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Abstract-This paper presents a retrospective view of the Charlotte 
distributed operating system, a testbed for developing techniques and 
tools to solve computation-intensive problems with large-grain paral- 
lelism. The final version of Charlotte runs on the Crystal multicom- 
puter, a collection of VAX-111750 computers connected by a local-area 
network. The kernellprocess interface is unique in its support for sym- 
metric, bidirectional communication paths (called links), and syn- 
chronous nonblocking communication. 

Our experience indicates that the goals of simplicity and function 
are not easily achieved. Simplicity in particular has dimensions that 
conflict with one another. Although our design decisions produced a 
high-quality environment for research in distributed applications, they 
also led to unexpected implementation costs and required high-level 
language support. 

We learned several lessons from implementing Charlotte. Links have 
proven to be a useful abstraction, but our primitives do not seem to be 
at quite the right level of abstraction. Our implementation employed 
finite-state machines and a multitask kernel, both of which worked well. 
I t  also maintains absolute distributed information, which is more ex- 
pensive than using hints. The development of high-level tools, partic- 
ularly the Lynx distributed programming language, has simplified the 
use of kernel primitives and helps to manage concurrency at the pro- 
cess level. 

Index Terms-Charlotte, Crystal, distributed computing, kernel in- 
terface design, links, Lynx, message passing. 

I. INTRODUCTION 
HARLOTTE is a distributed operating system in pro- 
duction use at the Department of Computer Sciences 

of the University of Wisconsin-Madison [4], [ 5 ] .  Char- 
lotte is intended as a testbed for developing techniques 
and tools to exploit large-grain parallelism in computa- 
tion-intensive problems. Charlotte was constructed over 
the course of approximately five years, going through 
several distinct versions as the underlying hardware and 
our ideas for implementation changed. The final version 
runs on the Crystal multicomputer [17], a collection of 20 
VAX-111750 computers connected by an 80 Mbitlsecond 
Proteon token ring. This paper presents a retrospective 
view of the Charlotte project. 
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Although it seems clearer in hindsight than it was in the 
early stages, we now regard our work as the result of 1)  
the axioms that defined the available design space, 2) the 
goals that provided direction, and 3)  the design decisions 
that established the final structure. Our experience indi- 
cates that the goals of simplicity and function are difficult 
to attain simultaneously. Simplicity is particularly trou- 
blesome: quests for simplicity in different areas of a proj- 
ect may conflict with one another. The purpose of this 
paper is to explain the lessons we learned from Charlotte 
and to motivate the steps we took while learning those 
lessons. 

The axioms for Charlotte were as follows: 
The underlying hardware will be a multicomputer. A 

multicomputer is a collection of conventional computers 
(called nodes), each with its own memory, connected by 
a communicative device. The tradeoffs between multi- 
computers and multiprocessors, in which memory is 
shared, include scalability (multicomputers have greater 
potential), grain of parallelism (multicomputers are suited 
only to a large-grain parallelism), and expense (multi- 
computers appear to be more economical). At the time our 
project began, the department was heavily committed, 
both in research orientation and hardware resources, to 
parallel computing without shared memory. 

The project will support a wide variety of message- 
based applications. The design of distributed algorithms 
has been an important area of research in our department 
for many years. Our prospective user community would 
not have been willing to adopt a single programming lan- 
guage or a single paradigm for process interaction (client- 
server, master-slave, or pipeline, for example). Ideally, 
we would have liked to support a variety of shared-mem- 
ory paradigms as well, but our commitment to a multi- 
computer environment made such support impractical. 

Policies and mechanisms will be separated clearly. 
In addition to supporting distributed applications, it was 
imperative that our work permit experimentation with dis- 
tributed systems software. The Charlotte kernel needed to 
provide sufficient mechanisms to make good use of the 
machine, but could not afford to embed policies in the 
core of the operating system. A fundamental assumption, 
then, was that the majority of operating system services 
would be provided by user-level server processes, outside 
the (replicated) kernel. 
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We have labeled the preceding items "axioms" be- 
cause, in retrospect, it is clear that they were never ques- 
tioned in the course of the Charlotte project. To a large 
extent, they were imposed by outside factors. They were 
also objective enough that little interpretation was re- 
quired. By contrast, our goals were much more vaguely 
stated: 

Charlotte will provide adequate function. The facil- 
ities available to application programs must be expressive 
enough to support the needs of our user community (ax- 
iom 2). In its attempt to provide a pleasant virtual ma- 
chine, the kernel must not hide too much of the power of 
the underlying hardware. Graceful degradation of service 
must occur when individual nodes of the multicomputer 
fail. 

Charlotte will be simple. Simplicity is largely aes- 
thetic, although it has a number of more concrete dimen- 
sions. We intended Charlotte to be minimal, in the sense 
that it would not provide features that were not needed, 
and efficient, in the sense that the primitives it did provide 
would require little code and could be executed quickly. 
We were also concerned that Charlotte be both easily im- 
plemented and easily used. We hoped to describe its prim- 
itives with short, concise semantics. As discussed below, 
we were successful in only some of these dimensions. 

Our axioms and goals are not unique to Charlotte. Ac- 
cent [30], Amoeba [28], DemosIMP [27], Eden [2], V 
[13], and a host of other operating systems have started 
with similar intentions. Other projects have tried to sup- 
port distributed algorithms with languages instead of op- 
erating systems. Ada [40], Argus [26], NIL [39], and SR 
[3] are examples of this approach. It is the combination 

that continues execution after making a request may be in 
an arbitrary state when problems arise. Charlotte ad- 
dresses these concerns by allowing a process to discover 
the status of its messages explicitly, at a time of its own 
choosing. 

A final version of Charlotte fulfils our goals of function 
and simplicity in some ways but not in others. We are 
hopeful that our experience will prove useful to future de- 
signers of similar systems, who may wish to emulate our 
successes and avoid our mistakes. We describe the Char- 
lotte IPC semantics in Section 11. Although these seman- 
tics were intended to be simple, supposedly orthogonal 
features were found to interact in unexpected ways. The 
kernel/process interface come'; close to our goal of mini- 
mality, but the implementation is large and complex. 
Careful efforts to keep the kernel modular and structured 
made it relatively easy to build and maintain, despite its 
size, but the goal of efficiency suffered badly in the pro- 
cess. We describe the implementation in Section 111. 

Above the level of the kernellprocess interface, expe- 
rience with the first generation of server processes con- 
vinced us that high-level language support would be re- 
quired to make Charlotte easy to use. Vhile the IPC 
semantics made it possible to write highly concurrent pro- 
grams, they also required a distasteful amount of user code 
and make it easy to commit subtle programming errors. 
Section IV describes some classes or errors and explains 
how they arise. Section V describes the language we de- 
veloped to regularize the use of Charlotte primitives, han- 
dle exceptional conditions, and manage concurrent con- 
versations. Section VI describes the lessons we have 
learned from our experience. 

of design decisions we made in building Charlotte that 11. CHARLOTTE INTERPROCESS COMMUNICATION 
makes our work unique. Our earliest, most influential de- 
cisions are summarized below. These set the stage for the For reference purposes~ we this with a 

many smaller decisions described in Section 11. summary of the most import?-t Charlott' communication 

Processes do not share memory, even within a single primitives. The list may be skimmed on first reading and 

node of the machine. This decision allows us to make in- then consulted when appropriate later. Complete descrip- 

terprocess communication (IPC) completely location in- tions of the Charlotte kernel/process interface can be 

dependent. It mirrors the fact that Charlotte runs on a found in other Papers I4I3 [517 t221. 
multicomputer. 

Communication is on reliable, symmetric, bidirec- 
tional links named by capabilities. Two-way links are jus- 
tified below. The use of capabilities (described more fully 
below) provides a useful abstraction for distributed re- 
sources. Processes exercise control over who may send 
them messages. An action by one process cannot damage 
another, so long as the second takes basic precautions. 
Capability-based naming also facilitates experimentation 
with migration for load balancing. 

Communication is nonblocking, but synchronous. A 
server process must often have conversations in progress 
with a large number of clients at once. It is imperative 
that sending and receiving be nonblocking operations. 
Unfortunately, it is also imperative that processes know 
when communication fails. The kernel cannot always be 
trusted to deliver a message successfully, and a process 

MakeLink (var end 1, end2 : link) 
Create a link and return references to its ends. 

Destroy (myend : link) 
Destroy the link with a given end. 

Send (L : link; buffer : address; length : integer; 
enclosure : link) 

Post a send request on a given link end, optionally en- 
closing another link end. 

Receive ( L  : link; buffer : address; length : integer) 
Post a receive request on a given link end. L can be a 
specific link or an "any link" flag. 

Cancel (L : link; d : direction) 
Attempt to cancel a previously-posted Send or Receive 
request. The attempt will fail if the request has already 
completed, even if it has not yet been awaited. 
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Wait ( L  : link; d : direction; var e : description) 
Wait for a request to complete. L can be a specific link 
or an "any link" flag. The direction can be Sent, Re- 
ceived, or Either. The description returns the success or 
failure of the awaited request, as well as its link, direc- 
tion, number of bytes transferred, and the enclosed link 
(if any). 

GetResult ( L  : link; d : direction; var e : description) 
Ask for the information returnedby Wait, but do not 
block if the request has not completed. GetResult is a 
polling mechanism. 

The kernel matches Send and Receive requests. A match 
occurs if a Send and a Receive have been posted (and not 
canceled) on opposite ends of the same link. Charlotte 
allows only one outstanding request in each direction on 
a given link. This restriction makes it impossible for an 
over-eager producer to overwhelm the kernel with re- 
quests. Completion must be reported through Wait or 
GetResult before another similar request can be posted. 
Buffers are managed by user processes in their own ad- 
dress spaces. Results are unpredictable if a process ac- 
cesses a buffer between posting a request and receiving 
notification of its completion. 

All kernel calls return a status code. All but Wait are 
guaranteed to complete in a bounded amount of time. 

A. Connections 

Charlotte processes communicate with messages sent 
on links. A link is a software abstraction that represents a 
communication channel between a pair of processes. 
Messages may be sent in either direction on a link. They 
can even be sent simultaneously in both directions. Each 
process has a capability to its end of the link. This capa- 
bility confers the right to send and receive messages on 
the link. These rights cannot be duplicated, restricted or 
amplified. They can be transferred to another process (see 
below), but the kernel guarantees that only one capability 
for each link end exists at a given time. 

Among other things, the status codes returned form ker- 
nel calls allow a process to determine when one of its 
links has been destroyed at the other end. The kernel de- 
stroys all the links connected to a process automatically 
when the process terminates. It also destroys all the links 
connected to processes on a particular node when it de- 
tects that the node has crashed. 

The decision to use duplex links was something of an 
experiment. Experience with Arachne (Roscoe) 1381, a 
predecessor to Charlotte, indicated several shortcomings 
of unidirectional links, in which messages can be sent in 
one direction only. First, client-server, master-slave, and 
remote-procedure-call situations all require information to 
flow in both directions. Even pipelines may require re- 
verse flow for exception reporting. With unidirectional 
links, processes must manage link pairs or must create 
reply links to be used once and then discarded. Bidirec- 

tional links allow reverse traffic with no such penalty. 
Second, the kernel at a receiving end sometimes needs to 
know the location of the sending end(s), to warn them, 
for example, that the receiving end has moved or been 
destroyed. In Arachne, Demos [9], and DemosIMP [27], 
all of which use unidirectional links, the information 
stored at the receiving end of a link is not enough to find 
the sending ends. Bidirectional links offer the opportunity 
to maintain information at both ends about the location of 
the other. 

A Charlotte process can transfer possession of one of 
its link ends to another process by enclosing the end in a 
message on another link. The receiver of the message 
gains possession of the moving end. The sending process 
loses its possession. While one end of a link is moving, 
the process at the other end may still post Send or Receive 
requests and can even move or destroy its end. Transfer 
of a link end is an atomic operation from the user's point 
of view. This atomicity, particularly in the presence of 
canceled requests and simultaneously moving ends, was 
achieved at the expense of a rather complicated imple- 
mentation, as discussed in Section 111. 

B. Buffering and Synchronization 

An unlimited number of kernel buffers would offer the 
highest degree of concurrency between senders and re- 
ceivers. In practice, a message-passing system can only 
provide a finite amount of storage. Management of a pool 
of buffers requires flow control and deadlock prevention 
or recovery. Rather than accept the resulting complexity, 
we decided in Charlotte to manage buffers in user space. 
This decision is in keeping with the goals of minimality 
and ease of implementation. As described in the following 
section, a cache of (semantically invisible) buffers in the 
kernel permits an efficient implementation as well. More- 
over, the use of user-provided buffers allows Charlotte to 
handle messages of arbitrary size. 

C. Synchronization 

Wait is the only communication primitive that blocks. 
Send and Receive initiate communication but do not wait 
for completion. A process may therefore post Send or Re- 
ceive requests on many links before waiting for any to 
finish. It may also perform useful work while communi- 
cation is in progress. Servers in particular need not fear 
that one slow client will compromise the service provided 
to others. 

Posting a Send or Receive is synchronous (a process 
knows the time at which the request was posted), but 
completion is inherently asychronous (the data transfer 
may occur at any time in the future). Charlotte allows a 
user process to poll for completion status, with GetResult, 
or to block, with Wait, until that status is available. For 
processes that want to wait immediately after posting a 
request, there are also combined Send/Wait and Receive/ 
Wait kernel calls (not listed in Section 11) that avoid the 
extra context switches. We consider a mechanism for 
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software completion interrupts, but had no applications in 
mind for which the additional functionality would have 
justified the complexity of semantics and implementation. 
By contrast, the ability to cancel an outstanding Send or 
Receive request appeared to be useful in several common 
situations. 

A server may wish to cancel a Send if its message to a 
client has not been accepted after a reasonable amount of 
time. Likewise, a process may wish to cancel a Send when 
it discovers a more up-to-date version of the data it is 
trying to transmit. A receiver may decide it is willing to 
accept a message that requires a buffer larger than the one 
provided by its current Receive. A server that keeps Re- 
ceives posted as a matter of course may decide it no longer 
wants messages on some particular link. These last two 
scenarios arise in the run-time support routines for the 
Lynx language, described in Section V. Naturally, a Can- 
cel request will fail if its Send or Receive has already been 
paired with a matching request at the other end of the link. 

D. Message Screening 

The Receive and Wait requests can specify a particular 
link end, or can indicate than any end will do. Wait can 
specify whether a Send request, a Receive request, or 
Either is awaited. We considered allowing more general 
sets of link ends, but as with software interrupts had no 
applications in mind for which the added complexity was 
essential. The ability to specify an arbitrary set of ends 
would have had a negative impact on all five of our mea- 
sures of simplicity. 

Since only a single Send and a single Receive can be 
outstanding on a given link end, the combination of link 
number and direction suffices to specify a request to be 
canceled, polled, or awaited. We considered a scheme in 
which Send and Receive would each return a request iden- 
tifier to be used when referring to the pending request. 
Such a scheme would have made it easier to support mul- 
tiple requests (for double buffering, for example). It would 
also have simplified the specification of sets of requests 
for Wait had we permitted them. It was our original 
impression that the provision of request identifiers would 
have increased both the complexity of the kernellprocess 
interface and the size and overhead of the kernel. In hind- 
sight, it appears that this impression was mistaken; re- 
quest identifiers would probably have made life easier for 
both the user and the kernel. 

On the Crystal multicomputer [17], Charlotte resides 
above a communication package called the nugget [15], 
which provides a reliable, packetized, intermachine trans- 
mission service. Charlotte's kernel implements the ab- 
stractions of processes and links. In order to provide the 
facilities described in the previous section, copies of the 
kernel on separate nodes communicate with a lower-level 
protocol. Significant events for this protocol include mes- 

sages received from remote kernels and requests from lo- 
cal processes. 

A. Protocol 
In general, the kernel attempts to match Send and Re- 

ceive requests on opposite ends of a link. When it suc- 
ceeds in doing so, it transfers the contents of the message 
and moves the enclosed link end, if any. The simplest 
case arises when a Send is posted with no enclosure, and 
the matching Receive is already pending. In this case, the 
sending kernel transmits one packet to the receiving ker- 
nel and the latter responds with an acknowledgment. If 
the matching Receive is posted after the packet arrives, 
the message may still be held in a cache in the receiving 
kernel, so the acknowledgment can still be sent. If the 
message is no longer in the cache, the receiving kernel 
asks the sending kernel to retransmit it. 

Very large messages may require multiple packets, 
since the nugget imposes a maximum size of approxi- 
mately 2K bytes. The receiving kernel acknowledges the 
first packet when the receiving process is ready. The 
sending kernel then transmits the remaining packets and 
the receiving kernel returns a single acknowledgment for 
all. 

An attempt to cancel a Send or Receive request may find 
that request in any of several states, such as pending, 
matched, in transit, aborted, or completed. Likewise, an 
attempt to move or destroy a link may find the other end 
in any of a large number of states. Since cancellation of 
requests and movement or destruction of links can happen 
at both ends simultaneously, the number of possible scen- 
arios is large. The more elaborate cases, together with full 
details of the protocol, are discussed in a technical report 
[41. 

B. Absolutes and Hints 

In order to facilitate efficient delivery of messages, 
Charlotte attempts to keep consistent, up-to-date infor- 
mation at both ends of each link. Link movement there- 
fore requires that a third party (the kernel at the far end 
of the link that is moving) be informed. That third party 
may have a pending Send or Receive of its own. It may 
even be moving its end. The protocol is entirely symmet- 
ric; neither end of a link plays a dominant role. Although 
a link can be moved with very few kernel-level messages, 
the possible interleavings are subtle enough that we were 
forced to abandon a half dozen "final" algorithms before 
arriving at a correctness proof. 

An alternative approach to link movement would rely 
on a system of hints. Each end of a link would keep track 
of the probable location of the other end, but the link 
movement protocol could leave this data inconsistent. Ex- 
cept in cases where a link moves more than once before 
being used to send a message (in which case hints are 
more efficient), the total numer of kernel-level messages 
would be the same with both approaches. A message sent 
to the wrong location would need to be returned, so the 
hint could be updated. We now believe, however, that 
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hints would have permitted a substantially smaller kernel. 
We would be inclined to dispense with absolutes in future 
implementations. 

C. Interrelations 
We designed our implementation so that all communi- 

cation scenarios, both simple and complex, could be han- 
dled in a regular manner. The protocol is directed by a 
hand-built, table-driven finite state automaton. The states 
of the automaton reflect the status of a link. There are 
twenty types of input events, six of which represent re- 
quests from local processes and the rest of which repre- 
sent messages from remote kernels. In an attempt to en- 
sure correctness of the tables, we manually enumerated 
and simulated an exhaustive list of cases. 

Our original hope was that the implementations of the 
various communication primitives would be more or less 
orthogonal. In practice, however, the interrelations be- 
tween events on a link were surprisingly complex. An ac- 
tion at one end can occur when the other end is in an 
arbitrary state. Since Send and Receive are nonblocking, 
even the local end of a link may be in any of a large num- 
ber of states when a related request is made. 

As is true in other systems 1121 the number of auto- 
mation states is large. To keep the complexity manage- 
able we built four independent automata for different 
functions: Send, Receive, Destroy, and Move. These au- 
tomata interact in only a few cases. Cancel is imple- 
mented in the Send and Receive automata. We also reduce 
the number of states with a method described by Danthine 
[16] and others [ l l ]  in which some information is en- 
coded in global variables. The variables are consulted only 
in particularly complex cases. 

Our automata have approximately 250 non-error entries, 
each of which has a prescribed action. Many actions ap- 
ply to several different entries; the total number of actions 
is about 100. The simplest actions consist of a single op- 
eration, such as sending a completion acknowledgment. 
The most complex action checks five variables and selects 
one of several operations. 

D. Kernel Structure 
The kernel itself is implemented as a collection of non- 

preemptable Modula processes [20], which we call tasks 
to distinguish them from user-level processes. These tasks 
communicate via queues of work requests. The Automa- 
ton Task implements all four automata. Requests from 
processes are first verified by the Envelope Task. Com- 
munication requests are then forwarded to the automa- 
ton's work queue. Two tasks manage information flow to 
and from the nugget. Other tasks are responsible for 
maintaining the clock, collecting statistics, and checking 
to make sure that other nodes are alive. User processes 
run only when kernel tasks have nothing left to do. 

The division of labor along functional lines made the 
kernel relatively easy to build. We have also found it easy 
to maintain. Most errors can be traced to an isolated sec- 
tion of code, and modifications rarely have widespread 

implications. We have, for example, implemented pro- 
cess migration as an incremental enhancement of Char- 
lotte without substantially modifying the automata 161, 
[7]. On the other hand, the complete kernellkernel pro- 
tocol is almost beyond the comprehension of any single 
person. In this sense, the goal of simplicity has clearly 
not been met. 

IV . PROGRAMMING IN CHARLOTTE 

We all learn when writing programs for the first time 
that it is almost impossible to avoid bugs. The problem 
appears to be much worse in a distributed environment. 
Errors occur not only within individual processes, but also 
in the interactions between processes. Ordering errors, in 
particular, arise from unexpected interleavings of asyn- 
chronous events 1231. In addition to worrying about the 
more global ordering of messages received from different 
places (a subject beyond the scope of our work), pro- 
cesses in Charlotte must also be careful not to use a Re- 
ceive buffer or modify a Send buffer before the associated 
kernel request has finished. In servers that manage large 
numbers of buffers, mistakes are more common than one 
might at first expect. 

We found writing server processes to be suprisingly dif- 
ficult. Ordering errors were not the only program. Several 
others can be attributed directly to our use of a conven- 
tional sequential language (a Modula subset), with ordi- 
nary kernel calls for interprocess communication. In par- 
ticular: 

Servers devote a considerable amount of effort to 
packing and unpacking message buffers. The standard 
technique uses type casts to overlay a record structure on 
an array of bytes. Program variables are assigned to or 
copied from appropriate fields of the record. The code is 
awkward at best and depends for correctness on program- 
ming conventions that are not enforced by the compiler. 
Errors due to incorrect interpretation of messages have 
been relatively few, but very hard to find. 

Every kernel call returns a status value that indicates 
whether the requested operation succeeded or failed. Dif- 
ferent sorts of failures result in different values. A well 
written program must inspect every status and be prepared 
to deal appropriately with every possible value. It is not 
unusual for 30 percent of a carefully written server to be 
devoted to error checking and handling. Even an ordinary 
client process must handle errors explicitly, if only to ter- 
minate when a problem occurs. 

Conversations between servers and clients often re- 
quire a long series of messages. A typical conversation 
with a file server, for example, begins with a request to 
open a file, continues with an arbitrary sequence of read, 
write, and seek requests, and ends with a request to close 
the file. The flow of control for a single conversation could 
be described by simple, straight-line code except for the 
fact that the server cannot afford to wait in the middle of 
that code for a message to be delivered. Charlotte servers 
therefore adopt an alternative program structure in which 
a single global loop surrounds a case statement that han- 
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dies arbitrary incoming messages. This explicit interleav- 
ing of separate conversations is very hard to read and un- 
derstand. 

Previous research had addressed these concerns in sev- 
eral different ways. The problem of message packing and 
unpacking has been solved in several distributed systems 
by the development of remote procedure call stub gener- 
ators. Birrell and Nelson's Lupine [lo] and the Accent 
Matchmaker [24] are particularly worthy of note. Safety 
depends on integrating the stub generator into the com- 
piler's type-checking mechansim and on preventing mes- 
sages from being sent in any other way. If the language 
provides facilities for exception handling, then the prob- 
lem of checking result values can be solved with stubs as 
well. 

Addressing the problem of conversation management 
requires multiple cooperating threads of control in a sin- 
gle address space. Such threads are supported directly by 
the Amoeba [28] and Mach [I ]  distributed operating sys- 
tems and may be realized through programming conven- 
tions in any operating system that allows processes to 
share memory. There is, however, a nontrivial cost as- 
sociated with scheduling a server's threads at the operat- 
ing-system level, since creating a thread or switching from 
one thread to another requires a context switch into and 
out of the kernel. The designers of the Medusa distributed 
operating system [29] chose to implement coroutines at 
the user level rather than change the set of threads (activ- 
ities) in a server (task force) at run time. 

The lesson that we learn from this discussion is that 
providing adequate function does not automatically make 
facilities easy to use. It is natural for operating systems 
to provide communication facilities through service calls, 
but it is not necessarily natural for programs to operate at 
that level. The hardest problems seem to arise in servers. 
Clients are more straightforward to write, since the server- 
specific protocol can be packaged into a library routine 
that makes communication look like procedure calls (at 
the expense of blocking during all calls to servers). 

There are two ways out of the difficulty. One is to pro- 
vide a higher level of service in the kernel, possibly in- 
cluding lightweight processes. In addition to the perfor- 
mance problems alluded to above, this approach assists 
only those applications for which the particular choice of 
abstractions is appropriate, and is likely to make it more 
difficult to write applications for which the abstractions 
are not appropriate. Our preference is to provide a higher- 
level interface on top of the communication kernel. 

In keeping with the conclusions of the preceding sec- 
tion, we have developed a language called Lynx. It is de- 

boundaries between nodes. Each outermost module is in- 
habited by a single process. Processes share no memory. 
They are managed by the operating system kernel and ex- 
ecute in parallel. Multiple threads of control within a pro- 
cess are managed by the language run-time system. In 
contrast to the lightweight processes of most distributed 
programming languages, the threads of Lynx are corou- 
tines with no pretense of parallelism. 

Communication Paths and Naming: Lynx provides 
Charlotte links as first-class language objects. The pro- 
grammer has complete run-time control over the binding 
of the links to processes and the binding of names to links. 
The resulting flexibility allows the links to be used for 
reconfigurable, type-checked connections between very 
loosely coupled processes-processes designed in isola- 
tion and compiled and loaded at disparate times. 

Syntax for Message Receipt: Messages in Lynx may be 
received explicitly by any thread of control. They may 
also be received implicitly, creating new threads that ex- 
ecute entry procedures. Processes can decide at run time 
which approch(es) to use when, and on which links. 

Each Lynx process begins with a single thread of con- 
trol. It can create new threads locally or can arrange for 
them to be created in response to messages from other 
processes. Separate threads do not execute in parallel; a 
given process continues to execute a given thread until it 
blocks. It then takes up some other thread where it last 
left off. If all threads are blocked for communication, then 
the process waits for a message to be sent or received. In 
a server, separate threads of control can be used to man- 
age conversations with separate clients. Conversations 
may be subdivided by creating new threads at inner levels 
of lexical nesting. The activation records accessible at any 
given time will form a tree, with a separate thread corre- 
sponding to each leaf. 

A link variable in Lynx accesses one end of a link, much 
as a pointer accesses an object in Pascal. Built-in func- 
tions allow new links to be created and old ones to be 
destroyed. (Neither end of a destroyed link is usable.) Ob- 
jects of any data type can be sent in messages. If a mes- 
sage includes link variables or structures containing link 
variables, then the link ends referenced by those variables 
are moved to the receiving process. Link variables in the 
sender that refer to those ends become dangling refer- 
ences; a run-time error results from any attempt to use 
them. 

From a client's point of view, message passing looks 
like a remote procedure call; the sending thread of control 
transmits a request and waits for a reply.' An active thread 
can serve a request for a given operation by executing an 
Ada-like [40] accept statement. A process can also ar- 

scribed in full detail in several other places [32], [36], , , Since links are completely symmetric, the terms "client" and "server" 
1371. differs from distributed languages are relevant only in the context of a given call. It is entirely possible for 
we have surveyed [341 in three major areas: the processes at opposite ends of a i n k  to make requests of each other 

processes and &odules: Procisses and modules in simultaneously. The file system, for example, may be a client of the mem- 
ory manager when it needs more buffer space, while the memory manager 

reflect the Structure a ma" be a client of the file svstem when it needs to load some data into 
may nest, but ony within a node; no module can cross the memory. One link between the processes suffices. 
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range to receive requests implicitly by binding a link to 
an entry procedure. Bind and unbind are executable com- 
mands. When all threads in a process are blocked, the 
run-time support package attempts to receive a request on 
any of the links for which there are bindings or outstand- 
ing accepts. The operation name contained in the message 
is matched against those or the accepts and the bound en- 
tries to decide whether to resume an existing thread or 
create a new one. Bindings or accepts that cause ambi- 
guity are treated as run-time errors. 

Lynx enforces structural type equivalence on messages. 
A novel mechanism for self-descriptive messages [33] al- 
lows the checking to be performed efficiently at run time. 
An exception-handling mechanism permits recovery from 
errors that arise in the course of message passing and al- 
lows one thread to interrupt another. 

Our experience indicates that it is far easier to write 
servers in Lynx than in a sequential language with calls 
to Charlotte primitives. Development time, source code 
length, and frequency of bugs are all reduced signifi- 
cantly. Message transmission time is increased by less 
than ten percent, even when Lynx code is compared to 
Modula programs that perform no error checking. 

We have used Lynx to reimplement several of the server 
processes as well as a host of distributed applications, in- 
cluding numerical applications (the Simplex method), A1 
techniques (ray tracing, Prolog), data structures (nearest 
neighbor search in k-d trees, B+ trees), and graph algo- 
rithms (spanning trse, taveling salesman) [18], [19], [21]. 
The Charlotte link concept, as represented in Lynx, has 
proven ^3 be a valuable abstraction for representing re- 
sources and algorithm structure. This vindicates our orig- 
inal choice of bidirectional links. 

On the other hand, the structure of the run-time support 
package for Lynx has led us to doubt the appropriateness 
of the interface between that package and the kernel. De- 
spite the fact that much of the design of Lynx was moti- 
vated by the primitives of Charlotte, the actual imple- 
mentation proved to be quite difficult. For example, Lynx 
requires greater selectivity than Charlotte provides for 
choosing an incoming message. There is no way to tell 
the kernel to accept reply messages but to ignore requests. 
In addition, Lynx permits an arbitrary number of links to 
be enclosed in a message, while Charlotte supports only 
one. Implementations of Lynx for SODA [25], a "Sim- 
plified Operating system for Distributed Applications," 
and the BBN Butterfly Parallel Processor [8] were in some 
ways considerably simpler [35]. 

VI. LESSONS 

A. The Kernel/Process Interface 

Duplex links are a useful abstraction. We have been 
generally happy with the success of Charlotte links. Mes- 
sages can be sent in both directions without resorting to 
artificial "reply links." Symmetry means that processes 

ceivers have as much control as senders over the links on 
which they are willing to communicate. Processes at each 
end can be informed of important events (such as terrni- 
nation) at the other end. On the other hand, the protocol 
for link transfer would be much less complex if only one 
end could move. In addition, certain facilities not pro- 
vided in Charlotte, such as multicast and broadcast, do 
not appear to be compatible semantically with the notion 
of point-to-point software connections. For processes that 
use a remote-procedure-call style of interaction, there is 
no obvious way to forward a request on a link.2 The ver- 
dict, therefore, is mixed. There are clearly communica- 
tion paradigms for which duplex links are not an attractive 
abstraction. For a very large class of problems, however, 
our experience suggests that links work very well. 

Synchronous notifications work well with nonblock- 
ing primitives. The combination of nonblocking Send and 
Receive with blocking Wait allows processes to commu- 
nicate with large numbers of peers without unnecessary 
delays and without sacrificing the ability to obtain syn- 
chronous notification of errors. In the absence of state- 
sharing lightweight processes, we are unaware of any 
other mechanism that provides a comparable level of 
function. In retrospect, we believe that a system of unique 
identifiers for outstanding requests would be a useful en- 
hancement to Charlotte. 

Message screening belongs in the application layer. 
Every reliable protocol needs top-level acknowledgments 
[31]. A distributed operating system can attempt to cir- 
cumvent this rule by allowing a user program to describe 
in advance the sorts of messages it would be willing to 
acknowledge if they arrived. The kernel can then issue 
acknowledgments on the user's behalf. This trick only 
works if failures do not occur between the process and the 
kernel and if the descriptive facilities in the kernellpro- 
cess interface are sufficiently rich to specify precisely 
which messages are wanted. The descriptive facilities of 
Charlotte allow a user to specify nothing more than the 
name of a link. For the run-time package of Lynx, a finer 
degree of screening was desired. We would be tempted in 
future systems to allow multiple outstanding Sends and to 
adopt a mechanism similar to that of SODA [25],  in which 
acknowledgments are delayed until the receiving process 
has examined the message and decided it really wants it. 

Middle-level primitives are not a good idea. A very 
low-level kernellprocess interface is almost certain to be 
too cumbersome for programmers to use directly. It will, 
however, admit a wide variety of higher-level packages. 
A very high-level interface may be easy to use, but only 
for a single style of application program. In order to per- 
mit direct use by many kinds of application programs, the 
communication facilities of most distributed operating 
systems (Charlotte among them) have been designed with 
a middle-level interface. While this intermediate ap- 

'1n NIL [39], for example, one sends to a port, but replies to a message. 
There need not be an explicit path between the replier and the original 
reuuester. need not keep track of which endof  a link is which. Rei , 
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proach may support both top-level applications and ad- 
ditional layers of software, our experience suggests that 
it fills neither role particularly well. Charlotte is a little 
too low-level for everyday use by ordinary programmers, 
and a little too high-level for the efficient implementation 
of certain parts of Lynx. The proliferation of remote-pro- 
cedure-call stub generators for other distributed operating 
systems suggests that many researchers have arrived at 
similar conclusions. 

B. Implementation Considerations 

Finite-state protocol machines are extremely useful. 
Our rigidly structured (if handwritten) automaton pro- 
vides a space- and time-efficient implementation of a very 
complex protocol. Construction of the automaton was 
straightforward, and the systematic enumeration of states 
provided us with a high degree of confidence in the cor- 
rectness of our implementation. The division into subau- 
tomata and the judicious use of global flags were useful 
simplifying techniques. We recommend them highly. 

Division of labor among tasks is elegant but slow. 
By assigning different functions to different Modula tasks, 
we were able to subdivide the kernel into essentially in- 
dependent pieces. The interfaces between pieces were 
simple queues of notices. The modularity of the kernel 
has made maintenance relatively easy, but has not been 
particularly good for performance. A simple message be- 
tween machines takes approximately 25 ms, a substantial 
fraction of which is devoted to task switches in the send- 
ing and receiving kernels. We would be tempted in future 
projects to consider less expensive structuring techniques 
(such as upcalls [14], for example). 

Absolute distributed information is hard to maintain. 
Consistent, up-to-date, distributed information can be 
more trouble than it is worth. It may be easier to rely on 
a system of hints, so long as 1) they usually work, and 2) 
we can notice and recover when they fail. We suspect that 
the size of the Charlotte kernel could be reduced consid- 
erably by using hints for the location of link ends. 

C. General Lessons for Parallel Systems 

Simple primitives may interact in complicated ways. 
Even concise, correct semantics may require surprisingly 
complicated algorithms. At first glance, the primitives to 
make and cancel requests and to destroy and transfer links 
might appear to be largely orthogonal. When occurring 
simultaneously, however, these "simple" ideas become 
complex. In lieu of specific advice for avoiding interac- 
tions, we can at least suggest that future researchers dis- 
trust their native optimism. 

Confidence in concepts requires an implementation. 
It is difficult to anticipate all ramifications of an idea when 
exploring it on paper alone. Even with unlimited self-dis- 
cipline, the lack of practical proof techniques means that 
building and testing an actual implementation is the best 
way to gain confidence in the validity of one's ideas. We 
do not believe that we were particularly naive in expect- 

ing our implementation to be significantly smaller than it 
is. It was only after we were deep into the enumeration 
of automaton states that the full nature of the problem 
became apparent. 

Explicit management of concurrency is difficult. The 
combination of nonblocking requests and the lack of ker- 
nel buffering makes it easy to overwrite a buffer. The 
presence of multiple outstanding requests means that more 
than one buffer must be used, and that appropriate context 
must be managed for each. The problems are particularly 
severe for server processes, which must interleave con- 
versations with a large number of clients and which can 
never afford to wait for specific requests. 

Appropriate high-level tools can mitigate program- 
ming problems. Lynx was designed to a large extent in 
response to the previous lesson. Other tools were built to 
address a variety of other concerns. Library packages that 
understand how to talk to servers make it easier to write 
simple clients. A connector utility initializes multiprocess 
applications with arbitrary link connections as described 
by configuration files. The success of these tools suggests 
that, as on conventional uniprocessors, the friendliness of 
a programming environment is more a reflection of the 
quality of its tools than of its operating system primitives. 
The goal of the kernel designer should not be to support 
application programs so much as to support the higher- 
level systems software that in turn supports the applica- 
tions. 
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