
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 1988

A Simple Mechanism for Type Security Across
Compilation Units

MICHAEL L. SCOTT AND RAPHAEL A. FINKEL

Abstract-A simple technique detects structural type clashes across
compilation units with an arbitrarily high degree of confidence. The
type of each external object is described in canonical form. A hash
function compresses the description into a short code. If the code is
embedded in a symbol-table name, then consistency can be checked by
an ordinary linker. For distributed programs, run-time checking of
message types can he performed with very little overhead.

A type-checking mechanism for separate compilation must strike
a difficult balance between conservatism and convenience. On the
one hand, it should prevent the use of compilation units that make
incompatible assumptions about their interface. On the other hand,
it should cause as few unnecessary recompilations as possible.
When definitions change, an ideal mechanism would recompile all
and only those pieces of a program that would otherwise malfunc-
tion. Approaching this ideal has proven surprisingly difficult,
enough so that many programming systems provide no checking
whatsoever.

We believe that a simple and easy-to-use type-checking mech-
anism for separate compilation is extremely important. We are par-
ticularly interested in a mechanism that can be extended to provide
checking for messages exchanged between the separately loaded
modules of a distributed program. We describe a technique that
achieves simplicity and efficiency at the expense of an arbitrarily
small probability of failure.

For the semantics of types, we adopt the rules of structural type
equivalence [3, p. 921. The alternative, name equivalence, requires
the compiler to maintain a global name space for types. Our interest
in distributed programs makes such an approach impractical:

1) A global name space requires a substantial amount of book-
keeping, even on a single machine. For a distributed language,
information must be kept consistent on every node at which pro-
cesses may be created. While the task is certainly not impossible,
the relative scarcity of compilers that enforce name equivalence
across compilation units suggests that it is not trivial either.

2) Compilers that do enforce name equivalence across compi-
lation units usually do so by affixing time stamps to files of decla-
rations. A change or addition to one declaration in a file appears
to modify the others. A global name space for distributed programs
can be expected to devote a file to the interface for each distributed
resource. Mechanisms can be devised to allow simple extensions
to an interface, but certain enhancements will inevitably invalidate
all the users of a resource. In a sequential program, enhancements
to one compilation unit may force the unnecessary recompilation

Manuscript received October 3 1, 1985; revised February 28, 1986. This
work was supported in part by NSF Grant MCS-8105904, by ARPA Con-
tract N0014/82/C/2087, and by a Bell Laboratories Doctoral Scholarship.

M. L. Scott is with the Department of Computer Science, University of
Rochester, Rochester, NY 14627.

R. A. Finkel is with the Department of Computer Sciences, University
of Wisconsin, Madison, WI 53706.

IEEE Log Number 8822012.

of others. In a distributed system, enhancements to a process like
the file server may force the recompilation of every program in
existence.

Structural type equivalence has been used with separate compi-
lation in a number of existing compilers [I], [S] , [6] . Typically,
each type declaration is converted to canonical form and is placed
in the symbol table of each object file that imports or exports an
object of that type. A special-purpose linker is required to guar-
antee that importing and exporting files contain identical canonical
forms. The type information itself consumes a considerable amount
of space. Comparing it byte for byte takes time. That time may be
an acceptable burden in separate compilation since checks are per-
formed at link time, but it becomes unacceptable for run-time
checking in a message-passing system.

In a note on type checking with low-level linkers [4], Hamlet
credited one of his referees with the idea of using a hash function
to compress the descriptions of types. No details were provided,
however, and the idea appears to have lain unnoticed ever since.
We arrived upon it independently nearly a decade later, and only
discovered the earlier reference in the process of a literature search.

We have found the hashing of types to be an eminently practical
technique. By admitting the (very slight) possibility of an unde-
tected error, we eliminate the need for a special linker, reduce the
size of object files, and allow efficient run-time message checking.

In each object file, the compiler associates a short (one- or two-
word) hash code with each external object. The code for a variable
depends on the canonical representation of its type. The code for a
procedure depends on the types and modes (but not the names) of
its parameters. The name of an external object can be formed by
concatenating the name provided by the user with a character-string
representation of the hash code. Type clashes between exporters
and importers of an object result in "missing symbol" messages
from the linker. If identifiers are limited in length, then the com-
piler can leave the names of objects unchanged, but can generate
for each an additional symbol that encodes both the name and the
type of the object. Exporting modules can "define" the extra sym-
bols and importing modules can declare them ' 'undefined. "

In contrast to schemes that employ a special-purpose linker, our
technique requires no knowlege of load-file formats or other op-
erating-system-specific details. It may require manual intervention
when clashes are detected, but this has not proven to be a serious
problem in practice. We rely upon programming conventions (such
as shared declaration files) to prevent the vast majority of clashes.
We use the standard nix' Make utility [2] to automate recompi-
lation when declarations change. Make bases its decision on overly
conservative time-stamp rules, much like those described for name
equivalence in the Introduction. We can afford, however, to run
the utility with incomplete rules, and to override those rules at will
since the type-checking mechanism catches our mistakes.

Our hashing technique extends readily to message passing in dis-
tributed programs where applications are linked and loaded in sep-
arate pieces, and processes that need to cooperate are written at
different times. For a dedicated circuit, a sender and receiver can
exchange hash codes when their connection is established. Alter-
natively, they can exchange codes with each individual message.
In either case, the extra overhead required to check for type con-

Un ix is a registerered trademark of AT&T Bell Laboratories.

0098-5589/88/0800-1238$01.00 @ 1988 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 1988 1239

sistency will be insignificant in comparison to the total cost of com-
munication.

We have used hashing to check types for separate compilation
and message passing in an experimental distributed programming
language [8]. The data types in our language are similar to those
of Pascal, except that there are no pointers. Pointers complicate
matters; they are discussed in a subsequent section.

Our hash function is defined on strings of symbols. The symbol
set includes the letters, the digits, and the underscore. We use a
single letter to represent each of the type constructors array (a) ,
Boolean (b) , case (u) , character (c) , const (k) , end (f) , enu-
meration (e) , integer (i) , link (l) , record (r) , set (s) , subrange
(n) , to (t) , var (u), and yields (y) . We use digits to represent size
values. We obtain a canonical representation for a type by expand-
ing the subparts of the type recursively. We have attempted to keep
the notation as terse as possible.

For example, consider the following types:

A = 1..10;
B = record

i, j : integer;
end;

C = array [A] of B;

The canonical form for A is "subrange integer 1 to 10," which
we abbreviated "niltlO." The string for B is "riif." The string
for C is "aniltlOriif." The names of record fields are not signif-
icant.

Our message types are determined by the modes and types of the
parameters of a remote operation, called an entry. Unlike a regular
subroutine, an entry has disjoint sets of in and out parameters. To
compute the canonical string for a function procedure, or entry, we
concatenate the strings for the parameter types, prefixing each type
with an optional mode. For example, if foo is a Boolean function
that takes a value parameter of type character and a reference pa-
rameter of type integer, then the canonical string for f o o is
"cviyb." Similarly, if bar is an entry that'takes one parameter of
type C and returns two results of types integer and B, then the type
string for bar is "anilt10riifyiriif."2

In actuality, there is no need to compute explicit canonical forms.
Our hash function treats a string of symbols as an integer base N
where N is the size of the symbol set. It calculates the integer's
residue modulo p where p is a very large prime. Stated precisely,
let < a > = a , , - , a,, _2a, , - 3 . . . a. be a string of symbols. Then

If < a > is the canonical description of a type A , we say

hashval(A) = hash (< a >) and hashlen (A) = n.

In our implementation, N is 37 and p is 232 - 5 = 4294967291.
The digits '0'-'9' have values 1-10. The underscore has value 11.
The letters 'a'-'2' have values 12-37. No symbol has value 0 since
prepending a zero-value symbol to a string would not change its
hash code. The lack of a zero-value symbol allows us to use N for
the value of $2' without introducing ambiguity.

During compilation, we maintain two values for each type the
program defines: the hash code and length of the type's canonical
form. When a new type is defined in terms of existing ones, we
can compute the new hash code and length from the stored infor-

'TO demultiplex messages in a receiving process, we compute a second
hash code from the name of the entry-hence the need in our symbol set
for all the letters and the underscore.

mation for the existing types. In the types defined above, we would
like the hash code for C to be the same as the hash code for

C' = array [I . . 101 of record
i, J : integer;

end;

This is precisely the result we obtain by letting

hashval(C) = [a X N ~ ~ ~ ~ ~ ~ ~ ~ ~ ' + h a s h v a l (~)]

hashlen (C) = 1 + hashlen (A) + hashlen (B) ,

where a is the value of the symbol array as an N-ary digit.
All arithmetic is carried out in the ring of integers mod p. For

our example types, the hash codes are as follows:

Type Hash Code String

B 1497074 riif

C, C' 1948320452 aniltloriif

foo 27938528 cviyb

bar 4056336255 aniltloriifyiriif

IV. THE PROBLEM WITH POINTERS

The technique just described must be modified to accept point-
ers. The problem is that forward references are needed to define
circular structures. When a given type is first encountered, we may
not know the nature of its constituent parts. We can still derive a
canonical description and hash code for each type, but we cannot
do it incrementally the way we could above.

Given a set of interrelated types, it is not difficult to determine
which are structurally distinct and which are equivalent [7]. For
purposes of type checking, symbol table entries for equivalent types
can be coalesced. We can then use the string notation above, aug-
mented with backpointers, to construct canonical descriptions for
the types that remain. We expand each type declaration recursively
until we encounter a cycle. We then insert a backpointer to the
point where the cycle began. For example, the type

sequence = record
item : integer;
next : sequence;

end;

might be represented by "record integer pointer -3 end," ab-
breviated "rip3f."

[I] A. Celentano, P. D. Vigna, C. Ghezzi, and D. Mandrioli, "Separate
compilation and partial specification in Pascal," IEEE Trans. Software
Eng., vol. SE-6, pp. 320-328, July 1980.

[2] S. I. Feldman, "Make-A program or maintaining computer pro-
grams," Software-Practice and Experience, vol. 9, pp. 255-265,
1979.

[3] C. Ghezzi and M. Jazayeri, Programming Language Concepts. New
York: Wiley, 1982.

141 R. G. Hamlet, "High-level binding with low-level linkers," Commun.
ACM, vol. 19, pp. 642-644, Nov. 1976.

[5] R. B. Kieburtz, W. Barabash, and C. R. Hill, "A type-checking pro-
gram linkage system for Pascal," in Proc. 3rd Int. Conf. Software
Eng., May 1978, pp. 23-28.

[6] W. Koch and C. Oeters, "The Berlin ALGOL 68 implementation," in
Proc. Strathclyde ALGOL 68 Conf., Mar. 1977, pp. 102-108; also,
ACM SIGPLAN Notices, vol. 12, June 1977.

[7] J. Kral, "The equivalence of mode and the equivalence of finite au-
tomata," ALGOL Bull., vol 35, pp. 34-35, Mar. 1973.

[8] M. L. Scott and R. A. Finkel, "LYNX: A dynamic distributed pro-
gramming language," in Proc. 1984 Int. Conf. Parallel Processing,
Aug. 1984, pp. 395-401.

