
Butterfly Project Report 
22 

Large-Scale Parallel Programming: 
Experience with the BBN Butterfly Parallel Processor 

T. J. LeBlanc, M.L. Scott and C.M. Brown 

September 1988 

Computer Science Department 
University of Rochester 

Rochester, NY 14627 



Large-Scale Parallel Programming: 
Experience with the BBN Butterfly Parallel Processor 

Thomas J. LeBlanc, Michael L. Scott, and Christopher M. Brown 

Department of Computer Science 
University of Rochester 
Rochester, NY 14627 

ABSTRACT 

For three years, members of the Computer Science Department at the University of Rochester 
have used a collection of BBN ButterflylM Parallel Processors to conduct research in parallel sys­
tems and applications. For most of that time, Rochester's 128-node machine has had the distinc­
tion of being the largest shared-memory multiprocessor in the world. In the course of our work 
with the Butterfly we have ported three compilers, developed five major and several minor library 
packages, built two different operating systems, and implemented dozens of applications. Our 
experience clearly demonstrates the practicality of large-scale shared-memory multiprocessors, 
with non-unifonn memory access times. It also demonstrates that the problems inherent in pro­
gramming such machines are far from adequately solved. Both locality and Amdahl's law 
become increasingly imponant with a very large number of nodes. The availability of multiple 
programming models is also a concern; truly general-purpose parallel computing will require the 
development of environments that allow programs written under different models to coexist and 
interact Most imponant, there is a continuing need for high-quality programming tools; 
widespread acceptance of parallel machines will require the development of programming 
environments comparable to those available on sequential computers. 

1. Introduction 

In September 1984, the Department of Computer Science at the University of Rochester 

acquired a 3-node BBN ButterflylM Parallel Processor [5]. In May 1985, with funding from an 

NSF CER grant, the department acquired a l28-node Butterfly, the largest configuration in 

existence. Over the last 3.5 years, the Butterfly has been used by various members of the depan­

ment to develop numerous software packages and applications. This paper traces the history of 

This work was supported in pan by NSF CER grant number DCR-8320136, NSF grant number 
CCR-8704492, DARPA/ETL contract number DACA76-85-C-0001, DARPNONR contract number 
NOOO14-82-K-0193, an ONR Young lnvestigator Award, contract number NOOO14-87-K-0548, and an 
IBM Faculty Development Award. 

This paper was presented at the ACM SIGPLAN PPEALS Conference (parallel Programming: Experience 
with Applications, Languages, and Systems), New Haven, CT, 19-21 July 1988. 



2 

our software development for the Butterfly and describes our collective experience using the 

world's largest shared-memory multiprocessor. 

For us the Butterfly and its systems software represented two unique scientific opportuni­

ties. First, it was flexible enough to support the implementation of our new ideas; second, it 

incorporated several interesting solutions to problems that themselves represented research 

issues. Our findings are based on a computer that is now a generation removed from the current 

product line. In any case, this is not a product review. We wish first to document ideas and con­

cerns that are shaping the evolution of parallel computing. Second, and more important, we 

believe that our experiences are still intellectually relevant and that they will be useful in future 

contexts when similar or related issues arise. 

Our experiences fall into several categories. In section 2 we describe our experience with 

the hardware and software provided by BBN. Section 3 describes the history of the Butterfly 

software development effort at the University of Rochester, including both systems software and 

applications. Section 4 discusses lessons we have learned along the way and section 5 provides a 

summary of our experience and an assessment of the future of Butterfly-like machines. 

2. BBN Butterfly Hardware and Software 

The original Butterfly Parallel Processor (the "Butterfly-I") was developed by BBN 

Laboratories in the late 1970's as part of a research project funded by the Defense Advanced 

Research Projects Agency. It eventually evolved into a commercial product, marketed for the 

past two years by BBN Advanced Computers, Inc. It has recently been succeeded by a second 

generation of hardware and software, the Butterfly 1000 series, announced in October of 1987. 

The experiences reported in this paper were obtained in the course of work with the original ver­

sion of the Butterfly. Much of our current research has moved to the new machine. 

2.1. Butterfly Hardware 

The Butterfly Parallel Processor (figure 1) consists of up to 256 processing nodes con­

nected by a high-speed switching network. Each node in the switching network is a 4-input, 4-

output switch with a bandwidth of 32 Mbits/sec. In the Butterfly-I, each processing node is an 8 

MHz MC68000 with 24 bit virtual addresses and up to 1 Mbyte of local memory (4 Mbytes with 

additional memory boards). A 2901-based bit-slice co-processor called the processor node con­

troller (PNC) interprets every memory reference issued by the 68000 and is used to communicate 

with other nodes across the switching network. All of the memory in the system resides on indi­

vidual nodes, but any processor can address any memory through the switch. The Butterfly is 

therefore a NUMA 1 machine; remote memory references (reads) take about 4 J.ls, roughly five 

1 Non-Uniform Memory Access time. Unlike UMA multiprocessors (with uniform access times), 
NUMA machines have the potential to scale to very large numbers of nodes. 



3 

000 

Figure 1: Butterfly Parallel Processor 

times as long as a local reference. 

The PNC on the Butterfly-I implements a segmented virtual memory. Each virtual address 

contains an 8 bit segment number and a 16 bit offset within the segment. A process can have at 

most 256 segments in its address space. each of which can be up to 64 Kbytes in size. Each seg­

ment is represented by a SAR (Segment Attribute Register). which defines the base. extent, and 

protection of the associated memory. A process's virtual address space is represented by an 

ASAR (Address Space Attribute Register). which defines the address and extent of a group of 

SARs corresponding to the segments addressable by the process. There are 512 32-bit SARs and 

I 16-bit ASAR per processor. Chrysalis allocates the available SARs in blocks of 8. which are 

arranged in a buddy system. Three bits in the ASAR are used to specify the size of the SAR 

block. which must be one of 8. 16. 32. 64. 128. or 256. 

The two most serious problems with the original hardware proved to be its software float­

ing point and its primitive memory management Hardware floating point was provided by BBN 

in 1986. using a daughter board containing an MC68020 processor and MC68881 floating point 

co-processor.2 but the shortcomings of the memory architecture remained. Even though the phy­

sical address space of the machine is 1 Gbyte. the virtual address space of a process could include 

2 We have upgraded 8 spare nodes and 8 nodes from our large Butterfly to provide the Department 
with a 16-node floating point machine. 



4 

at most 16 Mbytes of memory (256 segments, each containing 64 Kbytes), and then only if there 

were at most two processes per processor. 111is limitation forced the programmer to modify the 

address space of processes dynamically (at a cost of over 1 ms per segment added or deleted) and 

to avoid using sbared memory whenever possible. It also limited severely the number of 

processes that could be allocated to a processor. In our experience the need to manage SARs 

explicitly has been a recurring source ofirritation and problems. 

Another problem with the memory architecture is that remote references steal memory 

cycles from the local processor. If many processors busy-wait on a shared location (a common 

synchronization tecbnique), the impact on the processor containing the memory can be substan­

tial. 

Most of the problems just described have been addressed in the design of the Butterfly 

Plus, the hardware base for the Butterfly 1000 series [3]. Each node in the Butterfly Plus has an 

MC68020 processor, MC68881 floating point co-processor, and MC68851 memory management 

unit The MC68020 and MC68851 on the Butterfly Plus enable demand paging, but remote refer­

ences still steal memory cycles from the local processor. The presense of a modern memory 

management system makes the new machine an extremely attractive vehicle for research in 

operating systems. 

2.2. Chrysalis Operating System 

First-generation Butterfly machines use BBN's own Chrysalis operating system [4]. 

Chrysalis was originally developed for real-time packet-switching applications. Its facilities con­

stitute a protected subroutine library for C programs. They include operations for process 

management, memory management, and interprocess communication. Many of the most com­

mon operations, including much of the process scheduler, are implemented in microcode in the 

PNC. 

A Chrysalis process is a conventional heavyweight entity with its own address space. 

Processes are scheduled by the kernel. They do not migrate. The memory space of a process 

consists of a collection of memory objects, each of which can range in size from zero to 64 

Kbytes.3 Each process, when created, is allocated a static portion of the SARs on its node. One 

SAR is consumed by each memory object in the process's address space. SAR contents can be 

changed dynamically; explicit operations permit the current process to change its address space 

by mapping and unmapping arbitrary memory objects. 

3 Actually, segments can only be allocated in 16 standard sizes. An odd-sized memory object is 
rounded up to the next standard size, with an inaccessible fragment at the end. 



5 

Atomic memory operations can be used to implement spin locks. In addition, Chrysalis 

provides highly efficient mechanisms for scheduler-based synchronization. Events resemble 

binary semaphores on which only one process (the owner) can wait. The process that posts an 

event can also provide a 32-bit datum that will be returned to the owner by the wait operation. 

Dual queues are a generalization of events that can hold the data from multiple posts and can sup­

ply that data to multiple waiters. Microcode implementation of events and dual queues allows all 

of the basic synchronization primitives to complete in only tens of microseconds. 

All of the basic Chrysalis abstractions (processes, memory objects, events, and dual 

queues) are subsumed by a single object model. Among other things, this model supports a uni­

form ownership hierarchy with reference counts that allows the operating system to reclaim the 

resources used by subsidiary objects when a parent is deleted. Unfortunately, a facility for 

transferring ownership to "the system" makes it easy to produce objects that are never 

reclaimed. Chrysalis tends to leak storage. 

Chrysalis incorporates an exception-handling mechanism patterned after the MacLISP 

catch and throw [39]. Exception handlers are implemented with C macros that save information 

for non-local gotos. In the event of an error, whether detected by hardware (in a trap handler) or 

software (in a kernel call or user program), Chrysalis unwinds the stack to the nearest exception 

handler and optionally suspends the process for examination by a debugger. At first glance the 

catch/throw mechanism appears to be an extremely attractive way of managing errors. Unfor­

tunately, it suffers from several limitations. First of all, it is highly language-specific. To pro­

gram in Modula-2, one must insert an extra subroutine (written in C) around every system call in 

order to catch and handle throws. Even in C, the programmer must be aware that register and 

non-register variables will behave differently in the event of a throw, and that gotos, breaks, or 

continues in or out of catch blocks will leave the process in an unpredictable state. Entering and 

leaving a protected block of code is expensive enough (about 70 lIS [17]) that a highly-tuned pro­

gram must have every possible catch block removed from its critical path of execution. 

The interface provided by Chrysalis is too low-level for convenient use by application pro­

grammers. We have found, however, that its primitive operations constitute a very general 

framework upon which to build efficient higher-level communication protocols and programming 

environments. The following section describes a number of the software packages we have built 

on top of Chrysalis. Their success has depended on the fact that Chrysalis allows the user to 

explicitly manage processes, memory, and address spaces, and provides highly efficient low-level 

mechanisms for synchronization and communication. 

Largely as a result of its research-environment origins, Chrysalis leaves much to be desired 

as a general-purpose operating system. It has no support for virtual memory or paging. It lacks a 

file system; file system operations are implemented over the Ethernet by a daemon process on a 

host machine (a V AX, Sun, or Symbolics workstation). Its user interface is built around a primi­

tive ASCII terminal window manager (though X-window support is available when running the 



6 

network software). Interaction with the command inte1preter requires intimate knowledge of the 

hardware and the operating system. This need for expertise means that Chrysalis is an inap­

propriate programming environment for all but the most sophisticated users. It is also not a 

development environment; programs are written, compiled, and linked on the host and down­

loaded for execution on the Butterfly. 

Extensive use of a global referencing environment makes Chrysalis essentially a single­

user system. Users can partition the machine into multiple virtual machines, but there is no sup­

port for multiple users within a partition. Moreover, protection loopholes in both the hardware 

and in Chrysalis allow processes (with a little effort) to inflict almost unlimited damage on each 

other and on the operating system. Chrysalis allows a process to map in any memory object it can 

name, and names are easy to guess. More fundamentally, the PNC microcode is designed in such 

a way that a process can enqueue and dequeue information on any dual queue it can name, 

regardless of any precautions the operating system might take. 

The Butterfly GP-lOOO, now in Beta test, will run the Unix-compatible Mach operating 

system [I]. The availability of Mach should guarantee a convenient development environment 

on all of the newer machines. It is most unlikely, however, to provide users with the efficiency or 

the degree of control over low-level resources available with Chrysalis. BBN has announced 

plans to provide a hybrid approach on future machines (the RT-lOOO), with applications running 

on top of a real-time kernel in dedicated subsets of the machine, under the overall control of 

Mach. 

2.3. Uniform System 

The BBN Uniform System (US) library package [6] implements lightweight tasks that exe­

cute within a single global address space. The US interface consists of calls to create a globally­

shared memory, scatter data throughout the shared memory, and create tasks that operate on the 

shared memory. During initialization, US creates a manager process for each processor, which is 

responsible for executing tasks. A task is a procedure to be applied to shared data, and is usually 

represented by a function name and a pointer into shared memory. A global work queue 

(accessed via microcode operations) is used to allocate tasks efficiently to processors. Since each 

task inherits the globally-shared memory upon creation, US supports a very small task granular­

ity. 

The Uniform System is the programming environment of choice for most applications, pri­

marily because it is easy to use. All communication is based on shared memory, and the mapping 

of tasks to processors is accomplished automatically. Moreover, the light weight of tasks pro­

vides a very cheap form of parallelism. Nevertheless, there are significant disadvantages to using 

US. The work queue model of task dispatching has led to an implementation in which tasks must 

run to completion. Spin locks must be used for synchronization. Waiting processors accomplish 

no useful work, implementation-dependent deadlock becomes a serious possibility, and programs 



7 

can be highly sensitive to the amount of time spent between attempts to set a lock [55]. Spin 

locks also steal remote cycles, exacerbating the problem of memory contention. 

US limits the amount of memory that can be shared on the original Butterfly. Like any 

Chrysalis process, a US manager can have at most 256 segments in its virtual address space. 

Since all managers have identical memory maps, only 16 Mbytes (out of a possible 1 Gbyte of 

physical memory) can actually be used by a computation under the Uniform System. Similarly, 

US limits how the data is structured. One of the main advantages of a segmented address space is 

that memory segments can be allocated to logical quantities regardless of their size, since each 

segment is of arbitrary size. This is not a reasonable approach under the Uniform System (at least 

on the Butterfly-I) because the number of available SARs, and hence memory segments, is 

severely limited. In order to be able to access large amounts of memory, each segment must be 

large. Data must be structured on the basis of this architectural limit, rather than logical relation­

ships. Large amounts of data irregular in structure must be allocated in regular patterns to 

economize on SARs. Even on the new hardware, where SARs are not a problem, the single 

globally-accessible data space will tend to discourage the development of modular program struc­

ture. 

Finally, the Uniform System model does not encourage the programmer to exploit locality. 

US creates the illusion of a global shared memory, where all data is accessed using the same 

mechanisms. The illusion is not supported by the hardware, however, since frequent access to 

individual words of remote memory is undesirable. Thus, in many applications, each task must 

copy data into local memory, where it is processed and then returned to the shared memory. 

Our conclusion is that the Uniform System provides an outstanding environment for cer­

tain kinds of applications. It is best for programs in which (1) the available parallelism displays a 

high degree of regularity (as in many data-parallel symbolic and numerical applications), (2) the 

task-size granularity is on the order of a single subroutine call, and (3) almost all of the dependen­

cies and interactions between tasks are statically defined. For other sorts of applications there are 

other useful models. Several of these are described in the following section. 

3. Rochester Software Development 

Butterfly software development at Rochester has always been driven by applications. Our 

work in computer vision, connectionist networks, and computational geometry motivated both 

our purchase of the Butterfly and subsequent system development. Applications programmers 

struggled hard at first to learn the details of the new architecture and operating system. Their 

effort was hampered by unreliable software, poor diagnostics, a lack of good tools, an absence of 

documentation, and the need to use low-level system calls for most important operations. Over 

time, BBN improved both software reliability and documentation, and developed the Uniform 

System library package, while the Rochester systems group has worked to ease the programming 

task by developing a large number of additional packages and tools. The Butterfly has also 



8 

fonned the hardware base for implementations of two different student operating systems, and a 

major research effort in parallel operating systems is now underway on the Butterfly Plus. 

3.1. Applications 

The first significant application developed for the Butterfly at Rochester was the Connec­

tionist Simulator [21], now in use (in its uniprocessor incarnation) at over 100 sites. The simula­

tor supports a neural-like model of massively-parallel computing. Rochester's AI group is using 

it to investigate algorithms that might be used by a computer resembling the brain [22]. The 

Butterfly version of the simulator runs directly on top of Chrysalis. It was our first concrete 

example of the Butterfly's processing power. With 120 Mbytes of physical memory we were 

able to build networks that had led to hopeless thrashing on a VAX. With 120-way parallelism, 

we were able to simulate in minutes networks that had previously taken hours. 

Several other early applications were drawn from work in computer vision [7,9]. The 

vision group at Rochester uses the University of British Colombia's IFF (Image File Fonnat) as 

an internal standard. IFF includes a library of vision utilities that can be used as filters, reading 

an image from an input pipe and writing another to an output pipe. Complex image operations 

can be implemented by composing simpler filters. An early goal of the software development 

effort at Rochester was to extend the IFF model into the realm of parallel processing with an 

implementation on the Butterfly. The BIFF (Butterfly IFF) package [40], completed in the sum­

mer of 1986, contains Unifonn System-based parallel versions of the standard IFF filters. A 

researcher at a workstation can download an image into the Butterfly, apply a complex sequence 

of operations, and upload the result in a tiny fraction of the time required to perfonn the same 

operations locally. 

Pernaps the best-studied early application on the Butterfly was the diagonalization of 

matrices by Gaussian elimination. Bob Thomas of BBN conducted extensive experiments with a 

Unifonn System-based implementation [16,55]. In an attempt to capitalize on previous experi­

ence with distributed programming, we implemented and analyzed a message-based solution to 

the same problem, comparing it to the Unifonn System version [28,29]. The results of this com­

parison suggested that neither shared memory nor message passing was inherently superior, and 

that either might be preferred for individual applications, both from a conceptual point of view 

and from the point of view of maximizing perfonnance. 

In a single three-week period in the summer of 1986, seven different benchmarks were 

developed as part of a DARPA-sponsored investigation into parallel architectures for computer 

vision [8, 10, 11,41]. These benchmarks included edge finding and zero-crossing detection, con­

nected component labeling, Hough transfonnation, geometric constructions (convex hull, Voro­

noi diagram, minimal spanning tree), visibility calculations, graph matching (subgraph isomor­

phism), and minimum-cost path in a graph. Four different programming environments were 

used: bare C with Chrysalis calls, the Unifonn System, the Structured Message Passing package 



9 

(section 3.2). and the Lynx distributed programming language (also section 3.2). Experience 

with these applications and environments reinforced our conviction that different models of paral­

lel programming can be appropriate for different applications. 

Several pedagogical applications have been constructed by students for class projects. 

including graph transitive closure. 8-queens. and the game of pentominoes. In addition. we have 

running a large checkers-playing program (written in Lynx). that uses a parallel version of alpha­

beta search [23]. As part of our research in debugging parallel programs (section 3.3). we have 

studied a non-deterministic version of the knight' s tour problem and have performed extensive 

analysis of a Butterfly implementation of Batcher's bitonic merge son. As part of our research in 

parallel file systems (section 3.4). we have developed I/O intensive algorithms for copying. 

transforming. merging. and sorting large external files. Ph. D. dissenations are currently in 

preparation in the areas of parallel compilation [25]. parallelizing compilers [44]. and parallel 

programming language design [14]. 

3.2. Programming Environments 

NET [26] was the first systems package developed for the Butterfly at Rochester. NET 

facilitates the construction of regular rectangular meshes (including lines. cylinders. and tori). 

where each element in the mesh is connected to its neighbors by byte streams. Where Chrysalis 

required over 100 lines of code to create a single process. NET could create a mesh of processes. 

including communication connections. in half a page of code. Our experience with NET showed 

how valuable even a very simple systems software package could be. 

Another early decision in our work with the Butterfly was that experimentation with multi­

ple models of parallel programming would be facilitated by the availability of languages other 

than C. Source was available for a Modula-2 compiler developed at DEC's Western Research 

Center. The construction of a 68000 code generator and Butterfly run-time library provided us 

with our second Butterfly language [42]. In addition to addressing well-known weaknesses in C 

(in the areas of modularity and error-checking. for example). Modula-2 has allowed us to con­

struct packages such as Ant Farm (see below). in which the fine-grain pseudo-parallelism of 

coroutines plays a central role. 

Both BIFF and NET showed the value of message passing. even in a shared-memory mul­

tiprocessor. BIFF applications based on the Uniform System would copy data into and out of the 

shared memory using essentially a message-passing style. NET byte streams implemented 

untyped messages. Together with the experiments in Gaussian elimination. this early experience 

suggested the need to provide general-purpose suppon for message passing on the Butterfly. Pro­

jects were therefore launched to provide that suppon both at the library package level and in the 

form of a high-level programming language. 

The SMP (Structured Message Passing) package [30.31] was designed to provide a level 

of functionality comparable to that of the BBN Uniform System. It supports the dynamic 



10 

construction of process families, hierarchical collections of heavyweight processes that communi­

cate through asynchronous messages (figure 2). In a generalization of the NET interconnection 

facility, process families can be connected together according to arbitrary static topologies. Each 

process can communicate with its parent, its children, and a subset of its siblings, as specified by 

the family topology. An SMP library is available for both C and Modula-2. For C programs it 

eliminates most of the cumbersome and error-prone details of interacting with Chrysalis. For 

Modula-2 programs it also provides a model of true parallelism with heavyweight processes and 

messages that nicely complements the built-in model of pseudo-parallelism with coroutines and 

shared memory. In order to economize on SARs, an SMP process with many communication 

channels must map its buffers in and out dynamically. To soften the roughly I ms overllead of 

map operations, SMP incorporates an optional SAR cache that delays unmap operations as long 

as possible, in hopes of avoiding a subsequent map. 

At a higher level of abstraction, message passing is also supported by the Lynx distributed 

programming language [46,48]. Like SMP with Modula-2, Lynx supports a collection of heavy­

weight processes containing lightweight threads. Unlike SMP, it incorporates a remote procedure 

call model for communication between threads, relying on a message dispatcher and thread 

scheduler in the run-time support package to provide the performance of asynchronous message 

passing between heavyweight processes. Connections Oinks) between processes can be created, 

destroyed, and moved dynamically, providing the programmer with complete run-time control 

Figure 2: Hierarchy or SMP Process Families 



11 

over the communication topology (figure 3). On the Butterfly. a standanl Lynx library also per­

mits processes to sbare memory. though message-passing (or spin locks) must still be used for 

synchronization. 

Because it is a language instead of a library package. Lynx offers the advantages of syntac­

tic cleanliness. secure type checking for messages. high-level naming (with scatter/gather of mes­

sage parameters). Ada-like exception handling. and automatic management of context for inter­

leaved conversations. Unlike most parallel and distributed languages. Lynx provides these 

advantages without requiring compile-time knowledge of communication partners and without 

sacrificing protection from potential errors in those partners. Experience with Lynx has yielded 

important information on the inherent costs of message passing [49) and the semantics of the 

parallel language/operating system interface [47). 

Applications experience. particularly with graph algorithms and computational geometry. 

has convinced us of the need for a programming environment that supports very large numbers of 

lightweight blockable processes. Parallel graph algorithms. for example. often call for one pro­

cess per node of the graph. At the time of the DARPA benchmark. none of the programming 

environments available on the Butterfly supported algorithms of this type. Lightweight tasks 

form the core of the Uniform System. but have no facilities for blocking or synchronization other 

than spin locks. Lightweight threads are also available in Lynx and in Modula-2 (e.g. with SMP). 

but the mechanisms for interaction between threads in the same process are radically different 

from the mechanisms for interaction between threads in different processes. We have recently 

developed a library package called Ant Farm [50) that encapsulates the microcoded communica· 

tion primitives of Chrysalis with a Lynx-like coroutine scheduler. Originally designed for use in 

Modula-2. Ant Farm is currently being modified to work with a C-based coroutine package pro­

vided in recent releases of Chrysalis. In either language. invocation of a blocking operation by a 

o~ 

Figure 3: Processes and Links In Lynx 



12 

lightweight Ant Fann thread causes an implicit context switch to another runnable thread in the 

same Chrysalis process. In the event that no other thread is runnable, the coroutine scheduler 

blocks the process until a Chrysalis event is received. When combined with a global heap and 

facilities for starting remote coroutines, the resulting system allows lightweight threads to com­

municate with each other without regard to location. 

The Unifonn System, SMP, Lynx, and Ant Farm are all significantly safer and more con­

venient to use than the Chrysalis primitives on which they are implemented. They are also 

Significantly less flexible, and bear little resemblance to the abstractions of the operating system. 

A more compatible improvement to the Chrysalis environment was provided by 

Chrysalis++ [12], an encapsulation of Chrysalis abstractions in C++ class definitions. To imple­

ment Chrysalis++ we first modified the standard AT&T implementation of C++ to generate code 

for the Butterfly, then recast the explicit object management of Chrysalis into the implicit object 

management of C++. Implicit object management reduces the amount of code necessary to 

create and manage processes, memory objects, events, dual queues, and atomic variables. The 

strong type checking of C++ also reduces the frequency of run-time errors. Problems encoun­

tered in the implementation of Chrysalis++ led to general observations about the difficulty of 

reconciling the object-management needs of languages and operating systems [13, 15]. 

3.3. Programming Tools 

Numerous small projects undertaken in the course of our work with the Butterfly can be 

categorized loosely as systems software tools. Modifications to the Unifonn System (e.g. for fas­

ter initialization) have been incorporated into the standard BBN release. A general-purpose pack­

age called Crowd Control allows similar tree-based techniques to be used in other programs [32], 

spreading work over multiple nodes. The Crowd Control package can be used to parallelize 

almost any function whose serial component is due to contention for read-only data. Other pack­

ages have been developed for highly-parallel concurrent data structures [19,35] and memory allo­

cation [20]. 

A local facility for software partitioning (to subdivide a Butterfly into smaller virtual 

machines) was brought up prior to the release of the BBN version. Local enhancements to the 

host-based remote file server allow us to access NFS files from Butterfly programs. The only full 

set of published benchmarks for PNC and Chrysalis functions is a Rochester technical repon [17]. 

Experiments with eight different implementations of remote procedure call explored the 

ramifications of these benchmarks for interprocess communication [34]. 

Despite the improvement in the programming environment achieved by software packages 

and tools, the parallel program debugging cycle continued to be frustrating, particularly for non­

detenninistic applications. It was the realization that cyclic debugging of nondetenninistic 

behavior was impractical, coupled with the observation that the standard approach to debugging 

parallel programs based on message logs would quickly fill all memory, that led to the 



13 

development of Instant Replay [33]. Instant Replay allows us to reproduce the execution 

behavior of parallel programs by saving the relative order of significant events as they occur, and 

then forcing the same relative order to occur while re-running the program for debugging. Instant 

Replay requires less time and space than other methods because the actual information communi­

cated between processes is not saved. It is also general enough to use in all of our software pack­

ages because it assumes a communication model based on shared objects, which are used to 

implement both shared memory and message passing. No central bottlenecks are introduced by 

execution monitoring and there is no need for synchronized clocks or a globally-consistent logi­

cal time. 

Our experiments indicate that the overnead of monitoring can be kept to within a few per­

cent of execution time for typical programs, making it practical to run non-deterministic applica­

tions under Instant Replay all the time. We are in the process of building a toolkit based on 

Instant Replay that allows a full range of debugging and performance analysis tools to be 

integrated with a graphical user interface [24]. The graphics package, known as Moviola, makes 

it possible to examine the partial order of events in a parallel program at arnitrary levels of detail. 

It has been used to discover performance bottlenecks and message-ordering bugs, and to derive 

analytical predictions of running times. 

3.4. Operating Systems 

The Butterlly-l has been used at Rochester as a hardware base for two different pedagogi­

cal operating systems. The Osiris kernel was an early prototype of low-level routines for the 

Psyche operating system (see below). It was preceded by Elmwood [36], a fully-functional 

RPC-based multiprocessor operating system constructed as a class project in only a semester and 

a half. Though it was not originally conceived as a research project, experience with Elmwood 

led to a considerably deeper understanding of the Butterfly architecture. It also provided us with 

useful experience in the management of multi-person projects, and provided some ten different 

graduate students with first-hand experience writing low-level software on a parallel machine. 

Our accumulated experience with both applications and systems software has convinced us 

that no one model of process state or style of communication will prove appropriate for all appli­

cations. The beauty of large-scale NUMA machines like the Butterfly is that their hardware sup­

ports efficient implementations of a wide variety of models. Truly general-purpose parallel com­

puting demands an operating system that supports these models as well, and that allows program 

fragments written under different models to coexist and interact. These observations have led to 

the development of a parallel operating system we call Psyche [51]. Psyche facilitates dynamic 

sharing between threads of control by providing a user interface based on passive data abstrac­

tions in a uniform virtual address space. It ensures that users pay for protection only when neces­

sary by permitting the lazy evaluation of privileges, using a system of keys and access lists. The 

data abstractions are known as realms. Their access protocols define conventions for sharing the 



14 

unifonn address space. An explicit tradeoff between protection and perfonnance detennines the 

degree to which those conventions are enforced. In the absence of protection boundaries, access 

to a shared realm (figure 4) can be as efficient as a procedure call or a pointer dereference. A 

Psyche implementation is currently under construction on the Butterfly Plus. 

In the gray area between operating systems and programming tools, we are investigating 

issues in the design of highly-parallel IDe systems that can be used to increase the perfonnance of 

I/O bound applications. From the point of view of parallel processing, any perfonnance limit on 

the path between secondary storage and application program must be considered an I/O 

bottleneck. Faster storage devices cannot solve the I/O bottleneck problem for large multiproces­

sor systems if data passes through a IDe system on a single processor. Implementing the file sys­

tem as a parallel program can significantly improve perfonnance. Selectively revealing this 

parallel structure to utility programs can produce additional improvements, particularly on 

machines in which interprocessor communication is slow compared to aggregate I/O bandwidth. 

The Bridge parallel file system [18] distributes each IDe across multiple storage devices and pro­

cessors. The approach is based on the notion of an interleaved file, in which consecutive logical 

blocks are assigned to different physical nodes. Naive programs are able to access IDes just as 

they would with a conventional IDe system, while more sophisticated programs may export 

pieces of their code to the processors managing the data, for optimum perfonnance. Analytical 

and experimental studies indicate that Bridge will provide linear speedup on several dozen disks 

for a wide variety of IDe-based operations, including copying, sorting, searching, and comparing. 

D D 
D 

Figure 4: Overlapping Protection Domains In Psyche 



15 

4. Lessons 

The following summarizes the lessons we have learned in developing both system software 

and applications for a large-scale multiprocessor over a three year period. Our work has 

emphasized architectural implications and programming environment issues; our lessons reflect 

this emphasis. Although our particular experience is with the Butterlly-l, we believe these les­

sons generalize to other multiprocessors as well. 

4.1. Architectural Implications 

Large-scale shared-memory multiprocessors are practical. We have achieved significant 

speedups (often almost linear) using over 100 processors on a range of applications including 

connectionist network simulation, game-playing, Gaussian elimination, parallel data structure 

management, and numerous computer vision and graph algorithms. In the course of developing 

these applications, we have also discovered that many interesting effects become obvious only 

when large numbers of processors are in use. In the Gaussian elimination experiments, for exam­

ple, our SMP implementation outperformed the Uniform System implementation whenever fewer 

than 64 processors were used, despite the fact that communication in SMP is significantly more 

expensive than direct access to shared memory. Beyond 64 processors the timings for the Uni­

form System remained constant (no additional improvements), while the SMP timings actually 

increased (figure 5). This anomaly is due to the amount of communication used in each imple­

mentation. The number of messages sent in the SMP implementation is P*N, where P is the 

number of processors and N is the size of the matrix. In other words, doubling the amount of 

parallelism also doubles the amount of communication. Beyond 64 processors, the increased 

amount of communication caused by each additional processor is not justified by the incremental 

gain in parallelism. The number of communication operations in the Uniform System implemen­

tation is (N2-N)+P(N-I); doubling the amount of parallelism does not significantly increase the 

amount of communication. The point at which the increase in communication dominates addi­

tional parallelism in the Unifonn System implementation is not even visible with 128 processors. 

Without a large number of processors, we might not have discovered the anomaly. 

Lacality of reference is important, even with shared memory. Although each processor can 

access the memory of others, remote references on the Butterlly-l are five times slower than local 

references. This disparity is not so great as that found in local-area networks, where two or three 

orders of magnitude are common, but it cannot be ignored without paying a substantial perfonn­

ance penalty. Any measurable difference between local and remote access time requires the pro­

grammer to treat the two differently; caching of frequently accessed data is essential. A standard 

technique used in Unifonn System programs is to copy blocks of data from the Oogically) global 

shared memory into local memory for processing; results are then copied back to the global 

shared memory. In the Hough transfonn application, this technique improved performance by 

42% when 64 processors were used [41]. Local lookup tables for transcendental functions 



Second 

400 

350 

\ 
300 \ 

\ 

\ 

250 \ 
\ 

\ 

200 \ 

150 

100 

50 

\ 
\ 

\ Message· 
Passing 

Shared 
Memory 

O~------~------~L-------~------~cc-
32 64 96 128 

Number of Processors 

Figure 5: Gaussian Elimination Performance; 
Shared Memory versus Message Passing 

16 

improved perfonnance by an additional 22%. The issue oflocality will be even more important 

in the Butterfly Pius, since local references have improved by a factor of four, while remote refer­

ences have improved by only a factor of lwO. 

Contention has the potential to seriously impact peiformance. Remote references on the 

Butterfly can encounter both memory and switch contention. The potential for switch contention 

was clearly anticipated in the design of the Butterfly hardware, and has been rendered almost 

negligible [45). On the other hand, the potential for memory contention appears to have been 

underestimated, since remote references steal memory cycles from the processor containing the 

memory. Only one processor can issue local references to a given memory, but over a hundred 



17 

processors can issue simultaneous remote references. leading to performance degradation far 

beyond the nominal factor of five delay. The careful programmer must organize data not only to 

maximize locality. but also to minimize memory contention For example. the Gaussian elimina­

tion program (on 64 processors or fewer) displays a performance improvement of over 30% when 

data is spread over all 128 memories [29]. The greatest effect occurs when roughly 1/4 to 1/2 of 

the total number of processors are in use. When a larger fraction of processors are performing 

computation. most of the memory is already in use. Not enough is left to reduce contention 

noticeably. When too few processors are used. the resulting memory traffic is not heavy enough 

to cause significant contention. 

Amdahl's law is extremely important in large-scale multiprocessors. Serial program com­

ponents that have little impact on performance when a few processors are in use can lead to seri­

ous bottlenecks when 100 processors are in use. Massive problem sizes are sometimes required 

to justify the high costs of serial startup. Serialization in system software is especially difficult to 

discover and avoid. For example. the Crowd Control package was created to parallelize process 

creation. but serial access to system resources (such as process templates in Chrysalis) ultimately 

limits our ability to exploit large-scale parallelism during process creation. Serial memory allo­

cation in the Uniform System was a dominant factor in many programs until a parallel memory 

allocator was introduced into the implementation [20]. Serial access to a large file is especially 

unacceptable when 100 processes are available to process the data; the Bridge file system is 

designed to address this particular bottleneck. None of these parallel solutions is particularly 

simple. and the elimination of similar bottlenecks can be expected to pose a serious problem for 

any highly parallel application. 

Architectural variety inhibits the development of portable systems software. A myriad of 

different multiprocessor architectures are now commercially available. including bus-based mul­

tiprocessors like the Sequent Balance and Encore Multimax. switch-based multiprocessors like 

the BBN Butterfly. cosmic cube variants like the NCUBE and Intel hypercube. and the Connec­

tion Machine from 1binking Machines. Inc. Despite the architectural variety. few general princi­

ples of parallel programming have emerged on which programming environments could be 

based. Some notable attempts have been made to provide general parallel programming environ­

ments [43.53.54]. but substantial investments in software development are still required for 

every new machine. In many cases it may even be difficult to develop a production-quality 

operating system fast enough to make truly effective use of a machine before it becomes obsolete. 

The problem is less severe in the sequential computer world. since uniprocessors tend to resemble 

one another more than multiprocessors do. While an operating system such as Unix can make 

effective use of a variety of conventional sequential computers. simply porting Unix to a mul­

tiprocessor would not provide fine-grain parallelism. cope effectively with non-uniform memory 

access times (the so-called' 'NUMA problem' '). or address a host of other issues. The emergence 

of Mach may improve matters significantly, but its effectiveness for NUMA architectures has yet 



18 

to be demonstrated. 

4.2. Programming Environment 

The programming environment must support multiple programming models. We have 

implemented many different applications using an assortment of operating systems, library pack­

ages, and languages. Empirical measurements demonstrate that NUMA machines like the 

Butterfly can suppon many different programming models efficiently. For example, efficient 

communication based on shared memory has been implemented in the Uniform System and Ant 

Farm. Higher-level communication based on message passing and remote procedure call has 

been implemented in SMP, Lynx, and Elmwood. Extensive analysis of the communication costs 

in these systems suggests that, for the semantics provided, the costs are very reason­

able [36,47,49]. A comparison with the costs of the basic primitives provided by Chrysalis 

shows that any general scheme for communication on the Butterfly will have comparable costs. 

Even though each model can be implemented efficiently on the Butterfly, no single model 

can provide optimal performance for all applications. Moreover, subjective experience indicates 

that conceptual clarity and ease of programming are maximized by different models for different 

kinds of applications. In the course of the DARPA benchmark experiments, seven different prob­

lems were implemented using four different programming models. One of the basic conclusions 

of the study was that none of the models then available was appropriate for cenain graph prob­

lems; this experience led to the development of Ant Farm. Some large applications may even 

require different programming models for different components; therefore it is also impottant that 

mechanisms be in place for communication across programming models. These concerns form 

the motivation behind the Psyche operating system. 

It is difficult to exercise low-level control over parallelism without accepting explicit con­

trol of other resources as well. Programmers use a multiprocessor for performance gains, and 

therefore must maximize the (true) parallelism in an application program. Since it is impossible 

to anticipate the needs of every application, a parallel programming environment will usually 

provide low-level mechanisms for mapping processes to processors. Unfottunately, in allowing 

the programmer to control parallelism (and the corresponding processes), the environment will 

often force the programmer to manage other resources as well. For example, the programmer 

may be required to manage address spaces explicitly in order to co-locate a process and its data. 

All of the parallel programming environments on the Butterfly couple the ability (or inability) to 

manage parallelism with the ability (or inability) to manage memory. Chrysalis allows the pro­

grammer to create a process on any Butterfly node, but it also requires the programmer to manage 

shared memory explicitly. Even very simple sharing requires several system calls, each with 

several parameters. The Uniform System attempts to make processor boundaries transparent; 

each task may execute on any available processor. There is no attempt, however, to co-locate a 

task and the data it manipulates. To achieve acceptable performance, the programmer must cache 



19 

data explicitly. SMP does not require the user to manage the address space of a process expli­

citly; however, it allocates processes to processors using a fixed allocation algorithm, which can 

lead to an imbalance in processor load. A better balance between flexibility and ease of use must 

be found. 

An efficient implementation of a shared name space is valuable even in the absence of uni­

form access time. The primary advantage of shared memory is that it provides the programmer 

with a familiar computational model. Programmers do not have to deal with multiple address 

spaces; programs can pass pointers and data structures containing pointers without explicit trans­

lation. The attractiveness of a single address space cannot be overstated; it is the primary reason 

why most programmers choose to use the Uniform System as their programming environment. 

Even when non-uniform access times warp the single address space model by forcing the pro­

grammer to deal explicitly with local caching of data, shared memory continues to provide a form 

of global name space that appeals to programmers. Data items, including pointers, can be copied 

from one local memory to another through the global name space. In effect, the shared memory 

is used to implement an efficient Linda tuple space [2]. The Linda in, read, and out operations 

correspond roughly to the operations used to cache data in the Uniform System. 

Better monitoring and debugging tools are essential. The lack of such tools contributes 

dramatically to program development time, and is probably the most frequently cited cause of 

frustration with parallel programming environments. Performance is paramount in multiproces­

sors, yet few general tools exist for measuring performance. Bottlenecks such as memory or 

switch contention are difficult to discover and must usually be measured indirectly. Single pro­

cess debuggers cannot capture parallel behavior, and performance monitoring and debugging 

tools for distributed systems [27,37,38] are not particularly well-suited to multiprocessors. The 

problem is especially acute in NUMA machines, since they lack a shared communication 

medium that could facilitate monitoring. 

Significant progress has been made recently in monitoring and debugging tools for shared­

memory multiprocessors [24,52]. In particular, we have begun construction of an extensible, 

integrated toolkit for parallel program debugging and performance analysis, as mentioned in sec­

tion 3.3 [24]. Ultimately, the toolkit will include an interactive debugger, a graphical execution 

browser, performance analysis packages, and a programmable interface for user queries. We hide 

the complexity of how an algorithm is implemented by emphasizing a graphical representation of 

execution. (Figure 6, produced by the toolkit, is a graphical view of deadlock in an odd-even 

merge sort program.) Top-down analysis at all levels of abstraction is possible because the 

graphical representation is integrated with access to the low-level details of an execution. The 

analysis process converges because all executions are repeatable. The toolkit is programmable, 

hence extensible. It allows programmers to analyze the behavior of parallel programs interac­

tively, much as interactive debuggers and profilers are used to analyze the behavior of sequential 

programs. Our experience to date confirms the utility of the toolkit; the debugging and analysis 



20 

Figure 6: Graphical View or Odd· Even Merge Sort 

cycle has decreased from several days to a few hours. 

Programming environments are often more important than processing speed. Many appli· 

cation programmers in our department who could exploit the parallelism offered by the Butterfly 

continue to use Sun workstations and VAXen. 1bese programmers have weighed the potential 

speedup of the Butterfly against the programming environment of their workstation and found the 

Butterfly wanting. New processors, switching networks, or memory organizations will not 

change this fact, although the introduction of Mach on the Butterfly is clearly a step in the right 

direction. The most important task ahead for the parallel programming community is not the 

development of newer and bigger mUltiprocessors, but rather the development of programming 

environments comparable to those available on sequential computers. 



21 

5. Conclusions 

The existence of a large-scale multiprocessor at the University of Rochester has dramati­

cally affected how we think about parallel programming. Special-purpose techniques do not tend 

to extrapolate well to 120 processors; we have learned to avoid taking advantage of a specific 

number of processors. 

We are generally satisfied with the Butterfly. We have had access to all of the system 

details necessary to implement system software; we have invested the effort to become experts. 

However, despite the level of local expertise, to this day only intrepid programmers use the 

Butterlly to solve real problems. It remains to be seen whether the newer Mach-based Butterfly 

software will change this situation appreciably. 

Butterfly-family machines remain the largest shared-memory multiprocessors commer­

cially available. They are vastly more lIexible than the competing message-based multicomput­

ers (e.g. hypercubes), and are not subject to the bandwidth limitations of bus-based shared­

memory machines. The problems presented by the architecture, especially the NUMA problem, 

will be with us for some time, and solutions will be required in any future large-scale parallel 

machine. Perhaps most important from our point of view, parallel processors have helped bring 

applications programmers and system developers together in a spirit of cooperation. This 

cooperation will be crucial to the development of the parallel programming environments of the 

future. 

Acknowledgments 

The authors would like to express their thanks to the research and support staff of BBN 

Laboratories and BBN Advanced Computers Incorporated, and to the many students, staff, and 

faculty members whose willingness to immerse themselves in an experimental and often frustrat­

ing environment has made this research possible. Special thanks are due to Liud Bukys, our tire­

less lab manager and all-around Butterfly guru. 

References 

[I] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, 
"Mach: A New Kernel Foundation for UNIX Development," Proceedings of the Summer 
1986 USENlX Technical Conference and Exhibition, June 1986, pp. 93-112. 

[2] S. Ahuja, N. Carriero, and D. Gelernter, "Linda and Friends," Computer 19:8 (August 
1986), pp. 26-34. 

[3] BBN Advanced Computers Incorporated, "Inside the Butterfly Plus," Cambridge, MA, 16 
October 1987. 



22 

[4] BBN Advanced Computers Incorporated, "Chrysalis® Programmers Manual, Version 
3.0," Cambridge, MA, 28 April 1987. 

[5] BBN Laboratories, "Butterfly® Parallel Processor Overview," BBN Report #6148, Ver­
sion I, Cambridge, MA, 6 March 1986. 

[6] BBN Laboratories, "The Unifonn System Approach to Programming the Butterfly® 
Parallel Processor," BBN Report #6149, Version 2, Cambridge, MA, 16 June 1986. 

[7] C. M. Brown, "Parallel Vision on the Butterfly Computer," Supercomputer Design: 
Hardware and Software, Volume 3 of the Proceedings of the Third International Confer­
ence on Supercomputing, May 1988, pp. 54-68. 

[8] c. M. Brown, R. J. Fowler, T. J. LeBlanc, M. L. Scott, M. Srinivas, and others, "DARPA 
Parallel Architecture Benchmarlc Study," BPR 13, Computer Science Department, Univer­
sity of Rochester, October 1986. 

[9] C. M. Brown, T. Olson, and L. Bukys, "Low-level Image Analysis on a MIMD Architec­
ture," Proceedings of the First IEEE International Coriference on Computer Vision, June 
1987,pp.468-475. 

[10] L. Bukys, "Connected Component Labeling and Border Following on the BBN Butterfly 
Parallel Processor," BPR II, Computer Science Department, University of Rochester, 
October 1986. 

[11] J. Costanzo, L. Crowl, L. Sanchis, and M. Srinivas, "Subgraph Isomorphism on the BBN 
Butterfly Multiprocessor," BPR 14, Computer Science Department, University of Roches­
ter, October 1986. 

[12] L. Crowl, "Chrysalis++," BPR 15, Computer Science Department, University of Roches­
ter, December 1986. 

[13] L. A. Crowl, "An Interface Between Object-Oriented Systems," TR 211, Department of 
Computer Science, University of Rochester, Apr 1987. 

[14] L. A. Crowl, "A Model for Parallel Programming," pp. 71-84 in Proceedings of the 1988 
Open House, ed. C. A. Quiroz, TR 209, Department of Computer Science, University of 
Rochester, May 1988. 

[15] L. A. Crowl, "Shared Memory Multiprocessors and Sequential Programming Languages: 
A Case Study," Proceedings of the 21st Annual Hawaii International Conference on Sys­
tem Sciences, Jan 1988. 

[16] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and T. Blackadar, "Perfonn­
ance Measurements on a 128-Node Butterfly Parallel Processor," Proceedings of the 1985 
International Conference on Parallel Processing, 20-23 August 1985, pp. 531-540. 

[17] P. Dibble, "Benchmarlc Results for Chrysalis Functions," BPR 18, Computer Science 
Department, University of Rochester, December 1986. 

[18] P. C. Dibble, M. L. Scott, and C. S. Ellis, "Bridge: A High-Perfonnance File System for 
Parallel Processors," Proceedings of the Eighth International Coriference on Distributed 
Computing Systems, 13-17 June 1988, pp. 154-161. 

[19] c. S. Ellis, "Extendible Hashing for Concurrent Operations and Distributed Data," TR 
110, Computer Science Department, University of Rochester, October 1982. 



23 

[20] C. S. Ellis and T. J. Olson, "Parallel First Fit Memory Allocation," Proceedings of the 
1987 International Corrference on Parallel Processing, 17-21 August 1987, pp. 502-511. 

[21] M. Fanty, "A Connectionist Simulator for the BBN Butterfly Multiprocessor," TR 164, 
BPR 2, Computer Science Department, University of Rochester, January 1986. 

[22] J. A. Feldman, M. A. Fanty, N. H. Goddard, and K. J. Lynne, "Computing with Structured 
Connectionist Networlcs," CACM 31:2 (February 1988), pp. 170-187. 

[23] J. P. Fishburn and R. A. Finkel, "Parallel Alpha-Beta Search on Arachne," Computer Sci­
ences Technical Report #394, University of Wisconsin - Madison, July 1980. 

[24] R. J. Fowler, T. J. LeBlanc, and J. M. Mellor-Crummey, "An Integrated Approach to 
Parallel Program Debugging and Performance Analysis on Large-Scale Multiprocessors," 
Proceedings, ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debug­
ging, May 1988. 

[25] N. M. Gafter, "Algorithms and Data Structures for Parallel Incremental Parsing," 
Proceedings of the 1987 International Conference on Parallel Processing, 17-21 August 
1987, pp. 577-584. 

[26] E. Hinkelman, "NET: A Utility for Building Regular Process Networlcs on the BBN 
Butterfly Parallel Processor," BPR 5, Computer Science Department, University of 
Rochester, February 1986. 

[27] J. Joyce, G. Lomow, K. Slind, and B. Unger, "Monitoring Distributed Systems," ACM 
TOCS 5:2 (May 1987), pp. 121-150. 

[28] T. J. LeBlanc, "Shared Memory Versus Message-Passing in a Tightly-Coupled Multipro­
cessor: A Case Study," Proceedings of the 1986 International Corrference on Parallel 
Processing, 19-22 August 1986, pp. 463-466. Expanded version available as BPR 3, Com­
puter Science Department, University of Rochester, January 1986. 

[29] T. J. LeBlanc, "Problem Decomposition and Communication Tradeoffs in a Shared­
Memory Multiprocessor," in Numerical Algorithms for Modern Parallel Computer Archi­
tectures, IMA Volumes in Mathematics and its Applications #16, Springer-Verlag, 1988. 

[30] T. J. LeBlanc, "Structured Message Passing on a Shared-Memory Multiprocessor," 
Proceedings of the 21st Annual Hawaii International Conference on System Sciences, 
January 1988, pp. 188-194. 

[31] T. J. LeBlanc, N. M. Gafter, and T. Ohkami, "SMP: A Message-Based Programming 
Environment for the BBN Butterfly," BPR 8, Computer Science Department, University 
of Rochester, July 1986. 

[32] T. J. LeBlanc and S. Jain, "Crowd Control: Coordinating Processes in Parallel," Proceed­
ings of the 1987 International Corrference on Parallel Processing, 17-21 August 1987, pp. 
81-84. 

[33] T.J. LeBlanc and J.M. Mellor-Crummey, "Debugging Parallel Programs with Instant 
Replay," IEEE Transactions on Computers C-36:4 (April 1987), pp. 471-482. 

[34] J. Low, "Experiments with Remote Procedure Call on the Butterfly," BPR 16, Computer 
Science Department, University of Rochester, December 1986. 



24 

[35] J. M. Mellor-Crummey, "Concurrent Queues: Practical Fetch-and-Phi Algorithms," TR 
229, Computer Science Department, University of Rochester, Nov 1987. 

[36] J. M. Mellor-Crummey, T. J. LeBlanc, L. A. Crowl, N. M. Gafter, and P. C. Dibble, "Elm­
wood - An Object-Oriented Multiprocessor Operating System," Software - Practice 
and Experience, to appeat. Also published in the University of Rochester 1987-88 Com­
puter Science and Computer Engineering Research Review, and available as BPR 20. 

[37] B. P. Miller, C. Macrander, and S. Sechrest, "A Distributed Programs Monitor for Berke­
ley Unix," Software-Practice and Experience 16:2 (February 1986), pp. 183-200. 

[38] B. P. Miller and C.-Q. Yang, "IPS: An Interactive and Automatic Perfonnance Measure­
ment Tool for Parallel and Distributed Programs," Proceedings of the Seventh Interna­
tional Conference on Distributed Computing Systems, 21-25 September 1987, pp. 482-489. 

[39] D. Moon, MacUSP Reference Manual, Revision 0, Project MAC, Laboratory for Com­
puter Science, MIT, Cambridge, MA, April 1974. 

[40] T. 1. Olson, "An Image Processing Package for the BBN Butterfly Parallel Processor," 
BPR 9, Computer Science Depattment, University of Rochester, September 1986. 

[41] T. J. Olson, "Finding Lines with the Hough Transfonn on the BBN Butterfly Parallel Pro­
cessor," BPR 10, Computer Science Depattment, University of Rochester, September 
1986. 

[42] T. J. Olson, "Modula-2 on the BBN Butterfly Patallel Processor," BPR 4, Computer Sci­
ence Department, University of Rochester, January 1986. 

[43] T. Pratt, "PISCES: An Environment for Parallel Scientific Computation," IEEE Software, 
July 1985, pp. 7-20. 

[44] C. A. Quiroz, "Compilation for MIMD Architecrures," Thesis Proposal, Depattment of 
Computer Science, University of Rochester, May 1986. 

[45] R. Rettberg and R. Thomas, "Contention is No Obstacle to Shared-Memory Multiprocess­
ing," CACM 29:12 (December 1986), pp. 1202-1212. 

[46] M. L. Scott, "LYNX Reference Manual," BPR 7, Computer Science Depattment, Univer­
sity of Rochester, August 1986 (revised). 

[47] M. L. Scott, "The Interface Between Distributed Operating System and High-Level Pro­
gramming Language," Proceedings of the 1986 International Conference on Parallel Pro­
cessing, 19-22 August 1986, pp. 242-249. 

[48] M. L. Scott, "Language Support for Loosely-Coupled Distributed Programs," IEEE Tran­
sactions on Software Engineering SE-13:1 (January 1987), pp. 88-103. 

[49] M. L. Scott and A. L. Cox, "An Empirical Study of Message-Passing Overhead," 
Proceedings of the Seventh International Conference on Distributed Computing Systems, 
21-25 September 1987, pp. 536-543. 

[50] M. L. Scott and K. R. Jones, "Ant Farm: A Lightweight Process Programming Environ­
ment," BPR 21, Computer Science Depattment, University of Rochester, August 1988. 

[51] M. L. Scott, T. J. LeBlanc, and B. D. Marsh, "Design Rationale for Psyche, a General­
Purpose Multiprocessor Operating System," Proceedings of the 1988 International 
Conference on Parallel Processing, 15-19 August 1988, pp. 255-262. 



25 

[52] Z. Segall and L. Rudolph, "PIE: A Programming and Instrumentation Environment for 
Parallel Processing," IEEE Software 2:6 (November 1985), pp. 22-37. 

[53] L. Snyder and D. Socha, "Poker on the Cosmic Cube: The First Retargetable Parallel Pro­
gramming Language and Environment," Proceedings of the 1986 International Confer­
ence on Parallel Processing, 19-22 August 1986, pp. 628-635. 

[54] W. K. Su, R. Faucette, and C. Seitz, .. c Programmer's Guide to the Cosmic Cube," TR 
5203:85, Computer Science Department, California Institute of Technology, Sept 1985. 

[55] R. Thomas, "Using the Butterfly to Solve Simultaneous Linear Equations," Butterfly 
Working Group Note 4, BBN Laboratories, March 1985. 


