nextVnode :- NextNode (VNodeNum); 

succ :- SHallocate (TByteSize (argblock), nextVnode); 
succ~.forward :- MakeEvent (nextVnode); 

succA.back :- MakeEvent (0); 

succ~.horne :- argsA.home; 

if not Start Thread (Eratosthenes, WSsize, nextVnode, succ) then 

TerminateAntFarm (); 

end; 

end; 
PostEvent (succA.forward, n); junk '- WaitEvent (succ-.back); 

end; 
47 end; 

48 end Eratosthenes; 

49 

50 var printQ : Queue; 
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52 procedure printer; 
53 var n : cardinal: 
54 begin 
55 loop 
56 n :- DequeueDualQueue (printQ): 

57 writef (output, "\d\n", n); 

58 end; 

59 end printer: 

60 

61 var head : argblkptr; 

62 
63 
64 

nextVnode, i, junk 
void : Boolean: 

65 begin (* main *) 

66 EnterAntFarm (0, 0); 

cardinal; 

67 printQ := MakeDualQueue (NumVNodes): 
68 void :- StartThread (printer, WSsize, 0, 0); 

69 

70 nextVnode:= NextNode (VNodeNum): 
71 head :- SHallocate (TByteSize (argblock), nextVnode); 

72 head~.forward :- MakeEvent (nextVnode); 
73 headA.back :- MakeEvent (O): 

74 head'" . home :- printQ; 
75 void := StartThread (Eratosthenes, WSsize, nextVnode, head); 
76 

77 for i :- 2 to MAXINT do 
78 PostEvent (head .... forward, i); junk :- WaitEvent (head .... back): 

79 end: 

80 end sieve. 

Figure 1: Modula-2 Code ror the Sieve or Eratosthenes 
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waiting for the acknowledgment), and enters the prime on the printer's dual queue. In the subse­
quent loop the thread repeatedly receives a number from its predecessor, checks it for divisibility 
by its prime, and passes it on to its successor if appropriate. The if statement at line 35 (line 26 in 
C) creates the successor on demand the first time it is needed. Successive elements of the pipe­
line are placed on successive virtual nodes, with wrap-around. The program tenninates when 
insufficient resources exist to create another thread. 

5. Implementation Details 

5.1. Memory Configuration 

Each Ant Fann virtual node is implemented by a (heavyweight) Chrysalis process. Each 
virtual node has the potential of running many threads, limited principally by available local 
memory. Since each virtual node consumes Chrysalis resources, the most efficient use of 



1 "include "AntFarm.h" 
2 "include "Events.h" 
3 "include "DualQueues. hIt 

4 "include "SHeap.h" 
5 
6 .define WSsize 2000 1* bytes *1 
7 

8 struct argblk { 
9 Event forward, back; 

10 Queue home; 
11 

12 
13 .define NextNode(n) (n % NumVNodes + 1) 
14 
15 Eratosthenes () 

16 

17 struct argblk *args - ThreadArgs (); 
18 struct argblk *succ = 0; 

19 unsigned myprime, n, junk, nextVnode; 
20 

21 myprime = WaitEvent (args->forward); PostEvent (args->back, 0); 
22 EnqueueDualQueue (args->home, myprime); 
23 for (;:) { 

24 
25 

26 
27 

28 

29 

n - WaitEvent (args->forward); PostEvent (args->back, 0); 

if (n % myprime) 
if (!succ) { 

30 

31 
32 
33 
34 

35 

36 

nextVnode NextNode (VNodeNum); 
succ - (struct argblk *) 

SHallocate (sizeof (struct argblk), nextVnode); 

sUcc->forward - MakeEvent (nextVnode); 
sUcc->back = MakeEvent (o); 

succ->home - args->home; 

if (!StartThread (Eratosthenes, WSsize, nextVnode, succ» { 
TerminateAntFarm (); 

37 
38 

PostEvent (succ->forward, n); junk - WaitEvent (succ->back); 

39 

40 

41 

42 Queue printQ; 
43 
44 printer () 
45 { 

46 unsigned n; 
47 
48 for (;;) { 

49 n - DequeueDualQueue (printQ); 
50 printf ("%d\n", n); 

12 



51 
52 
53 

54 struct argblk *head; 

55 unsigned nextVnode, i, junk; 

56 

57 main () 

58 
59 EnterAntFarm (0, 0); 
60 printQ - MakeDualOueue (NumVNodes); 
61 (void) StartThread (printer, WSsize, 0, 0): 
62 

63 nextVnode = NextNode (VNodeNum): 
64 head = SHallocate (sizeof (struct argblk), nextVnode}; 
65 head->forward = MakeEvent (nextVnode); 
66 head->back = MakeEvent (D); 

67 head->home - printQ; 

68 (void) StartThread (Eratosthenes, WSsize, nextVnode, head); 
69 

70 for (i - 2; i !- Oxffffffff; i++) 
71 PostEvent (head->forward, i); junk - WaitEvent (head->back); 
72 

73 

Figure 2: C Code for the Sieve of Eratosthenes 
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memory, cycles, and virtual address space is obtained when exactly one virtual node runs on 
every physical processor in the user's cluster. 

All virtual nodes have the same number of segments at the same addresses. Since instruc­
tion fetching through the switch is unthinkable, virtual nodes on separate processors use separate 
copies of the code. For compatibility with Chrysalis, virtual nodes on the same physical proces­

sor use separate copies as well. The data segments of separate virtual nodes are also distinct, 
because they contain large amounts of node-specific data in the run-time library for the manage­
ment of threads and events. All shared data is in the Ant Farm heap, created by EnterAntFann 
and mapped into the same virtual addresses on each virtual node. 

EnterAntFann takes two arguments, the desired number of virtual nodes and the desired 
number of 64 Kbyte heap segments. The number of segments in the heap is rounded up to the 
next even multiple of the number of virtual nodes. For both arguments a zero means one per phy­
sical processor. In the original (root) node, EnterAntFann (I) creates, maps in, and initializes the 
shared heap; (2) builds a number of descriptive data structures in the heap; (3) starts an appropri­
ate number of additional nodes (clones), passing them the addresses of the data structures; (4) 
creates a pair of background threads (discussed below); (5) waits for all clones to complete ini­
tialization; and (6) returns. 
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Since the clones are exact copies of the root process, they too begin execution by calling 
EnterAntFann. Once inside, however, they perfonn a different set of operations. Each clone (1) 
reads its command-line arguments to find its virtual node number and the address and object ids 
of the initial segment of the shared heap; (2) maps in the initial heap segment and reads out of it 
the rest of its startup parameters, including the addresses and object ids of the rest of the segments 
of the shared heap; (3) maps in the remainder of the heap; (4) participates if necessary in the crea­

tion of additional virtual nodes; (5) creates its background threads; (6) infonns the root node that 
it has finished initialization; and (7) calls TenninateThread to end execution of its main thread. 

This last step causes the clone to fall into its thread dispatcher, waiting for external events. 

The creation of clone processes is parallelized to minimize the time required for Ant Fann 
initialization. The root process creates a dual queue on which it enqueues, for each other virtual 
node to be created, the processor number on which that node should run. Each process upon 
creation (the root included) repeatedly dequeues a processor number and creates a virtual node, 
stopping only when the queue is empty. This process-creation tree is similar to that provided by 

Rochester's Crowd Control package [9] except that a given process may start an arbitrary number 
of children, instead of only two. 

5.2. Thread Management 
Within a single virtual node, each Ant Fann thread is implemented as a coroutine, with 

stack space allocated out of the local (malloc) heap. All transfers between coroutines occur 
inside the Ant Fann library, and are invisible to the user. Users should generally assume that 
threads all run in paraliel. There are two noteworthy exceptions: (1) a thread that never blocks 

will starve its peers, and (2) if used with care, the lack of pre-emption can provide mutual exclu­
sion for access to static data of the virtual node. The ThreadArgs and WorkSpaceSize routines 
rely on this mutual exclusion, and must be called by a newly-created thread before the first time 

that it blocks. 

The following Ant Fann calls have the potential to block: Start1'hread, TenninateThread, 
Yield, MakeEvent, WaitEvent, P, DequeueDualQueue, EnterMonitor, WaitCondition, and Sig­
nalCondition. All of the blocking primitives call WaitEvent internally. When the current thread 

attempts to wait on an event that has not yet been posted, a context switch must take place to 
enable another runnable thread within the virtual node. The registers of the currently running 
thread are saved on its stack, a new runnable thread is selected, the registers of the new thread are 

loaded from its stack, and execution resumes in the new thread. 

To facilitate the scheduling of threads, Ant Fann maintains a ready list of runnable threads 
and a mapping between blocked threads and the events on which they are waiting. When the 
current thread must block it adds an event/thread pair to the event dictionary and invokes the Ant 
Fann scheduler. When a StartThread call is made, the currently running thread is placed on the 
ready list (since it is still runnable) and a context switch is made to the new thread. Control will 

return only when the new thread blocks. 

There does not always exist a runnable thread when a context switch has to be made - the 
ready list may be empty. In this case the virtual node must actually block to Chrysalis, waiting 
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for any of its events to be posted. Upon awakening it locates the posted event in the event dic­

tionary and resumes the corresponding thread. I If there is no corresponding thread (i.e. the event 
has been posted before it was required), then an entry is made in the event dictionary (with a null 
thread id) indicating that the event is already posted. When the target thread would nonnally 
block to wait for the event no blocking actually occurs, as the event is immediately available. 

5.3. Background Threads 
In every virtual node, including the root, EnterAntFann creates two background threads 

that continue to exist throughout the life of the program. The purpose of these threads is to 
receive and handle requests from other virtual nodes to create local threads and events. Since 
EnterAntFann returns to the main thread only on the root node, these threads provide the only 
means for future execution on nodes other than the root. Each background thread begins execu­
tion by creating a dual queue on which it waits for requests to be enqueued. Both StartThread 
and MakeEvent check to see whether they are to perfonn their wode locally or remotely. In the 
latter case they enqueue a request on the appropriate dual queue and wait for the request to be 
honored. Since the remote node may not respond for an arbitrary amount of time (its threads may 
never block), the waits in StartThread and MakeEvent may cause a transfer of control to another 
runnable thread. 

The requests enqueued by MakeEvent simply contain the name of the event on which the 
requesting thread is waiting. The requests enqueued by StartThread are actually pointers to argu­
ment blocks in the shared heap. Each argument block contains the address of the subroutine in 
which the new thread is to begin execution, the stack size for that thread, the name of the event 
on which the requesting thread is waiting, and a pointer to the parameter block supplied by the 
user (to be provided to the new thread via ThreadArgs). 

To avoid the overhead of allocation from the shared heap on every StartThread call, Ant 
Fann caches argument blocks for reuse. It also caches events instead of invoking the Chrysalis 
operations to destroy and re-create them. Events are used not only by user programs, but also 
internally for control and handshaking during operations requiring synchronization. This optimi­
zation therefore increases the perfonnance of many operations. 

5.4. Caveats 

(I) As previously mentioned, a thread may wait only on events owned by the virtual process 
in which it runs. Fatal errors will result if a thread attempts to use an event belonging to 
another virtual node. 

(2) Posting to an event that is already posted will cause a fatal error. Thus, Ant Fann pro­
grams communicating with events must usually use handshaking strategies (e.g. a pair of 
events) to ensure that an event is not posted again until the target thread has seen the 

1 This dispatching mechanism is borrowed from the Lynx distribuled programming language [13.14], where it 
was used in the absence of shared memory. 
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original posting. This limitation does not occur with the other synchronization mechan­
isms (e.g. dual queues, semaphores, and condition variables), since they incorporate 
storage space for multiple postings. 

(3) It is important to end the code of every thread with an explicit call to TerminateThread. 
Otherwise the virtual node as a whole will terminate when the thread runs off the end. 

(4) The stack size parameter specified in any StartThread call must be big enough to hold the 
entire stack the thread will ever use. This can be difficult to predict, especially in the 
presense of recursive subroutines. Use of a stack that is not big enough may cause the 
Butterfly node to crash or hang when the stack overflows. The minimal stack size 
required for even the most basic of threads appears to be approximately 2000 bytes; use 
more stack when in doubt. 

(5) The scarcity of segment attribute registers (SARs) on the Butterfly imposes a restriction 
of at most 256 objects mapped into the address space of a heavyweight process. Shared 
memory is thus limited in size. With a loo-node cluster, each virtual node can hold at 
most two segments of the shared heap. Since our implementation does not allow heap 
objects to span nodes, it will not be possible to allocate anything larger than 128 Kbytes. 

(6) There is a limit on the number of events that can be created by an Ant Farm program. 
Like the storage available from malloc, this limit varies with a large number of factors, 
including the size of the cluster, the number of virtual nodes, and the number of other 
Chrysalis objects allocated on the machine. Our experience suggests that for typical pro­
grams the limit on stack space for threads is likely to be encountered before the limit on 
events. 

(7) Additional synchronization mechanisms can be added easily to Ant Farm. Internally, 
however, they must all be implemented in terms of other, existing mechanisms (primarily 
events). A call to a blocking operation in Chrysalis (e.g. Sleep) will block the entire vir­
tual node, not just the calling thread. 

Appendix 1: Modula-2 Interface Definitions 

1.1. AntFarm.def 
definition module AntFarm; 

(*************************************************************** 

Major AntFarm definitions. 
***************************************************************) 

from SYSTEM import ADDRESS; 

export (* var *) VNodeNum, NumVNodes, 

(* proc *) EnterAntFarm, TerminateAntFarm, StartThread, 
TerminateThread, Yield, ThreadArgs, WorkSpaceSize; 

VAR NumVNodes CARDINAL: 



(* Set by EnterAntFarm to the number of virtual nodes running. *) 

VAR VNodeNum : CARDINAL; 
(* Set by EnterAntFarm to the virtual node number of the caller (a number 

between 1 and NumVNodes). *) 

procedure EnterAntFarm(VirtualNodes : CARDINAL: VirtualHeapWidth : CARDINAL ): 

(* Should be the first AntFarm library call in any AntFarm pgm. Starts 

"VirtualNodes" heavyweight processes across the nodes of the cluster (use 

VirtualNodes-O to establish 1-1 mapping btw real and virtual nodes). 

Also sets up "VirtualNodes" shared heaps (one per 

size (VirtualHeapWidth/VirtualNodes) x 64k bytes. 

to establish one 64k heap per virtual node.) 

Virtual node), each of 

(Use VirtualHeapWidth=Q 

Returns to caller if root. If caller is a child does not return. *) 

procedure TerrninateAntFarm{): 

(* Stop AntFarrn *) 

procedure StartThread(name : proc; WSsize : CARDINAL: 
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VirtualNodeNum : CARDINAL; HeapArgBlock : ADDRESS) : BOOLEAN; 
{* Start a thread (a parameterless procedure named "name") on virtual node 

"VirtualNodeNum". A stack of size "WSsize" bytes is created for the new 

thread (caveat - use WSsize >= 2000). HeapArgBlock is starting address of 

a shared memory block allocated by the user and initialized with whatever 

parameters are needed by the new thread (see ThreadArgs{) below}. 

Note that "VirtualNodeNum"-O causes the new thread to be started on the 

caller's virtual node. 

Returns T if thread started ok, else F (e.g. no memory). *) 

procedure TerminateThread( }: 

(* Causes the calling thread to be marked for deletion and a context switch to 

any other runnable thread. Once the context switch is made, the terminated 

thread is killed. *) 

procedure Yield(); (* temporarily make calling thread LOW priority *) 

(* Check if there are any other threads or jobs waiting to run on this 

virtual node. If so, transparently relinquish control. If not, return to 

caller immediately. *) 

procedure ThreadArgs() : ADDRESS: 

(* Retrieve the address of the argument block to a new thread. *) 

procedure WorkSpaceSize() : CARDINAL; 

(* Return the workspace/stack size of the calling thread. *) 

end AntFarm. 

1.2. SHeap.def 
definition module SHeap: 



(*************************************************************** 
Shared Heap operations. (See , EnterAntFarm' in AntFarm.def for 

information about the initialization of shared heaps.) This 

module provides routines for allocation and deallocation of 

blocks of shared memory from shared heaps. 

***************************************************************) 

from System import ADDRESS; 

export (* proc *) SHallocate, SHdeallocate, InitHeap: 

procedure SHallocate(size : CARDINAL: vnode : CARDINAL) : ADDRESS: 

(* Allocate a contiguous block of shared memory "size" bytes long from the 
heap on virtual node "vnode". If unavailable, try to allocate from ANY 

other heap. Use of vnode=O performs similarly but requires no prefered 

vnode (an arbitrary vnode is selected). 

Address of the beginning of the shared memory block is returned. *) 

procedure SHdeallocate(a : ADDRESS); 

(* Frees a shared memory block at address "a". This must have 

been previously obtained via SHallocate. *) 

procedure InitHeap(vnode : CARDINAL; numsegs : CARDINAL); 

(* For internal AntFarm use only. *) 

end SHeap. 

1.3. Semaphores.def 
definition module Semaphores; 

(*********************************************************************** 
Semaphore operations. 

***********************************************************************) 

export (* type *) Sem, 
(* proc *) MakeSem, DestroySem, P, V, SemValue; 

t.ype Semi 

(* Opaque type designating a semaphore. *) 

procedure MakeSem( NumUserThreads : CARDINAL; 
initval : CARDINAL) : Semi 
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(* Create and return a new semaphore [with initial value "initval") to be used 

by (at most) "NumUserThreads" threads. *) 

procedure DestroySem{semid : Sem); 

(* Delete a semaphore. *) 

procedure V(semid : Sem); 
(* Release i.e. increment semaphore value by 1. *) 



procedure P{semid : Sem); 

(* Acquire i.e. wait (relinquish control) until semaphore value is 
greater than zero, then decrement semaphore value by 1 and return. *) 

procedure SemValue(semid : Sem} : INTEGER; 
(* Return current semaphore value. *) 

end Semaphores. 

1.4. Events.def 
definition module Events; 
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(****************************************************************************** 
Event operations. 

******************************************************************************) 

export (* type *) Event, 
(* proc *) MakeEvent, DestroyEvent, PostEvent, WaitEvent, PollEvent: 

type Event: (* opaque type designating an Event *) 

procedure MakeEvent(VirtualNodeNum : CARDINAL} : Event; 

(* Create and return an event on Virtual node "VirtualNodeNum". 
Zero indicates current virtual node. *) 

procedure DestroyEvent(AnEvent : Event); 
(* Delete eXisting event. *) 

procedure PostEvent(AnEvent : Event; Data 
(* Post data to a specific event. *) 

CARDINAL) ; 

procedure WaitEvent(MyEvent : Event) : CARDINAL; 
(* Await the posting of an event, transparently relenquishing control. 

Return event data. *) 

procedure PollEvent(AnEvent : Event; VAR data: CARDINAL) : BOOLEAN; 
(* Same as WaitEvent except returns false if event not immediately available 

i.e. NONBLOCKING and won't relinquish control to another thread ... 
Return boolean T if event was posted, with VAR data set. *) 

end Events. 

1.5. DualQueues.def 
definition module DualQueues; 

(********************************************************************** 
Dual Queue operations. 

**********************************************************************) 

export (* type *) Queue, 



(* proc *) MakeDualQueue, DestroyDualQueue, EnqueueDualQueue, 

DequeueDualQueue, PollDualQueue, DualQueueCount: 

type Queue; 

(* Opaque type designating a Dual Queue. *) 

procedure MakeDualQueue(numitems : CARDINAL) 

(* Create and return a new Dual queue that can 

elements. *) 

Queue: 

hold (at most) "numitems" 

procedure DestroyDualQueue(qid 

(* Delete a Dual Queue. *) 
Queue) ; 

procedure EnqueueDualQueue(qid : Queue; data 

(* Enqueue a datum on a Dual Queue. *) 
CARDINAL) ; 

procedure DequeueDualQueue(qid ! Queue) : CARDINAL: 

(* Dequeue a datum from a Dual Queue. If Dual Queue is empty, then 

wait (relinquish control) and regain control once data becomes available. 

Data is set on return. *) 

procedure PollDualQueue(qid : Queue; VAR data: CARDINAL) : BOOLEAN: 

(* Attempt to dequeue a datum from Dual Queue, but do not relinquish control 

if the Dual Queue is empty. Return false if no data available, otherwise 

return true with data variable set. *) 

procedure DualQueueCount(qid : Queue) ; INTEGER: 

(* If the Dual Queue contains data, return the number of items in it. If one 

or more threads are waiting for data to become available {i.e. the queue 

contains only events}, return a negative value indicating the number of 

waiting threads. If the Dual Queue is empty, return zero. *) 

end DualQueues. 

1.6. Monitors.def 
definition module Monitors: 

(*********************************************************************** 
Monitor operations. 

***********************************************************************) 

export (* type *) Monitor, 
(* proc *) MakeMonitor, DestroyMonitor, EnterMonitor, LeaveMonitor, 

WaitCondition, SignalCondition, ConditionCount: 

type Monitor; 

(* Opaque type designating a monitor. *) 

procedure MakeMonitor( NumConditions : CARDINAL: 
NumUserThreads : CARDINAL) Monitor; 
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(* Create and return a new monitor. "NumConditions" specifies the number of 
condition queues in the monitor; "NumUserThreads" specifies the maximum 

number of threads that can simultaneously use the monitor. 

Note that WaitCondition, Signal Condition, and ConditionCount use 

condition values numbered from 0 to NurnConditions-l. *) 

procedure DestroyMonitor(monid : Monitor); 

(* Delete a monitor. *) 

procedure EnterMonitor(monid : Monitor); 

(* Enter a monitor. If the monitor is busy or there are other threads 

on the entry queue ahead of it, wait (relinquish control) until it 
is caller's "turn". When control is returned to the caller, it is 

guaranteed to be the only thread executing within the monitor. *) 

procedure LeaveMonitor(monid : Monitor); 

(* Exit a monitor, releasing exclusive control over it. *) 

procedure WaitCondition(monid : Monitor; condit: CARDINAL}; 

(* Release exclusive control over the monitor and wait (relinquish control) 

for the specified condition on the appropriate condition queue. "Condit" 

is a value between 0 and NumConditions-l. 

Control is returned when the calling thread becomes first on the 

specified condition queue and the condition becomes true (i.e. some 

thread signals the condition). *) 

procedure SignalCondition(monid : Monitor; condit: CARDINAL); 

(* If no thread is waiting on the specified condition queue, simply return. 

Otherwise, release exclusive control over the monitor, wait (relinquish 

control) on the urgent queue, and wake up the appropriate waiting thread. 

Control is returned when the calling thread becomes first on the urgent 

queue and some thread executes a LeaveMonitor or WaitCondition call. *) 

procedure ConditionCount(monid : Monitor; condit: CARDINAL) : CARDINAL; 

(* Return the number of waiting threads in the specified condition queue. *) 

end Monitors. 

Appendix 2: C Interface Definitions 

2.1. AntFarm.h 
extern unsigned NumVNodes, VNodeNum; 

/* The virtual nodes of an Ant Farm program are numbered from 1 to NumVNodes. 

VNodeNum contains a different number on each virtual node, and can be 

inspected by a thread to find out where it is. */ 

extern void EnterAntFarm (); 

/* unsigned VirtualNodes, VirtualHeapWidth; 

Initializes Ant Farm. Must be called at the beginning of 
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the program. Arranges for the specified number of virtual nodes 
(including the original, which will be node number 1). Creates 

the shared heap, which will consist of VirtualHeapWidth segments 

(rounded up to the next multiple of VirtualNodes) of size 64 Kbytes 

each. Virtual nodes will be scattered as evenly as possible across 

the physical processors of the user's partition. If either VirtualNodes 

or VirtualHeapWidth is zero, EnterAntFarm will use a default value 

of one virtual node or heap segment, respectively, per physical 
processor. Because of the initialization technique employed to 

allocate virtual nodes, command-line invocation parameters for 

Ant Farm will be available (via argc, argv, and envp) on the original 
node only. * / 

extern void TerminateAntFarm (); 

extern char /* boolean */ StartThread (); 

/* void name (): 

unsigned WSsize, VirtualNodeNum; 

char *HeapArgBlock: 

Creates a new thread running on virtual node VirtualNodeNum and 

executing function 'name'. Returns false if insufficient resources 
exist to create the thread, true otherwise. The thread will be 

provided with WSsize bytes of stack space. The thread can obtain 

the final HeapArgBlock parameter by calling ThreadArgs (). Programmers 

will generally want this parameter to be a pointer into the shared 

heap, though any 4-byte quantity can be used. */ 

extern void TerminateThread (): 

extern void Yield (): 

/* Ant Farm uses a non-preemptive scheduler. Yield causes the current 

thread to give up the processor temporarily in favor of some other 

runnable thread. Threads that were blocked for a synchronization event 

that has since occurred are considered "runnable." */ 

extern char* ThreadArgs (): 

/* Returns the HeapArgBlock parameter from the 

caused the creation of the current thread. 

thread first blocks. Since it is difficult 

Start Thread invocation that 

Must be called before that 

to tell when a function call 

might block (MakeEvent does, for example, for non-obvious reasons), 

threads should call ThreadArgs immediately, before performing any 

other computation. */ 

extern unsigned WorkSpaceSize (): 
/* Returns the stack size of the current thread, in bytes. Returns 

the TOTAL size, not the size remaining. Like ThreadArgs, must be 

called before the thread first blocks. Useful for creating copies 

of the current thread, without keeping track of sizes explicitly. */ 
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2.2. SHeap.h 
extern char* SHallocate (); 

/* unsigned size, vnode; 

Allocates a contiguous block of shared memory of the specified 

size on the specified virtual node, if possible. If vnode = 0, 

or if insufficient resources exist on the specified node, attempts 

to allocate the block on an arbitrary node. If the block cannot 

be created anywhere, returns nil (0). Otherwise returns a pointer 

to the beginning of the block. */ 

extern void SHdeallocate (); 

1* char *a; 

Deallocates a block of shared memory previously acquired from 

SHallocate. */ 

2.3. Semaphores.h 
typedef unsigned Semi /* should be opaque */ 

extern Sem MakeSem (); 

/* unsigned NumUserThreads, initval; 

Creates a semaphore with the specified initial value. 

Returns zero if insufficient resources exist. */ 

extern void DestroySem (); 

/* Sem semid; */ 

extern void V (); 

/* Sem semid; 

Increments the value of the semaphore. If the result is negative or 

zero, unblocks a thread attempting a P operation. */ 

extern void P (); 

/* Sem semid; 

Decrements the value of the semaphore. If the result is negative, 

blocks the current thread. */ 

extern int SemValue (); 

/* Sem semid; 

Returns the value of the semaphore. */ 

2.4. Events.h 
typedef unsigned Event; 

extern Event MakeEvent (); 

/* unsigned VirtualNodeNum; 

/* should be opaque */ 

Creates an event on the specified virtual node. Only threads on 

that node can wait or poll for the event, and then only one at a time. 

Any thread can post or destroy the event. Returns zero if insufficient 

resources. */ 
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extern void DestroyEvent (); 
/* Event AnEvent; */ 

extern void PostEvent (); 

/* Event AnEvent; 
unsigned Data; */ 

extern unsigned WaitEvent (); 

/* Event MyEvent; 
Blocks the caller until the event is posted, then returns the datum 

that was supplied to the post operation. */ 

extern char /* Boolean */ PollEvent (); 

/* Event AnEvent; 
unsigned *data; 

If the event has already been posted, writes the datum from the post 
operation into the location specified by the data pointer parameter, then 
returns true. Otherwise returns false. Does not block. */ 

2.5. DualQueues.h 
typedef unsigned Queue; /* should be opaque */ 

extern Queue MakeDualQueue (); 
/* unsigned numitems; 

Creates a dual queue. Returns zero if insufficient resources 
exist. A maximum of numitems data items can be enqueued before 
the queue will overflow. A maximum of numitems threads can be 

blocked trying to dequeue from the queue when it is empty. */ 

extern void DestroyDualQueue (); 

/* Queue qid; */ 

extern void EnqueueDualQueue (); 
/* Queue qid; 

unsigned data; */ 

extern unsigned DequeueDualQueue (); 

/ * Queue qid; 
Blocks the caller until the queue is non-empty, then dequeues. */ 

extern char /* Boolean */ PollDualQueue (); 

/* Queue qid; 
unsigned *data; 

If the queue is non-empty, dequeues an item and writes it to the 

location specified by the data pointer parameter, then returns true. 
Otherwise returns false. Does not block. */ 

extern int DualQueueStatus (); 

/* Queue qid; 
If the queue is non-empty, returns the number of items in it. 
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If the queue is empty, returns the negative of the number of threads 

that are waiting to dequeue data. */ 

2.6. Monitors.h 
typedef char* Monitor; 

1* actually a pointer to a struct, which should be opaque */ 

extern Monitor MakeMonitor (); 

1* unsigned NumConditions, unsigned NumUserThreads; 

Creates a monitor with the specified number of conditions. 

Returns nil (0) if insufficient resources exist. For the purposes 

of WaitCondition, Signal Condition, and ConditionCount, the conditions 

will be numbered from 0 to NumConditions-l. All queues associated 

with the monitor (entry queue, urgent queue, condition queues) 

will hold a maximum of NumUserThreads each. */ 

extern void DestroyMonitor (); 

/* Monitor monid: */ 

extern void EnterMonitor (); 

/* Monitor monid; */ 

extern void LeaveMonitor (); 

/* Monitor monid; */ 

extern void WaitCondition (); 

/* Monitor monid; 

unsigned condit; */ 

extern void SignalCondition (); 

/* Monitor monid; 

unsigned condit; 

Hoare semantics! the signaller relinquishes control of the 

monitor and is placed in an "urgent" queue. The waiter gains 

control of the monitor with no chance for intervening actions 

by any other thread. */ 

extern unsigned ConditionCount (); 

/* Monitor monid; 

unsigned condit; 

Returns the number of threads waiting on the condition. */ 
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