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In recent years, much effort has been devoted to analyzing the 
performance of distributed memory systems for multiprocessors. 
Such systems usually consist of a set of memories or caches, some 
device such as a bus or switch to connect the memories and proces- 
sors, and a policy for determining when to put which addressable 
objects in which memories. In attempting to evaluate such sys- 
tems, it has generally proven difficult to separate the performance 
implications of the hardware architecture from those of the policy 
that controls the hardware (whether implemented in software or 
hardware). In this paper we describe the use of off-line optimal 
analysis to achieve this separation. Using a trace-driven dynamic 
programming algorithm, we compute the policy decisions that 
would maximize overall memory system performance for a given 
program execution. The result allows us to eliminate the artifacts 
of any arbitrarily chosen policy when evaluating hardware perfor- 
mance, and provides a baseline against which to compare the 
performance of particular, realizable, policies. We illustrate this 
technique in the context of software-controlled page migration 
and replication and argue for its applicability to other forms of 
multiprocessor memory management. Q 1992 Academic press, inc. 

1. INTRODUCTION 

In the study of multiprocessor memory system design, 
as in many fields of scientific endeavor, many factors 
interact in complex ways to make up the behavior of the 
system as a whole. Overall system performance can be 
evaluated in many ways, including simulation, analytical 
modeling, and real implementation, but it is not always 
easy to isolate the performance effects of individual com- 
ponents as they contribute to the whole. Suppose we are 
implementing a coherent, global view of memory. If we 
double the bandwidth of the interconnection network, 
but performance improves by 5%, should we be disap- 
pointed? Is the application unable to make use of the 
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extra bandwidth, or is our coherence protocol simply in- 
appropriate for the revised machine? Similarly, if we in- 
troduce a lock-down mechanism to reduce ping-ponging 
of large cache lines with fine-grain sharing, and perfor- 
mance improves by 5%, should we be pleased? Have we 
done as well as could reasonably be expected, or could 
some other policy have improved performance by 50%? 

In an attempt to answer such questions, we have com- 
bined trace-driven simulation with an optimal, off-line 
memory management policy. We begin with a formal 
model of application, hardware, and policy performance. 
We then perform a postmortem analysis of the applica- 
tion, using a hardware description and a memory refer- 
ence trace, to generate the least-cost-possible policy de- 
cisions for that application running on that hardware. In 
comparison to system evaluations that embed a "real- 
life" policy: 

1. Off-line optimal analysis allows us to evaluate hard- 
ware design decisions without biasing the results based 
on the choice of policies (none of which is likely to be 
optimal over the entire design space). 

2. Performance results obtained with off-line analysis 
provide a tight lower bound, for a given hardware base, 
on the cost savings that can be achieved by any "real- 
life" policy. Rather than tell us how much time is being 
used by a given policy, they tell us how much time must 
be used by any policy. The difference between optimal 
performance and actual achieved performance is the 
maximum time that could possibly be saved through pol- 
icy improvements. 

It is generally accepted that memory reference traces 
need to run into millions or even hundreds of millions of 
references to capture meaningful behavior. Any algo- 
rithm to compute an optimal set of memory management 
decisions must therefore make a very small number of 
passes over the trace-preferably only one. Our strategy 
has been to use dynamic programming to keep track of 
the cost, to that point, of each distinguishable state of the 
system, and to use architecture-specific knowledge to 
keep the number of such states within reason. We pro- 
vide a concrete example that captures the most important 
characteristics of NUMA multiprocessors (those with 
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visibly nonuniform memory access times) and that can be 
applied as well to machines with hardware cache coher- 
ence. This latter class is generally said to consist of UMA 
(uniform memory access) machines. Different memory 
locations have different access times, but the hardware 
does its best to conceal this fact. 

A NUMA multiprocessor is a distributed memory ma- 
chine in which remote single-word references are permit- 
ted, and in which data placement decisions such as repli- 
cation and migration are not performed in hardware. A 
typical NUMA system consists of some collection of pro- 
cessors, memories, (noncoherent) caches, interconnec- 
tions between these memories (switches or shared bus- 
ses), and some software policies (in the kernel, run-time 
libraries, or application) that decide where to locate data 
dynamically within the memory system. When designing 
NUMA hardware, an optimal NUMA placement policy 
allows one to evaluate architectural alternatives (e.g., 
different page sizes or different block transfer speeds) 
without worrying about whether a particular NUMA 
placement policy is making equally good use of each al- 
ternative. The types of actions taken by the optimal pol- 
icy when running on the hardware model that is eventu- 
ally chosen can then be used to guide the design of the 
real on-line policy that will eventually be implemented. 
The performance of an optimal policy can be used as a 
measure against which potential real policies can be com- 
pared. 

We present a formal model of dynamic multiprocessor 
data placement in Section 2 and a tractable algorithm for 
computing an optimal placement in Section 3.  Section 4 
presents experimental results demonstrating the use of 
the optimal policy to answer several questions about 
NUMA memory management. We include a discussion 
of techniques used to establish confidence in our results 
despite inherent weaknesses in the formal model. The 
paper concludes with Section 5, a general discussion of 
domains in which off-line optimal analysis is useful, and a 
description of our plans for continued work in multipro- 
cessor memory management. 

2. A MODEL OF MEMORY SYSTEM BEHAVIOR 

This section describes a model designed to capture the 
latency-induced cost of memory access and data place- 
ment in a multiprocessor memory system that embodies a 
tradeoff between replication, migration, and single-word 
reference. This model describes most NUMA machines 
and many coherently cached machines as well. It does 
not attempt to capture any notion of elapsed wall-clock 
time, nor does it consider contention, either in the mem- 
ory or in the interprocessor interconnection. Memories 
and caches are assumed to be as large as needed. Instruc- 
tions are assumed to be local at all times; instruction 
fetches are ignored. 

Throughout this section we use the word "block" for 
the unit of memory that can be moved from one location 
to another; this formalism applies equally well to pages 
and cache lines; "block" is meant to represent either, 
depending on context. 

The basic concepts of the model are a machine, a trace, 
a placement, a policy, and a cost function. 

2.1. Machines 

A machine p is defined by a set of processors and 
memories and some parameters that represent the speeds 
of the various memory operations. The set of processors 
is denoted II, the set of memories M = n or M = II u 
{global}, and the parameters r > l , g  > 1 ,  R > 2r, and 
G > 2g. Each parameter is measured in units of time 
equal to that of a single-word local memory reference. 
Lower-case r is the amount of time that it takes a proces- 
sor to access a word from another processor's memory. 
"Another processor's memory" could be main memory 
associated with a particular processor in a NUMA sys- 
tem or a cache line in a coherently cached machine or a 
noncoherently cached NUMA system. The symbol n de- 
notes the number of elements in a finite set. To eliminate 
trivial cases, we require that there be more than one pro- 
cessor, i.e., p = nil > 1. 

Capital R is the amount of time that it takes for a pro- 
cessor to copy an entire block from another processor's 
memory. If a machine has global memory (that is, mem- 
ory that is not associated with any particular processor, 
but rather is equidistant from all processors-this could 
be main memory in a cached machine or "dance hall" 
memory in a NUMA machine) then the amount of time to 
access a word in global memory is g ,  while G is the cost 
of moving an entire block from global memory to a local 
memory. The model requires that if g and G are not infi- 
nite, then r 2 g and G 5 R 5 2G. Otherwise, if r < g then 
it would never make sense to use the global memory; if 
R > 2G then one could make a copy from a remote mem- 
ory by coping first to global and then from there to the 
destination. It is possible to extend our machine model to 
include additional classes of memory (e.g., memory at- 
tached to the local shared bus of a machine composed of 
multiprocessor clusters). Such extensions complicate the 
algorithms presented in Section 3,  but do not change their 
basic character. 

For the sake of performance in a distributed-memory 
multiprocessor there must often be more than one copy 
of a single virtual page. However, the application pro- 
grammer wants to think in terms of just one copy, so that 
when a change is made by any one processor, that change 
should be seen immediately by all other processors. To 
enforce this restriction, when a write is made to a particu- 
lar virtual page that page may not be replicated anywhere 
in the system. This assumption guarantees that any sub- 
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sequent read of the written location will see the new 
value, because the version of the page that is read must 
itself be a copy of the one that was written. We are cur- 
rently engaged in work that relaxes this restriction, either 
to support remote-update schemes that maintain consis- 
tency among copies by multicasting writes, or to permit 
copies of a page to grow mutually inconsistent, so long as 
no processor ever accesses a stale word on a page. Both 
of these extensions make it difficult-perhaps impos- 
sible-to design a computationally tractable optimal pol- 
icy; the issues involved are beyond the scope of this pa- 
per. 

Some systems may not have all of the features de- 
scribed above. The BBN Butterfly, for example, has 
memory at each processor but no caches and no global 
memory; it can be modeled by setting G and g to infinity. 
In a coherently cached system where it is not possible to 
read a single word from a line stored in a different cache, 
r would be infinite. If lines could only be loaded from 
main memory and not directly from another cache, then 
R would be infinite also. 

2.2. Traces 

A trace T is a list (T,) of references indexed by Time. 
These references are meant to capture all the data-refer- 
encing activity of all processors, in order, over the life- 
time of the program. We make the important simplifying 
assumption that a total ordering exists, and that it is in- 
variant, regardless of hardware model and policy deci- 
sions. 

The word "Time" (with a capital "T") represents the 
index of a particular reference within a trace; it is not 
directly related to the execution time of a program. Cost 
is our analogue of execution time. Thus, regardless of the 
policy or hardware considered in a particular execution, 
the Time of the trace is the same. We use the integers 
from 0 to n - 1 for our time indices, where n is the length 
of the trace. A reference is a triple (a,  j, w) where a is the 
memory address of the word being referenced, j Â II is 
the processor making the reference, and w is either read 
or write. If p is the set of all possible references, a trace T 

races, such as removing jobs from a shared work queue) 
in a nondeterministic program could lead to a different 
execution altogether. Forbidden interleavings could be 
avoided by identifying synchronization operations in a 
trace, and never moving references across them, but 
even this approach fails to address race conditions. On- 
the-fly trace analysis, such as performed in TRAPEDS 
[ 2 3 ] ,  could result in better quality results, but only at a 
significant cost for maintaining a global notion of time 
(e.g., synchronizing on every simulated machine cycle). 
In our simulation environment we have performed a se- 
ries of experiments designed to measure the sensitivity of 
our results to changes in instruction interleaving; we re- 
port on these experiments in Section 4.2. 

2.3. Placements and Policies 

A trace describes an application without specifying the 
location(s) within the machine at which pages reside over 
Time. These locations are known as a placement; they 
are chosen by a policy. As noted above, we assume that 
memory and cache space is unlimited, that contention is 
not a significant contributor to cost, and that the refer- 
ences that make up a trace are not dependent on the 
placement chosen for data. Placement decisions made for 
different pages therefore have no impact on one another, 
allowing us to assume that policies treat pages indepen- 
dently. We therefore limit our presentation, without loss 
of generality, to the references made to a single page. To 
obtain the overall cost of an application, sum the costs 
for its pages. 

Formally, a placement P is a Time-indexed list (P,) of 
location sets, where P,  C M ,  UP, > 0, and (T,.type = 

write) => (#P, = 1). That is, each placement set is non- 
empty, and is a singleton whenever the corresponding 
reference is a write. The set of all placements for a given 
trace T is denoted Plc( T). A policy, 9, is a mapping from 
traces to placements. Given a machine p ,  the set of all 
policies for that machine is denoted Pol(p). 

2.4. Cost 
is a list of these references. Trc(p) denotes the set of all The maps a trace and a valid placement for 
traces for machine p. that trace into an integer, called the cost of the placement 

In practice, a change in policy program tim- the trace. The cost of a placement on a trace is the 
ings7 leading to a different trace, which in turn may sum of two components: the cost due to references and 
change the behavior of the PO'~'Y, and '0 on. At the very the cost due to page movement. ~h~ reference compo. 
least a change in policy will change the interleaving of nent is defined as 
references from different processors; our approach ig- 
nores this. One could adjust the interleaving during trace 1 if T,.proc â P, 
analysis, based on per-processor accumulated costs, but 
this approach would run the risk of introducing interleav- cres(P,T) = g if global â P, and T,.proc Â P, 
ings forbidden by synchronization constraints in the pro- 1-0 

r otherwise. 
gram. It would also at best be a partial solution, since the 
resolution of race conditions (including "legitimate" (1) 
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That is, each reference to a local page costs 1; g is the 
cost for each reference to a page that is in global memory, 
but not in local memory (assuming that global memory 
exists); r is the cost for each reference that must be made 
to a page in some other processor's memory. The page 
movement component cmv is the cost required to move 
from one location set to another: 

G f(Pt\Pt-1) if global â P , I  U Pt  
cmv(P, T) = 

(=I  R . otherwise. "I 
The sum here runs from 1 to n - 1, instead of from 0 to 
n - 1, because no movement cost is charged for the 
initial placement of the page at t = 0. The movement 
component of the cost is simply what is required to move 
the page into any new locations that it assumes. When 
global memory is included in the new or old replication 
set, we assume that the global copy will be made first and 
used as the source of all of the rest of the copies, at a cost 
per copy of G. In keeping with our relatively abstract 
notion of memory cost, we do not worry about the chro- 
nological sequencing and/or the overlap of page moves. 
In actual memory systems, replications tend to occur on 
demand, and are spread out over time. 

Finally, then, 

The related function cpo(9, T) = c(9(  T) ,T) maps policies 
and traces to cost. Since c and cpo are similar in meaning, 
and should be easy to tell apart from context, we will 
drop the "no" and use c for both. 

2.5. Optimality 

Given a machine p and a trace T â Trc(p), a place- 
ment P â Plc(T) is said to be optimal if VQ â Plc(T) : 
c(P,T) s c(Q,T). Similarly, a policy 9 â Pol(p) is opti- 
mal if V9 â Polfp), VT â Trc(p) : c(9,T) 5 c(9,T). That 
is, a placement for a trace is optimal if it has cost no 
greater than that of any other placement for that trace; a 
policy for a machine is optimal if it generates an optimal 
placement for any trace on that machine. 

A policy 9 â Pol(p) is on-line if VT,T' â Trc(p), Vi â 
0 n - 1 :   TO.,.^ = + ( ~ ( T ) o  ... i = W)O ...[I. In 
other words, 9 is on-line if the portion of any placement 
generated by 9 for Time 0 to i depends only on the refer- 
ences made up to and including Time i; i.e., iff 9 uses no 
future knowledge. A policy is off-line if it is not on-line. 

PROPOSITION. Given machine p,  any optimal policy 
6' â Pol(p) is off-line. 

Proof. Let machine p with processor set 11, memory 
set M, and parameters r ,  g,  R,  and G, and optimal policy 

0 â Pol(p) be given. Because n i l  = p > 1, we may choose 
distinct processors p i ,  p2 â n. 

Consider trace TI defined to be 10R writes by p i  fol- 
lowed by 1 write by p2 followed by 10R writes from pi. 
The only optimal placement Pi for T1 starts the page at p i  
at the beginning of the execution and leaves it there for 
the entire run. Consider now trace T-, defined to be 10R 
writes by p l  followed by 10R writes by pi. The only opti- 
mal placement P-, for T2 starts the page at pi and moves it 
top2 at Time 10R. Since 0 is optimal and Pi and P2 are the 
unique optimal placements for Ti and T2, respectively, 
C(Tl) = Pl and 0(T2) = P2. Since TI and T-, are identical 
up to reference 10R + 1, but yet 6'(Tl) and C(T2) differ at 
Time \OR, we conclude that 6' is off-line. 

One can also prove that the behavior of the optimal 
algorithm on a given trace is completely determined by 
the ratios of r - 1, R, g - 1, and G. An implication of this 
theorem is that changing the ratio of local memory speed 
to remote speed (i.e., speeding up the local cache cycle) 
on a cache coherent or NUMA machine does not change 
the preferred behavior for a particular trace. As a corol- 
lary, one can show that scaling r - 1, R, g - 1, and G by 
the same multiplicative factor s changes the optimal cost 
C according to Cnew = 1 + s(Coid - 1). Details can be 
found in the technical report version of this paper [81. 

3. COMPUTING OPTIMAL NUMA PLACEMENTS 

A placement can be thought of as a Time-ordered walk 
through the space of possible page replication sets. At 
each point in Time the fundamental question to be an- 
swered is whether to leave a page in remote or global 
memory, or to migrate or replicate it into global or re- 
mote memory. The global memory option may not exist 
on a NUMA machine. The remote reference option may 
not exist on a cache-coherent UMA machine. In any 
case, brute-force exploration of the search space is obvi- 
ously impractical: the number of possible placements is 
on the order of n2". 

For the sake of expository clarity we present two ver- 
sions of our algorithm, first employing dynamic program- 
ming to make the complexity linear in n, and then making 
placement decisions for an entire read-run at the Time of 
the following write, to make the complexity linear in p. 
Both algorithms compute the cost of an optimal place- 
ment rather than the placement itself. Since the computa- 
tions are constructive it is simple to extend them to pro- 
duce the actual placement. 

3.1. Computing Optimality without Replication 

We developed the first version of the optimal algorithm 
(Fig. 1) by assuming that replications are prohibited. This 
algorithm resembles the solution to the full version of the 
problem, but is simpler and easier to understand. To fit it 
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for m ? M costso-far[m] + 0 

f o r t  + 0 t o n - 1  /* for all references in trace */ 
cheap-cost + cost so_far[global] 
C +- G; cheapest +- globa l  
for m ? ( M  \ {global}) 

if costso-farim] + R < cheap-cost + C 
cheap-cost + cost s o l a r  [m] 
C <Ã R; cheapest + m 

new_cos t~~o- fa r [T~ .proc] + MIN (cost-soJar[Tt.proc] + 1, costso-far[cheapest] + C + 1) 
/* use copy already here, or get i t  here now */ 

new_cost~o-far[global] + MIN (cost-so-far[global] + g, cost-so-far[cheapest] + G + g) 
/* use global copy, or migrate from cheapest */ 

for m G ( M  \ {Tt.proc U global}) 
new_cost-so-far[m] +- MIN (cost-so_far[m] + r ,  costso-far[cheapest] + C + r )  

/* use copy already there, or migrate from cheapest */ 
cost-so-far + new-cost-so-far /* update whole array */ 

return MINmeM (costso-farfm]) 

FIG. 1. Algorithm for computing optimal cost without replication. 

into the framework of the cost metric presented in Sec- 
tion 2.4, we pretend that all references are writes. 

The algorithm uses dynamic programming to deter- 
mine, after each reference, the cheapest way that the 
page could wind up in each possible memory location. At 
Time t ,  for each memory, the cheapest way that the page 
could wind up there is necessarily an extension of the 
cheapest way to get it to some (possibly different) loca- 
tion at Time t - l .  The principal data structure, then, is 
an array of cost (integers), "cost-so-far," indexed on 
memories m â M. At Time t ,  cost-sojar[m] contains the 
cost of the cheapest placement for the trace TO... ,  that 
would end with the page at m. At the end of the algo- 
rithm, the cost of the cheapest overall placement is the 
minimum over rn â M of cost-so-far[m]. The key to dy- 
namic programming, of course, is that while the algo- 
rithm never looks back in the trace stream, it does not 
know where the page might be located at the Time that a 
reference is made. Only at the end of the trace is the 
actual placement known. 

The algorithm in Fig. 1 runs in time O(np). There ex- 
ists another version that runs in time O(n). It uses the 
observation that there is always an optimal placement 
that never moves a page to a processor other than the one 
making the current reference. The faster algorithm is not 
included because it is harder to follow and not much 
more interesting than the version presented here. 

3.2. Incorporating Replication 

The obvious extension for the general case with repli- 
cation is simply to enlarge the set M to include all possi- 

ble replication states and to enforce coherence by assum- 
ing that the transitions into non-singleton states are of 
infinite cost when the reference is a write. Unfortunately, 
this extension increases the time complexity of the inner 
loops of the algorithm from 0 ( p )  to O(2p) for the cases 
where the reference is a read. This is a severe penalty 
even on the seven-node machine used for experiments in 
Section 4; for large machines it is out of the question. 

Fortunately, it is not necessary to search this large 
state space. Name the Time interval between two writes 
with at least one read and no other writes between them a 
read-run. Because of the coherence constraint, at the 
beginning and end of a read-run the page state must be a 
singleton. There is no cost saving in removing a copy of 
the page inside of a read-run, so we can ignore all such 
placements. Similarly, if the page will be replicated to a 
memory inside of the read-run, there is no cost penalty 
involved in making the replication on the first reference 
of the read-run. So, for any given read-run all that needs 
to be decided is the set of processors to which to repli- 
cate; there exists an optimal placement that replicates to 
these processors at the beginning of the read-run and 
destroys the replicates on the terminal write, without 
changing the replication state in between. Furthermore, 
the set of processors to which to replicate during a given 
read-run depends only on the locations at the writes be- 
fore and after the run and on the number of reads made 
by each processor during the run. 

Armed with these observations, we may extend the 
algorithm in Fig. 1 to the general case. The new version 
appears in Fig. 3. The function in Fig. 2 computes the 
cost of a read-run, given the starting location, the replica- 
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FUNCTION read-run-cost (start : location; rep-set : set of location; 
reads-from : associative array [processor] of integer) : integer 

running-total Ã‡ 0 

for each j ? domain (reads-from) 
if j C rep-set 

running-total + +- reads-from[j] 
else 

running-total + t T * reads-fromb] 
if start ? rep-set 

running-total + + R * ((rep-set - 1) 
else 

running-total t + R * (rep-set 

return (cost-so-far[start] + running-total) /* cost-so-far is global * /  

FIG. 2. Function to compute the cost of a read-run, no global mem- 
ory. 

tion set, and the number of reads made by each processor 
during the run. For the sake of simplicity, this function 
assumes that there is no global memory. The modifica- 
tions required to handle it are straightforward. 

The new algorithm still uses dynamic programming, 
but while the state space was updated on every reference 
in the old version, it is only updated on writes in the new. 
The space that is tracked remains M. In addition, while 
formerly at each step we had to consider the possibilities 
of starting the page at the current location or in the 
cheapest location among the rest of the processors, we 
must now also consider the possibility that a processor 
may effectively become the cheapest by virtue of a sav- 
ings in references during the preceding read-run, even if 
these references do not justify replication. 

4. EXPERIMENTAL RESULTS FOR NUMA MEMORY 
MANAGEMENT 

The goal of a NUMA placement policy is to devote as 
little time as possible to accessing memory and to moving 
data from one memory to another. Several groups have 
studied implementable kernel-level policies that replicate 
and migrate pages, generally in response to page faults. 
Holliday explored migration based on periodic examina- 
tion of reference bits [16], and suggested [15] that good 
dynamic placement of code and data offers little addi- 
tional benefit over good initial placement. Black and 
Sleator devised a dynamic page placement algorithm with 
provably optimal worst-case behavior [6], and Black, 
Gupta, and Weber stimulated it on address traces [5], but 
their approach does not appear to exploit "typical" pro- 
gram behavior, and requires a daunting amount of hard- 
ware assistance. Cox and Fowler's PLATINUM system 
[12] for the BBN Butterfly freezes pages that move too 
often, but adapts to changes in program behavior by un- 
freezing pages periodically. LaRowe, Ellis, and Kaplan 
[IS,  191 compared competing policies on the Butterfly by 
implementing many alternatives in their DUnX version of 

BBN's operating system. Our work with Bob Fitzgerald 
[71 on the IBM ACE multiprocessor workstation con- 
firmed the value of a good static placement on machines 
with comparatively low remote-access penalties, and ar- 
gued that even very simple kernel-level policies are likely 
to achieve most of the benefits available without applica- 
tion-specific knowledge. 

The study of NUMA management via real implementa- 
tions is attractive in terms of concreteness: none of the 
details are abstracted away, so the results have a certain 
intrinsic soundness. It is difficult, however, to experi- 
ment with different multiprocessor architectures, or to 
consider architectural features that have not yet been 
implemented. It is likewise difficult to construct good 
implementations of more than a small number of policies 
in a reasonable period of time. Most important, it is diffi- 
cult to isolate effects. In evaluating the ACE system, for 
example, we were able to measure performance when all 
data references were remote and to predict what perfor- 
mance would be if all data references were local (which, 
of course, they cannot be, because of coherency require- 
ments). We could compare achieved performance to 
these extreme bounds, but not to any notion of the best 
achievable results. 

Optimal analysis allows us to address these limitations. 
We explain our experimental environment, including the 
trace collection mechanism and application suite, in Sec- 
tion 4.1. Section 4.2 describes a series of experiments 
designed to establish confidence in the validity of our 
analysis technique. The results in Section 4.3 use off-line 
analysis to show the dependence of program perfor- 
mance on two basic NUMA hardware parameters: the 
relative cost of a block transfer (as compared to a series 
of individual remote accesses) and the size of a data page. 
Section 4.4 compares the performance achieved by sev- 
eral implementable policies with that of the optimal pol- 
icy, and demonstrates how the placement decisions made 
by the optimal policy can be used to guide the design of 
an appropriate on-line policy for a given hardware archi- 
tecture. Many of the results are drawn from previous 
work, in which we and some of our colleagues employed 
off-line optimal analysis to explore the extent to which 
NUMA policies should be tuned to architectural parame- 
ters [9]. 

4.1. Experimental Tools 

4.1 .l. Trace Collection 

We collected our traces on an IBM ACE multiproces- 
sor workstation [14] running the Mach operating system 
[I]. The ACE is an eight-processor machine in which one 
processor is normally used only for processing Unix sys- 
tem calls and the other seven run application programs. 

We collected traces by single-stepping each processor 
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refs-to-pay-for-repl t R/(r  - 1) 
for j ? 11 cost-so-farfj] Ã‡ 0 
reads-from +- empty /* associative array */ 
f o r t  + O t o n Ã ‘  /* for all references in trace */ 

if Tt . type = read 
if Tt.proc 6 domain (reads-from) 

reads-from[Tt.proc] + Ã‡ 1 
else 

reads-from[Tt .proc] *Ã 1 
else /* write */ 

repl-procs + {j G domain (readsjrom) 1 reads-fromfj] > refs-to-pay-for-repl} 
cheapest +- j ? M such that cost-so-far[j] is least 
minnonrep-proc Ã‡ j 6 (11 \ repl-procs) 

such that cost-so-farfj] -(r - 1) * reads-fromfj] is least 
/* if repl-procs = 11, pick an arbitrary processor */ 

for j ? II 
/* We follow one of three possible replication patterns: start where we finish, 

start at  the place that was cheapest to begin with, or start at  the place that 
was cheapest but not in the set of memories for which the number of reads 
was enough to  offset the cost of replication by itself. */ 

new-costso-farfj] + MIN ( 
read-run-cost (j, {j} U repl-procs, reads-from), 
read-run-cost (cheapest, {cheapest, j} U repl-procs, reads-from), 
read-run-cost (minnonrep-proc, {minnonrep-proc, j} U repl-procs, reads-from)) 

if Tt .proc = j /* write by ending processor */ 
new-cost-so-farfj] + + 1 

else /* write by another processor */  
new-cost-so-farfj] + t r 

cost-so-far + new-cost-so-far /* update whole array */ 
reads-from <Ã empty 

/* The entire trace has been processed. Clean up if we're in a read-run. */ 
if Tn-\ .type = write 

return MINjgn (cost-so-farfj]) 
repl-procs +- {j 6 domain (reads-from) 1 reads-fromfj] > refs-to-pay-for-repl} 
cheapest t j 6 M such that costso-farfj] is least 
min-nonrep-proc +- j 6 (11 \ repl-procs) 

such that cost-so-farfj] - ( r  - 1) * reads-fromfj] is least 
/* if repl-procs = 11, pick an arbitrary processor */ 

for j 6 11 
new-costso-farfj] +- MIN ( 

read-run-cost (j, {j} U repl-procs, reads-from), 
read-run-cost (cheapest, {cheapest, j} U repl-procs, reads-from), 
read-mn-cost (minnonrep-proc, {minnonrep-proc, j} U repl-procs, reads-from)) 

return MINjgn (new-cost-so-farfj]) 

FIG. 3. Optimal policy computation, no global memory. 



OFF-LINE OPTIMAL MEMORY BEHAVIOR 389 

and decoding the instructions to be executed, to deter- 
mine if they accessed data. We did not record instruction 
fetches. Our single-step code resides in the kernel's trap 
handler, resulting in better performance (and therefore, 
longer traces) than would have been possible with the 
Mach exception facility or the Unix ptrace call. 

The ACE tracer maintains a single global buffer of 
trace data. When that buffer fills, the tracer stops the 
threads of the traced application and runs a user-level 
process that empties the buffer into a file. To avoid inter- 
ference from other processes, we ran our applications in 
single-user mode, with no other system or user processes 
running. Furthermore, all writable memory was placed in 
the ACE'S global memory, to prevent "gaps" from ap- 
pearing in the trace when the kernel decided to move a 
page 

4.1.2. Application Suite 

We traced a total of 18 applications, written under 
three different programming systems. Each of the three 
systems encourages a distinctive programming style. 
Each is characterized by its memory access patterns and 
granularity and by its style of thread management. Table 
I shows the sizes of our traces in millions of references. 
The Presto and EPEX systems have regions of memory 
that are addressable by only one thread. References to 
these explicitly private regions are listed in the column 
named "Private Refs," and are not represented under 
"References ." 

EPEX [22] is an extension to FORTRAN developed 
for parallel programming at IBM. EPEX applications are 
typically numeric. The programmer explicitly identifies 
private and shared data in the source code and as a result 
the amount of shared data can be relatively small [2]. 
Parallelism arises from the distribution of DO loops to the 
set of available processors. The EPEX applications 
traced were e - f f t , a fast Fourier transform; e - simp, a 
version of the Simple benchmark; e-hyd, a hydrody- 
namics code; and e -nasap ,  a program for computing air 
flow. The prefix e-indicates an EPEX application. 

Mach C-Threads [ l l ]  is a multithreaded extension to 
C. Our C-Threads programs were written for either the 
ACE, PLATINUM, or the SPLASH suite [21], and were 
ported to the ACE. In the first two cases, they were 
written with a NUMA architecture in mind, and employ a 
programming style that can be characterized as coarse- 
grain data parallelism: a single thread of control is as- 
signed statically to each available processor and data are 
partitioned evenly among them. All data is potentially 
shared, and the pattern of access is not identified in the 
program. 

The C-Threads programs traced were gaus s ,  a well- 
optimized program for Gaussian elimination; c h i p ,  a 

TABLE I 
Trace Sizes and Breakdowns 

Application References Private refs. 

e-f f t 
e-simp 
e-hyd 
e-nasap 

gauss  
c h i p  
b s o r t  
kmerge 
p l y t r a c e  
sorbyc 
so rby r  
matmult 
mp3d 
cholesky 

p-gauss 
p - q s o r t  
p-matmul t 
p - l i f e  

- 

Note. Terms are given in millions of data references. 

simulated annealing program for chip placement; b s o r t ,  
a simple merge sort program in which half of the proces- 
sors drop out in each phase; kmerge, a merge sort pro- 
gram in which groups of processors cooperate in each 
merge step, thus keeping all processors busy to the end of 
the computation; plytrace,  a scene rendering program; 
s o r b y c  and s o r b y r  a pair of red-black successive 
over-relaxation programs that differ in the order of their 
inner loops and thus in their memory access patterns; and 
matmul t ,  a straightforward matrix multiplier. The final 
two applications are from the Stanford Parallel Applica- 
tions for SHared memory (SPLASH) benchmark suite 
[21]. Cholesky  does a Cholesky factorization, while 
mp3d simulates rarefied airflow over a wing particle by 
particle. 

Presto [4] is a parallel programming system based on 
C+ +. Because Presto was originally implemented on a 
Sequent Symmetry, a coherent cache machine, its appli- 
cations were written without consideration of NUMA 
memory issues. The Presto programs we traced are char- 
acterized by fine-grain data sharing and by a program- 
ming style that allocates a large number of threads of 
control, regardless of the number of physical processors 
available. Presto was ported to the ACE and the applica- 
tions were run unmodified. The applications traced were 
p - gaus  s , another Gaussian elimination program; p - 
q s o r  t, a parallel quicksort; p-matmul t ,  another matrix 
multiplier; and p - 1 i f  e ,  an implementation of Conway's 
cellular automata. The behavior of these programs was 
studied in a different context in [3]. The prefix p- indi- 
cates a Presto application. 
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4.2. Validation of the Trace Analysis Technique 

Our tracer slows down the execution of a program by a 
factor of 200 or more (depending on how many of the 
application's instructions make memory references, how 
much the floating point accelerator is used, and so on). 
This can affect the order in which references are made. 
While all processors are slowed uniformly, the dilation 
effect buries any difference in execution times of the vari- 
ous machine instructions. On the ACE'S processor, most 
instructions take only one cycle to execute. The notable 
exceptions are memory reference instructions and float- 
ing point operations, which take somewhat more time 
depending on the instruction, on whether the memory is 
busy, etc. Koldinger et al. [I71 investigated dilation in the 
related area of coherent cache simulation, and found its 
impact on performance differences to be negligible. Since 
our optimal policy guarantees small changes in cost in 
response to small changes in the trace input (it is, in some 
sense, continuous), it is natural to expect its performance 
to be even less affected by dilation. 

As noted in Section 2.2, a more fundamental problem 
with the evaluation of multiprocessor memory systems 
based on static trace interleavings is a failure to capture 
the influence of the simulated system on the references 
that "should" have occurred. In our system, this feed- 
back should appear in two forms: fine-grain changes in 
instruction interleaving and coarse-grain "reference 
gaps" in the activity of individual processors. Instruction 
timings depend on whether the operands of loads and 
stores are local or remote. If two policies place a page in 
a different location at different points in time, then in- 
structions will execute faster on some processor(s) and 
slower on others, and the interleaving of instructions 
from different processors will change. Similarly, when a 
policy decides to move a page, the processor performing 
the move will stop executing its user program until the 
move is complete. Since this could potentially take a long 
time (particularly in a system with large pages and/or 
large interprocessor latencies), other processes might 
make a large number of references in the interim. Since 
the times at which the page moves would occur are not 
known when the applications are traced, and in general 
depend on the parameters of the simulation later per- 
formed on the trace, no such gaps appear in the traces. 

To evaluate the impact of changes in fine-grain instruc- 
tion interleavings, independent of the changes in memory 
cost of the locality decisions that caused those changes, 
we wrote a filter program that reorders individual refer- 
ences in a trace, with a probability that is high for nearby 
references, and drops off sharply for larger Time spans. 
More specifically, the filter keeps a buffer of 100 refer- 
ences from the incoming trace steam. Initially, this buffer 
is filled with the first 100 references. The filter then ran- 
domly chooses an entry from the buffer, emits the oldest 

TABLE I1 
Percentage Optimal Performance Change Due to Local and Gap 

Perturbations 

Application ACE local Bfly local ACE gap Bfly gap 

e-fft 
e-simp 
e-hyd 
e-nasap 

gauss 
chip 
bsort 
kmerge 
plytrace 
sorbyc 
sorbyr 
matmult 
mp3d 
cholesky 

p-gauss 
p-qsort 
p-matmult 
p-life 

buffered reference made by the processor whose entry 
was selected, and reads a new reference to replace it. We 
inserted the filter in front of our trace analyzer, and mea- 
sured the degree to which it changed the cost of the opti- 
mal policy. The maximum difference in optimal perfor- 
mance among all the applications for a machine model 
resembling the ACE was 0.007%. For a machine resem- 
bling the Butterfly it was 0.03%. 

To evaluate the impact of reference gaps, we wrote a 
filter than randomly introduced such gaps, and again re- 
ran the optimal policy. The filter operates by reading the 
unmodified trace, and with probability 1 in 30,000 intro- 
duces a "gap" on one processor for 4000 references. A 
gap is introduced by taking any references made by the 
chosen processor and placing them in a queue. Once the 
gap has ended, as long as there are saved references, one 
of them will be emitted instead of a fresh reference with 
probability 213. The values 30,000 and 4000 were chosen 
conservatively in the sense that page moves typically do 
not occur as often as every 30,000 references, and 4000 
references is somewhat large for the amount of time for a 
page move. The 213 frequency is arbitrary. This filter- 
induced performance changes up to 0.02% in the ACE 
model and 0.34% in the Butterfly model. 

Table I1 displays the differences between filtered and 
unfiltered results for both filters and ACE and Butterfly 
models as a percentage of the total cost. Differences are 
absolute values; sometimes the filtered values were 
smaller, sometimes they were larger. Values less than 
0.001% are reported as 0. 
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4.3. Evaluating Architectural Options Independent of 
Policy 

4.3.1. Block Transfer Speed 

It is often possible on a NUMA machine to construct a 
hardware-assisted block transfer operation that moves 
data through the interconnection network at a much 
higher bandwidth than can be achieved with a software 
copy loop. If nothing else, the block transfer operation 
can avoid network transaction set-up costs for each indi- 
vidual word. Cox and Fowler argue [12] that a fast block 
transfer is essential for good performance in a NUMA 
machine. Working with them [9], we employed off-line 
analysis to evaluate this claim on a machine resembling 
the Butterfly and on a machine resembling the ACE, in 
which the relatively fast performance of global memory 
makes aggressive page migration and replication less es- 
sential. 

Optimal analysis is crucial for our evaluation. While 
any reasonable on-line policy will be designed with hard- 
ware parameters in mind, its decisions are only guesses 
about what placement is likely to work well, and are 
made solely on the basis of reference patterns, not on 
direct evaluation of costs. Once set, an on-line policy will 
make fixed decisions for a given trace prefix, and cannot 
be used to evaluate hardware changes. The optimal algo- 
rithm, by contrast, bases its decisions directly on the cost 
of placement alternatives, and will change its behavior as 
hardware parameters change. Its behavior can in fact be 
used to guide the design of on-line policies, as discussed 
in Section 4.4.3. 
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FIG. 5. MCPR vs R for optimal policy, no global, r = 15. 
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Figures 4 and 5 show how the performance of the opti- 
mal policy varies with the cost of a page move (G or R) ,  
for remote and global access times comparable to those 
of the ACE and the Butterfly, respectively. "Perfor- 
mance" in these and other graphs is represented as Mean 
Cost Per Reference (MCPR): the total cost [as defined in 
Eq. (3)] divided by the length of the trace. 

The minimum page move time represented on each 
graph is 200, which is assumed to be a lower bound on the 
time required to process a fault and initiate a page move 
in the kernel. A Time of 200 therefore corresponds to an 
infinite bandwidth, zero latency hardware block transfer. 
The maximum page move times on the graphs are the 
page size times g or r, plus a more generous amount of 
overhead, corresponding to a less tightly coded kernel. 

If R is considered to be a real-valued variable, then the 
cost of the optimal policy on a trace is a continuous, 
piecewise linear function of R .  Furthermore, its slope is 
the number of page moves it makes, which in turn is a 
monotonically nonincreasing step function of R.  Similar 
functions exist for G, g,  and r ,  except that their slopes 
represent global page moves, global references, and re- 
mote references, respectively. An important implication 
of continuity is that, given optimal placement, there is no 
point at which a small improvement in the speed of the 
memory architecture produces a disproportionately large 
jump in performance. 

One can plot MCPR, g (or r ) ,  and G (or R )  on orthogo- 
nal axes to obtain multidimensional surfaces. Figures 4 
and 5 show two-dimensional cuts through these surfaces. 

..... L. .-------- <- - -+  . . . . . . . . . . . . . . . . . . . . .  
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They are interesting cuts in the sense that one can imag- 
ine spending extra money on a machine to increase the 
speed of block transfer relative to fixed memory refer- 
ence costs. Moreover, Figs. 4 and 5 capture all of the 
structure of the surfaces, at least in terms of the relation- 
ship between page move cost and memory reference 
cost. Because of the theorem and its corollary alluded to 
in Section 2.5, it is possible to derive the optimal perfor- 
mance for all pairs of r and R values. 

When designing a NUMA policy for a given machine, 
one should take into account where on the move-cost 
spectrum the architecture lies. Machines to the left of 
articulation points in the MCPR curve benefit from more 
aggressive policies, machines to the right from more con- 
servative policies. A machine that lies near an articula- 
tion point will run well with policies of varying aggres- 
siveness. When designing a NUMA machine, the lessons 
are less clear. Obviously, faster machines run faster. 
Also, the marginal benefit of a small speedup increases at 
faster speeds. However, moving across an articulation 
point will not produce a corresponding speedup in perfor- 
mance: the jump is in the slope of the cost curve, not in 
the cost itself. 

4.3.2. Page Size 

Another attribute of NUMA hardware that must be 
evaluated by the architect is the page size. The tradeoffs 
for small versus large pages are well known for unipro- 
cessor systems: increased fragmentation in exchange for 
reduced overhead. Multiprocessor systems are compli- 
cated by the additional issue of false sharing: coherence 
operations may be caused not by sharing of data between 
processors, but simply by the accidental colocation on a 
page of data being used by different processors. Large 
pages may therefore decrease performance. Eggers and 
Jeremaissen [13] describe this effect in coherently cached 
systems; they report that in some applications it accounts 
for as much as 40% of all cache misses. 

We used optimal analysis to determine the effect of 
changing the page size in two different NUMA machine 
models. The first model resembles the Butterfly. The sec- 
ond is meant to capture a more modern NUMA machine, 
in which the interprocessor latency relative to local cache 
speed is much higher than on the Butterfly, as is likely for 
newer designs with faster processors and local memory1 
caches. In both models, G and g are set to ? there is no 
global memory. For the Butterfly, rand R are 15 and 3sI4 
+ 200, respectively, where s is the size of a page: remote 
references are slow but block transfers are relatively fast. 
The constant 200 allows for the overhead of handling a 
page fault or interrupt, mapping a page into some pro- 
cess's virtual address space, and possibly invalidating an 
outdated copy of the page. For the high-latency machine, 
r is 100 and R is sll + 200 + 75: the latency for a remote 

I 
I I I I I 
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Page Size 

FIG. 6.  MCPR vs page size for optimal policy, high-latency NUMA 
model. 

reference is much higher, and while the bandwidth of the 
interconnect is better than on the Butterfly (thus the sl2 
instead of 3sl4), the time to find the location from which 
to migrate becomes significant. We assume a directory- 
based coherence protocol in which two remote refer- 
ences are required: one to the home node of the data, in 
order to identify the owner, and one to the owner itself. 
These two references contribute 200 to the overhead; the 
kernel is assumed to be faster in handling the fault than it 
was on the Butterfly (partially because it can overlap 
page table changes with the very expensive remote refer- 
ences), and contributes only 75. 

The amount that performance improves with smaller 
pages varies greatly between these two architectures. As 
page size increases from 512 bytes to 4 Klbytes, all but 
two applications on the Butterfly display performance 
changes of less than 20%. On the modern machine, the 
effect of page size is much larger. Figure 6 illustrates this 
effect with a log-scale MCPR axis and a wider range of 
page sizes. Several applications display a two- or even 
threefold increase in MCPR as page size increases from 
256 bytes to 8 kbytes. We are currently using optimal 
analysis to compare several system models, all with la- 
tencies and bandwidths comparable to the non-Butterfly 
machine presented here, but with varying page sizes, in- 
terprocessor latencies, software overheads, etc. Prelimi- 
nary results indicate that page size is the most important 
determinant of performance in these systems. 

As with block transfer speed, investigation of the im- 
pact of size depends critically on the use of optimal anal- 
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ysis. Three on-line policies are described in Section 
4.4.1. Others appear in the literature (see, for example, 
[18]). All are based on heuristics which, while reflecting 
the designer's understanding of hardware parameters, 
are oblivious to those parameters once set in operation. 
Since it is difficult to determine appropriate heuristics 
a priori, an optimal off-line policy based on the actual 
costs of references and page moves can be expected to 
produce much more reliable results. In the context of the 
current study, we can safely conclude that the correlation 
between page size and performance is real, and that 
smaller pages could be very useful when building NUMA 
machines with interprocessor latencies and bandwidths 
comparable to those in our non-Butterfly model. The 
worse performance at larger page sizes is intrinsic in the 
application and architecture, and not a result of policy or 
policy-parameter choices that favored the smaller page 
sizes. 

4.4. Evaluating Implementable Policies against the 
Optimal Baseline 

4.4.1. A Set of On-Line Policies 

In addition to the optimal policy, we have evaluated 
three implementable alternatives. Two of them have been 
used in real systems and are described in prior papers: 
the ACE policy [7] and the PLATINUM policy [12]. The 
third policy, Delay, is based on the ACE policy, and 
exploits simple hypothetical hardware to reduce the num- 
ber of pages moved or "frozen" incorrectly. 

The ACE policy can be characterized as a dynamic 
technique for discovering a good static placement. The 
ACE policy was designed for a machine that has fast 
global memory ( g  = 2) and no mechanism for moving a 
page faster than a simple copy loop (G = 2 * pagesize + 
200). It operates as follows. Pages begin in global mem- 
ory. When possible, they are replicated to each processor 
reading them. If a page is written by a processor that has 
no local copy, or if multiple copies exist, then a local 
copy is made and all others are invalidated. After a small, 
fixed number of invalidations, the page is permanently 
frozen in global memory. We permit four invalidations 
per page in the studies in this paper. 

The PLATINUM policy was designed for a machine 
with no global memory, slower remote memory than the 
ACE (r = 15), and a comparatively fast block transfer 
(R = 3 * pagesize + 200). Its principal difference from 
the ACE policy is that it attempts to adapt to changing 
reference patterns by periodically reconsidering its place- 
ment decisions. PLATINUM replicates and moves pages 
as the ACE algorithm does, using an extension of a direc- 
tory-based coherent cache protocol with selective invali- 
dation [lo]. The extension freezes a page at its current 
location when it has been invalidated by one processor 

and then referenced by another within a certain amount 
of time t l .  Once every t-, units of time, a daemon defrosts 
all previously frozen pages. On the Butterfly, Cox and 
Fowler chose t l  and t-, to be 10 ms and 1 s respectively. 
Since time is unavailable in our simulations, t l  and t-, are 
represented in terms of numbers of references processed. 
The specific values are obtained from the mean memory 
reference rate on an application-by-application basis by 
dividing the number of references into the (wall clock) 
run time of the program and multiplying by 10 ms and 1 s, 
respectively. The PLATINUM algorithm was designed for 
a local/remote machine, but could use global memory to 
hold its frozen pages; we arrange for it to do so when 
simulating a machine like the ACE. 

Because they are driven by page faults, the ACE and 
PLATINUM policies must decide whether to move or 
freeze a page at the time of its first (recent) reference 
from a new location. Traces allow us to study the pattern 
of subsequent references, and confirm that the number of 
references following a page fault sometimes fail to justify 
the page move or freeze decision. Bad decisions are com- 
mon in some traces, and can be quite expensive. An in- 
correct page move is costly on a machine (like the ACE) 
that lacks a fast block transfer. An incorrect page freeze 
is likewise costly under the ACE policy, because pages 
are never defrosted. Motivated by these observations, we 
postulate a simple hardware mechanism that would allow 
us to accumulate some reasonable number of (recent) 
references from a new location before making a place- 
ment decision. 

The Delay policy is based on this mechanism: a 
counter in each of the TLB entries on each processor, 
which is decremented on each access, and which pro- 
duces a fault when it reaches zero. When first accessed 
from a new location, a page would be mapped remotely, 
and its counter initialized to c. A page placement decision 
would be made only in the case of a subsequent zero- 
counter fault. This counter is similar to the one proposed 
by Black and Sleator [6] for handling read-only pages, but 
unlike their proposal for handling writable pages, it never 
needs to be inspected or modified remotely, and requires 
only a few bits per page table entry. We set c = 100 for 
the simulations described in this paper. Our observations 
are that a delay of 100 is more than is normally needed, 
but the marginal cost of a few remote references in com- 
parison to the benefit of preventing unnecessary moves 
seems to justify it. 

4.4.2. Comparative Policy Performance 

The performance of each of our policies on each of our 
applications, expressed as Mean Cost Per Reference 
(MCPR), appears in Fig. 7 and Figs. 8 and 9 for architec- 
tures resembling the ACE and the Butterfly, respec- 
tively. Each application has a group of four bars, which 
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FIG. 7. MCPR for ACE hardware parameters. 

represent the performance of the Optimal, ACE, Delay, 
and PLATINUM policies, from top to bottom. To place 
the sizes of the bars in context, recall that an MCPR of 1 
would result if every memory reference were local. For 
ACE hardware parameters, an MCPR of 2 is trivially 
achievable by placing all shared data in global memory; 
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any policy that does worse than this is wasting time on 
page moves or remote references. 

Both the ACE and Delay policies do well on the ACE. 
The MCPR for Delay is within 15% of optimal on all 
applications other than p 1 y tr  ac e. The ACE policy sim- 
ilarly performs well for applications other than p ly-  
t r a c e ,  b s o r t ,  and kmerge. These programs all display 
modest performance improvements when some of their 
pages migrate periodically, and the ACE and Delay poli- 
cies severely limit the extent to which this migration 
takes place. The difference between the ACE and Delay 
policies displays a bimodal distribution. In most cases the 
difference is small, but in a few cases (bsor t  and 
kmerge) the difference is quite large. In essence, the 
additional hardware required by Delay serves to prevent 
mistakes. 

All of the policies keep the MCPR below 4 for the non- 
Presto, non-SPLASH applications on the Butterfly with 
the exception of ACE on b s o r t ,  and that case could be 
corrected by increasing the number of invalidations al- 
lowed before freezing. For all applications other than 
p l y t r a c e ,  PLATINUM stays near or below 2.5. This is 
quite good, considering that a random static placement 
would yield a number close to 15. 

Applications such as e-f f  t and e-hyd, which have 
only private and fine-grained shared data, will perform 
well with a reasonable static data placement, but this 
strategy will not work well in other cases. Many pro- 
grams require data to migrate, particularly when remote 
references are costly. Examples include matrix rows ly- 
ing at the boundaries between processor bands in so r -  
byr and dynamically allocated scene information in 
p l y t r a c e .  This explains why the PLATINUM policy 
(which is more aggressive about moving pages) generally 
does better than the ACE or Delay policies on a machine 
such as the Butterfly, in which a page move can be justi- 
fied to avoid a relatively small number of remote refer- 
ences. 

Even on a machine like the ACE, in which frozen 
pages are only twice as expensive to access as local 
pages, there is a large benefit in correctly placing pages. 
For all but the Presto applications and mp3d, an optimal 
placement results in an MCPR below 1.23 on the ACE (as 

p-gauss 7- 
p-qsort 1 

p-matmult 

p-life 1 I 

FIG. 9. MCPR for Butterfly hardware parameters, Presto applica- 
tions. FIG. 8. MCPR for Butterfly hardware parameters. 
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compared to 2 for static global placement) and 2.35 on the 
Butterfly (as compared to 14-15 for random placement). 
In [7] we estimate that programs running on the ACE 
spend from 25 to 60% of their time referencing data mem- 
ory. Newer, more aggressive processor architectures will 
only increase this percentage, as processor improve- 
ments outstrip improvements in memory. For a program 
that spends 50% of its time accessing data memory, even 
our poorest MCPR values translate to a 26% improve- 
ment in running time on the ACE and a 56% improve- 
ment on the Butterfly, in comparison to naive placement, 
assuming no contention. 

The Presto applications have much higher MCPRs for 
both architectures, in both the on-line and optimal poli- 
cies. This disappointing performance reflects the fact that 
these programs were not designed to work well on a 
NUMA machine. They have private memory but do not 
make much use of it, and their shared memory shows 
little processor locality. The shared pages in the EPEX 
e-f  f t and e-hyd programs similarly show little proces- 
sor locality, but because these programs make more use 
of private memory, they still perform quite well. 

The programs that were written with NUMA architec- 
tures in mind do much better. Compared to the Presto 
programs they increase the processor locality of memory 
usage, are careful about which objects are colocated on 
pages with which other objects, and limit the number of 
threads to the number of processors available. It is not 
yet clear what fraction of problems can be coded in a 
"NUMAticized" style. 

4.4.3. Learning from Optimal Behavior 

From the discussions above it is clear that the differ- 
ence in architecture between the ACE and Butterfly ma- 
chines mandates a difference in NUMA policy. It pays to 
be aggressive about page moves on the Butterfly. Aggres- 
siveness buys a lot for applications such as p l y t r a c e  
and e-s imp,  which need to move some pages dynami- 
cally, and does not cost much for applications such as 
e - f f  t ,  which do not. At the same time, aggressiveness 
is a bad idea on the ACE, as witnessed by the poor per- 
formance of the PLATINUM policy on many applications 
( sorbyc ,  e-s imp,  matmult ,  e - f f t ,  p-gauss).  

To illustrate what is happening to the optimal place- 
ment as we vary page move speed, we examined one of 
the successive over-relaxation (SOR) applications, 
s o r b y r ,  in some depth. So rby r  is an algorithm for com- 
puting the steady-state temperature of the interior points 
of a rectangular object given the temperature of the edge 
points. It represents the object with a two-dimensional 
array, and lets each processor compute values in a con- 
tiguous band of rows. Most pages are therefore used by 
only one processor. The shared pages are used alter- 

nately by two processors; one processor only reads the 
page, while the other makes both reads and writes, for a 
total of four times as many references. 

Almost all of s o r b y r  ' s references are to memory that 
is used by only one processor. Thus, the MCPR values 
are all close to 1. However, this case study concentrates 
on the portion of references that are to shared memory. 
The effects of management of this memory are still 
clearly visible in the results presented, and are typical of 
shared memory in other NUMA applications. 

The optimal placement behavior for a shared page de- 
pends on the relative costs of page moves to local, global, 
and remote references. This behavior is illustrated in Fig. 
10 as a function of page move cost. In this graph the cost 
of the optimal policy is broken down into components for 
page moves, remote references, global references, and 
local references. Since most pages are used by only one 
processor, the major cost component is local references; 
in this figure, however, the local section is clipped for 
readability. 

At a G or R of 0, page moves would be free. The 
optimal strategy would move all pages on any nonlocal 
reference. This means that for a G or R of 0 the optimal 
MCPR of any application must be 1, regardless of the 
values of g and r. Since the optimal cost is continuous, 
the curve for every application must fall off as G or R 
approaches 0. This means that all the curves in Figs. 4 
and 5 go smoothly to 1 below their left ends. For applica- 
tions such as e - f  f t that don't show much benefit from G 
and R down to 200, this drop is very steep. As page move 
cost decreases, remote references are traded for copies 
and global references, and then for more copies and local 
references. This can be seen in Fig. 10 at points near G = 

1200 and G = 400, respectively. While the behavioral 
cost breakdown of the optimal policy undergoes large 
sudden changes, the cost itself as a function of behavior 
changes smoothly with G. 

Local (extends down to 0) 

I I I 1 I I I 
200 500 1000 1500 2000 ace 2500 

Global Move Cost 

FIG. 10. so rbyr  placement cost vs G with optimal breakdown, g = 2, 
r = 5 .  
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Any given policy will be oblivious to the speed of mem- 
ory operations. Its curve will therefore be a straight line 
on a graph like Fig. 4 or Fig. 10, and will lie on or above 
the optimal curve at all points. Because the optimal curve 
is concave down, no straight line can follow it closely 
across its entire range. This means that no single real 
policy will perform well over the whole range of architec- 
tures. We illustrate this point in Fig. 10 by including lines 
for on-line policies. The PLATINUM policy works best 
for small G, but at the cost of doing poorly for large G. 
Conversely, the ACE and Delay policies do well for large 
G, but poorly for small G. To obtain the best performance 
over a range of page move speeds in Figs. 4 and 5 (at least 
for the applications in which the optimal line curves 
sharply), one must change the real policies accordingly. 

5 .  DISCUSSION 

The technique of optimal analysis allows the compari- 
son of architectural features without the fear of policy- 
influenced bias. That is, it factors out one major source of 
possible inaccuracy. When designing a policy to run on a 
particular machine, optimal performance can also be 
used as a baseline for the evaluation of implementable, 
on-line policies. 

Optimal analysis may be used to investigate many dif- 
ferent memory architectures. The execution and cost 
model provided in this paper is already sufficiently gen- 
eral to describe a wide range of machines. For example, 
coherently cached machines in which the processors 
have caches that are backed by a single memory look like 
local/global/remote machines: an access directly to the 
main memory is simply a global access. Modeling a ma- 
chine with even more levels of memory (e.g., local cache, 
local (shared) memory, and remote memory in a cluster- 
based multiprocessor) would require changes to the cost 
model and code presented here, but those changes would 
be straightforward; the basic concepts would remain the 
same, and the optimal algorithm would remain tractable. 

From a functional point of view, NUMA machines 
closely resemble UMA machines with hardware cache 
coherence; the principal difference is that NUMA poli- 
cies generally permit remote references, whereas cache 
coherence policies force a line to move on a cache miss 
or, in the case of noncachable data, access it only in 
global memory. NUMA machines implement data place- 
ment decisions in software, of course; cache-coherent 
machines implement them in hardware or firmware. 
Cache coherence policies are also likely to move data 
more often than NUMA policies, mainly because of the 
lack of remote references, but also because the compara- 
tively small size of a cache line and the low start-up 
overhead of a hardware-initiated move make movement 

more attractive. Because they move data more, cache- 
coherent multiprocessors are likely to suffer more from 
interconnect contention. 

Distributed virtual memory systems for NORMA (no 
remote memory access) machines also resemble hard- 
ware-based coherent caching at a functional level [20]. 
Since most distributed virtual memory systems do not 
permit remote access (they would have to implement it in 
the page fault handler), they may actually resemble hard- 
ware-based coherent caching more than NUMA systems 
do. All three kinds of systems may or may not support 
the remote update of multiple copies (that is, broadcast- 
ing a single word write to multiple remote copies); this is 
an orthogonal issue. 

Our model of memory management cost can be used to 
describe data placement policies for UMA, NUMA, and 
NORMA machines, provided that contention is not a ma- 
jor factor in performance. Our algorithm for computing 
an optimal placement provides a performance baseline 
for these policies, and allows evaluation of the hardware 
on which they run, provided that we accept the coher- 
ence constraints, which insist that all copies of a page be 
up-to-date at all times and that only one copy exist at the 
time of a write. We are currently experimenting with heu- 
ristic off-line algorithms which, while not optimal, may 
arguably be used as a performance baseline for systems 
in which the coherence constraints are not enforced. We 
are particularly interested in the extent to which a policy 
might obtain improved performance by exploiting knowl- 
edge of false sharing in applications, allowing copies of 
pages written by more than one processor in a given time 
period, but containing no data objects used by more than 
processor during that same period, to grow temporarily 
inconsistent. We are also gathering data for a direct com- 
parison of memory management costs on UMA, NUMA, 
and NORMA machines for a common set of applications. 
We expect hardware cache coherence to outperform soft- 
ware schemes in most (though not all) cases, but it ap- 
pears likely that the differences will in many cases be 
small enough to cast doubt on the cost effectiveness of 
the hardware-intensive approach. If hardware placement 
policies indeed produce larger amounts of interconnect 
traffic than software placement policies, then a compari- 
son that ignores contention is likely to be biased in favor 
of the hardware approach. 

We hypothesize that off-line optimal analysis could 
fruitfully be employed in problem domains other than 
multiprocessor memory management. One might, for ex- 
ample, create a tractable algorithm for optimizing alloca- 
tion of variables to registers in a compiler, given the ref- 
erences to the variables that are eventually made by a 
particular program (that is, a trace). It would then be 
possible not only to measure the performance of a com- 
piler's register allocator, but also to determine the perfor- 
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mance inherent in different register set designs (different 
numbers of registers, different registers for floating point, 
addresses, and integers vs general purpose registers, dif- 
ferent sizes of register windows, etc.) without having to 
worry that observed effects are due to a particular com- 
piler, and without having to worry about implementing 
register allocation schemes for all of the hardware vari- 
ants. 

For NUMA machines, off-line analysis has allowed us 
to quantify the utility of a fast block transfer, assess the 
significance of varying page sizes, characterize the sorts 
of placement decisions that a good policy ought to be 
making on various sorts of machines, and estimate the 
extent to which policy improvements (presumably incor- 
porating application-specific knowledge) might increase 
the performance of software data placement. 

ACKNOWLEDGMENTS 

Bob Fitzgerald was the principal force behind the ACE Mach port, 
and has provided valuable feedback on our ideas. Rob Fowler and Alan 
Cox helped with application ports and tracing, and also provided good 
feedback. Comments by the anonymous JPDC referees (referee "C" in 
particular) led to many improvements in the paper. 

Most of our applications were provided by others: in addition to the 
PLATINUM C-Threads applications from Rob and Alan, the Presto ap- 
plications came from the Munin group at Rice University; the SPLASH 
applications from the DASH group at Stanford University; the EPEX 
applications from Dan Bernstein, Kimming So, and Frederica Darema- 
Rogers at IBM; and p ly t race  from Armando Garcia. Our thanks to 
Armando and to Colin Harrison and IBM for providing the ACE ma- 
chines on which the traces were made. 

REFERENCES 

Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Teva- 
nian, A, ,  and Young, M. Mach: A new kernel foundation for UNIX 
development. Proc. Summer 1986 USENIX, July 1986. 

Baylor, S., and Rathi, B. An evaluation of memory reference be- 
havior of engineeringlscientific applications in parallel systems. 
IBM Tech. Rep. 14287, IBM T. J. Watson Research Center, 
Yorktown Heights, NY, June 1989. 
Bennett, J., Carter, J., and Zwaenepoel, W. Adaptive software 
cache management for distributed shared memory architectures. 
Proc. 17th International Symposium on Computer Architecture, 
1990, pp. 125-134. 

Bershad, B., Lazowska, E., and Levy, H. PRESTO: A system for 
object-oriented parallel programming. Software: Practice Experi- 
ence 18, 8 (August 1988), 713-732. 
Black, D., Gupta, A, ,  and Weber, W.-D. Competitive management 
of distributed shared memory. Proc. Spring COMPCON, Feb. 
1989, pp. 184-190. 

Black, D., and Sleator, D. Competitive algorithms for replication 
and migration problems. Carnegie-Mellon University Computer 
Science Department Tech. Rep. CMU-CS-89-201, Carnegie-Mel- 
Ion University, Computer Science Department, Pittsburgh, PA, 
Nov. 1989. 

Bolosky, W., Fitzgerald, R., and Scott, M. Simple but effective 
techniques for NUMA memory management. Proc. 12th ACM 

Symposium on Operating Systems Principles, Dec. 1989, pp. 19- 
31. 

8. Bolosky, W., and Scott, M. Evaluation of multiprocessor memory 
systems using off-line optimal behavior. University of Rochester 
Computer Science Department Tech. Rep. 403, University of 
Rochester Computer Science Department, Rochester, NY, Dec. 
1991. 

9. Bolosky, W., Scott, M., Fitzgerald, R., Fowler, R., and Cox, A. 
NUMA policies and their relation to memory architecture. Proc. 
4th International Conference on Architectural Support for Pro- 
gramming Languages and Operating Systems, 1991, pp. 212-221. 

10. Censier, L., and Feautrier, P. A new solution to coherence prob- 
lems in multicache systems. IEEE Trans. Comput. 27, 12 (Dec. 
1978), 1112-1118. 

11. Cooper, E., and Draves, R. C-Threads. Tech. Rep., Carnegie- 
Mellon University, Computer Science Department, Pittsburgh, PA, 
Mar. 1987. 

12. Cox, A , ,  and Fowler, R. The implementation of a coherent memory 
abstraction on a NUMA multiprocessor: Experiences with PLATI- 
NUM. Proc. 12th ACM Symposium on Operating Systems Princi- 
pies, Dec. 1989, pp. 32-44. 

13. Eggers, S., and Jeremiassen, T. Eliminating false sharing. Tech. 
Rep. 90-12-01, University of Washington, 1990. 

14. Garcia, A,, Foster, D., and Freitas, R. The advanced computing 
environment multiprocessor workstation. Res. Rep. RC-14419, 
IBM T. J. Watson Research Center, Yorktown Heights, NY, Mar. 
1989. 

15. Holliday, M. On the effectiveness of dynamic page placement. 
Tech. Rep. CS-1989-19, Department of Computer Science, Duke 
University, Sep. 1989. 

16. Holliday, M. Reference history, page size, and migration daemons 
in locallremote architectures. 3rd International Conference on Ar- 
chitectural Support Support/or Programming Languages and Op- 
erating Systems, Apr. 1989. 

17. Koldinger, E., Eggers, S., and Levy, H.  On the validity of trace- 
driven simulations for multiprocessors. In Proc. 18th International 
Symposium on Computer Architecture 1991, pp. 244-253. 

18. LaRowe, R., and Ellis, C. Experimental comparison of memory 
management policies for NUMA multiprocessors. ACM Tran. 
Comput. Systems 9, 4 (Nov. 1991), 319-363. 

19. LaRowe, R. J., Ellis, C., and Kaplan, L. The robustness of NUMA 
memory management. Proc. 13th ACM Symposium on Operating 
Systems Principles, 1991, pp. 137-151. 

20. Nitzberg, B., and Lo, V. Distributed shared memory: A survey of 
issues and algorithms. IEEE Comput. 24, 8 (Aug. 1991), 52-60. 

21. Singh, J.,  Weber, W.-D., and Gupta, A. SPLASH: Stanford paral- 
lel applications for shared-memory. Available by anonymous FTP, 
Apr. 1991. 

22. Stone, J., and Norton, A. The VMIEPEX FORTRAN preprocessor 
reference. IBM Res. Rep. RC11408, IBM T. J. Watson Research 
Center, Yorktown Heights, NY, 1985. 

23. Stunkel, C., and Fuchs, W. K.  TRAPEDS: Producing traces for 
multicomputers via execution driven simulation. Performance 
Evaluation Rev. 17 1 (May 1989), pp. 70-78. 

WILLIAM J. BOLOSKY expects to receive his Ph.D. in Computer 
Science from the University of Rochester in May of 1992. He was 
awarded a M.S. in Computer Science from Rochester in May of 1989, 
and a B.S. in Mathematics from Carnegie-Mellon University in June of 
1986. His research interests include the design and implementation of 



398 BOLOSKY AND SCOTT 

multiprocessor memory and operating systems. He has been awarded Ph.D. in Computer Sciences from the University of Wisconsin-Madi- 
the Sproull Fellowship and a DARPAINASA Fellowship in Parallel son in 1985. His research focuses on programming languages, operating 
Processing. systems, and program development tools for parallel and distributed 

computing. He is coleader of Rochester's Psyche parallel operating 
MICHAEL L.  SCOTT is an Associate Professor in the Department system project, and is the recipient of a 1986 IBM Faculty Development 

of Computer Science at the University of Rochester. He received his Award. 

Received September 6, 1991; revised February 28, 1992; accepted April 
17, 1992 


