
CONCURRENCY: PRACTICE AND EXPERIENCE, VOL. 5(3), 171-191 (MAY 1993)

Kernel-Kernel communication in a shared-memory
multiprocessor
ELISEU M. CHAVES,* JR., PRAKASH CH. DAS,* THOMAS J. LEBLANC, BRIAN D. MARSH* AND
MICHAEL L. SCOTT

Computer Science Department
University of Rochester
~ochester, New York 14627-0226, U S A .

SUMMARY
In the standard kernel organization on a bus-based multiprocessor, all processors share the
code and data of the operating system; explicit synchronization is used to control access
to kernel data structures. Distributed-memory multicomputers use an alternative approach,
in which each instance of the kernel performs local operations directly and uses remote
invocation to perform remote operations. Either approach to interkernel communication can
be used in a large-scale shared-memory multiprocessor.

In the paper we discuss the issues and architectural features that must be considered
when choosing between remote memory access and remote invocation. We focus in particular
on experience with the Psyche multiprocessor operating system on the BBN Butterfly Plus.
We find that the Butterfly architecture is biased towards the use of remote Invocation for
kernel operations that perform a significant number of memory references, and that current
architectural trends are likely to increase this bias in future machines. This conclusion
suggests that straightforward parallelization of existing kernels (e.g. by using semaphores
to protect shared data) is unlikely in the future to yield acceptable performance. We note,
however, that remote memory access is useful for small, frequently-executed operations, and
is likely to remain so.

1. INTRODUCTION

Computer architecture has a strong influence on the design of multiprocessor operating
system kernels, affecting the distribution of kernel functionality among processors, the
form of interkernel communication, the layout of kernel data structures and the need
for synchronization. For example, in bus-based shared-memory multiprocessors it is
easy for all processors to share the code and data of the operating system.' Explicit
synchronization can be used to control access to kernel data structures. Both distributed-
memory multicomputers (e.g. hypercubes and mesh-connected machines) and distributed
systems (e.g. workstations on a network) use an alternative organization, with kernel
data distributed among the processors, each of which executes a copy of the kernel.

*Eliseu Chaves is with the Universidade Federal do Rio de Janeim, Brazil. He spent six months on leave at
the University of Rochester in 1990. Prakash Das is now with Transarc Corp. in Pittsburgh, PA. Brian Marsh
is now with the Matsushita Information Technology Lab in Princeton, NJ.

1 t is customary to refer to bus-based machines as UMA (uniform memory access) multiprocessors, but the
terminology can be misleading. Main memory (if present) is equally far from all processors, but caches are
not, and caches are the dominant determinant of memory performance.

1040-3108193A)30171-21$15.50 Received 24 February 1992
a1993 by John Wiey & Sons, Ltd. Revised 4 September 1992

172 E.M. CHAVES ET AL.

Each instance of the kernel performs operations on local data directly and uses remote
invocation to request operations on remote data. Non-pre-emption of the kernel (other
than by interrupt handlers) provides a significant amount of implicit synchronization
among the kernel threads sharing a processor.

Although very different, these two organizations each have their advantages. A shared-
memory kernel is similar in structure to a uniprocessor kernel, with the exception
that access to kernel data structures requires explicit synchronization. As a result, it
is relatively straightforward to port a uniprocessor implementation to a shared-memory
multiprocessor. Having each processor execute its own operations directly on shared
memory is also reasonably efficient, at least on small machines. In addition, this
kernel organization simplifies load balancing and global resource management, since
all information is globally accessible to all kernels.

Message-passing (i.e. remote invocation) kernels, on the other hand, are naturally
suited to architectures that do not support shared memory. Each copy of the kernel is
able to manage its own data structures, so the source of errors is localized. The problem
of synchronization is simplified because all contention for data structures is local, and can
be managed in large part using non-pre-emption. This kernel organization scales easily,
since each additional processor has little impact on other kernels, other than the support
necessary to send invocations to one more kernel.

Large-scale shared-memory multiprocessors have properties in common with both bus-
based machines and distributed-memory multicomputers. All of memory can be accessed
directly, but at very different costs. The programmer may be responsible for allocating
data to processors (as in so-called NUMA-non-uniform memory access-machines such
as the BBN Butterfly[l], IBM RP3[2], Illinois Cedar[3], and Toronto Hector[4]), or the
hardware may provide coherent caches (as in the Scalable Coherent Interface[5] and the
Stanford DASH[6], MIT April/Alewife[7], and Kendall Square[8] machines). In either
case, the performance and conceptual trade-offs between the use of remote invocation
and remote memory access in the kernel are not well understood, and depend both on
architectural parameters and on the overall design of the operating system.

In this paper we focus on the trade-offs between remote memory access and remote
invocation in kernel-level software on NUMA multiprocessors. We begin in Section 2 by
discussing the various aspects of locality, and the range of options available for kernel-
kernel communication. We then explore the implementation of one of these options in
detail in Section 3. Specifically, we note that remote invocation can cause a kernel
operation to execute either at interrupt level or in a normal kernel process context,
and that the choice between these alternatives has a major effect on the generality and
performance of the mechanism, and on its impact on other aspects of kernel execution.

With implementation details in hand, we examine remote accesslinvocation trade-offs
in Section 4. We consider direct costs (latency) for individual remote operations, indirect
costs imposed on local operations by the choice of remote communication mechanism,
processor and memory contention, and the conceptual compatibility of communication
mechanisms with common models of kernel organization. The importance of these trade-
offs can be seen in current trends: operating system overhead has grown to 15-2076 of
execution time on modem microprocessors[91, and the growing complexity of parallel
systems software demands that kernels be made as clean and maintainable as possible.

Our observations are made concrete in Section 5 through a series of experiments with
our implementation of the Psyche multiprocessor operating system on the BBN Butterfly

KERNEL-KERNEL COMMUNICATION IN A SHAPED-MEMORY MULTIPROCESSOR 173

Plus multiprocessor (the hardware base of the GP1000 product line). Our conclusions
appear in Section 6. Briefly, we find that remote memory access provides reasonable
performance only for interprocessor kernel operations that perform less than a few dozen
memory references. Remote invocation enjoys a significant performance advantage for
lengthier operations, an advantage that is likely to increase in future machines. Since
lengthy operations generally require a kernel process context, interrupt-level remote
invocation is useful only in special cases.

2. KERNEL-KERNEL COMMUNICATION OPTIONS

As multiprocessors increase in size, it becomes increasingly difficult to construct
operating systems for them that perform well. Machines with a very small number of
processors can use a lightly modified version of an existing operating system (e.g. Unix)
in a master-slave configuration. All kernel calls execute on a single processor; other
processors request services via traps to a remote invocation mechanism. Unfortunately, as
the scale of the machine increases, the master processor inevitably becomes a bottleneck.
By using locks to protect shared data structures, several manufacturers have parallelized
the Unix kernel for concurrent execution on bus-based shared-memory multiprocessors
of up to 30 processors[lO]. Even on this scale, however, the modifications required to
avoid performance-degrading contention are non-trivialrll-131.

Operating systems for machines with large numbers of processors (hundreds or even
thousands) will require extensive rewrites of existing code, or will need to be written from
scratch. The latter approach has been employed successfully by the vendors of distributed-
memory multicomputers. The former approach is being pursued by a variety of groups
(e.g. OSF), but has yet to be demonstrated on a large-scale machine. In developing the nX
operating system for the Butterfly GP1000 and TC2000 machines, BBN ACI explicitly
eschewed the goal of large-scale parallelism within the Unix kernel, opting instead for a
resident front-end. Unix applications under nX run only within one small cluster of the
machine, with a master-slave kernel organization. The bulk of the machine is dedicated
to running parallel applications with little kernel support other than high-speed parallel
110. Similarly, the version of Mach developed for the IBM RP3 performs best when most
of the processors do not make system calls[14].

We focus in the remainder of this paper on design alternatives for general-purpose
parallel operating systems, in which the full range of kernel services are available
with reasonable performance on every processor. We consider a machine organization
consisting of a collection of nodes, each of which contains memory and one or more
processors (possibly with caches). Each processor can access all of the memory on the
machine, but it can access data located at the local node much more quickly than it can
access data located at a remote node. When a processor at node i begins executing an
operation that must access data on node j, interaction among nodes is required.

Experience with several multiprocessor kernels indicates that most kernel operations
can be performed primarily using local memory references on some node. This node
locality in kernel operations is crucial for reasonable performance in large machines.
It implies that most memory accesses will be local even when using remote memory
accesses for interkernel communication, and that the total amount of time spent waiting
for replies from other processors when using remote invocation will be small compared
to the time spent on other operations. At the same time, experience with uniprocessor

174 E.M. CHAVES ET AL.

operating systems suggests that it is very hard to build a kernel with a high degree of
address locality. Consecutive memory references tend not to lie in any small set of dense
address ranges[15], due to heavy use of pointer-based dynamic data structures, operations
on multiple process contexts, interrupt-driven activity and a lack of nested loops.

On a NUMA multiprocessor (without coherent caches) there are three principal
alternatives for kernel-kernel communication:

Remote memory access: The operation executes on node i , reading and writing node
j's memory as necessary. The memory at node j may be mapped by node i statically,
or it may be mapped on demand.
Remote invocation: The processor at node i sends a message to a processor at node j,
asking it to perform the operation on its behalf. The operation may be executed
directly by the message interrupt handler, or indirectly via wake-up of a kernel
process.
Bulk data transfer: The kernel moves the data required by the operation from node
j to node i, where it is inspected or modified, and possibly copied back. The kernel
programmer may request this data movement explicitly, or it may be implemented
transparently by lower-level software using page faults.

Cache-coherent multiprocessors blur the distinction between remote memory access
and bulk data transfer. As in software bulk transfer requests, cache-coherent machines
move multiple words of data at a time, potentially improving performance both through
amortized movement costs (prefetching) and through repeated local access during
an operation (caching). On the other hand, cache-coherent machines migrate data
automatically, and generally use cache lines that are smaller than a page. The lack
of kernel intervention during data migration means that logical structure, locking and
synchronization issues that pertain to remote memory access in NUMA machines also
pertain in cache-coherent machines. Moreover, in a kernel with a high degree of node
locality, most data items will have a node at which they usually reside (even on cache-only
machines[8] with no 'main' memory), and will migrate back to that node if temporarily
accessed elsewhere. Most of the trade-offs between remote memory access and remote
invocation discussed in the following Sections apply to both classes of architecture,
though we will couch our discussion in terms of NUMA machines.

In terms of the communication options listed above, the lack of address locality in
the kernel suggests that data accessed by any particular kernel operation are unlikely
to be contiguous, even if they reside on the same node. We therefore concentrate here
on a comparison between remote memory access and remote invocation. We present
two different versions of remote invocation in Section 3. One is fast but of limited use;
the second is slower but more general. In the subsequent section, and in the case study
that follows, we focus on the trade-offs between remote memory access and these two
forms of remote invocation. We consider direct, measurable costs of individual remote
operations, indirect costs imposed on local operations, the effects of competition among
remote operations for processor and memory cycles, and the extent to which different
communication mechanisms complement or clash with the structural division of labour
among processes in the kernel. Ultimately, we find that the more general form of remote
invocation is best for most operations, but that the other two mechanisms (remote memory
access and the faster form of invocation) arc both better in certain cases.

KERNEL-KERNEL COMMUNICATION IN A SHARED-MEMORY MULTIPROCESSOR 175

3. IMPLEMENTATION OF REMOTE INVOCATION

The simplest way to perform a remote invocation is to execute the requested operation
in the interrupt handler of the interprocessor communication mechanism. In Unix
terminology[16], this places the code for the operation in the 'bottom half of the target
processor's kernel. Alternatively, one can arrange to execute remote invocations in a
normal process context in the 'top half' of the kernel. Doing so can be expensive: it
requires a context switch out of the interrupt handler, and may require synchronization
with other process(es) running in the kernel. An interrupt-level remote invocation (RI)
may be very fast, but can only be used for operations that can be executed safely in an
interrupt handler. A process-level RI is slower, but of more general utility.

3.1. Interrupt-level remote invocation

Since interrupts occur at unpredictable times from the target processor's point of view,
and since interrupt handlers cannot block (because they lack a process context), mutual
exclusion for data structures shared between interrupt handlers and the rest of the kernel
must be achieved by masking interrupts. On a uniprocessor these data structures consist
primarily of 110 buffers. On a multiprocessor with interrupt-level RIs, they may be more
numerous and varied, and normal (non-interrupt) kernel routines may need to lock more
than one data structure at a time. Simply turning interrupts on and off may not suffice
for lock acquisition and release.

One standard solution is to maintain a count of the number of critical sections currently
active in normal kernel routines. Interrupt-level RIs are permitted only when the counter
is at zero (i.e. when interrupts are enabled). The lock acquisition and release routines turn
interrupts on or off when changing the counter from 1 to 0 or vice versa. Alternatively,
the handler for interrupt-level RIs could place requests in a queue when the counter is
non-zero (rather than executing them immediately) and the lock release routine could
regenerate an interprocessor communication interrupt when changing the counter from
1 to 0 in the presence of a non-empty queue. This latter approach minimizes the period
of time during which interrupts are masked, and may improve performance by reducing
the probability of lost interrupts.'

Interrupt-level RI has several limitations. Because its handlers lack a process context, it
cannot be used for operations that may block. If used extensively it may require more data
structures to be available to interrupt routines than would otherwise have been the case.
The only form of synchronization available for these data structures is short-term mutual
exclusion (masking interrupts), and that occurs at a very coarse grain. Even invocations
that do not touch data of any interest to current process-level activity are likely to be
disabled much of the time. To prevent deadlock, we must prohibit outgoing invocations
when incoming invocations are disabled. This rule severely limits the circumstances
under which an interrupt-level RI is permitted. In particular, it precludes the use of
interrupt-level RI for operations that must access data on two different processors as a

' Message-based multicomputers generally incorporate hardware queuing to avoid lost messages. Shared-
memory multiprocessors generally incorporate a single interprocessor interrupt vector, with no lower bound
on the time between interrupts from separate processors. They rely on software queuing in shared memory to
tolerate lost interrupts.

176 E.M. CHAVES ETAL..

single atomic operation, unless the programmer is willing to detect and recover from
deadlock.

It may be possible on some machines to interrupt a remote processor at a lower priority
than device interrupts (or to re-post a high-priority interrupt at a lower leveQ3 It may
therefore be feasible to use interrupt-level RI for lengthy operations. Several other factors,
however, suggest that it be used only for short operations. Longer operations are more
likely to need condition synchronization, or to require locks on more than one processor,
or to require that large amounts of data be accessible to interrupt routines. Longer
operations are also more able to tolerate the latency of a general-purpose, process-level
invocation. Finally, during short operations it makes sense for the requesting processor to
busy-wait for notice of completion, which in turn makes it possible for us to request an
interrupt-level RI from within the handler for another. Rescheduling is likely to be slower
than busy-waiting when requesting an interrupt-level RI from a normal kernel routine.
Rescheduling is not possible in an interrupt-level routine, but busy-waiting is, provided
that we restore data structures to a consistent state and re-enable interrupt-level RIs before
making a nested in~ocation.~ We assume in the rest of this paper that interrupt-level RI
is used for short operations only, and that the requesting processor spins.

3.2. Process-level remote invocation

To execute a remote invocation in the normal (process-level) part of the target processor's
kernel, the interprocessor communication interrupt handler uses the same mechanism
employed by device handlers to initiate 'top-half activity. If the processor was executing
in user space prior to the interrupt, the handler performs an asynchronous trap and the
remote invocation executes immediately. If the processor was executing in the kernel prior
to the interrupt, the handler queues the invocation for execution the next time control
returns to user space or enters the kernel's idle loop. Deadlock prevention requires that
a process blocks when making a process-level RI, rather than busy-waits, because busy-
waiting would lock out incoming process-level RIs. Blocking also makes sense in other
ways: it may take a significant amount of time to get around to executing a request on the
target processor, and we assume that process-level RI will be used for longer operations
anyway.

Because it executes in a process context, the requested operation can block during
its execution, e.g. for condition synchronization. A process can perform a process-level
RI while holding semaphores or other scheduler-based locks. Processes can therefore
synchronize with the execution of process-level RIs from other processors. Deadlock is
still possible, but only as a result of algorithmic problems in the kernel, not because of
the over-coarse locking inherent in the invocation mechanism.

Remote memory access and the two forms of remote invocation are to a large extent
compatible, and can be used in the same system if certain guidelines are followed. It
is easy to use different mechanisms for unrelated data structures. It is almost as easy

Note that the ability to interrupt a remote processor at high priority is required for operations such as TLB
shootdown[17-191.

Nested intenupt-level RIs must be performed with care. They may require large interrupt stacks, and raise
the possibility that a processor may spin for an unbounded amount of time while the processor w which it
made an intenupt-level RI services unrelated interrupts.

KERNEL-KERNEL COMMUNICATION IN A SHARED-MEMORY MULTIPROCESSOR 177

to use remote access and process-level RI on the same data structure, provided that
the synchronization mechanisms are also compatible. Either spin locks or semaphores
can be used, though performance may suffer if a process performs a process-level RI
(and blocks) while holding a spin lock, and the scheduling mechanisms that underlie
semaphores will need to be implemented with atomic instructions or interrupt-level RI
to work across nodes.

We can also use remote access and interrupt-level RI on the same data structure, but
only with a 'hybrid' lock that uses both interrupt masking and spinning (such locks are
always required for data that are accessed both by remote processors and by interrupt-level
routines on their home processor). Pseudocode for a simple hybrid lock appears in Figure
1. Its key task is to ensure that an interrupt-level routine that attempts to acquire a lock
is given top priority, and will therefore succeed after a bounded amount of spinning.
For the sake of deadlock avoidance, we must refrain from performing an interrupt-
level RI or acquiring a remote lock while holding a local lock, because we mask out
interrupts.

acquire :
if on home node

nested-maskings +:= 1
disable interrupts
1ock.urgentlyneeded := true
loop

exit if TAS (lock)
pause

1ock.urgentlyneeded := false
else

loop
exit if not 1ock.urgentlyneeded and then TAS (lock)
pause

release :
lock := 0
if on home node

nested-maskings -:= 1
if nested-maskings - 0 then

enable interrupts

Figure 1. Pseudo-code for a 'hybrid' lock that can protect data structures manipulated both by
remote memory access and by interrupt-level RI. Nestedmaskings is a per-processor private counter.
TAS is assumed to atomically test and set a flag bit in the lock. I f contention is expected to be high.

one should instead use a version of the algorithm that spins only on local locations[30]

Finally, we can use both interrupt-level and process-level RI on the same data structure
so long as we respect the deadlock-avoidance rule: it must always be possible to perform
incoming invocations while waiting for an outgoing invocation. In particular, a process
cannot request a process-level RI while it has locked out interrupt-level RIs in order to
touch a data structure that is shared between normal and interrupt-level code.

178 E.M. CHAVES ET AL

4. REMOTE ACCESS/INVOCATION TRADE-OFFS

In this Section we consider four dimensions along which to compare remote memory
access and remote invocation. The first of these dimensions is the latency of an operation
in isolation, based on architectural constants. The second dimension is the impact on local
operations of the organization and synchronization required for compatibility with remote
operations. The third dimension is contention and throughput. The fourth dimension
is the extent to which kernel-kernel communication alternatives complement or clash
conceptually with the basic organizational structure of the kernel.

4.1. Direct costs of remote operations

A first cut at deciding between remote memory access or remote invocation for a
particular operation can be made on the basis of the latency incurred under the two
different implementations. For example, consider an operation 0 invoked from node i
that needs to perform n memory accesses to a data structure on another node j. We
can perform those memory accesses remotely from node i, or we can perform a remote
invocation to node j, where they will be performed locally. For the sake of simplicity,
suppose that 0 must perform a fixed number of local memory accesses (e.g. to stack
variables) and a fixed number of register-register operations regardless of whether it is
executed on node i or on node j. If the remoteAocal memory access time ratio is R and
the overhead of a remote invocation is C times the local memory access time, then it
will be cheaper to implement 0 via remote memory access when (~ - l) n < ~ ?

The fixed overhead of remote invocation, independent of operation complexity,
suggests that operations requiring a large amount of time should be implemented via
remote invocation (all other things being eq~al) .~ Back-of-the-envelope calculations
should suffice in many cases to evaluate the performance trade-off. Many operations
are simple enough to make a rough guess of memory access counts possible, and few
are critical enough to require a truly definitive answer. For critical operations, however,
experimentation is necessary.

4.2. Indirect costs for local operations

Kernel operations will often be organized differently when performed via remote
invocation, instead of remote memory access. They may require context available on the
invoking node to be packaged into parameters. They may be rearranged to increase node
locality, so that accesses to data on the invoking and target processor are not interleaved.
Most importantly, perhaps, the use of process-level RI for all remote accesses to a
particular data structure may allow that data structure to be implemented without explicit
synchronization, depending instead on a lack of pre-emption within the kernel to provide
implicit synchronization. Explicit synchronization is still required, of course, for any
data structures that a process needs to keep locked on the local node during an outgoing

This formula assumes, of course, that we are executing on a NUMA machine. If the hardware provides
coherent caches, then only the first reference to data in a particular cache line will incur a remote access cost.

We did not include the cost of parameter passing in our simple analysis. Nearly all our kernel operations
take only one or two parameters, and require no reply other than a notice of completion, so our assumption of
a fixed cost for remote invocation is realistic.

KERNELKERNEL COMMUNICATION IN A SHAPED-MEMORY MULTIPROCESSOR 179

process-level RI. Because interrupt-level RI handlers can always execute unless explicitly
locked out (even if they interrupt normal kernel activity), explicit synchronization is also
required for data structures accessible to interrupt routines. Depending on architectural
parameters, locks that inhibit interrupt-level RI may be faster than semaphores or process-
level spin locks; in particular, they are slightly faster on the Butterfly Plus.

Avoiding explicit synchronization can improve the speed not only of remote operations
but also of the (presumably more frequent) local operations that access the same
data structure. The impact of explicit synchronization on local operations is easy to
underestimate. The case study in the following Section includes operations in which lock
acquisition and release account for 49% of the total execution time (in the absence of
contention). This overhead could probably be reduced by a coarser granularity of locking,
but only with considerable effort: fine-grain locking introduces fewer opportunities for
deadlock, and allows for greater concurrency.

On a machine in which nodes are bus-based multiprocessors (with parallel execution
of one local copy of the kernel), explicit synchronization may be required for certain data
structures even if remote invocation is always used for operations on those data structures
requested by other nodes. On the other hand, clever use of atomic fetch-and-$ operations
to create concurrent no-wait data structures[20] may allow explicit synchronization to be
omitted even for data structures whose operations are implemented via remote memory
access?

If remote memory accesses are used for many data structures, large portions of the
kernel data space on other processors will need to be mapped into each instance of the
kernel. Since virtual address space is limited (at least on 32-bit processors), this mapping
may make it difficult to scale the kernel design to very large machines, particularly if
kernel operations must also be able to access the full range of virtual addresses in the
currently running user process. Mapping remote kernel data structures on demand is
likely to cost more than sending a request for remote invocation. Mechanisms to cache
information about kernel data structures may be limited in their effectiveness by the lack
of address locality. Systems that map remote kernel data into a separate kernel-kernel
address space[21] may waste large amounts of time switching back and forth between
the kernel-kernel space and the various user-kernel spaces.

4.3. Competition for processor and memory cycles

Operations that access a central resource must serialize at some level. Operations
implemented via remote invocation serialize on the processor that executes those
operations. Operations implemented via remote memory accesses serialize at the memory.
Because an operation does more than access shared data, there is more opportunity with
remote memory access for overlapped computation. Operations implemented via remote
memory access may still serialize if they compete for a common coarse-grain lock, but
operations implemented via remote invocation will serialize even if they have no data in
common whatsoever.

A parallel data structure is said to be wait-free if each of its access functions is guaranteed to complete
within a bounded amount of time. As designed by Herliiy and others, wait-free data structures employ fetch-
and-$ operations (e.g. compare-and-swap, fetbd-store , fetch-and-add, and the newer 1oadJinked and
store-conditional provided by the MIPS R4000 and DEC Alpha processors) to divert competing processors
into different code paths, without ever spinning or blocking.

180 E.M. CHAVES ET AL.

If competition for a shared resource is high enough to have a noticeable impact on
overall system throughput, it will be desirable to reorganize the kernel to eliminate the
bottleneck. The amount of competition that can occur before inducing a bottleneck may be
slightly larger with remote memory access because of the ability to overlap computation.
Even in the absence of bottlenecks, we expect that operations on a shared data structure
will occasionally conflict in time. The coarser the granularity of the resulting serialization,
the higher the expected variance in completion time will be. The desire for predictability
in kernel operations suggests that operations requiring a large amount of time should be
implemented via remote memory access, in order to serialize at the memory instead of
the processor. This suggestion conflicts with the desire to minimize operation latency, as
described above; it may not be possible to minimize latency and variance simultaneously.

Given that the requestor of an interrupt-level RI busy-waits for notice of completion,
the desirability of remote invocation in comparison to remote memory access may then
depend on whether we are interested in latency or throughput. An interrupt-level RI
may execute quickly from the requesting processor's point of view, but in the absence
of unrelated interrupts it ties up both the requesting and responding processors for the
duration of the requested operation.

4.4. Compatibility with the conceptual model of kernel organization

There are two broad classes of kernel organization, identified by Lauer and Needham[22]
as the message-based and procedure-based approaches (see Figure 2). In a procedure-
based kernel there is no fundamental distinction between a process in user space and
a process in the kernel. Each user program is represented by a process that enters the
kernel via traps, performs kernel operations and returns to user space. Kernel resources
are represented by data structures shared between processes. In a message-based kernel
each major kernel resource is represented by a separate kernel process, and a typical
kernel operation requires communication (via queues or message-passing) among the set
of kernel processes that represent the resources needed by the operation.

We have found the choice between the procedure-based and message-based
organizations to have a more pervasive impact on the rest of the operating system than any
other single design decision. (Psyche is procedure-based, but we have built message-based
kernels as well.) Both approaches can be aesthetically appealing, depending on one's point
of view. The procedure-based organization presents a uniform model for user- and kernel-
level processes, and closely mimics the hardware organization of a UMA multiprocessor.
The message-based organization, on the other hand, leads to a compartmentalization of
the kernel in which all synchronization is subsumed by message-passing. The message-
based organization closely mimics the hardware organization of a distributed-memory
multicomputer. Because it minimizes context switching, the procedure-based organization
is likely to perform better on a machine with uniform memory[23]. The message-
based organization may be easier to debug[24]. Most Unix kernels are procedure-based.
Demos [25] and Minix[26] are message-based.

Remote invocation seems to be more in keeping with the message-based approach
to kernel design. Remote memory access seems appropriate to the procedure-based
approach. When porting an operating system from some other environment, the pre-
existence of a procedure-based or message-based bias in the implementation may suggest
the use of the corresponding mechanism for kernel-kernel communication, though mixed

KERNEL-KERNEL COMMUNICATION IN A SHAPED-MEMORY MULTIPROCESSOR 181

Figure 2. Alternative kernel organizations. Shaded boxes represent processes; unshaded boxes
represent data abstractions

approaches are possible[27]. If a procedure-based kernel is used on a uniprocessor, the
lack of context switching in the kernel may obviate the need for explicit synchronization
in many cases. Extending the procedure-based approach to include remote memory access
may then incur substantial new costs for locks. On a machine with multiprocessor nodes,
however, such locking may already be necessary.

5. CASE STUDY: PSYCHE ON THE BBN BUTTERFLY

Our experimentation with alternative communication mechanisms took place in the kernel
of the Psyche operating system[21] running on a BBN Butterfly Plus multiprocessor[28].
The Psyche implementation is written in C++, and uses shared memory as the
primary kernel communication mechanism. The Psyche kernel was modified to provide
performance figures for remote invocation as well, with and without fine-grain locking.
Our results are based on experiments using these modified versions of the kernel.

The Psyche implementation displays a high degree of node locality. The kernel object
representing an application-level abstraction (process, address space, memory segment)
is allocated and initialized on a single node, either on the node where the creation request
originated or another specified node. Other kernel data structures associated with a node's
local resources are also local to that node. It is quite common, therefore, for a kernel
operation not to need access to data on another node. In those cases where kernel-kernel
communication is required, local accesses still tend to dominate.

Among those kernel operations requiring access to data on more than one node, it was
common in the original Psyche implementation for remote memory accesses to occur at
several different times in the course of the operation. In an attempt to optimize our remote
procedure call mechanism we found that many, though not all, of these accesses could be
grouped together by restructuring the code, thereby permitting them to be implemented
by a single remote invocation.

182 E.M. CHAVES ET AL.

5.1. Fundamental costs

The Butterfly Plus is a NUMA machine with one processor per node, no caches and a
remote-to-local memory access time ratio of approximately 12: 1. The average measured
execution time[29] of an instruction to read a 32-bit remote memory location using
register indirect addressing is 6.88 ps; the corresponding instruction to read local memory
takes 0.518 us. The time to write memory is slightly lower 4.27 ps and 0.398 ps for
remote and local memory, respectively.' Microcoded support for block copy operations
can be used to move large amounts of data between nodes in about a fifth of the time
required for a word-by-word copy (345 ps instead of 1.76 ms for 1K byte). None of the
experiments reported below moved enough data to need this operation.

Our remote invocation mechanisms rely on remote memory access and on the ability
of one processor to cause an interrupt on another. A processor that requires a remote
operation writes an operation code and any necessary parameters into a preallocated
local buffer. It then writes a pointer to that buffer into a reserved location on the
remote node, and issues a remote interrupt. The requesting processor then spins on
an 'operation received' flag in the local buffer. When the target processor receives the
interrupt, it checks its reserved location to obtain a pointer to the buffer. It sets the
'operation received' flag, at which point the requesting kernel process either blocks (in
the case of a process-level RI), or begins to spin on an 'operation completed' flag (in
the case of an interrupt-level RI). If another request from a different node overwrites
the original request, the second request will be serviced instead. After a fixed period of
unsuccessful waiting for the 'operation received' flag, the first processor will time-out
and resend its request. In case a processor's request is completed just before a resend,
receiving processors ignore request buffers whose 'operation received' flag is already
set.

The mechanism to trigger a remote invocation is optimistic, in that it minimizes latency
in the absence of contention and admits starvation in the presence of contention. The
average latency of an interrupt-level RI, excluding parameter copying and operation costs,
is 56 ps (measured by timing a large number of consecutive invocations, and dividing).
An earlier, non-optimistic, implementation relied on microcoded atomic queues, but these
required approximately 60 us for the enqueue and dequeue operations alone. The average
latency of a process-level RI, again excluding parameter copying and operation costs, is
about 421 us. Process-level RI could be made faster with some more hand optimization,
but it is unlikely that we could get it under 300 us. Interrupt-level RI is highly optimized;
we see no way to make it significantly faster.

5.2. Explicit synchronization

Psyche uses spin locks to synchronize access to kernel data structures. To achieve a high
degree of concurrency within the kernel, access to each component data structure requires
possession of a lock. This approach admits simultaneous operations on different parts
of the same kernel data structure, but also introduces a large number of synchronization
points in the kernel. Mapping a memory segment into the current address space, for

' The original Butterfly architecture had a remote-to-local access time ratio of approximately 5:l. The speed
of local memory was significantly improved in the Butterfly Plus, with only a modest improvement in the
speed of remote accesses.

KERNEL-KERNEL COMMUNICATION IN A SHARED-MEMORY MULTIPROCESSOR 183

example, can require up to nine lock acquisitions. Creating a segment can require 38
lock acquisitions. A cheap implementation of locks is critical.

We use a test-and-test&set lock[30] to minimize latency in the absence of contention.
If the lock is in local memory, we use the native MC68020 TAS instruction. Otherwise,
we use a more expensive atomic instruction implemented in microcode on the Butterfly.
(TAS is not supported on remote locations.) The slight cost of checking to see whether
the lock is local (involving a few bit operations on its virtual address) is more than
balanced by the use of a faster atomic primitive in the common, local case. Moreover,
this cost must also be incurred when using remote invocation, rather than remote access,
to determine the node to interrupt.

A lock can be acquired and released manually by calling in-line subroutines, or
automatically using features of C++. The automatic approach passes the lock as an
initialization parameter to a dummy variable in the block of code to be protected.
The constructor for the dummy variable acquires the lock; the destructor (called by
the compiler automatically at the end of a scope) releases it. Constructor-based critical
sections are slightly slower, but make it harder to forget to release a lock. Manual
locking is used for critical sections that span function boundaries or that do not
properly nest. Acquiring and releasing a local lock manually requires a minimum of
5 us, and may require as much as 10 us, depending on instruction alignment, the
ability of the compiler to exploit common subexpressions and the number of registers
available for temporary variables. Acquiring and releasing a remote lock manually
requires 38 to 45 us. The additional time required to acquire and release a lock through
constructors is about 1 to 3 us. Synchronization using remote locks is expensive because
the Butterfly's microcoded atomic operations are significantly more costly than native
processor instructions. Extensive use of no-wait data structures[20] might reduce the
need for fine-grain locks, but would probably not be faster, given the cost of atomic
operations.

The performance of semaphores is indistinguishable from that of spin locks in the
absence of lock competition; the only thing that differs on the code path is a check in
the V operation to determine whether any processes are waiting. Disabling and enabling
of interrupt-level RIs is slightly cheaper: a critical section counter can be incremented
and then decremented again in just over 5 us.

5.3. Impact on the cost of kernel operations

To assess the impact of alternative kernel-kernel communication mechanisms on the
performance of typical kernel operations, we measured the time to perform several such
operations via local memory access, remote memory access, and remote invocation,
with and without explicit synchronization. The results appear in Table 1. The first
three lines give times for low-latency operations. The first of these inserts and then
removes an element in a doubly linked list-based queue; the second and third search for
elements in a list Remote invocations for all three are implemented in interrupt-level
routines. The last three lines give times for high-latency operations: creating a segment,
mapping a segment and adding a new process to an address space. Remote invocations
for these are implemented at the process level. All times are accurate to about Â± in
the third significant digit. Times for the low-latency operations are averaged over 10,000
consecutive trials. They are stable in any particular kernel load image, but fluctuate with

1 84 E.M. CHAVES ET AL,.

Table 1. Latency of kernel operations

Operation
Local access Remote access Remote inv.*

locking locking locking
on off on off on off

enqueue + dequeue 42.4 21.6 247 154 197 174
find last in list of 5 (us) 25.0 16.1 131 87.6 115 96.7
find last in list of 10 40.6 30.5 211 1 69 125 105

create segment 6.20 5.69 14.8 13.1 7.42 6.88
map segment (ms) 0.96 0.86 3.05 2.62 1.94 1.77
create process 1.43 1.35 3.30 3.04 1.89 1.75

*Interrupt-level remote invocation is used for low-latency operations (top half of table); process-level remote
invocation is used for high-latency operations (bottom half of table).

changes in instruction alignment. They are also sensitive to the context in which they
appear, due to variations in the success of compiler optimizations? Times for the high-
latency operations are averaged over a small number of consecutive trials in several
separate runs.

Times in columns 1 and 2 are with all data on the local node. Times in columns
3 to 6 arc with target data on a remote node, but with temporary variables still in
the local stack. Columns 1 and 3 give times for the original, unmodified version of
the Psyche kernel. Column 2 indicates what operations would cost if synchroni&tion
were achieved through lack of context switching, with no direct access to remote data
structures. Column 4 indicates what operations on remote data structures would cost if
subsumed in some other operation with coarse-grain locking. Column 6 indicates what
remote operations would cost if the data structures they manipulate were always accessed
via remote invocation, with no explicit synchronization required beyond recognizing that
invocations were not disabled. Column 5 indicates the cost of performing operations via
remote invocation in a hybrid kernel that continues to rely on locks.

5.3.1 Explicit synchronization

We can calculate the fraction of the cost of each of our kernel operations due to
synchronization by comparing figures in adjacent columns of Table 1. The comparisons
appear in Figure 3. Synchronization clearly dominates the cost of simple operations
on queues, contributing in some cases nearly 50% for local operations and 40% for
remote operations. Although less overwhelming, synchronization impacts more complex
operations as well, due to the use of fine-grain locks. Segment creation requires acquiring
and releasing approximately 38 constructor-based locks, contributing over 500 us, or 8%,
to the cost in the local case and 1.7 ms, or 11% to the cost in the remote case. The
overhead of fine-grain locking combined with automatically acquired locks is clearly
significant. More to the point, in the case of process-level data structures this overhead
is imposed on local access simply to permit remote access. We could reduce the cost of
synchronization by locking data structures at a coarser grain. This change would reduce

We have read through the assembly language output of the compiler to make sure the optimizer is not
removing any apparently useless code of importance to the timing tests.

KERNEL-KERNEL COMMUNICATION IN A SHAPED-MEMORY MULTIPROCESSOR 185

I I I 1
I I I 1

enqueue+dequeue
I I I I I
1 1 I

I J I I
I b I I

findlast of5
I I I I
I I I l l 1
I I I I 1
I I I I

find last of 10 [ni
I I I I I
I I I I
I I I I

1-
I I I
1 1 1

create segment 1 8 1
I I I

I I
I

map segment
I
1 I
I I

Figure 3. Percentage of latency due to explicit locking, for local access (LA), remote access (RA),
and remote invocation (RI)

the number of locks required by a typical operation, but would simultaneously reduce
the potential level of concurrency.

5.3.2 Remote references

We can assess the impact of remote memory references by comparing the cost of local and
remote operations in Table 1. Figure 4 indicates the marginal cost of remote references
for each of our kernel operations. Without locking, this marginal cost is 86% for a
remote enqueueldequeue operation pair, remote references exclusive of synchronization
account for 54% of the cost even when locking is used (154 us to perform the operation
remotely excluding synchronization costs minus 21.6 us to perform the operation locally
over 247 us total time). When searching for the tenth element in a list, remote references
exclusive of synchronization account for two-thirds of the cost of the operation. Even for
complex operations such as segment creation, which performs much of its work using
stack variables, remote references account for over half of the total cost.

The overhead associated with explicit synchronization and remote references is a
function of the complexity of the operation, while the overhead associated with remote
invocation is fixed. In addition, if using process-level RI exclusively we can rely on
implicit synchronization (non-pre-emption in the kernel), thereby reducing the cost of
operations significantly. In Table 1 the times in the last three rows of column 6 are
not only much faster than the corresponding times in column 3, they are in several
cases close to the times in column 1; the ability to avoid lock acquisition and release
almost hides the cost of remote invocation and parameter passing. Given that a remote
memory access costs more than 6 us more than a local access, the 60 us overhead of
an interrupt-level FU with a single parameter can be justified on the Butterfly Plus to
avoid 11 remote references. The 421 us overhead of a process-level RI can be justified

186 E.M. CHAVES ET AL..

enqueuedequeue

h d last of 5

fw last of 10

mate segment

map segment

createpmss

Figure 4 . Remote access penalty for hrnel operatwns, with (L) and without (NL) locking

to avoid 71-7k remote references, where k is the number of lock acquisitions that can be
eliminated by exclusive use of process-level RI. If hand optimization were to yield an
implementation of process-level RI that cost 300 ps, it could be justified to avoid 50-7k
remote references.

5.3.3 Comparative latency of remote access and remote invocation

Figure 5 presents three different comparisons of the cost of remote invocation and the
cost of remote memory access. The first bar in each group expresses column 6 in Table
1 as a percentage of column 3; it compares remote memory access with explicit locking
to remote invocation without explicit locking. The second bar in each group expresses
column 5 in 'lhble 1 as a percentage of column 3; it includes locking overhead for both
remote memory mess and remote invocation, as would exist in a hybrid kernel. The
third bar in each p u p expresses column 6 in Table 1 as a percentage of column 4; it
considers the case in which the desired operation is subsumed in some other operation
with coarse-@ locking.

Figures greater than 1 indicate scenarios in which remote memory access displays a
lower latency. Based on this metric alone, our experiments would seem to indicate that
remote memory access is justified only for the most trivial of operations. Other factors
soften this conclusion, however, and make remote invocation less of a clear win than
it might at first appear. In particular, our experiments highlight the extreme cases of
operations simple enough to perform via interrupt-level RI, or complex enough to absorb
the overhead of a process-level RI. For medium-size operations we may be unwilling
to accept either the limitations of interrupt-level RI or the overhead of process-level
RI. Moreover, even for tiny operations the throughput of interrupt-level RI may be
unacceptably low, as discussed in the following Section.

5.3.4. Throughput for interrupt-level remote invocations

On the Bumfly Plus remote memory accesses steal bus cycles from the processor
on which the memory resides, thereby slowing that processor's progress. Remote

Kl3WELKERNEL COMMUNICATION IN A SHARED-MFMORY M U L ~ W E S S O R 187

KA I
cmate segment LI 1 I

Figure 5. Remote invocation time as a percentage of remote mmoty access time, with locking in
the case of the fatter (RA), both (B), or neither (N)

invocations, however, steal the entire processor for the duration of the operation. In
the case of interrupt-level RIs, parallelism is lost the requesting processor remains idle
until the invocation completes. In the case of process-level RIs, the requesting processor
has the opportunity to do something else instead. These obse~ations suggest that latency
provides a reasonable measure of the performance of pmess-level RI, but that throughput
must also be considered for interrupt-level RI.

We conducted a simple experiment to compare the impact of remote memory accesses
and interrupt-level RIs on the progress of other computations on a given processor. We
timed the slowdown of a compute-bound application on a processor subjected to remote
memory accesses and interrupt-level RIs. For a set of low-latency operations whose
aggregate latency was 19 ms when using remote memory access and 22 ms when using
interrupt-level RI, we measured application slowdowns of 1 ms and 17 ms, respectively.
From these figures we can see that interrupt-level RI significantly affects the throughput
of the remote processor, whereas remote access does not. Thus, in all cases where the
latency of the two alternatives is comparable, and even in some cases where the latency
of remote access is higher, remote access would be preferred for reasons of throughput.

6. CONCLUSIONS

Architectural features strongly influence operating system design. The choice between
remote invocation and remote access as the basic communication mechanism between
kernels on a shard-memory multiprocessor is highly dependent on the cost of the remote
invocation mechanism, the cost of the atomic operations used for synchronization, and
the ratio of remote to local memory access time. On a cache-coherent machine it is also
dependent on the cache line sue, the degree to which lines are falsely shared, and the
extent to which prefetching and caching effects can reduce the cost of typical kernel
operations. Since the overhead associated with remote access scales with the operation,

188 E.M. CHAVES ETAL..

while the overhead associated with remote invocation is fixed, there will for any machine
be a break-even point above which process-level RI enjoys an increasingly compelling
performance advantage. For smaller operations the operating system designer must weigh
h issues of latency, throughput, conceptual appeal and the possibility of eliminating
explicit synchronization in order to make a choice between remote access and the two
forms of remote invocation.

Our experience with Psyche indicates that the natural node locality of kernel operations
is sufficient to allow us to perform most large operations with only one or two remote
invocations. Without this locality many invocations would be needed just to collect the
data necessary to perform an operation. Under those circumstances remote access would
be competitive with process-level RI, but performance would be p r ; a kernel without
node locality is not a reasonable option for the Butterfly architecture.
Our oxiginal decision to use remote memory access as the principal kernel-kernel

commu~cation mechanism was based primarily on the conceptual appeal of a uniform
procedure-based organization across the en& machine. We underestimated the impact
that locking would have on the cost of typical operations, and did not give adequate
consideration to lengthy operations early in the design process. If we were to rebuild the
kernel at this point, we would make more extensive use of process-level RI for lengthy
operations. We would also attempt to identify data structures for which process-level RI
alone would suffice, allowing us to eliminate explicit locking. Finally, we would attempt
where possible to increase the granularity of our remaining locks, being careful to avoid
the intmduction of bottlenecks.

There are only a small number of cases in which interrupt-level RI is the mechanism
of choice. The most plausible scenario arises with low-latency operations that cannot be
performed via remote access. TLB shootdown is such an operation on most machines;
instructions that manipulate the TLB cannot be invoked remotely. We also use interrupt-
level RI for console YO, and to implement our remote kernel debugging facility[21].
Interrupt-level RI may also be preferred over remote access when the target processor
of a remote operation is idle, or when the latency of remote access is more than twice
the latency of interrupt-level RI (e.g. for a memory-intensive operation on a machine in
which remote memory is exceptionally slow). In both these latter scenarios interrupt-level
RI will outperform remote memory access even in terms of throughput.

On the Buuerfly Plus, remote invocation is relatively fast, explicit synchronization
is costly and remote references are significantly more expensive than local references.
Increases in processor speed relative to memory and intercomect latencies are likely to
make remote references even more expensive in future machines. All but the shortest
operations on the Buuerfly Plus display lower latency with remote invocation than they
do with remote memory access, and the disparity between the two options is likely to
increase.

It is not yet clear whether the large-scale multiprmessors of the future will provide
system-wide hardware cache coherence. Several projects are moving in that directionL5-
81, but others are pursuing software-managed coherence beyond the bounds of a single
bus[4,31,32]. NUMA machines are likely to be cheaper to build than their cache-coherent
cousins, and recent studies suggest1331 that they can provide comparable performance for
reasonable applications. Our results apply most directly to NUMA machines, but suggest
that remote invocation should be attractive for kernel-kernel communication on cache-
coherent machines as well. Deliberate exploitation of node locality in the kernel for a

-EL-KERNEL COMMUNICATION IN A SHARED-MEMORY MULTIPROCESSOR 189

cache-coherent machine would associate each data structure with a 'home node' on which
that structure is accessed most often. As interprocessor communication becomes slower
and slower relative to processor performance[34], operations that touch several cache
lines that 'belong' to another processor might profitably be dispatched to that pmessor
for execution rather than ruming locally. Further performance studies will be needed to
quantify kernel-kernel communication trade-offs more precisely on large cache-cohe~nt
machines.

For small operations, interrupt-level RI can display lower latency than remote access,
but it may display lower throughput as well, and is limited by the need to use coarse,
interrupt-masking locks and to restore al l data structures to a consistent state before
performing an outgoing interrupt-level RI. Momver, we strongly suspect that the desire
to keep data structures out of the interrupt-level portion of the kernel will mean that
some operations that are too small to absorb the overhead of process-level RI will still
touch too much data to use interrupt-level RI. These observations imply that performance
will be maximid if remote access is used for operations comprising up to a few dozen
remote memory references, and process-level RI is used above this limit. Interrupt-level
RI should be reserved for special cases.

ACKNOWLEDGEMENTS

Our thanks to Rob Fowler and to the referees for their helpful comments on this paper, and
to Tim Becker for his invaluable assistance with experiments. An earlier version of this
paper was presented at the Second USENIX Symposium on Experiences with Distributed
and Multiprocessor Systems; this current version benefited significantly from discussions
with symposium attendees, particularly Jim Gibson of BBN ACI. This research was
supported by NSF grant no. CCR-9005633, NSF Institutional Infrasmcture grant no.
CDA-8822724, a DmPA/NASA Graduate Research Assistantship in Parallel Processing,
the Federal University of Rio de Janeiro, and the Brazilian National Research Council.

1. W. Crowther, J. Goodhue, E. Stan, R. Thomas, W. Milliken and T. Blackadar, 'Performance
measurements on a 128-no& Butterily parallel processor,' Proceedings of the 1985
International Cogereme on Parallel Processing, 20-23 August 1985, pp. 53 1-540.

2. G. R. F'fister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe,
E. A. Melton, V. A. Norton and J. Weiss, 'The IBM Research parallel processor prototype
(RP3): introduction and architecture,' Proceedings of the 1985 International Cor@ereme on
Parallel Processing, 20-23 August 1985, pp. 764-771.

3. D. J. Kuck, E. S. Davidson, D. H. Lawrie and A. H. Sameh, 'Parallel supercomputing today
and the cedar approach,' Science, 231 967-974, (1986).

4. Z. G. Vranesic, M. Stumm, D. M. Lewis and R. White, 'Hector: a hierarchically structured
shared-memory multiprocessor,' Computer, 24(1), 72-79, (1991).

5. D. V. James, A. T. Laundrie, S. Gjessing and G. S. Sohi, 'Scalable coherent interface,'
Computer, 23(6) 7&77, (1990).

6. D. Lenoski, J. Laudon, K. Gharachorlm, A. Gupta and J. Hennessy, "The directory-based cache
coherence protocol for the DASH multiprocessor,' Proceedings of the Seventeenth Intermwnal
Symposium on Computer Architecture, 28-31 May 1990. pp. 148-159. (in C M 18:2).

7. A. Agarwal, B. Lim, D. Kranz and J. Kubiatowicz, ' A P R L a processor architecture
for multiprocessing,' Proceedings of the Seventeenth International Symposium on Computer
Architecture, 28-31 May 1990, pp. 104-1 14 (in CAN 18:2).

190 E.M. CHAVES ETAL..

8. T. H. Dunigan, 'Kendall square multiprocessor: early experiences and performance,'
ORNL/lM-12065, Oak Ridge National Laboratory, May 1992.

9. T. E. Anderson, H. M. h v y , B. N. Bmhad and E. D. Lamwska, 'The interaction of
architecture and operating system design,' Proceedings of the Fourth Internationul Conference
on Architectural Support for Programming Languages and Operating Systems, 8-1 1 April 1991,
pp. 108-120 (in ACM SIGARCH Computer Architecture News I9:2, ACM SIGOPS Operating
Systems Review 25 (special issue) and ACM SIGPLAN Notices 26:4).

10. M. J. Bach and S. J. Buroff, 'Multiprocessor Unix systems,' Bell Lab. Tech. J., 63(8),
1733-1750 (1984).

11. J. Boykin and A. Langerman, 'The Parallelhation of MacW4.3BSD: design philosophy and
performance analysis,' Proceedings of the First USWlX Workshop on lhperiences Building
Distributed and Multiprocessor Systems, 5-6 October 1989, pp. 105-126.

12. M. D. Campbell, R. Holt and J. Slice, ' h k granularity tuning mechanisms in SVR4/MP,'
Proceedings of the Second USENlX Symposium on lkperiences with Distributed and
Multiprocessor Systems, 21-22 March 1991. pp. 221-228.

13. N. Paciorek, S. LnVerso and A. hgertnan, 'Debugging multiprocessor operating system
kernels,' Proceedings of the Second USENlX Symposium on Experiences wdh Distributed and
Multiprocessor Systems, 21-22 March 1991, pp. 185-202.

14. R. Bryant, H. Chang and B. Rosenburg. 'Experience developing the RP3 operating
system,' Proceedings of the Second USENIX Symposium on Ihperiences with Distributed and
Multiprocessor Systems, 21-22 March 1991, pp. 1-18.

15. D. W. Clark and J. S. Erner, 'Performance of the VAX-11/780 translation buffer: simulation
and measurement,' ACM Tram. Compu. Syst. 3(1), 31-62, (1985).

16. S. J. Leffler, M. K. McKusick, M. J. Karels and I. S. Quarterman, The Design and
Implementation of the 4.3BSD UNIX Operating System, The Addison-Wesley Publishing
Company, Reading, MA, 1989.

17. D. L. Black, R. F. Rashid, D. B. Golub, C. R. Hill and R. V. Baron, 'Translation lookaside
buffer consistency: a software approach,' Proceedings of the Third International Conjerence
on Architectural Support for Programming hnguages and Operating Systems, 3-6 April 1989,
pp. 113-122.

18. A. L. Cox and R. J. Fowler, 'The implementation of a wherent memory abstraction on a NUMA
multiprocessor: experiences with PLATINUM,' Proceedings of the Twevth ACM Symposium
on Operating Systems Principles, 3-6 December 1989, pp. 3 2 4 4 (in ACM SIGOPS Operating
Systems Review 23:S).

19. B. Rosenburg, 'hw-synchronization translation lookaside buffer consiskncy in large-scale
shared-memory multiprocessors,' Proceedings of the Tweljih ACM Symposium on Operating
Systems Principles, 3-6 December 1989, pp. 137-146 (in ACM SIGOPS Operating Systems
Review 23:s).

20. M. Herlihy, 'wait-free synchronization,' ACM Tram. Programminghg. Syst., 13(1) 124-149,
(1991).

21. M. L. Scott, T. J. LeBlanc, B. D. Marsh, T. G. Becker, C. Dubnicki, E. P. Markatos and
N. G. Smithline, 'Implementation issues for the Psyche multiprocessor operating system,'
Comput. Syst. 3(1), 101-137, (1990). Earlier version presented at the First USENIX Workshop
on Experiences Building Distributed and Multiprocessor System, Ft. Lauderdde, FL, 5-6
October, 1989.

22. H. C. Lauer and R. M. Needham, 'On the duality of operating system siructures,' ACM
SIGOPS Operating Systems Review, 13(2), 3-19, (1979). Originally presented at the Second
International Symposium on Operating Systems, October 1978.

23. D. Clark, 'The s t ruc tu~g of systems using upcalls,' Proceedings of the Tenth ACMSymposium
on Operating Systems Principles, 1-4 December 1985, pp. 171-180 (in ACM SIGOPS
Operating Systems Review 19.5).

24. R. A. Finkel, M. L. Swtt, Y. Artsy and H. Chang, 'Experience with Charlotte: simplicity and
function in a dismibuted operating system,' IEEE Tram. SE-lS(6). 676-685, (1989).

25. F, Baskett, J. H. Howard and J. T. Montague, 'Tiuk wmmunication in Demos,'
Proceedings of the S a h ACM Symposium on Operating Systems Principles, November 1977,
pp. 23-31.

KERNEL-KERNEL COMMUNICATION IN A SHARED-MEMORY MULTIPROCESSOR 191

26. A. S. Tanenbaum, Operating Systems: Design and Implementation, Prentice-Hall, Englewood
Cliffs, NJ, 1987.

27. T. J. LeBlanc, J. M. Mellor-Crummey, N. M. Gafter, L. A. Crow1 and P. C. Dibble,
"The Elmwood multiprocessor operating system,' Software-Practice and Experience, 19(11),
1029-1056, (1989).

28. BBN Advanced Computers Incorporated, Inside the Butterfly Plus, Cambridge, MA, 16 October
1987.

29. A. L. Cox, R. J. Fowler and J. E. Veenstra, 'Interprocessor invocation on a NUMA
multiprocessor,' TR 356, Computer Science Department, University of Rochester, October
1990.

30. J. M. Mellor-Crummey and M. L. Scott, 'Algorithms for scalable synchronization on shared-
memory multiprocessors,' ACM Irons. Compu. Syst., 9(1). 21-65, (1991).

31. R. Bisiani and M. Ravishankar, 'PLUS: a distributed shared-memory system,' Proceedings
of the Seventeenth International Symposium on Computer Architecture, 28-31 May 1990, pp.
115-124 (in CAN 18:2).

32. D. R. Cheriton, H. A. Goosen and P. D. Boyle, 'Paradigm: a highly scalable shared-memory
multicomputer architecture,' Computer, February 1991, pp. 33-46.

33. W. J. Bolosky and M. L. Scott, 'A trace-based comparison of shared memory multiprocessor
architectures,' TR 432, Computer Science Department, University of Rochester, July 1992.

34. E. P. Markatos and T. J. LeBlanc, 'Shared-memory multiprocessor trends and the implications
for parallel program performance,' TR 420, Computer Science Department, University of
Rochester, May 1992.

