
A Trace-Based Comparison of Shared Memory Multiprocessor

Architectures

�

William J. Bolosky and Michael L. Scott

Computer Science Department

University of Rochester

Rochester, NY 14627-0226

fbolosky,scottg@cs.rochester.edu

Abstract

There are three major classes of MIMD multiprocessors: cache-coherent machines,

NUMA (non-uniformmemory reference) machines without cache coherence, and distributed-

memory multicomputers. All three classes can be used to run shared-memory appli-

cations, though the third requires software support in order to do so, and the second

requires software support in order to do so well. We use trace-driven simulation to

compare the performance of these classes, in an attempt to determine the e�ect of

various architectural features and parameters on overall program performance. For

those systems whose hardware or software supports both coherent caching (migration,

replication) and remote reference, we use optimal o�-line analysis to make the correct

decision in all cases. This technique allows us to evaluate architectural alternatives

without worrying that the results may be biased by a poor data placement policy. We

�nd that the size of the unit of coherence (page or cache line) is the dominant factor in

performance; that NUMA systems can have performance comparable to that of cache

coherent machines; and that even relatively expensive, software-implemented remote

reference is bene�cial in distributed shared memory machines.

�

This work was supported in part by a DARPA/NASA Research Assistantship in Parallel Processing

administered by the Institute for Advanced Computer Studies, University of Maryland, by an IBM summer

student internship, by a Joint Agreement for Loan of Equipment (Number 14520052) between IBM and the

University of Rochester, and by the National Science Foundation under Institutional Infrastructure grant

number CDA-8822724.

1

mls
Tech. Rep. 432, Computer Science Dept., Univ. of Rochester, July 1992



1 Introduction

There currently exist many multiprocessor designs, many of which fall into a small num-

ber of broad architectural classes. Deciding which of these classes will provide the best

price/performance in large con�gurations for various applications is a major open problem.

It is also a di�cult problem to address, for several reasons. Studies of individual designs

often make di�erent assumptions about the underlying hardware technology, the type or

quality of systems software, or the target applications. These factors easily obscure the

impact of true architectural di�erences. Even in studies that hold these factors constant

across a range of architectures, data placement policies (e.g. for cache coherence) may make

better decisions on one machine than on another, thereby biasing the results.

The aim of this study is to evaluate the relative merits of the three principal architectural

alternatives for shared-memory parallel processing: cache-coherent multiprocessors, non-

uniform memory access (NUMA) multiprocessors, and multicomputers running distributed

shared-memory software. To avoid the problems just cited, we employ optimal o�-line

analysis in trace-driven simulation. Speci�cally, the performance used for comparison of

each machine model is that which would be achieved if every data placement policy decision

were made correctly. Depending on the architecture, a policy may choose at each step of a

trace to access a datum in (one of) its current location(s), or to copy it to a closer location,

possibly invalidating existing copies. In addition, it may choose to modify the policy to be

followed in the event of future references, e.g. by enabling or disabling caching, providing

that the particular architecture being simulated allows this.

All of the machine models are based upon a set of components of equal speed. All

have similar processors and caches, an inter-processor memory connection medium of equal

bandwidth and latency, and for those machines that have it, remote memory reference

hardware of the same speed. The di�erences lie in the way in which the components are

used: do they provide hardware support for remote memory access; do they implement

coherency in hardware; what size are the cache lines or pages?

We present a simple model of memory cost for the execution of a program on a machine.

This cost includes the latency of all references to data and the overhead of all data replication

or migration mechanisms implemented in software. It does not include contention. By

2



using optimal analysis, we ensure that memory cost depends only on the behavior of the

program and on the options available to the (optimal) data placement policy. While it is

not possible for a real system to make optimal choices in all cases, there is evidence that a

properly designed policy can do quite well [6]. Moreover, knowing the performance of an

optimal policy can inform a decision as to whether it is worth searching for good, realizable

policies for a given architecture. Further discussion of o�-line optimal analysis, together

with a formal presentation of the technique, can be found in a companion paper [5].

The goal of the analysis is to shed light on a number of questions: What is the relative

performance of cache-coherent, NUMA, and distributed memory machines when running

shared-memory applications? How useful is the ability to access remote locations without

performing migration or replication? Does remote reference need to be provided in hard-

ware, or is an implementation based on catching page faults su�cient? How important is it

to have small coherent cache lines or software managed pages, rather than large ones? How

much does application design a�ect the answers to these questions?

De�nitive answers, of course, will not come from a single study. Our results apply only

to the extent that technological parameters approximate those described in section 3.2, that

machines are programmed in a shared-memory style, and that latency dominates contention

as a contributor to memory system cost.

That said, we �nd that while only the most well-behaved programs can reasonably be

executed on distributed memory machines, most of the programs that perform well on cache-

coherent machines perform only marginally worse on NUMA machines. The block size of

data placement (i.e. the size of the cache line or page) appears to be the dominant factor in

all three classes of machines; smaller blocks perform better than larger ones (within reason)

in most applications, despite the fact that communication start-up latencies make moving

the same amount of data much more expensive for smaller blocks. Remote references do

little to improve the performance of machines with small, hardware-coherent cache lines,

but they can improve the performance of distributed-memory machines dramatically, even

when implemented in software.

The following section describes the applications and tracing methodology. Section 3

describes the machine models. Section 4 describes the experiments and the results thereof.

Section 5 summarizes these results and presents conclusions.

3



2 Applications and Traces

2.1 Trace Collection

The traces used in this paper were collected on an IBM ACE Multiprocessor Workstation

[13] running the Mach operating system [1]. The ACE is an eight processor machine in

which one processor is normally used only for processing Unix system calls and the other

seven run application programs.

Traces were collected by single-stepping each processor and decoding the instructions to

be executed, to determine if they accessed data. Instruction fetches were not recorded. The

single-step code resides in the kernel's trap handler, where it maintains a bu�er of memory

reference data. When that bu�er �lls, the tracer stops the threads of the traced application

and runs a user-level process that empties the bu�er into a �le. To avoid interference by

other processes, the applications were run in single-user mode, with no other system or

user processes running. Since there is only a single, system-wide bu�er of references, the

traces are statically interleaved: the ordering of references between processors is determined

at trace collection time, and is virtually the same as that made by the processors as they

executed the traced program.

Modifying the kernel's trap handler results in better performance (and therefore longer

traces) than would have been possible with the Mach exception facility or the Unix ptrace

call. Execution slowdown is typically a factor of slightly over 200. Experiments by Koldinger

et al. suggest that the impact of this trace dilation is relatively minor [15]. A potentially

more serious problem than trace dilation is the possibility that changes in the architectural

parameters under study will invalidate the trace that drives a simulation; i.e., the ordering of

references from di�erent processors, and in fact the actual set of locations accessed in a non-

deterministic program, could depend on the machine characteristics being changed. In an

attempt to assess the importance of this issue, we performed a series of sensitivity analyses

to estimate error bounds. We deliberately induced changes in instruction interleaving and

injected delays for kernel execution (e.g. of software page coherence policies). In all cases

the e�ects described in section 4 were well above the noise.

Programs on large-scale machines will likely use distributed data structures [16] or spe-

cial hardware instructions [14] to eliminate contention due to busy-wait synchronization.

4



Our test applications are more naive. To eliminate potential simulation anomalies, we

deleted from the traces all references due to busy-wait synchronization.

2.2 The Application Suite

The application suite includes a total of fourteen applications, written under three di�erent

programming systems by authors at several institutions. The suite is described in more

detail elsewhere [6]. Brie
y, the programming styles are EPEX [18], a parallel extension to

FORTRAN in which the programmer speci�es DO loops to execute in parallel; Presto[4],

a parallel programming system based on C++ in which there are potentially many more

threads than processors; and C-Threads [10], a multi-threaded extension to C in which there

is generally one thread per processor. mp3d, cholesky and water are applications from the

SPLASH benchmark suite[17]. The other C-Threads applications were written for either

the butter
y or ACE machines by researchers at various institutions. EPEX and Presto

applications are indicated by having their name pre�xed with \e-" and \p-, respectively."

Applications without a pre�x are written in C-Threads.

Table 1 shows the sizes of our traces in millions of references. Presto and EPEX have

regions of memory that are addressable by only one thread. References to these explicitly

private regions are listed in the column named \Private Refs," and are not represented

under \References."

2.3 A Model Of Program Execution Cost

Our concept of the cost of execution of a program roughly corresponds to the total amount

of time across all processors spent waiting for data memory. This includes both hardware

latency and compute time devoted to software-implemented data placement policies. It does

not include the time spent doing other things, such as performing arithmetic operations on

data in registers, or handling instruction cache misses. Likewise, it does not correspond to

wall-clock time; since it is the sum of time spent over all processors, it is more akin to total

work performed.

This description considers only the references made to a single block. Real applications

use more than one block, but the behavior of separate blocks is independent in the model,

5



Application References Private Refs

e-simp 27.8 109

e-hyd 49.8 445

e-nasa 20.9 326

gauss 270 0

chip 412 0

bsort 23.6 0

kmerge 10.9 0

plytrace 15.4 0

sorbyc 105 0

sorbyr 104 0

matmult 4.64 0

mp3d 19.5 0

cholesky 38.6 0

water 81.8 0

p-gauss 23.7 4.91

p-qsort 21.3 3.19

p-matmult 6.74 .238

p-life 64.8 8.0

Table 1: Trace Sizes and Breakdowns (in millions of data references)

and considering only one simpli�es the presentation without loss of generality. In practice,

we treat traces as independent streams of references to the various blocks, and add together

the cost of all blocks at the end of the run.

A machine is characterized by a set of processors and some parameters that represent

the speed of various operations. The parameters are r, R and the block size. r is the amount

of time that it takes a processor to read a single word from another processor's cache; it is

in�nite in machines that do not permit such references. R denotes the length of time that it

takes for one processor to copy an entire block from another processor's cache. R and r are

measured in units of time: one time unit represents the duration of a processor's reference

to its local cache.

At each point in the trace, the block must be at some non-empty set of locations. Any

processor that lacks a local copy at the time of a reference must make a copy or pay the cost

of a remote reference (r). To maintain coherence, a block is required to be in exactly one

location at the time of a write (the model does not handle write-update schemes). When

6



reads happen the block may be replicated to some or all of the processors. The cost per

replication is R.

Deciding when to replicate or migrate, and when to use remote reference, is the fun-

damental trade-o� made by a placement policy. Our notion of optimality characterizes

the best performance that can be achieved in any system that requires that all copies of

a data block be consistent at all times and that does not migrate threads or update mul-

tiple copies. It is not in general possible to �nd an optimal placement at run time. Our

algorithm for computing an optimal policy employs dynamic programming, and executes in

O(x+ py) time, where x is the number of reads, y the number of writes and p the number

of processors.

1

The essential insight in the algorithm is that after each write a block must

be in exactly one place. To �rst approximation, we can compute the cheapest way to get

it to each possible place given the cheapest ways to get it to each possible place at the

time of the previous write. If there are reads between a pair of writes, then a block may

be replicated during the string of reads; whether this replication occurs depends on the

starting and ending locations of the block and the number of reads made by each processor

during the interval.

3 Machine Models

Since the aim of this work is to compare the performance of a suite of programs on several

classes of multiprocessor architectures, it is important to choose machines that are repre-

sentative of these classes, but which are in other ways balanced. This is necessary to avoid

tainting the results with e�ects unrelated to the cache and memory systems used. Since

such a large group of well-balanced machines does not exist in real implementations (or even

concrete designs), the models used here extrapolate performance from current machines.

3.1 The Machines Models

We consider �ve basic machine types. Four of these types are obtained from the four pairs

of answers to two questions. The �rst question is: does the machine support single-word

1

Paul Dietz has discovered that a slightly more complicated algorithm will run in time linear in the length

of the trace.

7



Hardware Software

Coherence Coherence

Remote Access Hardware CC+ NUMA

No Remote Access Hardware CC DSM

Table 2: Machine Types Considered

references to remote memory (caches)? The second is: does hardware implement all of the

block movement decisions and operations, or does the operating system kernel need to be

invoked in some cases? Table 2 shows the four pairs of answers to the questions, and shows

the name used here for each machine.

\CC" stands for coherently cached, \NUMA" for non-uniform memory access, and

\DSM" for distributed shared memory. The \+" in CC+ indicates that this model con-

tains a feature (remote references) not normally present in cached machines.

2

The NUMA

machine includes hardware to remotely reference memory in another processor's cache, but

to initiate a page move operation it requires that a page fault occur and that the kernel

intervene to initiate the operation to fetch the page from remote memory. CC+ is similar

to NUMA, except that it has hardware support for making the remote move or replicate

request, and so does so much faster, and because of this hardware support is likely to be able

to use smaller blocks. CC is similar to CC+, except that remote references are prohibited.

DSM is similar to NUMA, except that remote references are prohibited. In all our machine

models, we assume that caches are of in�nite size, and that initial cache-load e�ects are

insigni�cant.

While DSM does not support remote memory access in hardware, it can implement them

in software. The resulting system is named DSM+, and is the �fth machine considered in

this paper. A page that is to be accessed remotely is left invalid in the page table, so that

every reference generates a fault. The kernel then sends a message to read or write the

remote location. The cost of a remote reference will be larger than in the NUMA machine,

due to this kernel overhead.

The systems without remote reference capability (CC, DSM) make no placement deci-

2

Many cache-coherent machines allow caching to be disabled for particular address ranges, forcing pro-

cessors to access data in main memory. Machines with this capability will have performance between that

of CC and CC+.

8



sions; they always migrate data on a write and replicate on a read. The trace analyzer there-

fore needs to employ its dynamic programming algorithm only for the CC+, NUMA, and

DSM+ systems. The NUMA system model dominates DSM+ in performance: it provides

the same capabilities with a lower remote reference cost. Also, the CC+ and NUMA/DSM+

models dominate CC and DSM, respectively, in performance; at the very worst they can

ignore their remote reference capability and act like their simpler cousins. On the other

hand, if we assume that the cache-coherent machines can use a smaller block size than

the other competitors, then neither the software nor hardware systems dominate the other.

Reducing the block size will improve performance by reducing false sharing [9, 11, 12] and,

more importantly, by reducing the number of references that must be made in order to

justify movement of a truly-shared block. At the same time, while the hardware-supported

alternatives initiate operations more quickly, the total cost of the large number of operations

that would be required to move a page-sized chunk of memory one cache line at a time is

much more than the cost to move the whole page for the software-controlled machines.

3.2 Computing Cost Numbers for the Machines

To use the cost model (see Section 2.3) the important characteristics of a machine are: how

fast can it move a cache line or page from one processor to another; can it reference a single

word remotely, and if so how fast; how big are its cache lines or pages? That is, what are

R, r and the block size?

All units of time are expressed in terms of a local cache hit. The baseline processor

resembles a MIPS R3000 running at 40 MHz, with one wait state for a local cache hit. Thus,

a cost of 1 time unit can roughly be considered to be 50ns: one 25ns processor cycle for the

load or store instruction and one waiting. The inter-processor interconnection network in

all of the machines is identical in performance: it has a bandwidth of 40Mbytes/sec, and

thus requires 2 time units to transmit each four bytes of data, once start-up overhead has

been paid. The latency of the network is 50 cost units to get a message from one node to

another|100 for a round trip message. The one-way latency is named �.

The R3000 takes about 130 processor cycles to take a trap and return to the user context

[2]. If a cache cycle is two processor cycles, then it costs 65 units to take and return from a

trap. A well-coded kernel should be able to determine what action to take within another

9



ten units, so the time charged for a trap to software to initiate a remote operation is 75 units.

Presumably, additional processing (e.g. to modify page tables) can proceed in parallel with

the network transfer. On the other hand, a cache controller is likely to be able to decide

what action to take on a cache miss in much less time; it costs 2 units for the hardware

to decide what to do. These costs are named the \software overhead," o

s

, and \hardware

overhead," o

h

.

The operation of moving a remote cache line or memory page to the local processor

consists of several distinct phases: taking the initial miss or fault that begins the operation,

determining the location of the memory to be fetched, requesting that the memory be sent,

waiting for the memory to arrive (while concurrently updating any TLB, page table or cache

directory information that may need it), and returning to the process context. The trap,

decision and return cost are discussed in the previous paragraph: they are 75 for software

implementation and 2 for hardware. All of the machine models assume that cache lines or

pages have both home and owner locations, and that a distributed directory contains, on

each home node, the location of the owner. A remote read from a home node directory

traverses the network once in each direction, at a cost of 100 units (= 2�). This is followed

by a request/response to the owner of the memory, which costs another 100 units of latency,

plus the amount of time that the interconnection is busy, at a cost of 2 units per 4 byte

word. The sum of these factors gives us R = page size=2 + 4�+ o

s

, the remote page/line

copy cost for the software-coherent models. In the hardware-coherent models, the home

location forwards the line move request to the owner, thus obviating the need for one of the

four messages used in the software implementations, and giving R = page size=2+ 3�+ o

h

.

The second necessary cost value is r, the time to fetch a single word from a (known)

remote memory. Hardware supports this operation in CC+ and NUMA. After an initial o

h

hardware set-up cost, retrieving the data requires a request/reply latency time of 2�. In

DSM+, every remote reference must go through the kernel trap mechanism, which sends

a message to the (known) holder of the memory, who traps, �nds the data and responds.

Thus, there are two software trap costs (one on each side) plus a request/reply latency. The

total cost of a remote reference is 2�+ o

h

= 102 in CC+ and NUMA, and 2�+ 2o

s

= 250

in DSM+.

The experiments presented in section 4 vary several parameters, most notably the block

10



Machine r R

NUMA 2�+ o

h

4�+ page size=2 + o

s

CC | 3�+ page size=2 + o

h

CC+ 2�+ o

h

3�+ page size=2 + o

h

DSM | 4�+ page size=2 + o

s

DSM+ 2�+ 2o

s

4�+ page size=2 + o

s

Table 3: Formulas for computing model parameters

Machine Block Size r R R for 512

byte block

NUMA 4K 102 2323 531

CC 64 | 184 408

CC+ 64 102 184 408

DSM 4K | 2323 531

DSM+ 4K 250 2323 531

Table 4: Relevant parameters for base and 512 byte block machine models

size. Initially, the software coherent machines have a page size of 4 Kbytes and CC and

CC+ have a line size of 64 bytes. Table 3 presents the formulas used to compute the model

parameters for experiments in which these parameters vary. Table 4 shows the values of the

model parameters for our base systems, and also for systems with a block size of 512 bytes.

Note that only R is shown for the 512 byte block machines, because r does not depend on

the block size.

4 Experimental Results

At this point, the obvious question to ask is: \How well do the applications run on the base

machine models?" The results are presented in Figure 1. (This and similar �gures present

the performance of each of the architectures for each of the applications in term of mean

cost per data reference (MCPR). Each application has a set of �ve bars; these bars are the

CC+, CC, NUMA, DSM+ and DSM performance from top to bottom respectively. When

an architecture has a MCPR greater than 35, its bar is left open and its cost is recorded in

text to the right of the bar: DSM produces an MCPR of 129 on p-life, for example.)

11



-0 10 20 30

e-hyd

75

sorbyr

sorbyc

p-life

129

p-matmult

plytrace

e-simp

e-nasa

p-qsort

58

bsort

gauss

cholesky

80

matmult

mp3d

59

193

CC+

CC

NUMA

DSM+

DSM

Figure 1: Results for 4K pages and 64 byte lines

12



In almost all cases the coherently cached machines outperformed the others. This struck

us as counterintuitive. Several of the applications display moderately coarse-grain sharing,

and the inter-processor latency is so large that the cost of moving a large data structure a

(64 byte) line at a time was more than �ve times the cost of moving it a (4 kilobyte) page

at a time, even given the additional software overhead charged to the page-sized systems.

The fact that the CC architectures nearly dominated the others, even considering the

extra overhead for moving large regions of memory pointed to the importance of block size.

Smaller blocks help performance in two di�erent ways: they allow �ner-grained sharing to

be pro�tably exploited (fewer references to a block are required to justify moving it), and

they reduce the number of coherence operations caused by false sharing|the co-location

in a block of two or more unrelated data objects with di�erent usage patterns. Conversely,

reducing the block size increases overhead incurred in moving a �xed amount of data,

particularly in the systems we are modeling, in which the remote access latency is high.

The fact that CC+ and CC so outperformed the others indicates that the exploitation

of �ner-grain sharing and reduction of false sharing almost always overcome the increased

overhead.

Stated di�erently, reducing block size, even at the cost of increased overhead, can have

signi�cant bene�ts in performance. These bene�ts usually overshadow the other architec-

tural decisions, such as whether to support remote references, or whether to manage locality

in fast caching hardware or slower software. The overall desirability of small block sizes is

largely insensitive to the overhead charged for handling faults in software; even increasing

this overhead by an order of magnitude doesn't substantially change the block size e�ect.

Figure 2 is similar to Figure 1, except that it displays data for 512 byte blocks for all �ve

machines. Di�erences between the two graphs are striking. Most outstanding is that the

DSM architecture achieved signi�cant performance gains: it improved more than an order

of magnitude in the case of p-life, for example. When faced with �ne-grained sharing,

DSM has no choice but to migrate the entire block from processor to processor at each

\pinging" access. Reducing the block size helps it in two ways: there is less false sharing

because there is less opportunity for co-location, and the expense of moving the blocks for

the sharing that remains is less.

The equalization of block size at 512 bytes also changes the relative costs of NUMA and

13



-0 10 20 30

e-hyd

sorbyr

sorbyc

p-life

p-matmult

plytrace

e-simp

e-nasa

p-qsort

bsort

gauss

cholesky

matmult

mp3d

CC+

CC

NUMA

DSM+

DSM

Figure 2: Results for 512 byte pages and 512 byte lines

14



CC over the base machine models in most applications. When block sizes are equal, the

di�erence between NUMA and CC is that NUMA can make remote references, while CC has

a block move that is about 30% faster than NUMA. As a result, NUMA is generally better

than CC in Figure 2. The only remaining di�erence between NUMA and CC+ is the latter's

faster block transfer. Generally, CC+ does not do that much better than NUMA, which

indicates that for 512 byte blocks NUMA's additional overhead is of minor consequence.

5

10

20

50

100

200

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 3: cholesky performance versus block size

Figures 3, 4 and 5 show the performance of three of our applications as the block size

is varied. These are log-log graphs. Cholesky and qsort are typical of the rest of the

application set in that performance improves signi�cantly with reduction in block size,

across the board (excepting the smallest cache line size considered). The value of remote

reference (as shown by the distance between DSM and DSM+ and between CC and CC+)

increases as the block size increases. This is because the cost of remote reference does not

vary with the block size, while the cost of the page moves it replaces does.

15



5

10

20

50

100

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 4: qsort performance versus block size

Sorbyr is interesting in that it is extremely well-behaved. Most of its memory is used

by only one processor after initialization, and the portion that is shared is migratory over

relatively long time periods. The size of the portions that migrate is 4K bytes, and thus the

curves show a minimum at a block size of 4K. For all machines and all block sizes, sorbyr

does much better than most of the other applications. Moreover, the shapes of its curves

are unique. At small block sizes performance degrades, because the natural size to migrate

is 4K, and the overhead of using many high latency operations rather than a single high

latency operation to make the migrations dominates the application's overall performance.

We expected to see this e�ect in more applications, but did not. For completeness, graphs

of MCPR versus block size for the rest of our applications appear at the end of this paper.

One of the parameter selections that is subject to debate is that of o

s

, the software

overhead. The value chosen represents an extremely small number of instructions executed

by the kernel (about 20, excluding those necessary in an \empty" trap) to decide whether to

replicate a page. It may be that this is insu�cient time; even if it is possible, it is doubtless

16



1.1

1.2

1.3

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 5: sorbyr performance versus block size

more convenient for the kernel writer if more time is allowed. To see how sensitive the

experiments are to this parameter, the following experiments observe the result of varying

it.

Across the application suite, variations in o

s

resulted in two qualitatively di�erent pat-

terns of variation in performance. One pattern is typi�ed by sorbyr, shown in Figure 6.

The value of o

s

in the base machine model is 75. As it increases NUMA, DSM, and DSM+

all show marked, and almost uniform, increases in MCPR. It is important to note the scale

of the y axis, however. The only applications to demonstrate this pattern of performance

variation were sorbyr, p-matmult, and bsort, all of which have good MCPR values|below

2.2|at all tested values of o

s

. In other words, the appearance of the graphs can be deceiv-

ing; the quantitative performance degradation is small. CC and CC+ are constant with

respect to o

s

, because none of their operations require software intervention, and hence none

of their model parameters depend on it. They are shown for reference only.

The more common pattern of variation of MCPR with o

s

is typi�ed by e-hyd, shown

17



1.05

1.1

Software Overhead

50 75 150 300 500 1000

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 6: sorbyr performance versus o

s

for 512 byte blocks

in Figure 7. As o

s

increases the performance of NUMA slowly degrades, but not enough to

be of much concern. DSM and DSM+ are more severely a�ected. Since software remote

references in DSM+ require two traps, the value of remote reference in DSM+ (as evidenced

by its bene�t over DSM) is quickly reduced, and the two upper curves converge. With no

option but to migrate blocks, and with many more migrations occurring at a cost that

increases with o

s

, performance rapidly degrades. We conclude that fast trap handling is

crucial in DSM systems, at least when using a page size as small as 512 bytes. It is less

crucial in NUMA systems, though certainly desirable. However, the magnitude of the e�ect

is not such that the assumption of fast trap handling signi�cantly a�ected the results of the

experiments that varied the block size.

18



5

10

20

Software Overhead

50 75 150 300 500 1000

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 7: e-hyd performance versus o

s

for 512 byte blocks

5 Conclusions

This paper presented a model of the cost of data access and locality management in shared-

memory multiprocessors, and used it to evaluate the relative performance of alternative

multiprocessor architectures executing shared-memory applications. The analysis technique

employs trace-driven simulation in conjunction with an optimal o�-line data placement pol-

icy to avoid any policy bias in the results. It compared �ve di�erent machine models:

cache-coherent multiprocessors with and without remote references; NUMA multiproces-

sors (with remote references); and shared virtual memory simulations running on top of

distributed-memory multiprocessors, with and without software-implemented remote refer-

ences. All �ve models share a common technology base, with identical processor, cache,

memory, and interconnection speeds.

The results must be considered in the context of assumptions about the hardware tech-

nology, application suite, and tracing methodology. Major technology shifts could lead to

19



di�erent results|a large decrease in network latency, for example, would bene�t the cache-

coherent machines more than the NUMA or DSM systems, because their smaller block sizes

cause them to incur this latency more frequently. Di�erent applications will produce dif-

ferent results as well. Our applications were all designed for NUMA machines or bus-based

cache-coherent multiprocessors. They have been modi�ed to represent the use of smart

synchronization algorithms, but even so they do not in general display the very coarse-

grain sharing most suitable to distributed-memory multicomputers. They are typical of the

programs designers would like to be able to run on DSM systems. The Munin group [3, 7]

at Rice University has explored the use of program annotations to adapt shared memory

programs to run well on DSM systems, e.g. by indicating intervals in which sequential con-

sistency is not required. We did not attempt to evaluate these techniques, but our results

suggest that something like them is required.

The cost model represents memory access latency and placement overhead only; it does

not capture contention. This assumption appears to be fair in well-designed machines and

applications. It may penalize the NUMA and DSM models to some degree, since large

amounts of contention would be likely to impact the cache-coherent machines most heavily.

As in most trace-based studies, caches are of in�nite size, and cold-start e�ects are ignored.

Since we use optimal behavior for machines which make policy choices (i.e., the machines

with remote reference), their actual performance will be somewhat less than that reported

here; on the other hand, the machines without remote reference make no policy choices,

and so their numbers show no similar bias. Finally, we ignore the fact that changes in

architectural parameters should result in di�erent traces. Experiments indicate [5, 15] that

the results are relatively insensitive to the kinds of trace changes that ought to be induced.

With these caveats in mind, our principal conclusions are as follows:

� Block size is the dominant factor in shared-memory program performance. Slopes

at the low ends of the graphs suggest that even machines that incur large per-block

data movement overheads (i.e. the NUMA and DSM systems) will still bene�t from

reduction of the block size. Block sizes in the 64 to 128 byte range seem to be

su�ciently small that further reductions have little bene�t. For particularly well-

behaved applications (e.g. sorbyr), reductions below the 128-byte level can noticeably

reduce performance.

20



� Machines with coherent caching hardware tend to do somewhat better than those with-

out. However, NUMA-style machines, particularly when run with small block sizes,

tend to perform comparably, and in some cases outperform the traditional cached

machines that do not have remote reference. NUMA machines remain a viable archi-

tectural alternative, particularly if they can be built signi�cantly more cheaply than

cache-coherent machines.

� The value of remote reference depends on the size of the block being used. For the

block sizes typically employed in paged machines, it can yield signi�cant performance

improvements. Well coded remote reference software is a promising option for DSM

machines, and merits experimental implementation. Conversely, remote reference is

unlikely to bene�t cache-coherent machines enough to warrant the expense of building

it, at least when the line size is small.

� Straight-forward distributed shared memory systems with large page sizes do not

appear competitive as a base for generic shared-memory programs. Their performance

was acceptable only for the most well-behaved applications, with very coarse-grain

sharing. To run a more general set of applications, DSM systems will probably need

to rely on Munin-style program annotations, smaller page sizes (to minimize false

sharing), or both.

These conclusions suggest several avenues for future work in the �eld. Dubnicki and

LeBlanc have proposed [11] that cache-coherent machines vary their block size adaptively,

in response to access patterns; our results suggest that this is a promising idea. Hybrid

architectures such as Paradigm [8], which employ bus-based hardware coherence in local

clusters and software coherence among clusters, also appear to be promising; hardware co-

herence is easy (and cheap) for bus-based machines, and the performance of our NUMA

model is acceptable for many applications. We plan to investigate the point of diminish-

ing returns for reduction of block size for the various architectures. We have noted (in

section 3.1) that reductions in block size can worsen performance by increasing the cost

of moving large amounts of data, and can improve performance both by decreasing false

sharing and by increasing the probability that a block will be used enough to merit replica-

tion before it is invalidated via true sharing. We are pursuing experiments to isolate these

factors and measure them independently.

21



The burden of locality management currently rests with the programmer. Its importance

is obvious in the wide performance di�erences among our applications, but the task can be

onerous, particularly to novice programmers. There is a strong need to reduce this burden.

Fairly simple diagnostic tools could identify data structures for which coherency imposes a

substantial cost at run time, thereby facilitating manual program tuning. More ambitiously,

compilers or run-time packages might use application-speci�c knowledge to partition and

place data appropriately, thereby increasing locality.

Acknowledgments

Bob Fitzgerald was the principal force behind the ACE Mach port, and has provided valu-

able feedback on our ideas. Rob Fowler and Alan Cox helped with application ports and

tracing, and also provided good feedback.

Most of our applications were provided by others: in addition to the PLATINUM C-

Threads applications from Rob Fowler and Alan Cox at Rochester, the Presto applications

came from the Munin group at Rice University; the SPLASH applications from the DASH

group at Stanford University; the EPEX applications from Dan Bernstein, Kimming So,

and Frederica Darema-Rogers at IBM; and plytrace from Armando Garcia. Our thanks

to Armando and to Colin Harrison and IBM for providing the ACE machines on which the

traces were made.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.

Mach: A New Kernel Foundation for UNIX Development. In Proc. Summer 1986

USENIX, July 1986.

[2] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska. The Interaction of

Architecture and Operating System Design. In Proc. 4th Intl. Conf. on Arch. Sup. for

Prog. Lang. and Operating Sys., pages 108{120, April 1991.

22



[3] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed Shared Memory

Based on Type-Speci�c Memory Coherence. In ACM SIGPLAN Symp. on Princ. and

Practive of Par. Prog. (PPoPP), SIGPLAN Notices 25(3), pages 168{176, March 1990.

[4] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A System for Object-

Oriented Parallel Programming. Software: Practice and Experience, 18(8):713{732,

August 1988.

[5] W. J. Bolosky and M. L. Scott. Evaluation of Multiprocessor Memory Systems Us-

ing O�-Line Optimal Behavior. The Journal of Parallel and Distributed Computing,

August 1992. Also URCS Tech. Rpt. 403.

[6] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox. NUMA

Policies and Their Relation to Memory Architecture. In Proc. 4th Intl. Conf. on Arch.

Sup. for Prog. Lang. and Operating Sys., pages 212{221, 1991.

[7] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance of

Munin. In Proc. 13th Symp. on Operating Systems Principles, pages 152{164, 1991.

[8] D. R. Cheriton, H. A. Goosen, and P. D. Boyle. Paradigm: A Highly Scalable Shared-

Memory Multicomputer Architecture. IEEE Computer, pages 33{46, February 1991.

[9] D. R. Cheriton, H. A. Goosen, and P. Machanick. Restructuring a Parallel Simulation

to Improve Cache Behavior in a Shared-Memory Multiprocessor: A First Experience.

In Proc. of the Intl. Symp. on Shared Memory Multiprocessing, pages 109{118, April

1991.

[10] E. Cooper and R. Draves. C Threads. Technical report, Carnegie-Mellon University,

Computer Science Department, March 1987.

[11] C. Dubnicki and T. J. Leblanc. Adjustable Block Size Coherent Caches. In Proc. 19th

Intl. Symp. on Comp. Arch., 1992.

[12] S. J. Eggers and T. E. Jeremiassen. Eliminating False Sharing. In Proc. 1991 Intl.

Conf. on Parallel Processing, pages 377{381, 1991. Volume I.

[13] A. Garcia, D. Foster, and R. Freitas. The Advanced Computing Environment Multi-

processor Workstation. Research Report RC-14419, IBM T.J. Watson Research Center,

March 1989.

23



[14] J. R. Goodman, M. K. Vernon, and P. J. Woest. E�cient Synchronization Primitives

for Large-Scale Cache-Coherent Multiprocessors. In 3rd Intl. Conf. on Architectural

Support Support for Prog. Lang. and Oper. Sys., pages 64{75, April 1989.

[15] E. J. Koldinger, S. J. Eggers, and H. M. Levy. On the Validity of Trace-Driven

Simulations for Multiprocessors. In Proc. 18th Intl. Symp. on Comp. Arch., pages

244{253, 1991.

[16] J. M. Mellor-Crummey and M. L. Scott. Synchronization without Contention. In Proc.

4th Intl. Conf. on Arch. Sup. for Prog. Lang. and Operating Sys., pages 269{278, 1991.

[17] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for

Shared-Memory. Technical Report CSL-TR-91-469, Stanford University, 1991.

[18] J. Stone and A. Norton. The VM/EPEX FORTRAN Preprocessor Reference. IBM,

1985. Research Report RC11408.

24



5

10

20

50

100

200

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 8: e-�t

5

10

20

50

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

����

�

�

�

�

�

����

�

�

�

�

�

����

�

�

�

�

�

� � � �

�

�

�

�

�

� � � �

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 9: e-simp

5

10

20

50

100

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 10: e-hyd

2

5

10

20

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 11: e-nasa

25



1

2

5

10

20

50

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

��

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 12: gauss

2

5

10

20

50

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 13: chip

1

2

3

4

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�
�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 14: bsort

1

2

5

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 15: kmerge

26



2

5

10

20

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 16: plytrace

2

5

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 17: sorbyc

2

5

10

20

50

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 18: matmult

10

20

50

100

200

500

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 19: mp3d

27



1

2

5

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 20: water

10

100

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 21: p-gauss

2

5

10

20

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 22: p-matmult

10

100

Page or Line Size

32 64 128 256 512 1K 2K 4K 8K

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � DSM

� � DSM+

� � NUMA

� � CC

� � CC+

Figure 23: p-life

28


	92.tr432.trace_based_compariso_shared_memory_multiprocessors 28
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 27
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 26
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 25
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 24
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 23
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 22
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 21
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 20
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 19
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 18
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 17
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 16
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 15
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 14
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 13
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 12
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 11
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 10
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 09
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 08
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 07
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 06
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 05
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 04
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 03
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 02
	92.tr432.trace_based_compariso_shared_memory_multiprocessors 01



