
Algorithms for Scalable Synchronization on 
Shared-Memory Multiprocessors 

.J ohn M. :\IIellor-Cnumney' Michael L. Scott! 

April 1990 

Abstract 

Busy-wait techniques are heavily used for mutual exclusion and barrier synchroni?;ation in 
shared-memory parallel programs. Cnfortunatcly, typical implementations of busy-waiting 
tend to produce large aIIlounts of memory and interconnect contention, introducing perf(H"­
IIl<-1IlCe bottlenecks that become markedly more pronounced <-1,,-: applications scale. \:Ve argue 
in this paper that this problem is not fundamental, and tha.t one can in fad construct bUi:>Y­
wait synchroni7';ation algorithms that induce no memory or interconnect contention. The 
key to these algorithms is for every processor to spin on a separate location in local memory, 
and for some other processor to terminate the spin \vith a single remote \vrite operation 
at an appropriate time. Locations on \vhich to spin may be local as a result of coherent 
caching, or by virtue of static allocation in the local portion of phYi:>ically dii:>tributed i:>hared 
memory. 

'Ve present a new scalable algorithm for spin locks that generates 0(1) remote references 
per lock acquisition, independent of the number of processors attempting to acquire the 
lock. Our algorithm provides rea .. .;;onable latency in the absence of contention, requires only 
a constant amount of i:>pace per lock, and requirei:> no harchvare support other than a i:>\vap­
with-memory instruction. 'ile ali:>o prei:>ent a nev,,! i:>calable barrier algorithm that generates 
0(1) remote references per processor reaching the barrier, and observe that two previously­
knmvn barriers can likewise be cast in a form that spins only on local locations. Kone of 
these barrier algorithms requires hardware support beyond the usual atomicity of memory 
reads and \vrites. 

'ile compare the performance of our scalable algorithms with other software approaches to 
busy-wait synchroniz;ation on both a Sequent Symmetry and a BBN Butterfly. Our principal 
conclusion is that contention due to s;qnchronization need not be a problem in large-scale 
8han;rl-meTrwTY mnltiprnce88oT8. The existence of scalable algorithms greatly weakens the 
ca.':>e for costly special-purpose harchvare i:>upport for i:>ynchronization, and provides a case 
against so-called "dance hall" architecturei:>, in which shared memory locations are equally 
far from all processors. 
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1 Introduction 

Techniques for efficiently coordinating parallel computation on MIMD, shared-memory multiproces­
son; arc of growing interest and inlportancc a.s the scale of parallel nlachincs increases. On sharcd­
rnernory rnachines, processors cOlnrnnnicate by sharing data HtructureH. To 8nHllre the COIlHistency of 
shared data structures, processors perform simple operations by using hardware-supported atomic 
prirnitiv8H and coordinate cOlnplex operations by llsing synchronization COIlHtructs and conventions 
to protect against overlap of conflicting operations. 

Two of the most widely used synchroni,ation constructs are busy wait spin locks and barriers. 
Spin locks provide a Incans for achieving rnutual exclusion (ensuring that only one processor can ac­
cess a particular shared data structure at a tirne) and are a baRic building block for synchronization 
constructs with richer semantics, such as semaphores and monitors. Spin locks are ubiquitously 
used in the irnplernentation of parallel operating HYHterIls and in application prograrIls. BarI"ien; 
provide a means of ensuring that no processes advance beyond a particular point in a computation 
until all have arrived at that point. They are typically used to separate "phases" of an application 
prograrn. A barrier Inight guarantee, for exarnple, that all processes have finished initializing the 
values in a shared matrix before any processes use the values as input. 

The performance of locks and barriers is a topic of great importance. Spin locks are generally 
elnployed to protect very sInall critical sections, and Inay be executed an enOrInous IllIInber of 
times in the course of a computation. I3arriers, likewise, are frequently used between brief phases 
of data-parallel algorithms (c.g., successive relaxation), and may be a major contributor to run 
tiTne. MinirIlizing the cost of synchronization Illechanislns is Illore cmnplicated than siIIlply short­
ening code paths. Performance may improve, for example, if one re-writes code to allow part of a 
release~ock operation to overlap execution of an acquire_lock operation on another procetitior, 
even if the total nUlnber of instructions executed on each processor increa..seH. More irIlportant, by 
reducing the frequency with which synchroni,ation variables are accessed by more than one pro­
cetitior, one Illay greatly reduce Inenlory and interconnect contention, which tilows down execution. 
On Inachines with coherent caches, it is particularly irIlportant to reduce the IllIInber of writes to 
shared locations, because these induce interconnect traffic for invalidations and subsequent cache­
line reloadH. Reduced contention Hpeeds up not only the Hynchronization priInitiveH thernselveH, but 
also any concurrent activity on the machine that requires bandwidth from conflicting portions of 
rIIernory or the interconnect. 

The execution overhead a.ssociated with synchronization in rIIultiprocessor tiytiterns ha.s been 
widely regarded as a serions performance problem [1, 5, 13, 11, 36, 38]. As part of a larger 
study, Agarwal and Cherian [1] investigated the impact of synchroni,ation on overall program 
peri'()rInance. Their silnulations of benchrIlarkH on a cache-coherent rIlultiprocessor indicate that 
memory references due to synchroni,ation cause cache line invalidations much more often than 
non-synchronization referenceti. In sirIIulations of the benchrnarks on a 64-processor "dance hall" 
rIlachine (in which each acceHH to a shared variable traverses the processor-rIlernory interconnection 
network), they observed that synchroni,ation accounted for as much as 49% of total network traffic. 

In response to performance concerns, the history of synchroni,ation techniques has displayed 
a trend toward increaHing hardware HUppOrt. Early algorithrns a..ssurIled only the ability to read 
and write individual memory locations atomically. They tended to be subtle, and costly in time 
and space, requiring both a large number of shared variables and a large number of operations 
to coordinate concurrent invocationH of synchronization prirnitiveH [12, 23, 29J. Modern rIlulti­
processors generally include more sophisticated atomic operations, permitting simpler and faster 
coordination strategies. Particularly COlIInlon are various fetch_and_<D operations [20J, which atonl-
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ically read, modify, and write a memory location. Fetch_and_<P operations include test-and_set, 
fetch_and_store (swap), fetch_and_add, and compare_and_swap. 

More recently, there have been propm;als f< __ u" rnultistage networks that cornbine concurrent 
accesses to the same memory location [16, 30, 32], multistage networks that have special synchro­
ni7.ation variables embedded in each stage of the network [19], and special-purpose cache hardware 
to rnaintain a qneue of processors waiting for the Harne lock [13, 24, 28J. The principal pllrpm;e 
of these primitives is to reduce the impact of busy waiting. I3efore adopting them, it is worth 
considering the extent to which software techniques can achieve a similar result. 

We contend that appropriate deHign of spin locks and barrien; can lead to bURy-wait synchroniza­
tion mechanisms in which contention is extremely low. Specifically, by distributing data structures 
appropriately, we can ensure that each processor busy waits only on statically-allocated variables 
on which no other processor SpiIlH. On a rnachine with coherent eacheH, prOC8HHOI'H Hpin only on 
locations in their caches. On a machine in which shared memory is distributed (e.g., the I3I3N 
Butterfly [8], the IBM RP3 [30], or a shared-memory hypercube [10]), processors spin only on loca­
tions in the local portion of the shared memory. The implication of this result is that busy waiting 
gcncratct; no nlClnory or interconnect contention. 

We discuss the implementation of spin locks in section 2, presenting both existing approaches 
and a new algorithm of our own design. (The correctness of our algorithm is discussed in an 
appendix.) In ticcti(Hl 3 we turn to the issue of barrier synchronization, explaining how existing 
approaches can be adapted to elirninate spinning on rernote locations, and introducing a new de­
sign that achieves both a short critical path and the theoretical minimum total number of remote 
references. We present perforrnance results in section 4 for a variety of spinlock and barrier inlple­
rnentations, and discuHH the irnplications of these resultH for Hoftware and hardware deHignerH. Our 
conclusions are sun1nlari~ed in section 5. 

2 Spin Locks 

In this Hection we describe a serieH of four irIlplernentationH for a rnutual-exdusion Hpin lock. The 
first three are optimized versions of locks appearing in the literature. The fourth is a lock of our 
own deHign. Each lock can be Heen a..s an atternpt to elirIlinate sorne deficiency in the previouH 
design. We describe each lock using pseudo-code and prose; hand-optimized assembly language 
versions can be retrieved via anonyrnous ftp frorn titan.rice.edu (/public/scalablc_synch). 

Our pseudo-code notation is rneant to be rIlore-or-less self explanatory. We have uHed line breaks 
to terminate statements, and indentation to indicate nesting in control constructs. The keyword 
shared indicates that a declared variable is to be shared by all processors. The declaration implies 
no particular physical location for the variable, but we will often specify locations in COIIlInents 
and/or accompanying text. The keywords processor private indicate that each processor is to 
have a separate, independent copy of a declared variable. 

2.1 The Simple TesLand_set Lock 

The simplest mutual exclusion lock, found in all operating system textbooks and widely used in 
practice, is the straightforward test-and_set loop: 
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type lock = (free, locked) := free 

procedure acquire_lock (L : ~lock) 

repeat while test_and_set (L) locked II spin 
II test_and_set sets L~ = locked and returns old value 

procedure release_lock (L : ~lock) 

lock~ '= free 

The principal shortcollling of the test_and_set lock is contention. Each waiting processor 
generates references a...;; fast a...;; it can to a COlnrnon rnernory location. The resulting contention 
degradeR the performance of the entire memory bank in which the lock reRideR. On diRtributed­
rnernory rnachines it rnay also degrade the perforrnance of the processor in whose rnernory the 
lock resides, by stealing memory cycles. In any event, remote memory references create contention 
on the interconnection network, and the arbitration of Inernory requests delays the release_lock 
operation, increa...;;ing the tirne required to pass the lock on to another processor. 

A further weakness of the test-and_set lock is that each reference to shared memory employs 
a read-Inodify-write operation. Such operations are typically significantly lllore expensive than a 
sirnple read or write, particularly on a rnachine with coherent cacheH, Hince each such operation 
may cause a remote invalidation. This latter form of overhead can be reduced by replacing the 
test-and_set operation with a Ro-called teRt-and-tesLand_set [33]: 

procedure acquire_lock (L : ~lock) 

loop 
repeat while L~ locked 
if test_and_set (L) = free 

return 

II spin 

The advantage of thiH forrnulation is that waiting processors generate only read requeHts, not 
read-modify-write requests, during the time that the lock is held. Once the lock becomes avail­
able, some fi·action of the waiting prOCeRROI"S will detect that the lock is free and will perf(lI"In a 
test-and_set operation, exactly one of which will succeed, but each of which will still cause a 
relllote invalidation on a coherent cache lllachine. 

The total amount of remote traffic f(lr a simple lock can be reduced further by introducing delay 
on each processor between consecutive probes of the lock. The simplest approach employs a constant 
delay; Inore elaborate schernes use SOllre sort of back off on unsuccessful probes. Anderson [4J reports 
the best perforrnance with exponential backoff; our experirnents confirrn thiH reHult. Pseudo-code 
for a simple lock with exponential backoff appears in algorithm 1. 

procedure acquire_lock (L : ~lock) 

delay : integer := 1 
while test_and_set (L) = locked 

pause (delay) 
delay := delay * 2 

II returns old value 
II consume this many units of time 

Algorithm 1: Simple test-and_set lock with exponential backoff. 
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2.2 The Ticket Lock 

In a test-and tesLand_set lock, the number of read-modify-write operations is substantially Ie" 
than for a simple tesLand_set lock, but still potentially large. Specifically, it is possible for every 
waiting processor to pcrfornl a test_and_set operation every tinlC the lock bcconlCs available, even 
though only one can actually acquire the lock. The ticket lock reduces the nmuber of fetch_and_<P 
operations to one per lock acquisition. It also ensures FIFO service by granting the lock to proces­
sors in the same order in which they first requested it.' A ticket lock is therefore fair in a strong 
sense; it eliminates the possibility of starvation. 

type lock = record 
next ticket unsigned integer := 0 
now_serving : unsigned integer := 0 

procedure acquire_lock (L : ~lock) 

var my_ticket : unsigned integer 
my_ticket := fetch_and_increment (&L->next_ticket) 

1/ returns old value; arithmetic overflow is harmless 
repeat until L->now_serving = my_ticket 1/ spin 

procedure release_lock (L : ~lock) 

L->now_serving := L->now_serving + 1 

Though it probes with read operations only (and thus avoids the overhead of unnecessary 
invalidations in coherent cache machines), the ticket lock still incurs substantial contention through 
polling of a common location. As with the simple lock, this contention can be reduced by introducing 
delay on each processor between consecutive probeR of the lock. In this caRe, however, exponential 
backoff is clearly a bad idea. Since processors acquire the lock in FIFO order, overshoot in backoff 
by the first processor in line will delay all others as welL causing them to back off even farther. 
Our experirnents suggest that a good backoff scherne can be obtained by using infonnation not 
available with a simple lock: namely, the number of processors already waiting for the lock. This 
number can be computed as the difference between a newly-obtained ticket and the value of the 
now_serving variable. 

Delaying for an appropriate amount of time requires an estimate of how long it will take each 
processor to execute its critical section and pass the lock to its successor. If this tirne is known 
exactly, it is in principle possible to acquire the lock with only two probes, one to determine 
the number of processors already in line (if any), and another (if necessary) to verify that one's 
predecessor in line has finished wit.h t.he lock. This sort. of accuracy is not. likely in pract.ice, however, 
since critical sections do not in general take identical, constant amounts of time. Moreover, delaying 
based on the expected average time to hold the lock is risky: if the processors already in line average 
less than the expected amount t.he waiting processor will delay too long and slow t.he ent.ire system. 
A more appropriate basis for delay is the minimum time that a processor can hold the lock. Pseudo­
code for a ticket lock with proportional backoff appears in algorithm 2. 

1 The ticket lock is an optimization of Lamport's bakery lock [22], which ,vas designed for fault-tolerance rather 
tha.n performa.nce. Instead of inspecting a now_serving variable, processors using a bakery lock repeatedly examine 
the my _ticket variables of all their peers. The optimization has probably occurred to many other researchers. It 
appears, for example, in chapter 4 of [6]. 
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type lock = record 
next ticket unsigned integer .- 0 
now_serving : unsigned integer := 0 

procedure acquire_lock (L : ~lock) 

var my_ticket : unsigned integer 
my_ticket := fetch_and_increment (&L->next_ticket) 

II returns old value; arithmetic overflow is harmless 
loop 

pause (L->now_serving - my_ticket) 
II consume this many units of time 
lion most machines, subtraction works correctly despite overflow 

if L->now_serving = my_ticket 
return 

procedure release_lock (L : ~lock) 

L->now_serving := L->now_serving + 1 

Algorithm 2: Ticket lock with proportional backoff. 

2.3 Anderson's Array-Based Queueing Lock 

Even using a ticket lock with proportional backoff, it is not possible to obtain a lock with an 
expected constant number of remote memory operations, due to the unpredictability of the length 
of critical sections. Anderson [4] has proposed a locking algorithm that achieves the constant 
bound on cache-coherent InultiproceHHorH that Hupport atOlnic fetch_and_increment. The trick iH 
for each processor to use fetch_and_increment to obtain the address of a location on which to 
spin. Each processor spins on a different location, in a different cache line. Anderson's experirnents 
indicate that hiH queuing lock outperfonnH a Hirnple lock with exponential backoff when contention 
for the lock is high [4] (on the Sequent Symmetry, when more than six processors are waiting). 
Pseudo-code for Anderson's lock appears in algorithm 3-" 

Anderson did not include the ticket lock with proportional backoff in his experiments. In 
qualitative terms, both locks guarantee FIFO ordering of requests. I30th are written to use an 
atomic fetch_and_increment instruction. The ticket lock with proportional backoff is likely to 
require rnore rernote referenceH on a cache-coherent rnultiproceHHor, but leHH on a rnultiproceHHor 
without a coherent cache for shared variables. Anderson's lock requires space per lock linear in the 
number of processors, whereas the ticket lock requires only a small constant amount of space. We 
provide quantitative comparisons of the locks' performance in section 4.3. 

2 Anderson's original pseudo-code did not address the issue of overf!mv, \vhich causes his algorithm to fail unless 
numprocs = 2k. Our variant of his algorithm addresses this problem. 
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type lock = record 
slots: array [0 .. numprocs -1J of (has_lock, must_wait) 

:= (has_lock, must_wait, must_wait, ... , must_wait) 
II each element of slots allocated in a different memory module 
liar cache line 

next_slot : integer := 0 
processor private my_place integer 

procedure acquire_lock (L : ~lock) 

my_place := fetch_and_increment (&L->next_slot) 
II returns old value 

if my_place mod numprocs = 0 
atomic_add (&L->next_slot, -numprocs) 
II avoid problems with overflow; return 

my_place := my_place mod numprocs 
value ignored 

repeat while L->slots[myplaceJ must wait 
L->slots[myplaceJ := must_wait 

procedure release_lock (L : ~lock) 

II spin 
II init for next time 

L->slots[(my_place + 1) mod numprocsJ := has_lock 

Algorithm 3: Anderson's array-based queueing lock. 

2.4 A New List-Based Queueing Lock 

We have devised a new locking mechanism that 

• guarantees FIFO ordering of lock acquisitions; 

• spins on local memory only;3 

• requires a slnall constant anlount of space per lock; and 

• works equally well on machines with and without coherent caches. 

Our lock was inspired by the QOSB (Queue On Synch Bit) primitive proposed for the cache 
controllers of the Wisconsin Multicube [13], but is implemented entirely in software. It requires 
an atomic fetch_and_store (swap) instruction, and benefits from the availability of compare_­
and_swap. (Fetch_and_store exchanges a register with memory; compare_and_swap compares the 
contents of a rnernory location against a given value, and if equal exchangeR the rnernory with a 
register.) Without compare_and_swap we lose the guarantee of FIFO ordering and introduce the 
theoretical possibility of starvation, though lock acquisitions are likely to remain very nearly FIFO 
in practice. 

Pseudo-code for our lock appears in algorithm 4. Every processor using the lock allocates a 
record containing a queue link and a Boolean Hag. Each processor ern ploys one additional ternporary 
variable during the acquire_lock operation. Processors holding or waiting for the lock are chained 
together by the links. Each processor spins on its own local flag. The lock itself contains a pointer to 

3:\.Iore precisely, on statically-allocated, processor-specific memory locations, \vhich \vill he local on any machine 
in ·which shared memory is distributed or coherently cached. 
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the record for the processor at the tail of the queue, or a nil if the lock is not held. Each processor in 
the queue holds the address of the record for the processor behind it-the processor it should resume 
after acquiring and relea..sing the lock. Compare_and_swap enables a prOC8HHor to detennin8 whether 
it is the only processor in the queue, and if so remove itself correctly, as a single atomic action. The 
spin in acquire_lock waits for the lock to bccorllc free. The spin in release_lock conlpcnsatcs 
for the tirning window between the fetch_and_store and the aHHignrnent to predecessor->next 
in acquire_lock. I30th spins are local. 

type qlink = record 
next : ~qlink 

locked : Boolean 
type lock = -qlink 

processor private I: ~qlink 

II initialized to point to a queue link record 
II in the local portion of shared memory 

procedure acquire_lock (L : ~lock) 

var predecessor : ~qlink 
I->next := nil 
predecessor := fetch_and_store (L, I) 
if predecessor != nil II queue was non-empty 

I->locked := true 
predecessor->next := I 
repeat while I->locked II spin 

procedure release_lock (L : ~lock) 

if I->next = nil II no known successor 
if compare_and_swap (L, I, nil) 

return 
II assuming compare_and_swap returns true iff it swapped 

repeat while I->next = nil II spin 
I->next->locked := false 

Algorithm 4: The MCS list-based queueing lock. 

Figure 1, parts (a) through (e), illustrates a series of acquire_lock operations. In (a) the lock 
is free. In (b), processor 1 has acquired the lock. It is running (indicated by the 'R'), though its 
locked flag is irrelevant (indicated by putting the 'R' in parentheses). In (c), two more processors 
have entered the queue while the lock is still held by processor 1. They are blocked spinning on 
their locked flags (indicated by the 'B's). In (d), processor 1 has completed, and has changed the 
locked flag of processor 2 so that it is now running. In (e), processor 2 has cOlnpleted, and ha..q 
similarly unblocked processor 3. If no more processors enter the queue in the immediate future, 
the lock will return to the situation in (a) when processor 3 completes its critical section. 

Alternative code for the release_lock operation, without compare_and_swap, appears in al­
gorithm 5. Like the code in algorithm 4, it spins on static, processor-specific memory locations 
only, requires constant space per lock. and works well regardless of whether the machine provides 
coherent caches. Its disadvantages are extra complexity and the loss of strict FIFO ordering. 

Parts (e) through (h) of figure 1 illustrate the subtleties of the alternative code for release_lock. 
In the original version of the lock, compare_and_swap ensures that updates to the tail of the queue 

7 



7-B

6(R)

5-B

4-B
3-R

3-B

2-R

3-B

3-B

1(R)

1(R)

T(e)

(d)

(b)

(a)

T

T

T

T

(c)

T3(E)

4-B 

5-B

(e’)

3(E)

4-B 

5-B

(f)

(g) 3(E)

4-B 

5-B 

6(R) 

7-B

T

T

T

(h)



II I points to a queue link record in the local portion of shared memory 

procedure release_lock (L ~lock) 

var old_tail : ~qlink 

if I->next = nil II no known successor 

else 

old tail .- fetch_and_store (L, nil) 
if old_tail = I II I really had no successor 

return 
II We have accidentally removed some processors from the queue. 
II We have to put them back. 
usurper := fetch_and_store (L, 
repeat while I->next = nil 
if usurper != nil 

old_tail) 
II spin 

II somebody got into the queue ahead of our victims 
usurper->next := I->next 

else 
I->next->locked := false 

I->next->locked := false 

Algorithm 5: Code for release_lock, without compare_and_swap. 

When new processors enter the queue during this tinling window, the data structure terllporarily 
takes on the form shown in (f). The return value of processor 3's fetch_and_store (shown in the 
extra dotted box) is the tail pointer for a list of processors that have accidentally been linked out of 
the queue. By waiting f< __ u' its next pointer to becorlle non-nil, processor 3 obtains a head pointer 
for this "victim" list. It can patch the victim processors back into the queue, but before it does so 
additional processors ("usurpers") may enter the queue with the first of them acquiring the lock, 
as shown in (g). Processor 3 puts the tail of the victim list back into the tail pointer of the queue 
with it fetch_and_store. If the return value of the fetch_and_store is nil, processor 3 unblocks 
its successor. Otherwise, as shown in (h), processor 3 inserts the victirll list behind the usurpers by 
writing its next pointer (the head of the victim list) into the next pointer of the tail of the usurper 
list. In either case, the structure of the queue is restored. 

3 Barriers 

I3arriers have also received a great deal of attention in the literature, and the many published 
algorithrns differ significantly in notational conventions and architectural assurnptions. We focus in 
thiH section on three distinct approaches to barrier synchronization, exarnining the rnore irnportant 
variants of each, and casting all the code in similar form. 4 We note those places in which we have 
rnade substantive changes to code frorn cited sources. 

The barriers in our first dass are centrali:zed in the sense that they spin on one or nlore shared 
global flags. The HirllpleHt algorithrll generateH Hignificant arnounts of interconnect traffic, which 
can be reduced by reversing the sense of variables in successive barriers (much the same as input 
and output arrays are cornrnonly reversed in HucceHHive rourHiH of nUlnerical corn put at ions ), or by 
introducing backoff. 

40ptimi:t.ed C versions of our code are available via anonymous ftp from titan.rice.edu (/public/scalable_synch). 
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shared count: integer := 0 
shared flag: enumeration {ENTER, EXIT} .- ENTER 

procedure naive_central_barrier 
repeat until flag = ENTER 
if fetch and increment (&count) 

flag := EXIT 
P - 1 

else 
repeat until flag = EXIT 

if fetch and decrement (&count) 1 

flag : = ENTER 

Algorithm 6: A naive. centralized barrier. 

The Hecond da..';;H of barrier algorithrIl UHes a tree to distribute the data accessed during syn­
chroni"ation. thereby reducing contention. We describe the "software combining tree" approach of 
Yew, Tzeng, and Lawrie. and present a new tree-based approach of our own that performs fewer 
rernote operations, spins on local rIlernory only, and requires no atornic instructionH other than read 
and write. We also describe tree-based "tournament barriers" developed by Hensgen, Finkel, and 
Manber and by Lubachevsky, which have properties similar to those of our tree-based algorithm, 
but which in their original fornl would scale well only on cache-coherent rIlultiprocessors. 

The third class of algorithm employs a symmetric pattern of pairwise synchroni"ations between 
procetition; to achieve global tiynchronization. We pretient the "dititienrination barrier" developed by 
Hensgen, Finkel, and Manber, and olmerve that its data structures can be distributed in Huch a 
way that processors spin on local memory only. 

3.1 Centralized Barriers 

In a centralized irnplernentation of barrier Hynchronization, each proceHHor updateH a Hrnall arnount 
of shared barrier state to indicate its arrival, and then polls that state to determine when all of 
the processors have arrived. Once all of the processors have arrived, each processor is perrnitted 
to continue past the barrier. Like sirnple spin locks, centralized barrierH are of olmcure origin. 
Essentially equivalent algorithms have undoubtedly been invented by numerous individuals. 

The Naive Barrier 

A centralized P-proceHHor barrier can be irnplernented in Hoftware using two globally shared vari­
ables: count and flag (see algorithm 6). Initially, count = 0 and flag = ENTER. 

As processors arrive at the barrier, they spin until flag = ENTER (initially true), and then 
increment count." The first P - 1 processors to increment count spin until flag = EXIT. The last 
processor to arrive at the barrier sets flag to EXIT, releasing all busy-waiting processors. Each 
processor then decrements count. The first P -1 processors to do so leave the barrier immediately. 
The last sets flag to ENTER, re-initializing the barrier for its next use. The two states of flag 

prevent the overlap of multiple barriers in a sequence. If the first repeat loop were omitted, a 

SOn a machine that docs not snpport some form of atomic increment and decrement. a spin lock would be needed 
to preserve the integrity of count. 
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shared count: integer := P 
shared sense: Boolean := true 
processor private local sense 

procedure central_barrier 

Boolean := true 

local_sense := not local sense II each processor toggles its own sense 
if fetch_and_decrement (&count) = 1 

count := P 
sense := local_sense II last processor toggles global sense 

else 
repeat until sense = local sense 

Algorithm 7: A "en"e-rever"ing centrali7.ed barrier. 

processor leaving the current barrier could arrive at and pa..qS through the next barrier before the 
last processor had left the current barrier. A pair of barrier algorithms proposed by Tang and Yew 
(the fimt algorithm appear" in [35. Algorithm 3.1] and [36. p. 3]; the "econd algorithm appear" in 
[36, Algorithm 3.1]) suffer fmm this type of flaw. 

The Sense-Reversing Barrier 

For P processors to achieve a barrier using algorithrll 6, a rllinillullll of 4P + 1 operations on shared 
variables are neceHHary.G We can reduce this nurnber by reversing the sense of flag in conHecutive 
barriers [17].7 The improved code is shown in algorithm 7. Arriving processors simply decrement 
count and then wait until sense has a different value than it did in the previou" barrier. The 
last arriving processor resets count and reverses sense. ConHecutive barriers cannot interfere with 
each other, because all operations on count occur before sense is toggled to release the waiting 
processors. This scnse-revcrsal technique reduces the lllinirllulll nUlllbcr of operations on shared 
variables to 2P + 1. 

Lubachevsky [25] presents a similar barrier algorithm that uses two shared counters and a 
processor privatc two-state flag. Without a shared flag variable, two counters are needcd to prevcnt 
conflicts between proceHHorH in consecutive barrier episodeH. The private flag Helects which counter 
to use; consecutive barriers use alternate counters. A similar algorithm can be found in library 
package" di"tributed by Sequent for the Symmetry. Arriving proce""or" read the current value of a 
shared epoch number, update the shared counter, and spin until the epoch number changes. The 
last arriving proccssor reinitiali:zcs thc counter and advanccs thc epoch nurllber. 

The potential drawback of centralized barriers is the spinning that occurs on a Hingle, shared 
location. I3ecause processors do not in practice arrive at a barrier simultaneously, the number of 
bu"y-wait acce""e" will in general be far above the minimumS On broadcast-based cache-coherent 
rl1nltiprocessors, these accesseH rnay not be a problern. The shared flag or senHe variable is replicated 
into the cache of every waiting processor so subsequent busy-wait accesses can be satisfied without 

G r tests of flag, r increments of count, r - 1 tests of flag, 2 assignments to flag, and r decrements of count. 
7 A similar technique appears in [3, p. 445], where it is credited to Isaac Dimitrikovsky. 
8Comment.ing on Tang and Ye'tv's barrier algorit.hm (algorit.hm 3.1 in [35]), Agarwal and Cherian [1] show t.hat. on 

a machine in "\vhich contention causes memory accesses to be aborted and retried, the expected number of memory 
accesses init.iated by each processor t.o achieve a single barrier is linear in the number of processors part.icipat.ing, 
even if processors arrive at the barrier at a.pproximately the same time. 
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any network traffic. This shared variable is written only when the barrier is achieved, causing a 
single broadcast invalidation of all cached copies" All busy-waiting processors then acquire the new 
value of the variable and are able to proceed. On rnachines without coherent caches, however, or 
on machines with directory-based caches that limit the degree of replication, busy-wait references 
to a shared location lllay generate unacceptable levels of rllcrllory and interconnect contention. 

Adaptive Backoff Schemes 

To reduce the interconnection network traffic caused by busy waiting on a barrier flag, Agarwal 
and Cherian [1] investigated the utility of adaptive backofl' schemes. They arranged for processors 
to delay between successive polling operations for geometrically-increasing amounts of time. Their 
reHults indicate that in rnany ca..seH baekoff can Hulmtantially reduce the arIlollIlt of network traffic 
required to achieve a barrier. However, with this reduction in network traffic often comes an increase 
in latency at the barrier. Processors in the midst of a long delay do not immediately notice when 
all other proceRRors have arrived. Theil' departure from the barrier is theref()re delayed, which in 
turn delays their arrival at subsequent barriers. 

Agarwal and Cherian abo note that f< __ u" HYHterIls with rnore than 256 prOC8HHOI'H, for a range 
of arrival intervals and delay ratios, backoff strategies are of limited utility for barriers that spin 
on a Hingle Hag [1]. In snch large-Reale systerns, the Illlrnber of network aeC8HH8S per processor 
increases sharply as collisions in the interconnection network cause processors to repeat accesses. 
These observations imply that centrali7.ed barrier algorithms will not scale well to large numbers of 
processors, even using adaptive baekoff strategies. Our experirnentH (see section 4.4) confirrn thiH 
conclusion. 

3.2 Distributed Barriers 

The Software Combining Tree Barrier 

To reduce hot-spot contention for synchronization variables, Yew, Tzeng, and Lawrie [38] have 
deviHed a data Htrllctllre known aH a Hoftware cornbining tree. Like hardware cornbining in a rnlllti­
stage interconnection network [16], a software combining tree serves to collect multiple references to 
the same shared variable into a single reference whose effect is the same as the combined effect of the 
individual reierenceH. A Hhared variable that iH expected to be the target of rnultiple concurrent 
accesses is represented as a tree of variables, with each node in the tree assigned to a different 
memory module. Processors arc divided into groups, with one group assigned to each leaf of the 
t.ree. Each processor updates the stat.e in its leaf. If it. discovers t.hat it is the last. processor in its 
group to do so, it continues up the tree, updating its parent to reflect the collective updates to the 
child. Proceeding in thiH fa..shion, late-corning proceHHorH eventually propagate updateH to the root 
of the tree. 

Cornbining trees are presented as a general technique that can be llHed for Heveral purposeH. At 
every level of the tree, atomic instructions are used to combine the arguments to write operations 
or split the results of read operations. In the context of this general framework, Tang and Yew [36] 
deHcribe how software cornbining trees can be used to ilnplernent a barrier. Writes into one tree are 
used to determine that all processors have reached the barrier; reads out of a second arc used to 
allow theln to continue. Algorithrn 8 shows an optirnized version of the cornbining tree barrier. We 

9This differs from the situation in simple spin locks, >vhere a \vaiting processor can expect to suffer an invalidation 
for every contending processor that a.cquires the lock before it. 
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type node = record 
k : integer 
count : integer 
locksense : Boolean 
parent : ~node 

II fan-in of this node 
II initialized to k 
II initially false 
II pointer to parent node; nil if root 

shared nodes: array [0 .. P-i] of node 
II each element of nodes allocated in a different memory module or cache line 

processor private sense : Boolean 
processor private mynode : ~node 

:= true 
II my group's leaf in the combining tree 

procedure combining_barrier () 
combining_barrier_aux (mynode) 
sense := not sense 

II join the barrier 
II for next barrier 

procedure combining_barrier_aux (nodepointer: ~node) 

with nodepointer~ do 
if fetch_and_decrement (&count) = i II last one to reach this node 

if parent != nil 
combining_barrier_aux (parent) 

count := k 
locksense := not locksense 

repeat until locksense = sense 

II prepare for next barrier 
II release waiting processors 

Algorithrn 8: A software cornbining tree barrier with optirnized wakeup. 

have used the sense-reversing technique to avoid overlap of successive barriers without requiring two 
spinning episodes per barrier ~ and have replaced the atOlnic instructions of the second cornbining 
tree with sirnple readH~ since no real infonnation iH returned. 

Each processor begins at a leaf of the combining tree, and decrements its leaf's count variable. 
The last processor to reach each node in the tree continues up to the next Icvel. The processor that 
reaches the root of the tree begins a reverHe wave of updateH to locksense fiagH~ with each processor 
unblocking its siblings as soon as it awakes. Simulations by Yew, T"eng, and Lawrie [38] show that a 
software cOlllbining tree can significantly decrea..se lllCrnory contention and prevent tree saturation 
(a form of network congestion that delays the response of the network to all references [31]) in 
rnultistage interconnection networks~ by distributing accesses across the lllCrnory rnodulcs of the 
rnachine. 

A New Tree-Based Barrier Algorithm 

The principal shortcollling of the cornbining tree barrier~ frOln our point of view, is that is requires 
processors to spin on rnernory locations that cannot be statically deterrnined, and on which other 
processors also spin. On broadcast-based cache-coherent machines, processors may obtain local 
copies of the tree nodes on which they spin. but on other machines (including the Cedar machine 
which Yew~ Tzeng~ and Lawrie sirnulated)~ processors will spin on rernote locations, leading to 
unnecessary contention for interconnection network bandwidth. We have developed a tree-based 
barrier algorithrn in which each processor spins on its own unique location, statically allocated 
and thus presurnably local. Our algorithrn UHes no atornic instructions other than read and write, 
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requires less space than the combining tree barrier, and performs the minimum possible number of 
rcnlotc rllclllory operations. 

In our approach, a barrier to synchronize P processors is based on a pair of P-node trees. Each 
processor is assigned a unique tree node, which is linked into an arrival tree by a parent link, and 
into a wakeup tree by a set of child links. It is useful to think of these as separate trees, because 
the fan-in in the arrival tree differs from the fan-out in the wakeup tree. 'o A processor does not 
exarnine or rnodify the Htate of any other nodes except to Hignal its arrival at the barrier by setting 
a flag in its parent's node, and when notified by its parent that the barrier has been achieved, to 
notify each of its children by setting a flag in each of their nodes. Each processor spins only on state 
inforrnation in its own tree node. To achieve a barrier, each processor executes the code shown in 
algorithm 9. 

Data structures for the tree barrier are initialized so that each node's parentpointer variable 
points to the appropriate childnotready flag in the node's parent, and the childpointers vari­
ables point to the parent sense variables in each of the node's children. Child pointers of leaves 
and the parent pointer of the root are initialized to reference pseudo-data. The have child flags 
indicate whether a parent has a particular child or not. Initially, and after each barrier episode, 
each node's childnotready flags are set to the value of the node's respective havechild flags. 

Upon arrival at a barrier, a processor tests to see if the childnotready flag is deal' for each 
of its children. For leaf nodes, these flags are always clear, so deadlock cannot result. After a 
nodcls associated processor sees its childnotready £lags arc dcar l it irnnlCdiatcly rc-initializcs 
theln f< __ u" the next barrier. Since a nodels children do not rnodify itH childnotready Hags again 
until they arrive at the next barrier, there is no potential for conflicting updates. After all of a 
node's children have arrived, the node's associated processor dears its childnotready flag in the 
node's parent. All processors other than the root then spin on their parent sense flag. When 
the root node's associated processor arrives at the barrier and notices that all of the root node's 
childnotready flags are dear, then all of the processors are waiting at the barrier, The processor 
at the root node then toggles the parent sense flag in each of its children to release them from 
the barrier, At each level in the tree, newly released processors release all of their children before 
leaving the barrier, thuH ensuring that all processors are eventually relea..sed. Consecutive barrier 
episodes do not interfere since, as described earlier, the childnotready flags used during arrival 
arc rc-initializcd before wakeup occurs. 

This tree barrier irnplcnlCntation differs fronl the conlbining tree barrier in several irnportant 
reHpectH: 

• Since each proceHHor HpinH on a unique (fixed) node in the wakeup tree, we can ernbed the nodeH 
in melllory so that no two spinning processors compete for the same lIlemory 1Il0dule or path 
through the interconnection network. In rnultiproceHHorH with coherent cadleH or diHtributed 
shared memory, we can exploit this locality to ensure that a busy waiting processor spins 
locally (either on a cache copy or on a tree node allocated in its local shared memory) and 
Hpinning will conHurne no network cydeH . 

• We exploit the atomicity of write operations, rather than fetch_and_add, to coordinate pro­
ceHHorH aH they arrive at and HubHequently depart frorIl the barrier. Write inHtructionH have 

lOV,,Te use a fan-out of 2 because it results in the the shortest critical path required to resume P spinning processors 
for a tree of uniform degree. \Ve usc a fan-in of 4 (1) because it. produced the best. performance in Ye\v, Tzeng, and 
Lmvrie's experiments \vith sofhvare combining, and (2) because the a.bility to pack foul' bytes in a 'Nord permits an 
optimization on many machines in \vhich a parent can inspect status informat.ion for all of its children simultaneously 
at the same cost as inspecting the status of only one. 
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type treenode = record 
parent sense : Boolean 
parent pointer : ~Boolean 
childpointers : array [0 .. 1J of ~Boolean 
havechild : array [0 .. 3J of Boolean 
childnotready : array [0 .. 3J of Boolean 
dummy: Boolean II pseudo-data 

shared nodes: array [0 .. P-1J of treenode 
II nodes[vpidJ is allocated in the portion of the shared memory 
II local to processor vpid 

processor private vpid : integer II a unique' 'virtual processor" index 
processor private sense : Boolean 

lion processor i, sense is initially true 
I I in nodes [iJ : 
II 
II 
II 
II 
II 
II 

havechild[jJ = true if 4*i+j < Pj otherwise false 
parentpointer = &nodes[floor((i-l)/4)J .childnotready[(i-l) mod 4J, 

or &dummy if i = a 
childpointer[lJ = &nodes[2*i+1J .parentsense, or &dummy if 2*i+1 >= P 
childpointer[2J = &nodes[2*i+2J .parentsense, or &dummy if 2*i+2 >= P 
initially childnotready = have child and parent sense = false 

procedure tree_barrier 
with nodes [vpidJ do 

repeat until childnotready 
childnotready := havechild 
parentpointer~ := false 
II if not root, wait until my 
if vpid != a 

{false, false, false, false} 
II prepare for next barrier 
II let parent know I'm ready 
parent signals wakeup 

repeat until parent sense = sense 
II signal children in wakeup tree 
childpointers[OJ~ := sense 
childpointers[lJ~ := sense 
sense := not sense 

Algorithm 9: A "ealable, di"tributed, tree-based barrier with only local "pinning. 
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lower overhead than fetch_and_add. and are supported on all shared-memory multiproces­
sors, while fetch_and_add is not . 

• Our algorithIIlrequires O(P) space, rather than O(PlogP) . 

• Our algorithm reduces the number of remote memory operations that processors must per­
fonn to coordinate their arrival at the barrier. A barrier count inlplcrllcntcd using software 
cornbining treeH with fan-in k requires L~~S P-l P/ki = (:-=-\)k fetch_and_add operations to 

deterIIline that all processors have reached the barrier, and a IIlininlllIIl of (P-i)(~+2) other ac­

cesses to shared and potentially remote locations to allow them to proceed again,u Our tree 
barrier algorithrll requires only P - 1 rcrnotc write operations to dctcrrninc that all processors 
have reached the barrier, and P - 1 rerIlote writes to allow theln to proceed again. 

Our tree barrier achieves the theoretical lower bound on the number of remote operations needed 
to achieve a barrier on machines that lack broadcast and that distinguish between local and remote 
rnernory. At least P - 1 processors IIlllst Hignal their arrival to Borne other processor, requiring 
P - 1 remote operations, and must then be informed of wakeup, requiring another P - 1 remote 
operations. The length of the critical path in our algorithm is proportional to rlog4 Pl + rlog2 Pl· 
The first terrn is the tirne to propagate arrival up to the root, and the H8cond terrn if) the tirne to 
propagate wakeup back down to all of the leaves. On a machine with coherent caches and unlimited 
replication, we could replace the wakeup phase of our algorithm with a spin on a global flag. We 
explore this alternative on the Sequent in section 4.4. 

Tournament Barriers 

Hensgen, Finkel, and Manber [17] and Lubachevsky [26] have devised tree-style "tournament" 
barriers. Conceptually, to achieve a barrier llsing theRe tonrnarnent algorithnlH, processors Htart 
at the leaves of a binary tree, as in a combining tree barrier with fan-in two. One processor from 
each node continucti up the tree to the next "round" of the tournarncnt. The "winning" processor 
is statically deterrnined in a tonrnarnent barrier, however, and a..s in our tree-based barrier there if) 
no need for atomic fetch_and_<P instructions. Also, both proposals for tournament barriers use a 
fan-in of 2, for rlog2 Pl rounds of synchroni7.ation. 

In round k (counting frorTI zero) of Hcnsgcn, Finkel, and Manbcr's barrier, processor i sets a 
flag awaited by pro CeRROI' .j, where .; == 21' (mod 2k+1) and j = i - 2k Pl'(lCeRROI' i t.hen dropR 
out of the tournament and waits on a global flag for notice that the barrier has been achieved. 
Processor j participates in the next round of the tonrnarllcnt. Processor 0 sets a global flag when 
the tonrnarnent is over. 

Lubachevsky [26] presents a CREW (concnrrent read, exduHive write) tonrnarnent barrier that 
uses a global flag for wakeup, similar to that of Hensgen, Finkel, and Manber. He also presents 
an EREW (exclusive read, exclusive write) tournarnent barrier in which each processor spins on 
separate fiagH in a binary wakeup tree, Hirnilar to the one in our rIlodified version of the eornbining 
tree barrier in algorithm 8. Like our tree-based barrier, Lubachevsky's second tournament requres 
O(P) space, compared to O(P log P) space for the Hensgen, Finkel, and Manber tournament. 

Because all processors busy wait on a single global flag, Hensgen, FinkeL and Manber's tour­
narnent barrier and Lubaehevsky's CREW barrier are appropriate f< __ u' rnultiproeessors that use 
broadcast to maintain cache consistency. They will cause heavy interconnect traffic, however, on 

11 An assignment to count, a.n a.ssignment to locksense, a.nd k reads of locksense for each of (~-=-1) nodes, 
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machines that lack coherent caches, or that limit the degree of cache line replication. Lubachevsky's 
EREW tournament could be used on any multiprocessor with coherent caches, including those that 
use limited-replication directory-based caching without broadcast. Unfortunately, in Lubachevsky's 
EREW barrier algorithm, each processor spins on a non-contiguous set of elements in an array, and 
no simple scattering of these elements will suffice to eliminate spinning-related network traffic on 
a rnachine without coherent caches. 

By rnodifying Hcnsgcn, Finkcl~ and Manbcrls tournarncnt barrier to usc a wakeup tree a.s in 
Lubachevsky's EREW tournament barrier, we have constructed an EREW tournament barrier in 
which each processor spins on its own set of contiguous, statically allocated flags (see algorithm 10). 
As in our tree-based barrier, the resulting code is able to avoid spinning on any rcnlotc locations, 
both 011 cache-coherent rnachines and OIl distributed shared rnernory rnultiprocessors. In addition 
to employing a wakeup tree, we have modified Hensgen, Finkel, and Manber's algorithm to use 
sense reversal to avoid rc-initiali:zing flag variables in each round. 

The Dissemination Barrier 

I3esides the tree-style barriers, a second style of distributed barrier has evolved in which processors 
act in a horllogcncous rnanncr with no distinguitdlCd rllcrnbcr (c.g., the root or tournanlCnt chanlpion 
in the tree barrier algorithrns). Brooks [9] proposed a "bntterHy barrier~' in which each processor 
participates in a sequence of ~ log2 P pairwise synchronizations. In round k (counting from zero) 
of a butterfly barrier, processor i synchroni7.es with processor i EJl2k. If the number of processors is 
not a power of 2, then existing processors stand in for the rnissing ones~ thereby participating in a..s 
many as 2 [log2 Pl pairwise synchronizations. The code for an individual synchronization is shown 
in algorithm 11. 

Hensgen, Finkel, and Manber [171 describe a "dissemination barrier" that improves on I3rooks's 
algorithm by employing a more efficient pattern of pairwise synchroni7.ations and by reducing the 
cost of each synchronization. They provide peri'()rrnance figures for the Sequent Balance rnulti­
processor, comparing their algorithm against I3rooks's, and against their own tournament barrier. 
They report that the tournament barrier outperforms the dissemination barrier when P > 16. The 
dissernination barrier requires O(P log P) rernote operations, but the tournarnent barrier requires 
only O(P). Beyond 16 processors, the additional factor of log P in bus traffic for the dissemination 
barrier algoritlun dOlninates the higher constant of the tournarnent barrier. However, on scalable 
multiprocessors with multi-stage interconnection networks, many of the remote operations required 
by the dissenrination barrier algorithnr can proceed in parallel without interference. 

The dissernination barrier takes its narne frorn an algoritlun developed to diHHerninate inforrna­
tion among a set of processes. In round k, processor i synchronizes with processor (i + 2k) mod P. 
This pattern does not require existing processeH to stand in for rnissing ones, and therefore requireH 
only [log2 Pl synchronization operations on its critical path, regardless of P. For a more detailed 
description of the synchronization pattern and a proof of its correctness~ see [17]. 

For each pairwise synchronization of the dissernination barrier, Hensgen, Finkel, and Manber use 
alternating sets of variables in consecutive barrier episodes, avoiding interference without requiring 
two separate spinH in each pairwise Hynchronization. They also use senHe reversal to avoid resetting 
variables after every barrier. These two changes serve to eliminate the first and final lines of 
algorithrll 11. The first change also serves to elirllinate n~rnote spinning. The authors rnotivate 
their algorithrnic irnprovernents in tenns of reducing the nurnber of inHtructions executed in the 
course of a pairwise synchronization, but we consider the elimination of remote spinning to be an 
even rnore irllportant benefit. The £lags on which each processor spins are statically deterrnined, 
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type round_t = record 
role: enumeration {winner, loser, bye, champion, dropout} 
opponent: ~Boolean 
flag: Boolean 

shared rounds: array [0 .. P-l] [0 .. LogP] of round_t 
II row vpid of rounds is allocated in the portion of the shared memory 
II local to processor vpid 

private sense : Boolean := true 
processor private vpid : integer II a unique virtual processor index 

II initially 
I I rounds[i] [j] . flag = false for all i,j 
II rounds[i] [k] .role = 

II 
II 
II 
II 
II 
II 
II 
II 
II 

winner if k > 0, i mod 2~k = 

bye if k > 0, i mod 2~k = 0, 
loser if k > ° and i mod 2~k 

0, and i + 2~(k-l) < P 
and i + 2~(k-l) >= P 
= 2~ (k-l) 

champion if k > 0, i = 0, and 2~k >= P 
dropout otherwise 

rounds[i] [k] . opponent points 
rounds [i -2~ (k-1)] [k] . flag 
rounds[i +2~ (k-1)] [k] . flag 
nil otherwise 

to 
if rounds[i] [k] .role 
if rounds[i] [k] .role 

loser 
winner or champion 

procedure tournament barrier 
var round : integer := 1 

local_sense : Boolean 
loop I I arrival 

case rounds [vpid] [round] .role of 
loser: 

rounds [vpid] [round] .opponent~ := sense 
repeat until rounds [vpid] [round] .flag = sense 
exit loop 

winner: 
repeat 

bye: 
champion: 

until rounds [vpid] [round] .flag 
II do nothing 

sense 

repeat until rounds [vpid] [round] .flag sense 
rounds [vpid] [round] .opponent~ '= sense 

round 
loop 

exit loop 
dropout: II impossible 
.- round + 1 

II wakeup 
round '= round - 1 
case rounds [vpid] [round] .role of 

loser: II impossible 
winner: 

rounds [vpid] [round] .opponent~ := sense 
bye: I I do nothing 
champion: II impossible 
dropout: 

exit loop 
sense := not sense 

Algorithm 10: A scalable, distributed tournament barrier with only local spinning. 
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Process 1 
repeat while flag1 
flag1 := true 
repeat until flag2 
flag2 := false 

Process 2 
repeat while flag2 
flag2 := true 
repeat until flag1 
flag1 := false 

Algorithm 11: Brook's pairwise synchronization. 

type flags = record 
myflags : array [0 .. 11 of array [0 .. LogP-1] of Boolean 
partnerflags : array [0 .. 1] of array [0 .. LogP-1] of ~Boolean 

processor private parity : integer := 0 
processor private sense: Boolean := true 
processor private localflags : ~flags 
shared allnodes : array [0 .. P-1] of flags 

II allnodes[i] is allocated in the portion of the shared memory 
II local to processor i 

lion processor i, localflags points to allnodes[i] 
II initially allnodes[i] .myflags[r] [k] is false for all i, r, k 
II if j = (i+2~k) mod P, then for r = 0, 1: 
II allnodes[il .partnerflags[rl [k] points to allnodes[j] .myflags[rl [k] 

procedure dissemination_barrier 
var instance: integer 
for instance := 0 to LogP -1 

localflags~.partnerflags[parity] [instance]~ := sense 
repeat until localflags~.myflags[parity] [instance] sense 

if parity = 1 
sense := not sense 

parity := 1 - parity 

Algorithm 12: The scalable, distributed dissemination barrier with only local spinning. 

and no two processors spin on the sarne flag. Each flag can therefore be located near the processor 
that reads it, leading to local-only spinning on any machine with local shared memory or coherent 
caches. 

Algorithrn 12 presents the dissernination barrier. The parity variable controls the use of 
alternating sets of flags in successive barrier episodes. On a machine with distributed shared 
memory and without coherent caches, the shared allnodes array would be scattered statically 
across the memory banks of the machine, or replaced by a scattered set of variables. 

4 Performance Measurements 

We have measured the performance of various spin lock and barrier algorithms on the BBN Butterfly 
1, a distributed shared memory multiprocessor, and the Sequent Symmetry Model 13, a cache-
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Figure 2: The BBN Butterfly 1. 

coherent, shared-bus rl1nltiproeessor. Anyone wishing to reproduce OUI' results or extend our work 
to other machines can obtain copies of our C and assembler source code via anonymous ftp from 
titan.rice.edu (directory /public/scalable~,ynch). 

4.1 Hardware Description 

BBN Butterfly 

The BBN Butterfly 1 is a shared-memory multiprocessor that can support up to 256 processor 
nodes. Each processor node contains an 8 MHz MC68000 that uses 24-bit virtual addresses, and 
one to four rncgabytcs of rllcrllory (one on our nlachinc). Each processor can access its own rllcrllory 

directly, and can access the rnerIlory of any node through a log4 -depth switching network (see 
figure 2). Transactions on the network are packet-switched and non-blocking. If collisions occur at 
a switch node, one transaction succeeds and all of the others are aborted, to be retried at a later 
time (in hardware) by the processors that initiated them. In the absence of contention, a remote 
rllcrllory reference (read) takes about 4 11,8, roughly 5 tirllcs a.s long a.s a local reference. 

The Butterfly 1 supports two 16-bit atomic operations: fetch_and_clear _then_add and fetch_­
and_cleaLthen-xor. Each operation takes three arguments: the address of the 16-bit destination 
operand, a 16-bit mask. and the value of the 16-bit source operand. The value of the destination 
operand is anded with the one'f; eornplernent of the rna..sk, and then added or xored with the Honree 

operand. The resulting value replaces the original value of the destination operand. The previous 
value of the destination operand iti thc return valuc for the atOlnic operation. Utiing thctie two prinl­
itiveH, one ean peri'()rrn a variety of atornie operationH, induding fetch_and_add, fetch_and_store 

(swap), and fetch_and_or (which, like swap, can be used to perform a test-and_set). 

Sequent Symmetry 

The Sequent SYIIlInetry Model B is a shared-bus IImltiproeessor that supports up to 30 proeessor 
nodes. Each processor node consists of a 16 MHz Intel 80386 processor equipped with a 64 KI3 
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Figure 3: The Sequent Symmetry Model B. 

two-way Ret-aRRoeiative cache. All cacheR in the system are kept coherent by Rnooping on the bUR 
(see figure 3). Each cache line is accompanied by a tag that indicates whether the data is replicated 
in any other cache. Writes arc passed through to the bus only for replicated cache lines, invalidating 
all other copies. Otherwise the caches are write-back. 

The Symmetry provides an atomic fetch_and_store operation, and allows various logical and 
arithmetic operations to be applied atomically as well. Each of these operations can be applied to 
any 1, 2, or 4 byte quantity. The logical and arithrnetic operatioIlH do not return the previolls value 
of the modified location; they merely update the value in place and set the processor's condition 
codes. This limitation makes them significantly less useful than the fetch_and_<P operations of the 
Butterfly. 

4.2 Measurement Technique 

Our rctiults were obtained by clnbcdding lock acquisitions or barrier episodes inside a loop and 
averaging over a large Illlrnber of operations. In the spin lock graphH, each data point (P, T) 
represents the average time T to acquire and release the lock with P processors competing for the 
lock. On the Butterfly, the average is over 10,5 lock acquisitions. On the Sequent, the average is 
over lOG lock acquisitions. For an individual teHt of P prOC8HHOI'H collectively executing Klock 
acquisitions, we required that each processor acquire and release the lock l K / P J times. In the 
barrier graphs, each data point (P, T) represents the average time T for P processors to achieve a 
barrier. On both the Sequent and the Butterfly, the average is over 10° barriers. 

This averaging technique introduces a significant anomaly into the data points near the left 
edge of the spin lock graphs. When P = 1, T represents the latency on one processor of the 
acquire~ock and release_lock operations in the absence of competition. When P is moderately 
large, T represents the tinlC between lock acquisitions on successive cornpcting processors. This 
1)(1,8sing f'I>rne is a very different qnantity fi'orn the latency rneasnred on one processor; significant 
amounts of computation in acquire_lock prior to actual acquisition, and in release_lock after 
actual release, may be overlapped with work on other processors. When P is 2 or 3, T may 
represent either latency or passing tirne, depending on the relative arnonnts of overlapped and non­
overlapped computation.12 Moreover, in several cases (Anderson's lock, the MCS lock, and the 
locks incorporating backoff) the actual series of instructions executed for small values of P depends 
on how rnany other processors are cOlnpeting f< __ u' the lock, and which operations they have so far 
performed. 

12Since T may represent either latency or pa...,>sing time \vhen more than one processor is competing for a lock. it is 
difficult to factor out overhead due to the timing loop for timing tests 1,vith more than one processor. For consistency, 
we included loop overhead in all of the average times reported, 
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Figure 4: Performance of spin locks on t.he But.t.erfly (empt.y crit.ical sect.ion). 

Unless otherwise noted, all rneaHurernents on the Butterfly were perf'< __ u'rned with interrupts 
disabled. Similarly, on the Sequent, the tmp_affinityO system call was used to bind processes to 
procctition; for the duration of our cxpcrirncnts. These nwa.,:.;nrcs were taken to provide repeatable 
tirning reHlllts. 

4.3 Spin Locks 

Figure 4 shows the performance on the Butterfly of the spin lock algorithms described in section 2. 
The top curve is a sirnple test_and_set lock, and diHplays the pooreHt scaling behaviorY~ As ex­
pected, the ticket lock is slightly faster, due to polling with a simple read instead of a fetch_and_<P. 
We would expect a test-and-test-and_set lock to perform similarly. A linear least squares regres­
sion on the tirnings shows that the tirne to acquire and relea..qe the sirnple lock increases 7.4 lIS per 
additional processor. The time for a ticket lock increases 7.0 ItS per processor. 

By analogy with the exponential backoff scheme described in section 2, we investigated the effect 
of having each prOC8HHor delay between polling operationH for a period of tirne directly proportional 
to the number of unsuccessful test-and_set operations. This change reduces the slope of the simple 
lock graph to 5.0 11,,5 per processor, but performance degradation is still linear in the number of 
cOlnpeting proeeHHorH. 

13\Ve implement tesLand_set using the harchvare primitive fetch_and_cleaLthen_add "\vith a mask that specifies 
to dear the lowest hitj and an addend of 1. This operation returns the old value of the lock and leaves the lowest bit 
in the lock set. 
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The time to acquire and release the simple lock, the ticket lock, and the simple lock with linear 
backoff docs not actually incrca.sc linearly a.s Inore proccsson; cornpctc for the lock~ but rather in a 
piecewiH8 linear fashion. This behavior is a function of the interconnection network topology and 
the order in which we add processors to the test. For the tests shown in figure 4, our I3utterfly was 
configured as an 80 processor nlachinc with 5 switch cards in the first colurnn of the interconnection 
network, Hupporting 16 prOC8HHOI'H each. Processors were added to the test in a round robin faHhion, 
one from each card. The breaks in the performance graph occur as each group of 20 processors is 
added to the test. These arc the points at which we have included an additional 4 processors from 
each switch card, leading to the use of one more 4-input, 4-output switch node on each canl. What 
we see in the performance graphs is that the additional node causes behavior that is qualitatively 
different from that obtained by including another processor attached to a switch node already in 
use. This difference is likely related to the fact that additional processors attached to a switch 
node already in usc add contention in the first level of the interconnection network. An additional 
switch node adds contention in the second level of the network. In a fully configured machine with 
256 processors attached to 16 switch cards in the first column of the interconnection network, we 
would expect the breaks in spin lock performance to occur every 64 processors. 

Figure 5 provides an expanded view of perf'< __ u"rnance results for the IIlor8 scalable algorithrns, 
whose curves are grouped together near the bottom of figure 4. In this expanded graph, it is 
apparent that the tirnc to acquire and rclca.')c the lock in the single processor ca.')c is often nUH.:h 
larger t.han t.he t.he time required when multiple processors are competing f(lr the lock. As not.ed 
above, parts of each acquire/release protocol can execute in parallel when multiple processors 
conlpete. What we are nlCa.':mring in our trials with lnany processors is not the tillle to execute 
an acquire/release pair from start. to finish, but rat.her t.he length of time between a pair of lock 
acquisitions. Complicating matters is that the time required to release an MCS lock depends on 
whether another processor is waiting. 

The top curve in figure 5 shows the performance of Anderson's array-based queueing algorithm, 
modified to scatter the slots of the queue across the available processor nodes. This modification 
distributes traffic evenly in the interconnection network, by allowing each processor to spin on a 
location in a different memory bank. I3ecause the I3utterfly lacks coherent caches, however, and 
because processors spin on statically unpredictable locations, it is not in general possible with 
Anderson's lock to spin on local locations. Linear regression yields a slope for the perfonnance 
graph of 0.4 ItS per processor. 

Three algorithms-the simple lock with exponential backoff, the ticket lock with proportional 
backoff, and the MCS lock all scale extremely well. Ignoring the dat.a points below 10 processors 
(which helps us separate throughput under heavy competition from latency under light competi­
tion), we find slopes for these graphs of 0.025, 0.021, and 0.00025 11,,5 per processor, respectively. 
Since perforrnance does not degrade appreciably for any of these locks within the range of our tests, 
we would expect them to perform well even with thousands of processors competing. 

Figure 6 shows performance results for several spin lock algorithms on the Sequent. We adjusted 
data structures in rninor ways to avoid the unnecessary invalidations that would result froIll placing 
unrelated data items in the same cache line. The test-and-test-and_set algorithm showed the 
poorest scaling behavior, with the tirne to acquire and relea..qe the lock increasing drarnatically even 
over this small range of processors. A simple test-and_set would perform even worse. 

Because the atomic add instruction docs not return the old value of its target location, im­
plementation of t.he ticket lock is not. possible on the Sequent, nor is it possible t.o implement 
Anderson's lock directly. In his implementation [4], Anderson (who worked on a Sequent) intro-

23 



100 

90 

80 

70 

60 

Tirne 
50 (1"8ec) 

40 

30 

20 

10 

0 

0 

~~~ D test & set, expo backoff 

~ticket, prop. backoff 

10 20 30 40 50 
Processors 

60 70 80 

Figure 5: Perforrnance of selected spin locks on the Butterfly (ernpty critical section). 

duced an outer test-and_set lock with randomi7.ed backoff to protect the state of his queue.'; 
This strategy is reasonable when the critical section protected by the outer lock (narnely, acquisi­
tion or release of the inner lock) is substantially smaller than the critical section protected by the 
inner lock. This was not the case in our initial test, so the graph in figure 6 actually results from 
processors contending for the outer lock, instead of the inner, queue-based lock. To eliminate this 
anOlnaly~ we repeated our tests with a non-crnpty critical section, a.s shown in figure 7. With a 
sufficiently long critical section (6.48 fl.8 in our tests), processors have a chance to queue up on the 
inner lock, eliminating competition for the outer lock, and allowing the inner lock to eliminate bus 
transactions due to spinning. The time spent in the critical section has been factored out of the 
tirningH. 

In addition to Anderson's lock, our experiments indicate that the MCS lock and the simple 
lock with exponential backoff also scale extremely well. All three of the scalable algorithms have 
cOlnparable absolute perf'< __ u"rnance. Anderson's lock has a srnall edge for non-ernpty critical sections, 
but requires statically-allocated space per lock linear in the number of processors. The other two 
algorithms need only constant space, and do not require coherent caches to work well. The simple 
lock with exponential backoff shows a slight increasing trend, and might not do as well as the others 
on a very large machine. 

The peak in the cost of the MCS lock on two processors reflects the lack of compare_and_swap. 

HGiven that he required the outer lock in any case, Anderson also replaced the next slot index variable with a 
pointer, to save time on address arithmetic. 
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test-and_set ticket Anderson MCS 
Butterfly 29.8 /1.8 38.611-8 65.7 !l.8 71.3 /1.8 

Sequent 7.011-8 NA 10.6 !l.8 9.211-8 

Table 1: Time for an acquire/release pair in the single processor case. 

Some fraction of the time, a processor releasing the lock finds that its next variable is nil but 
then discovers that it has a successor after all when it performs its fetch_and_store on the lock's 
tail pointer. Entering thiH tirHing window neeessitateH an additional fetch_and_store to restore 
the state of the qucuc~ with a consequent drop in pcrfornlancc. The non-crnpty critical sections of 
figure 7 reduce the likelihood of hitting the window, thereby reducing the size of the two-processor 
peak. With compare_and_swap that peak would disappear altogether. 

Latency and Impact on Other Operations 

In addition to performance in the presence of many competing processors, an important criterion 
for any lock is the time it takes to acquire and release it in the absence of competition. Table 1 
shows this measure I'lr representative locks on both the Butterfly and the Sequent. Times for the 
simple lock are without backoff of any kind; times for the ticket lock are with code in place for 
proportional backoff. The simple lock is cheapest on both machines in the single processor case; 
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it has the shortest code path. On the I3utterfly, the ticket lock, Anderson's lock, and the MCS 
lock arc 1.29, 2.20, and 2.39 times as costly, respectively. On the Sequent, Anderson's lock and the 
MCS lock are 1.51 and 1.31 t.imes as cost.ly as t.he simple lock. 

Several factors skew the absolute numbers on the I3utterfly, making them somewhat misleading. 
First., our simple lock is implement.ed complet.ely in line, while t.he ot.her locks are complicat.ed 
enough to warrant subroutine calls. Ideally, the ticket lock with proportional backoff would call 
a subroutine only when backoff is required. Difficulties with our compiler made this approach 
impractical, but. we expect. t.hat. it. would have reduced t.he lat.ency of t.he t.icket. lock t.o nearly t.he 
same as the simple lock (an empty subroutine call on the I3utterfly takes almost 10 1"8). Second, 
the atonlic opcratiOllti on the Butterfly arc inordinately cxpclltiivc in cornparit;on to their nOll­
at.omic count.erpart.s. Most. of t.he lat.ency of each of t.he locks is due t.o t.he cost. of set.t.ing up a 
parameter block and executing an atomic operation. This affects the performance of the MCS lock 
in particular, since it requires at lca.')t two fetch_and_store operations (one to acquire the lock and 
anot.her t.o release it.) , and possibly a t.hird (if we hit. t.he t.iming window). Third, t.he 16-bit. at.omic 
primitives on the I3utterfly cannot manipulate 24-bit pointers atomically. To implement the MCS 
algorit.hm, we were j()rced t.o replace t.he point.ers wit.h indices int.o a replicat.ed, st.at.ically-allocat.ed 
array of pointers to qlink records. 

Absolute performance for all the algorithms is much better on the Sequent than on the Butterfly. 
The Sequent's dock runs twice aH fa..st, and its caches rnake rnernory in general appear significantly 
faster. The differences between algorithms are also smaller on the Sequent, mainly because of the 
lower difference in cost between atOlnic and non-atOlnic instructions~ and also because the Sequent '8 
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at rest tesLand_set ticket ticket w / tesLand_set w/ Anderson MCS 
prop. backoff expo backoff 

14.6 ItS 251 fi8 184 fi8 25 fiS 39 ItS 27 fiS 15 ItS 

Table 2: MeaRurement of bURy-waiting impact on network load. 

32-bit fetch_and_store instruction allows the MCS lock to use pointers. 

A final irnportant rneaHllre of spin lock perf'< __ u'rnance is the arIlonnt of interconnection network 
traffic cauRed by bURy-waiting proceRRorR, and the impact of thiR traffic on other activity on the 
machine. We used BBN's "probe" utility on the Butterfly to obtain an indirect measure of these 
quantities. Every three seconds, probe accesses memory through the switch interface of every 
proceRRor in the machine, and reportR the total time required. Individual reportR are not particularly 
rneaningflll, but the ratim; of reports obtained at different tirnes are a good indication of the relative 
level of load on the network. In table 2 we compare the "at rest" probe value with the values 
obtained when 75 processors arc cOlnpcting for each of several types of lock. With no uscr prograrns 
active, an average over 109 reportH by the probe conunand showed a probe of each processor's Hwitch 
interface to take 14.6 118 with a standard deviation of 1.4 IlS. Since the MCS locking algorithm uses 
no network bandwidth for bURY waiting, it iR no RurpriRe that with 75 proceRRorR uRing the algorithm 
to COlnpete f< __ u' a lock, our Inea..sured value f< __ u' the probe tirHe is within one standard deviation of 
the at reRt value. In contrast, uRing the Rimple and ticket loch without backoff, the probe time 
increased by factors of 17 and 12.6, respectively. Probe times for the remaining algorithms (the 
ticket lock with proportional backoff, the simple lock with exponential backoff, and Anderson's 
lock), increased by fact am of 1.7, 2.7, and 1.9, reRpectivcly. One defficiency of the probe utility iR 
that it provides no indication aH to whether contention iH llnif()rrn, or iHolated to a relatively HInall 
number of "hot" memory modules and switch nodes. 

Discussion and Recommendations 

Spin lock algorithnlH can be evaluated on the ba..siH of Heveral criteria: 

• scalability and induced net.work load 

• one-processor latency 

• Hpaee requirernentH 

• fairness/sensitivity to preemption 

• irnpleInentability with given atoInie operationH 

The MCS lock and, on cache-coherent machines, t.he Anderson lock are the most scalable 
algorithms we studied. The simple and ticket locks also scale well with appropriate backoff, but 
induce more network load. The Rimplc and ticket loch have the 10weRt Ringle-pnlceRRor latency, 
but. with good implementat.ions of fetch_and_<!> instructions the MCS and Anderson locks are 
reasonable as well (on the Sequent, the single-processor latency of the M CS lock is only 31 % higher 
than that of the RimplcRt tesLand_set lock). The Rpace needR of AnderRim'R lock are likely to be 
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prohibitive when a large number of locks is needed-in the internals of an operating system, for 
cxanlplc. 

The ticket lock, Anderson's lock, and the MCS lock all guarantee that processors attempting to 
acquire a lock will succeed in FIFO order. This guarantee of fairness is likely to be considered an 
advantage in many environments, but will be a distinct disadvantage if spinning processes may be 
preempted. A simple lock with exponential backo!f will allow latecomers to acquire the lock when 
processes that arrived earlier are not running, and may therefore be preferred. In any event, it may 
be important to introduce mechanisms to ensure that a process is not preempted while actually 
holding a lock [34, 39]. 

All of the spin lock algorithms we have considered require some sort offetch_and_<P instructions. 
The simple lock requires test-and_set. The ticket lock requires fetch_and_increment. The MCS 
lock requires fetch_and_store,lG and benefits from compare_and_swap. Anderson's lock benefits 
from fetch_and_add. Of these requirements, those of the ticket and MCS locks are most likely to 
be a problcnl on currently-available rnachincti. 

For cases in which competition is expected, the MCS lock is dearly the implementation of choice. 
On average it takes the smallest amount of time to pass on a lock, provides FIFO ordering, scales 
ahnost perfectly, and requires only a srnall, constant arnount of space pCI' lock. It also induces 
the least amount of interconnect contention. On a machine with fast fetch_and_<P operations 
(particularly if compare_and_swap is available), its one-processor latency will be competitive with 
all the other algorithms. 

The ticket lock with proportional backoff is an attractive alternative if one-processor latency is 
an overriding conccrn~ or if fetch_and_store is not available. Although our experience with it is 
lirnited to a distribnted-rnerIlory rl1nltiproeessor without cache coherence, OUI' expectation if) that 
the ticket lock with proportional backoff would perform well on cache-coherent multiprocessors as 
well. The simple lock with exponential backoff is an attractive alternative if preemption is possible 
while spinning, or if neither fetch_and_store nor fetch_and_increment is available. It is 47% 
slower than the ticket lock with proportional backoff in the presence of heavy competition, and 
results in significantly more network load. 

4,4 Barriers 

Figure 8 shows the performance on the I3utterfly of the barrier algorithms described in section 3. 
The top three curves arc all sense-reversing, countcr-ba.scd barrierti ati in algorithrn 7~ with variouti 
backo!f strategies. The slowest performs no backoff. The next uses exponent.ial backoff. We 
obtained the best performance with an initial delay of 10 iterations through an empty loop, with 
a backoff base of 2. Our results suggest that it may be necessary to limit the maximum backoff in 
order to rnaintain stability. When a large nurnber of barI"ien; are execnted in seqnence, the skew 
of processors arriving at the barriers is magnified by the exponential backoff strategy. As the skew 
between arriving processors increa .. seti, procetitiorti back off farther. With a backoff base larger than 
2, we had to cap the maximum delay in order for our experiments to finish. Even with a backoff 
base of 2, a delay cap improved performance. Our best results were obtained with a cap of 8F 
delay loop iterations. 

In our final experiment with a centralized, counter-based barrier, we used a variant of the 
proportional delay idea employed in the ticket lock. After incrementing the barrier count to signal 

1 ,)It could conceivably be used ''lith only compare_and_s .. ap, simulating fetch_and_store in a loop, but at a signif­
ica.nt loss in scalability. 
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Figure 8: Performance of barrier" on the Butterfly. 
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itH arrival, each processor participating in the barrier delays a period of tirne proportional to the 
total number of participants (not the number yet to arrive), prior to testing the sense variable 
for the fir"t time. The rationale for thi" "trategy i" to time"lice available interconnect bandwidth 
between the barrier participantH. Since the Butterfly network does not provide hardware cOlnbining, 
at least 2P -1 accesses to the barrier state are required (P to signal processor arrivals, and P -1 to 
di"cover that all have arrived). Each proce""or delay" long enough for later proce""or" to indicate 
their arrival, and for earlier prOC8HHOI'H to notice that all have arrived. AH shown in figure 8, thiH 
strategy outperforms both the naive central barrier and the central barrier with exponential backoff. 
At the "ame time, all three counter-based algoritlull" lead to curve" of "imilar "hape. The time to 
achieve a barrier appears to increaH8 IIlor8 than linearly in the Illlrnber of participants. The best of 
these purely centralized algorithms (the proportional backoff strategy) requires over 1.4 TnS for an 
80 processor barrier. 

The fourth curve in figure 8 is the combining tree barrier of algorithm 8. Though this algo­
rithm scales better than the centralized approaches (in fact, it scales roughly logarithmically with 
P, although the constant is large), it still spins on remote locations, and encounters increasing 
interconnect contention ati the nunlber of procetitiorti growti. 

Figure 9 provides an expanded view of performance results for the algorithms with the best 
performance, who"e curve" arc grouped together ncar the bottom of figure 8. The code for the 
upper curve uses a central counter to tally arrivals at the barrier, but ernploys a binary tree for 
wakeup, as in algorithm 9. The processor at the root of the tree spins on the central counter. Other 
proce""or" "pin on flag" in their H'"pective node" of the tree. All "pin" are local, but the tallying of 
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Figure g: Performance of selected barriers on the Butterfly. 

.0 

80 

arrivals is serialized. We flee two diHtinct sections in the resulting perf'< __ u'rnance curve. With fewer 
than 10 processors, the time for wakeup dominates, and the time to achieve the barrier is roughly 
logarithrnic in the nurnbcr of participants. With Inore than 10 processors, the tinlC to access the 
central counter dorninates, and the tirne to achieve the barrier if) roughly linear in the IlllInber of 
participants. 

The three rernaining curves in figure 9 are f< __ u' our tree barrier, the diss8rnination barrier, and a 
modified version of the tournament barrier of Hensgen, Finkel and Manber. The time to achieve a 
barrier with each of these algorithms scales logarithmically with the number of processors partici­
pating. The tonrnarnent and diHHernination barrien; proceed through O( lIng Pl) rounds of synchro­
ni,ation, leading to a stair-step curve. Since the I3utterfly does not provide coherent caches, the 
tournament barrier employs a binary wakeup tree, as shown in algorithm 10. It requires 2 POg2 Pl 
rounds of synchronization, cOlnpared to only ilog2 Pl rounds in the diHHernination barrier, resulting 
in a roughly two-fold difference in performance. Our tree-based barrier lies between the other two; 
itH critical path cOlnpriH8s approxirnately loglj P + log2 P pairwiRe Hynchronizations. The lack of 
clear-cut rounds in our barrier explains its smoother performance curve: each additional processor 
adds another level to some path through the tree, or becomes the second child of some node in the 
wakeup tree, delayed Hlightly longer than its Hibling. 

Figure 10 shows the performance on the Sequent Symmetry of several different barriers. Results 
differ sharply fi·orn those on the But.terfly for t.wo principal reasons. First., it. is accept.able on t.he 
Sequent for more than one processor to spin on the same location; each obtains a copy in its cache. 
Second, no significant advantage arises fronl distributing writes across the rllcnlory rnodulcs of 
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the rnaehine; the shared bus 8nf()rC8H an overall serialization. The diss8rnination barrier reqllireH 

O(P log P) bus transactions to achieve a P-processor barrier. The other four algorithms require 
O(P) tranRactionR, and all perform better than the diRRemination barrier for P > 8. 

Below the rnaxirIlllrn Illlrnber of processors in OUI' tests, the fastest barrier on the Sequent used 
a centralized counter with a sense-reversing wakeup flag (from algorithm 7). P bus transactions are 
required to tally arrivab, 1 to toggle the RenRe-reveming flag (invalidating all the cached copieR), and 
P -1 to efl'ect the subsequent re-loads. Our tree barrier generates 2P - 2 writes to flag variables on 
which other processors are waiting, necessitating an additional 2P - 2 re-loads. I3y using a central 
RenRe-reveming flag for wakeup (inRtead of the wakeup tree), we can eliminate half of thiR overhead. 
The resulting algorithm is identified as "arrival tree" in figure 10. Though the arrival tree barrier 
has a larger startup cost, its P - 1 writes are cheaper than the P read-modify-write operations of 
the centrali7.ed barrier, RO itR Rlope iR lower, For large valueR of P, the arrival tree with wakeup flag 
is the best performing barrier, and should become clearly so on larger machines. 

The tournament barrier on the Sequent uses a central wakeup flag. It roughly matches the 
perf(mnance of the arrival tree barrier for P = 2', but is limited by the length of the execution 
path of the tournament champion, which grows suddenly by one each time that P exceeds a power 
of 2. 
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Discussion and Recommendations 

The dissernination barrier appean; to be the rnost suitable algorithrn f< __ u" diHtribllted rnerIlory rna­
chines without broadcast. It has a shorter critical path than the tree and tournament barriers (by a 
constant factor), and is therefore fa.stcr. The da.s.') of rnachincs for which the disscnlination barrier 
should out.perform all ot.her algorit.hms indudes t.he BBN But.t.erfly [8], t.he IBM RP3 [30], Cedar 
[37], the I3I3N Monarch [32], the NYU Ultracomputer [16], and proposed large-scale multiprocessors 
with directory-based cache coherence [2]. Our tree-based barrier will also perform well on these 
rnaehin8s. It induceR leHH network load, and requires total space proportional to P, rather than 
P log P, but its critical path is longer by a factor of about 1.5. 

Our tree-based barrier with wakeup flag should be the fastest algorithm on large-scale multi­
processors that use broadcaHt to rnaintain cache coherence (either in snoopy cache protocols [14] or 
in directory-based protocols with broadcast [7]). It requires only O(P) updates to shared variables 
in order t.o t.ally arrivals, compared t.o O(P log P) for t.he disseminat.ion barrier. Its updat.es are 
simple writes, which are cheaper than the read-modify-write operations of a centrali"ed counter­
based barrier. Its space needs arc lower than those of the tournament barrier (O(P) instead of 
O(PlogP)), it.s code is simpler, and it. performs slight.ly less local work when P is not. a power of 
2. Our results are consistent with those of Hensgen, Finkel, and Manber [17], who showed their 
tournarncnt barrier to be fa.stcr than their disscnlination barrier on the Sequent Balance rllulti­
processor. They did not corn pare their algorithnlH againHt a centralized barrier becauHe the lack 
of a hardware atomic increment instruction on the I3alance precludes efficient atomic update of a 
counter. 

4.5 Architectural Implications 

Many different shared memory architectures have been proposed. From the point of view of syn­
chronization, the two relevant issues seem to be (1) whether shared memory can be accessed locally 
by Horne proceHHor (inHtead of through the interconnection network), and (2) whether broadcaHt iH 
available for cache coherency. The first issue is crucial; it determines whether busy waiting can be 
clirninated a,.,) a cause of rnernory and interconnect contention. The second issue deterrnines whether 
barrier algorithrnH can efficiently ernploy a centralized flag for wakeup. 

The most scalable synchroni"ation algorithms (the MCS spin lock and the tree, bidirectional 
tournarnent, and dissellrination barriers) are designed in such a way that each processor spins 
on st.at.ically-det.ermined locat.ion(s) on which no ot.her processor spins. On a dist.ribut.ed shared 
memory machine, variables can be located explicitly at the processor that spins on them. On 
a cache-coherent. machine, t.hey migrat.e t.o t.he correct. locat.ion aut.omat.ically, provided t.hat. flag 
variables used for busy-waiting by different processors are in separate cache lines. In either case, 
rellrote operations are used only to update a location on which sorne processor is waiting. For 
t.he MCS spin lock t.he nmnber of remot.e operat.ions per lock acquisit.ion is const.ant.. For t.he t.ree 
and tournament barriers, the number of remote operations per barrier is linear in the number of 
processors involved. For the dissernination barrier, the nUllrber ofrernote operations is O(P log P), 
but O(log P) on the critical path. No rernote operations are due to spinning, so interconnect 
contention is not a problem. 

On "dance hall" llrachines, in which shared rnernory nUlst always be accessed through a shared 
processor-rnerIlory interconnect, there is no way to elirninate synchronization-related interconnect 
contention. Nevertheless, the algorithms we have described are useful since they minimi"e memory 
contention and hot spots caused by synchronization. The structure of these algorithms makes it 
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at rest tree barrier diHHernination barrier 
w / local polling I w / network polling w / local polling I w / network polling 

14.5 flB 15 fl,B I 32.9 118 14.4 118 I 32.5 fl8 

Table 3: Effect of barrier algorithms on network load, with and without local access to shared 
rnernory. 

ea...;;y to assign each proceHHor~s busy-wait Hag variableH to a different rnernory bank so that the 
load induced by spinning will be distributed evenly throughout memory and the interconnect, 
rather than being concentrated in a Hingle spot. Unfortunately, on dance hall rnachines the load 
will still consume interconnect bandwidth, degrading the performance not only of synchroni,ation 
opcratiOllti but altio of all other activity on the nlachinc, severely constraining scalability. 

Dance hall machines include bus-based multiprocessors without coherent caches, and multistage 
network architectures such as Cedar [37], the BBN Monarch [32], and the NYU Ultracomputer [16]. 
Both Cedar and the Ultracomputer include processor-local memory, but only f(lr private code and 
data. The Monarch provides a small amount of local memory as a "poor man's instruction cache." 
In none of these machines can local memory be modified remotely. We consider the lack of local 
shared memory to be a significant architectural shortcoming; the inability to take full advantage of 
techniques such as those described in this paper is a strong argurllcnt against the construction of 
dance hall rnachineH. 

To assess the inlportancc of local shared rllcnlory, we used our Butterfly 1 to sirnulatc a nlachinc 
in which all shared rnernory iH accessed through the interconnection network. By Hipping a bit in 
the segment register for the synchroni,ation variables on which a processor spins, we can cause the 
processor to go out through the network to reach these variables (even though they arc in its own 
memory), without going through the network to reach code and private data. This trick effectively 
flattens the two-level shared memory hierarchy of the Butterfly into a single level organi7.ation 
similar to that of Cedar, the Monarch, or the Ultracompllter. 

Figure 11 COlllpares the perforlllance of the disselllination and tree barrier algorithrlls for one 
and two level rnernory hierarchieH. All tirning rneaHurernents in the graph were rnade with interrupts 
disabled, to eliminate any effects due to timer interrupts or scheduler activity. The bottom two 
curves are the sallre a.s in figures 8 and 9. The top two curves show the corresponding perforlllance 
figureH when all accesses to Hhared rnernory are forced to go through the interconnection network. 
When busy-waiting accesses traverse the interconnect, the time to achieve a barrier using the tree 
and dissernination algorithrns increa..qeH linearly with the nurnber of processors participating. A 
least squares fit shows the additional cost per processor to be 27.8 ItS and 9.4 I"B, respectively. For 
an 84-processor barrier, the lack of local spinning increases the cost of the tree and dissemination 
barriers by factors of ll.S and 6.S, respectively. 

In a related experirllent~ we llrea.':mred the illlpact on network latency of executing the disserll­
ination or tree barriers with and without local acceHH to shared rnerIlory. The reHults appear in 
table 3. As in table 2, we used the I3utterfly "probe" utility to compare network latency at rest 
with latency during a barrier. We find that network latency is virtually unaffected when processors 
are able to spin on shared locations without going through the interconnect. With only rerIlote 
access to shared rnelllory, latency rllore than doubles. 

Studies by Pfister and Norton [31] show that hot-spot contention can lead to tree saturation 
in multistage interconnection networks with blocking nodes and distributed routing control, inde-
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Figure 11: Performance of tree and dissemination barriers with and without local access to shared 
rncrllory. 

pendent of the network topology. A study by Kumar and Pfister [21] shows the onset of hot-spot 
contention to be rapid. Pfister and Norton argue for hardware message combining in interconnec­
tion networks to reduce the impact of hot spots. They base their argument primarily on anticipated 
contention for locks, noting that they know of no quantitative evidence to support or deny the value 
of combining for general memory traffic. Our results indicate that the cost of synchroni,ation in a 
system without combining, and the impact that synchroni7.ation activity will have on overall system 
perf'< __ u'rnanc8, is rnuch leHH than previollsly thought (provided that the architecture incorporates a 
shared memory hierarchy of two or more levels). Although the scalable algorithms presented in this 
paper are unlikely to match the performance of hardware combining, they will come dose enough 
to provide an extremely attractive alternative to complex, expensive hardware. 16 

Other researchers have suggested building special-purpose hardware mechanisms solely for syn­
chronization, including synchronization variables in the switching nodes of rnultistagc intercon­
nection networks [19] and lock queueing mechanisms in the cache controllers of cache-coherent 
multiprocessors [13, 24, 28]. Our results suggest that simple exploitation of a multi-level memory 
hierarchy, in software, provides a Illore cost-effective rneans of avoiding lock-ba..sed contention. 

The algorithms we present in this paper require no hardware support for synchroni,ation other 
than cOlnnlonly-availablc atornic instructions. The scalable barrier algorithnls rely only on atonlic 
read and write. The MCS spin lock algorithm uses fetch_and_store and maybe compare_and_-

Hipfister and I\orton estimate that message combining 1,vill increase the size and possibly the cost of an intercon­
nection nehvork 6- to 32-fold. Gottlieb [15] indicates that combining nehvorks are difficult to hit-slice. 
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swap. Anderson's lock benefits from fetch_and_increment, and the ticket lock requires it. All of 
these instructions have uses other than the construction of busy-wait locks. 17 Because of their gen­
eral utility, they are Hulmtantially 11101'8 attractive than special-purpose Hynchronization prirnitiv8H. 
Future designs for shared memory machines should include a full set of fetch_and_<P operations, 
induding compare_and_swap. 

5 Conclusion 

The principal conclusion of our work is that memory and interconnect contention due to busy 
wait t;ynchroni:zation in shared-rllcnlory rnultiproccsson; need not be a problcnl. This conclusion 
runs counter to widely-held beliefs. We have studied the behavior of mutual exclusion and barrier 
synchronization rncchanisnui based on busy waiting, with a particular eye toward rninirni:zing the 
rerIlote references that lead to contention. We have derIlonstrated that appropriate algoritluns llsing 
simple and widely-available atomic instructions can reduce synchroni"ation contention effectively 
to zero. 

For spin locks on a Hhared-rnerIlory IIlllltiproc8HHor, regardless of architectural detailH, we Huggest: 

1. If the hardware provides an efficient fetch_and_store instruction (and maybe compare_and_­
swap), then use the MCS lock. One-processor latency will be reasonable, and scalability will 
be excellent. 

2. If fetch_and_store is not available, or if atornic operations are very expensive relative to non­
atolllic intitructionti and one-procetitior latency iti an overwhelrning concern, then utie the ticket 
lock with proportional backo!f (assuIlling the hardware supports fetch_and_increment). The 
code for snch a lock is typically more complicated than code for the MCS lock, and the load on 
the procetitiOr-rnelllory interconnect will be higher in the pretience of cornpctition for the lock, 
but speed on a single processor will be slightly better and scalability will still be reasonable. 

3. Use the simple lock with exponential backoff (with a cap on the maximum delay) if processes 
rnight be preernpted while spinning, or if one-processor latency is an overwhelrning concern 
and the hardware does not support fetch_and_increment (assurning of course that it does 
support test-and_set). 

For barrier synchronization we suggest: 

1. On a broadcast-based cache-coherent multiprocessor (with unlimited replication), use a bar­
rier baRed on our 4-ary arrival tree and a central sense-reversing wakeup flag. 

2. On a multiprocessor without coherent caches, or with directory-based coherency that limits 
the degree of replication, use either the dissernination barrier (with data structures distributed 
to respect locality) or our tree-based barrier with tree wakenp. The critical path throngh the 
dissemination barrier algorithm is about a third shorter than that of the tree barrier, but 
the total amount of interconnect traffic is O(P log P) instead of O(P). The dissemination 
barrier will outperform the tree barrier on machines snch as the I3utterfly, which allow remote 
referenceti frolll rnany different processors to proceed in parallel. 

17Fetch_and_store and compare_and_swap, for example, are essential for manipulating pointers to build concurrent 
data structures [18, 27]. 
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For the designers of large-scale shared-memory multiprocessors, our results argue in favor of 
providing distributed memory or coherent caches, rather than dance-hall memory without caches. 
Our resultH also indicate that eornbining networkH rl1UHt be jUHtified on grollIHif; other than the 
reduction of synchroni"ation overhead. We strongly suggest that future multiprocessors include 
both compare_and_swap and a variety of fetch_and_<P operations (especially fetch_and_store). 
We see no need for additional, special-purpose inHtructions designed for synchronization. Straight­
forward software techniques can eliminate contention due to busy-wait synchroni"ation; hardware 
techniques arc not required. 
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A Derivation and Correctness of the MCS Spin Lock 

To derive the MeS spin lock we begin with a correct but impractical algorithm, then refine it 
through a fleries of correctness-preserving transfonnations into sornething that we can actually 
implement with existing hardware primitives. Throughout, we will use angle brackets « ... » to 
enclose actions that arc to be perfanned atonlically. The idiOln "><" within a atornic action will 
indicate that the action is to be broken into pieces at that point ·i. f. that the current state will 
be externally visible and that atomic actions by other processors may occur before execution of the 
current processor continues. Assertions appear in braces. 

The purpose of the atomic actions is to ensure that the lock data structure (i. e., the quelle) 
is always changed from one consistent state to another. In other words, consistent queue states 
can be characterized by invariants that arc maintained by all atomic actions. Implicit in all the 
following code fragrnents is the staternent that queue structure invariants hold between all atOlnie 
actions. 

We begin with a version of the algorithm in which the entire acquire_lock and release_lock 
procedures are atOlnie actions, broken only where a prOC8HHor waits (in acquire_lock) for the lock 
to become available. We assume that processors call acquire_lock and release_lock in strict 
alternation, that they call acquire_lock first, and that any processor that calls acquire_lock will 
eventually call release_lock. 

type qlink = record 
next : ~qlink 

state: (outside, inside, waiting) 

shared tail : ~qlink := nil 
shared head : ~qlink := nil 
processor private I: ~qlink 

II initialized to point to a queue link record 
II in the local portion of shared memory 

procedure acquire_lock () 
{I->state outside} 
< 

> 

I->next := nil 
predecessor := tail; tail .- I 
if predecessor != nil 

I->state := waiting 
predecessor->next := I 
repeat >< until head I 

else head := I 
I->state := inside 

{I->state = inside} 

II spin 
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procedure release_lock () 
{I->state inside} 

< 

> 

if tail = I 

tail ; = nil 
head ;= nil 

else head ;= I->next 
I->state ;= outside 

{I->state = outside} 

The invariants on the queue data structure are: The lock is either free (tail = head = nil), 
or there is a linked list of processors from head' through tail', arranged in the order in which they 
entered acquire_lock. Each processor on the list, other than the head, has a unique predecessor, 
and tail->next = nil. These invariants can be forrnalized and proven for the code above, but 
such an exercise adds little to the current discussion; people know how to write queues. 

Since I ->state is modified only by processor I, it cannot change between the return from 
acquire~ock and a subsequent call to release_lock. To demonstrate mutual exclusion, it there­
fore suffices to note that I ->state = inside ==} head = I in every observable state of the sys­
tem (that is, every state outside an atomic action). This implication follows from the fact that 
acquire~ock sets I ->state to inside only if head = I, and release_lock merely sets I ->state 
to outside. 

To demonstrate lack of deadlock, we must show that I ->state cannot equal waiting j()rever. 
We can argue this by induction on the distance between processor I and the head of the queue. If 
the distance is 7.ero we have head = I, and the while loop in acquire~ock will terminate, allowing 
processor I to continue. If the distance is N, processor I will enter the while loop immediately 
after linking itself behind the N - 1st processor, whom we can assume will enter state inside by 
inductive hypothesis. By assumption this N - 1st processor will eventually call release_lock, at 
which point it will set head to I, and processor I will proceed. 

These arguments can be made more rigorous, but we do not find the resulting sea of notation 
any more convincing. We proceed, therefore, with a modified version of the algorithm. 

To elirninate spinning on the globally-shared head pointer, we introduce a new field in each 
qlink: 

locked Boolean 

We set I->locked = true immediately before the while loop in acquire_lock. Thus when 
I falls into the loop we have I ->locked = true and head ! = I. We also change release_lock 
so that it sets I->next->locked = false at the same time that it sets head = I->next. Since 
this code in release_lock is the only place that head can change when tail ! = nil, we have 
(I->state = waiting) ==} (head = I <=> I->locked = false). We can therefore change the 
condition on the while loop in acquire_lock from head != I to I->locked. But this condition 
was the only place in the code where the value of head was inspected! With the changes just 
described, head becomes a useless variable and can be eliminated. Our code is now as follows: 
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procedure acquire_lock () 
{I->state outside} 
< 

> 

I->next := nil 
predecessor := tail; tail .- I 
if predecessor != nil 

I->state := waiting 
I->locked := true 
predecessor->next := I 
repeat >< while I->locked 

I->state := inside 

{I->state = inside} 

procedure release_lock () 
{I->state inside} 
< 

> 

if tail = I 
tail : = nil 

else I->next->locked := false 
I->state := outside 

{I->state = outside} 

II spin 

In order to irnplernent thiH algorithrn on practical rnachineH, we will need to break up the 
atomic actions (It makes no sense to use a lock to implement atomicity for the purpose of building 
a lock). We cannot, for example, link a newly-arrived processor simultaneously into both the tail 
of the queue and the proceHHor's predeceHHor with standard atOlnic instructionH. This rneans we 
are talking about breaking atomicity when the queue is in an inconsistent state-one in which 
processor I is not the head of the queue and yet is not pointed at by its predecessor. We note that 
the only way this state can arise is for processor I to be in the gap between the two halves of the 
atornic action in acquire_lock, in which ca.se it will fix its predecessor't; pointer before spinning. 
Let us represent this point in the code by letting I ->state = linking. 

When I ->state = linking, I will already have linked itself into the tail of the queue, so when 
its predecessor calls release_lock, it will see that it is not at the tail of the queue and reali7.e that 
it IIlust have a successor. All that is required to restore the correctness of the algorithm is to (1) 
relax the invariant on queue structure to permit a non-tail element to have a nil next pointer, 
so long at; its successor's t;tate is linking, and (2) introduce a t;pin in release_lock to force the 
successor to wait for itH next pointer to be updated bef< __ u"e using it. Our code now 100kH like thiH: 
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procedure acquire_lock () 
{I->state = outside} 
< 

> 
< 

> 

I->state := linking 
I->next := nil 
predecessor := tail; tail := I 

if predecessor != nil 
I->state := waiting 
I->locked := true 
predecessor->next := I 
repeat >< while I->locked 

I->state := inside 

{I->state = inside} 

procedure release_lock () 
{I->state inside} 
< 

if tail = I 
tail : = nil 

II spin 

else II we have a successor 
repeat > 

{I->next nil ==> (exists J: 
(J->state = linking AND J's predecessor variable is I)) } 

< while I->next = nil II spin 
I->next->locked .- false 

I->state := outside 
> 
{I->state = outside} 

The new spin in release_lock cannot introduce deadlock because it happens only when tail 
! = I and I ->state = inside, but I ->next = nil, that is, when l's successor's state is linking. 
Since I's succeRRor is not blocked, it will set I ->next to point to itself, and the spin in release_lock 
will terminate. 

To reduce the si:ze of the rernaining atornic actions~ we first note that I ->next is irrelevant 
when I ->state = outside, HO the aHHignrIlent I ->next : = nil can be rIloved outHide the firHt 
atomic action in acquire_lock. If we interpret the release of atomicity in the waiting loop in 
acquire~ock to allow other atOlnic actions to occur before exarnining the loop condition for the 
firHt tirIle (a rea..sonable interpretation) then the Hecond atornic action in acquire_lock cannot 
interfere with other actions even if not atonric-it sets only one variable (predecessor->next) 
that is read by another processor, and reads no variables that are set by other processors. The 
bodies of the repeat loops in both routines are equally interference free. Finally, the state field 
of a process_block serves only to facilitate discussion, and is never inspected; it can be deleted. 
After deleting unnecessary atornieity and a..sHignrIlentH to I ->state, our code now looks like this: 
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procedure acquire_lock () 
I->next := nil 

< 

> 
predecessor := tail; tail '= I 

if predecessor != nil 
I->locked := true 
predecessor->next := I 
repeat while I->locked 

procedure release_lock () 
< 

> 

if tail = I 
tail . - nil 

II spin 

else II we have a successor 
repeat while I->next = nil 
I->next->locked := false 

II spin 

We observe that the rcrnallllng atonlic action in acquire_lock is a sirnple fetch_and_store 
operation, and the atolnic action in release_lock iH a compare_and_swap. We can re-write the 
code as follows: 

procedure acquire_lock () 
I->next := nil 
predecessor := fetch_and_store (tail, I) 
if predecessor != nil 

I->locked := true 
predecessor->next := I 
repeat while I->locked 

procedure release_lock () 

II spin 

if not compare_and_swap (tail, I, nil) 
repeat while I->next = nil II spin 
I->next->locked := false 

To avoid unneccssary use of the compare_and_swap instruction in release_lock, we can note 
that I ->next ! = nil ==? tail ! = I, HO we can skip both the compare_and_swap and the while 
loop, and proceed directly to the update of I ->next->locked, whenever I ->next I = nil. Making 
this change and modifying the calling sequence to permit the lock to be specified as a parameter 
reHults in the code of algorithm 4. 

If a compare_and_swap instruction is not available, wc will bc unable to iInplernent the rcrnaining 
atolnic action in release_lock aH written. AHHurning that fetch_and_store i8 available, it iH 
tempting to use it to simulate compare_and_swap by reserving one bit pattern as an "invalid" 
value: 18 

1RCompare_and_swap can also be used in a loop to simulate fetch_and_store, "\vithout the need for a special invalid 
value. A survey of current. archit.ectures reveals t.hat. each of these inst.ructions is oft.en provided \vithout. t.he ot.her, 
but that compare_and_swap is the one more frequently omitted. 
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procedure fake_compare_and_swap (location, old_value, new_value) 
repeat 

current_value := fetch_and_store (location, invalid_value) 
until (current_value != invalid_value) 
if (current_value = old_value) 

location~ := new_value 
return true 

return false 

ThiR approach Ruffem from two problemR, however. Fimt, it includeR a loop that would perform 
a potentially unbounded nUlnber of relnote fetch_and_store operationH in release_lock. Second, 
it requireR the URe of a Rimilar loop in acquire_lock. BecauRe of the pmRibility of finding an invalid 
value in the tail pointer, the line in acquire_lock that reads 

predecessor := fetch_and_store (tail, I) 

must be changed to 

repeat 
predecessor = fetch_and_store (tail, invalid_value) 

until (predecessor != invalid_value) 
lock :~ I 

Since the goal of the MCS lock iR to eliminate Rpinning on remote 10cationR, thiR "Rolution" 
iH unacceptable. InHtead, we purHue an optiIniHtic iInplernentation of release_lock, in which the 
calling processor I assumes that it never has a successor whose state is linking. When I finds that 
itR next pointer iR niL it UReR a Ringle fetch_and_store operation to Ret the tail pointer to nil, 
thereby relea...;;ing the lock. If optirniHrn waH unwarranted, the return value froIll fetch_and_store 
will not be the expected value I, and recovery will be necessary. Fortunately, the queue can be 
repaired in constant time, at the expense of FIFO ordering of lock aequisitions. 19 

Code for the modified version of release_lock, without compare_and_swap, appeared in algo­
rithm 5. To underRtand itR recovery actionR, conRider the Rtate of the queue in the event that the 
fetch_and_store reveals that I was not in fact the tail of the queue, so that a compare_and_swap 
operation would have failed. Tail will be niL The processor to which tail should point will 
have been returned by fetch_and_store, and Raved in local variable old_taiL I'R RucceRRor will 
eventually update I ->next. To an independent caller of acquire_lock, the queue will appear to 
be empty, the lock unheld. The processor or processors from I ->next through old_tail will have 
been r11ititakenly ren10ved fr0111 the queue. 

Recovery beginH with a Hecond fetch_and_store operation, to reHtore the tail pointer. If thiH 
second fetch_and_store returns nil, then the queue is again intact (though some independent 
proceRRorR may have acquired and released the lock in the meantime, out of FIFO order). If the 
Hecond fetch_and_store returns a pointer other than nil, then one or rIlore independent processors 
have queued up while the lock appeared to be free, and the first of them may be inside its critical 
Rection. We will permit all of theRe proceRRorR to acquire the lock before any of the proceRRorR we 
mistakenly removed from the queue. It is conceivable (though presumably very unlikely) that the 

H1In the symmetric ca.se, ,vhere compare_and_swap is provided without fetch_and_store, \ve are una>va.re of a.ny 
alternative to simulating fetch_and_store with a loop that busy-\vaits on the remote location. 
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last of the usurpers will attempt to release the lock before we have updated its next pointer. In 
this event the above scenario can repeat, and starvation is theoretically possible. The pcrfornlancc 
results in section 4.3 were obtained with the alternative version of the MCS lock, without compare_­
and_swap. 
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