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SUMMARY 
In the standard kernel organization on a bus-based multiprocessor, all processors share the 
code and data of the operating system; explicit synchronization is used to control access 
to kernel data structures. Distributed-memory multicomputers use an alternative approach, 
in which each instance of the kernel performs local operations directly and uses remote 
invocation to perform remote operations. Either approach to interkernel communication can 
be used in a large-scale shared-memory multiprocessor. 

In the paper we discuss the issues and architectural features that must be considered 
when choosing between remote memory access and remote invocation. We focus in particular 
on experience with the Psyche multiprocessor operating system on the BBN Butterfly Plus. 
We find that the Butterfly architecture is biased towards the use of remote Invocation for 
kernel operations that perform a significant number of memory references, and that current 
architectural trends are likely to increase this bias in future machines. This conclusion 
suggests that straightforward parallelization of existing kernels (e.g. by using semaphores 
to protect shared data) is unlikely in the future to yield acceptable performance. We note, 
however, that remote memory access is useful for small, frequently-executed operations, and 
is likely to remain so. 

1. INTRODUCTION 

Computer architecture has a strong influence on the design of multiprocessor operating 
system kernels, affecting the distribution of kernel functionality among processors, the 
form of interkernel communication, the layout of kernel data structures and the need 
for synchronization. For example, in bus-based shared-memory multiprocessors it is 
easy for all processors to share the code and data of the operating system.' Explicit 
synchronization can be used to control access to kernel data structures. Both distributed- 
memory multicomputers (e.g. hypercubes and mesh-connected machines) and distributed 
systems (e.g. workstations on a network) use an alternative organization, with kernel 
data distributed among the processors, each of which executes a copy of the kernel. 

*Eliseu Chaves is with the Universidade Federal do Rio de Janeim, Brazil. He spent six months on leave at 
the University of Rochester in 1990. Prakash Das is now with Transarc Corp. in Pittsburgh, PA. Brian Marsh 
is now with the Matsushita Information Technology Lab in Princeton, NJ. 

1 t  is customary to refer to bus-based machines as UMA (uniform memory access) multiprocessors, but the 
terminology can be misleading. Main memory (if present) is equally far from all processors, but caches are 
not, and caches are the dominant determinant of memory performance. 
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Each instance of the kernel performs operations on local data directly and uses remote 
invocation to request operations on remote data. Non-pre-emption of the kernel (other 
than by interrupt handlers) provides a significant amount of implicit synchronization 
among the kernel threads sharing a processor. 

Although very different, these two organizations each have their advantages. A shared- 
memory kernel is similar in structure to a uniprocessor kernel, with the exception 
that access to kernel data structures requires explicit synchronization. As a result, it 
is relatively straightforward to port a uniprocessor implementation to a shared-memory 
multiprocessor. Having each processor execute its own operations directly on shared 
memory is also reasonably efficient, at least on small machines. In addition, this 
kernel organization simplifies load balancing and global resource management, since 
all information is globally accessible to all kernels. 

Message-passing (i.e. remote invocation) kernels, on the other hand, are naturally 
suited to architectures that do not support shared memory. Each copy of the kernel is 
able to manage its own data structures, so the source of errors is localized. The problem 
of synchronization is simplified because all contention for data structures is local, and can 
be managed in large part using non-pre-emption. This kernel organization scales easily, 
since each additional processor has little impact on other kernels, other than the support 
necessary to send invocations to one more kernel. 

Large-scale shared-memory multiprocessors have properties in common with both bus- 
based machines and distributed-memory multicomputers. All of memory can be accessed 
directly, but at very different costs. The programmer may be responsible for allocating 
data to processors (as in so-called NUMA-non-uniform memory access-machines such 
as the BBN Butterfly[l], IBM RP3[2], Illinois Cedar[3], and Toronto Hector[4]), or the 
hardware may provide coherent caches (as in the Scalable Coherent Interface[5] and the 
Stanford DASH[6], MIT April/Alewife[7], and Kendall Square[8] machines). In either 
case, the performance and conceptual trade-offs between the use of remote invocation 
and remote memory access in the kernel are not well understood, and depend both on 
architectural parameters and on the overall design of the operating system. 

In this paper we focus on the trade-offs between remote memory access and remote 
invocation in kernel-level software on NUMA multiprocessors. We begin in Section 2 by 
discussing the various aspects of locality, and the range of options available for kernel- 
kernel communication. We then explore the implementation of one of these options in 
detail in Section 3. Specifically, we note that remote invocation can cause a kernel 
operation to execute either at interrupt level or in a normal kernel process context, 
and that the choice between these alternatives has a major effect on the generality and 
performance of the mechanism, and on its impact on other aspects of kernel execution. 

With implementation details in hand, we examine remote accesslinvocation trade-offs 
in Section 4. We consider direct costs (latency) for individual remote operations, indirect 
costs imposed on local operations by the choice of remote communication mechanism, 
processor and memory contention, and the conceptual compatibility of communication 
mechanisms with common models of kernel organization. The importance of these trade- 
offs can be seen in current trends: operating system overhead has grown to 15-2076 of 
execution time on modem microprocessors[91, and the growing complexity of parallel 
systems software demands that kernels be made as clean and maintainable as possible. 

Our observations are made concrete in Section 5 through a series of experiments with 
our implementation of the Psyche multiprocessor operating system on the BBN Butterfly 
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Plus multiprocessor (the hardware base of the GP1000 product line). Our conclusions 
appear in Section 6. Briefly, we find that remote memory access provides reasonable 
performance only for interprocessor kernel operations that perform less than a few dozen 
memory references. Remote invocation enjoys a significant performance advantage for 
lengthier operations, an advantage that is likely to increase in future machines. Since 
lengthy operations generally require a kernel process context, interrupt-level remote 
invocation is useful only in special cases. 

2. KERNEL-KERNEL COMMUNICATION OPTIONS 

As multiprocessors increase in size, it becomes increasingly difficult to construct 
operating systems for them that perform well. Machines with a very small number of 
processors can use a lightly modified version of an existing operating system (e.g. Unix) 
in a master-slave configuration. All kernel calls execute on a single processor; other 
processors request services via traps to a remote invocation mechanism. Unfortunately, as 
the scale of the machine increases, the master processor inevitably becomes a bottleneck. 
By using locks to protect shared data structures, several manufacturers have parallelized 
the Unix kernel for concurrent execution on bus-based shared-memory multiprocessors 
of up to 30 processors[lO]. Even on this scale, however, the modifications required to 
avoid performance-degrading contention are non-trivialrll-131. 

Operating systems for machines with large numbers of processors (hundreds or even 
thousands) will require extensive rewrites of existing code, or will need to be written from 
scratch. The latter approach has been employed successfully by the vendors of distributed- 
memory multicomputers. The former approach is being pursued by a variety of groups 
(e.g. OSF), but has yet to be demonstrated on a large-scale machine. In developing the nX 
operating system for the Butterfly GP1000 and TC2000 machines, BBN ACI explicitly 
eschewed the goal of large-scale parallelism within the Unix kernel, opting instead for a 
resident front-end. Unix applications under nX run only within one small cluster of the 
machine, with a master-slave kernel organization. The bulk of the machine is dedicated 
to running parallel applications with little kernel support other than high-speed parallel 
110. Similarly, the version of Mach developed for the IBM RP3 performs best when most 
of the processors do not make system calls[14]. 

We focus in the remainder of this paper on design alternatives for general-purpose 
parallel operating systems, in which the full range of kernel services are available 
with reasonable performance on every processor. We consider a machine organization 
consisting of a collection of nodes, each of which contains memory and one or more 
processors (possibly with caches). Each processor can access all of the memory on the 
machine, but it can access data located at the local node much more quickly than it can 
access data located at a remote node. When a processor at node i begins executing an 
operation that must access data on node j, interaction among nodes is required. 

Experience with several multiprocessor kernels indicates that most kernel operations 
can be performed primarily using local memory references on some node. This node 
locality in kernel operations is crucial for reasonable performance in large machines. 
It implies that most memory accesses will be local even when using remote memory 
accesses for interkernel communication, and that the total amount of time spent waiting 
for replies from other processors when using remote invocation will be small compared 
to the time spent on other operations. At the same time, experience with uniprocessor 
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operating systems suggests that it is very hard to build a kernel with a high degree of 
address locality. Consecutive memory references tend not to lie in any small set of dense 
address ranges[15], due to heavy use of pointer-based dynamic data structures, operations 
on multiple process contexts, interrupt-driven activity and a lack of nested loops. 

On a NUMA multiprocessor (without coherent caches) there are three principal 
alternatives for kernel-kernel communication: 

Remote memory access: The operation executes on node i ,  reading and writing node 
j's memory as necessary. The memory at node j may be mapped by node i statically, 
or it may be mapped on demand. 
Remote invocation: The processor at node i sends a message to a processor at node j, 
asking it to perform the operation on its behalf. The operation may be executed 
directly by the message interrupt handler, or indirectly via wake-up of a kernel 
process. 
Bulk data transfer: The kernel moves the data required by the operation from node 
j to node i, where it is inspected or modified, and possibly copied back. The kernel 
programmer may request this data movement explicitly, or it may be implemented 
transparently by lower-level software using page faults. 

Cache-coherent multiprocessors blur the distinction between remote memory access 
and bulk data transfer. As in software bulk transfer requests, cache-coherent machines 
move multiple words of data at a time, potentially improving performance both through 
amortized movement costs (prefetching) and through repeated local access during 
an operation (caching). On the other hand, cache-coherent machines migrate data 
automatically, and generally use cache lines that are smaller than a page. The lack 
of kernel intervention during data migration means that logical structure, locking and 
synchronization issues that pertain to remote memory access in NUMA machines also 
pertain in cache-coherent machines. Moreover, in a kernel with a high degree of node 
locality, most data items will have a node at which they usually reside (even on cache-only 
machines[8] with no 'main' memory), and will migrate back to that node if temporarily 
accessed elsewhere. Most of the trade-offs between remote memory access and remote 
invocation discussed in the following Sections apply to both classes of architecture, 
though we will couch our discussion in terms of NUMA machines. 

In terms of the communication options listed above, the lack of address locality in 
the kernel suggests that data accessed by any particular kernel operation are unlikely 
to be contiguous, even if they reside on the same node. We therefore concentrate here 
on a comparison between remote memory access and remote invocation. We present 
two different versions of remote invocation in Section 3. One is fast but of limited use; 
the second is slower but more general. In the subsequent section, and in the case study 
that follows, we focus on the trade-offs between remote memory access and these two 
forms of remote invocation. We consider direct, measurable costs of individual remote 
operations, indirect costs imposed on local operations, the effects of competition among 
remote operations for processor and memory cycles, and the extent to which different 
communication mechanisms complement or clash with the structural division of labour 
among processes in the kernel. Ultimately, we find that the more general form of remote 
invocation is best for most operations, but that the other two mechanisms (remote memory 
access and the faster form of invocation) arc both better in certain cases. 
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3. IMPLEMENTATION OF REMOTE INVOCATION 

The simplest way to perform a remote invocation is to execute the requested operation 
in the interrupt handler of the interprocessor communication mechanism. In Unix 
terminology[16], this places the code for the operation in the 'bottom half of the target 
processor's kernel. Alternatively, one can arrange to execute remote invocations in a 
normal process context in the 'top half' of the kernel. Doing so can be expensive: it 
requires a context switch out of the interrupt handler, and may require synchronization 
with other process(es) running in the kernel. An interrupt-level remote invocation (RI) 
may be very fast, but can only be used for operations that can be executed safely in an 
interrupt handler. A process-level RI is slower, but of more general utility. 

3.1. Interrupt-level remote invocation 

Since interrupts occur at unpredictable times from the target processor's point of view, 
and since interrupt handlers cannot block (because they lack a process context), mutual 
exclusion for data structures shared between interrupt handlers and the rest of the kernel 
must be achieved by masking interrupts. On a uniprocessor these data structures consist 
primarily of 110 buffers. On a multiprocessor with interrupt-level RIs, they may be more 
numerous and varied, and normal (non-interrupt) kernel routines may need to lock more 
than one data structure at a time. Simply turning interrupts on and off may not suffice 
for lock acquisition and release. 

One standard solution is to maintain a count of the number of critical sections currently 
active in normal kernel routines. Interrupt-level RIs are permitted only when the counter 
is at zero (i.e. when interrupts are enabled). The lock acquisition and release routines turn 
interrupts on or off when changing the counter from 1 to 0 or vice versa. Alternatively, 
the handler for interrupt-level RIs could place requests in a queue when the counter is 
non-zero (rather than executing them immediately) and the lock release routine could 
regenerate an interprocessor communication interrupt when changing the counter from 
1 to 0 in the presence of a non-empty queue. This latter approach minimizes the period 
of time during which interrupts are masked, and may improve performance by reducing 
the probability of lost interrupts.' 

Interrupt-level RI has several limitations. Because its handlers lack a process context, it 
cannot be used for operations that may block. If used extensively it may require more data 
structures to be available to interrupt routines than would otherwise have been the case. 
The only form of synchronization available for these data structures is short-term mutual 
exclusion (masking interrupts), and that occurs at a very coarse grain. Even invocations 
that do not touch data of any interest to current process-level activity are likely to be 
disabled much of the time. To prevent deadlock, we must prohibit outgoing invocations 
when incoming invocations are disabled. This rule severely limits the circumstances 
under which an interrupt-level RI is permitted. In particular, it precludes the use of 
interrupt-level RI for operations that must access data on two different processors as a 

' Message-based multicomputers generally incorporate hardware queuing to avoid lost messages. Shared- 
memory multiprocessors generally incorporate a single interprocessor interrupt vector, with no lower bound 
on the time between interrupts from separate processors. They rely on software queuing in shared memory to 
tolerate lost interrupts. 
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single atomic operation, unless the programmer is willing to detect and recover from 
deadlock. 

It may be possible on some machines to interrupt a remote processor at a lower priority 
than device interrupts (or to re-post a high-priority interrupt at a lower leveQ3 It may 
therefore be feasible to use interrupt-level RI for lengthy operations. Several other factors, 
however, suggest that it be used only for short operations. Longer operations are more 
likely to need condition synchronization, or to require locks on more than one processor, 
or to require that large amounts of data be accessible to interrupt routines. Longer 
operations are also more able to tolerate the latency of a general-purpose, process-level 
invocation. Finally, during short operations it makes sense for the requesting processor to 
busy-wait for notice of completion, which in turn makes it possible for us to request an 
interrupt-level RI from within the handler for another. Rescheduling is likely to be slower 
than busy-waiting when requesting an interrupt-level RI from a normal kernel routine. 
Rescheduling is not possible in an interrupt-level routine, but busy-waiting is, provided 
that we restore data structures to a consistent state and re-enable interrupt-level RIs before 
making a nested in~ocation.~ We assume in the rest of this paper that interrupt-level RI 
is used for short operations only, and that the requesting processor spins. 

3.2. Process-level remote invocation 

To execute a remote invocation in the normal (process-level) part of the target processor's 
kernel, the interprocessor communication interrupt handler uses the same mechanism 
employed by device handlers to initiate 'top-half activity. If the processor was executing 
in user space prior to the interrupt, the handler performs an asynchronous trap and the 
remote invocation executes immediately. If the processor was executing in the kernel prior 
to the interrupt, the handler queues the invocation for execution the next time control 
returns to user space or enters the kernel's idle loop. Deadlock prevention requires that 
a process blocks when making a process-level RI, rather than busy-waits, because busy- 
waiting would lock out incoming process-level RIs. Blocking also makes sense in other 
ways: it may take a significant amount of time to get around to executing a request on the 
target processor, and we assume that process-level RI will be used for longer operations 
anyway. 

Because it executes in a process context, the requested operation can block during 
its execution, e.g. for condition synchronization. A process can perform a process-level 
RI while holding semaphores or other scheduler-based locks. Processes can therefore 
synchronize with the execution of process-level RIs from other processors. Deadlock is 
still possible, but only as a result of algorithmic problems in the kernel, not because of 
the over-coarse locking inherent in the invocation mechanism. 

Remote memory access and the two forms of remote invocation are to a large extent 
compatible, and can be used in the same system if certain guidelines are followed. It 
is easy to use different mechanisms for unrelated data structures. It is almost as easy 

Note that the ability to interrupt a remote processor at high priority is required for operations such as TLB 
shootdown[17-191. 

Nested intenupt-level RIs must be performed with care. They may require large interrupt stacks, and raise 
the possibility that a processor may spin for an unbounded amount of time while the processor w which it 
made an intenupt-level RI services unrelated interrupts. 
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to use remote access and process-level RI on the same data structure, provided that 
the synchronization mechanisms are also compatible. Either spin locks or semaphores 
can be used, though performance may suffer if a process performs a process-level RI 
(and blocks) while holding a spin lock, and the scheduling mechanisms that underlie 
semaphores will need to be implemented with atomic instructions or interrupt-level RI 
to work across nodes. 

We can also use remote access and interrupt-level RI on the same data structure, but 
only with a 'hybrid' lock that uses both interrupt masking and spinning (such locks are 
always required for data that are accessed both by remote processors and by interrupt-level 
routines on their home processor). Pseudocode for a simple hybrid lock appears in Figure 
1. Its key task is to ensure that an interrupt-level routine that attempts to acquire a lock 
is given top priority, and will therefore succeed after a bounded amount of spinning. 
For the sake of deadlock avoidance, we must refrain from performing an interrupt- 
level RI or acquiring a remote lock while holding a local lock, because we mask out 
interrupts. 

acquire : 
if on home node 

nested-maskings +:= 1 
disable interrupts 
1ock.urgentlyneeded := true 
loop 

exit if TAS (lock) 
pause 

1ock.urgentlyneeded := false 
else 

loop 
exit if not 1ock.urgentlyneeded and then TAS (lock) 
pause 

release : 
lock := 0 
if on home node 

nested-maskings -:= 1 
if nested-maskings - 0 then 

enable interrupts 

Figure 1. Pseudo-code for a 'hybrid' lock that can protect data structures manipulated both by 
remote memory access and by interrupt-level RI. Nestedmaskings is a per-processor private counter. 
TAS is assumed to atomically test and set a flag bit in the lock. I f  contention is expected to be high. 

one should instead use a version of the algorithm that spins only on local locations[30] 

Finally, we can use both interrupt-level and process-level RI on the same data structure 
so long as we respect the deadlock-avoidance rule: it must always be possible to perform 
incoming invocations while waiting for an outgoing invocation. In particular, a process 
cannot request a process-level RI while it has locked out interrupt-level RIs in order to 
touch a data structure that is shared between normal and interrupt-level code. 
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4. REMOTE ACCESS/INVOCATION TRADE-OFFS 

In this Section we consider four dimensions along which to compare remote memory 
access and remote invocation. The first of these dimensions is the latency of an operation 
in isolation, based on architectural constants. The second dimension is the impact on local 
operations of the organization and synchronization required for compatibility with remote 
operations. The third dimension is contention and throughput. The fourth dimension 
is the extent to which kernel-kernel communication alternatives complement or clash 
conceptually with the basic organizational structure of the kernel. 

4.1. Direct costs of remote operations 

A first cut at deciding between remote memory access or remote invocation for a 
particular operation can be made on the basis of the latency incurred under the two 
different implementations. For example, consider an operation 0 invoked from node i 
that needs to perform n  memory accesses to a data structure on another node j. We 
can perform those memory accesses remotely from node i, or we can perform a remote 
invocation to node j, where they will be performed locally. For the sake of simplicity, 
suppose that 0 must perform a fixed number of local memory accesses (e.g. to stack 
variables) and a fixed number of register-register operations regardless of whether it is 
executed on node i or on node j. If the remoteAocal memory access time ratio is R and 
the overhead of a remote invocation is C times the local memory access time, then it 
will be cheaper to implement 0 via remote memory access when ( ~ - l ) n < ~ ?  

The fixed overhead of remote invocation, independent of operation complexity, 
suggests that operations requiring a large amount of time should be implemented via 
remote invocation (all other things being eq~al) .~ Back-of-the-envelope calculations 
should suffice in many cases to evaluate the performance trade-off. Many operations 
are simple enough to make a rough guess of memory access counts possible, and few 
are critical enough to require a truly definitive answer. For critical operations, however, 
experimentation is necessary. 

4.2. Indirect costs for local operations 

Kernel operations will often be organized differently when performed via remote 
invocation, instead of remote memory access. They may require context available on the 
invoking node to be packaged into parameters. They may be rearranged to increase node 
locality, so that accesses to data on the invoking and target processor are not interleaved. 
Most importantly, perhaps, the use of process-level RI for all remote accesses to a 
particular data structure may allow that data structure to be implemented without explicit 
synchronization, depending instead on a lack of pre-emption within the kernel to provide 
implicit synchronization. Explicit synchronization is still required, of course, for any 
data structures that a process needs to keep locked on the local node during an outgoing 

This formula assumes, of course, that we are executing on a NUMA machine. If the hardware provides 
coherent caches, then only the first reference to data in a particular cache line will incur a remote access cost. 

We did not include the cost of parameter passing in our simple analysis. Nearly all our kernel operations 
take only one or two parameters, and require no reply other than a notice of completion, so our assumption of 
a fixed cost for remote invocation is realistic. 
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process-level RI. Because interrupt-level RI handlers can always execute unless explicitly 
locked out (even if they interrupt normal kernel activity), explicit synchronization is also 
required for data structures accessible to interrupt routines. Depending on architectural 
parameters, locks that inhibit interrupt-level RI may be faster than semaphores or process- 
level spin locks; in particular, they are slightly faster on the Butterfly Plus. 

Avoiding explicit synchronization can improve the speed not only of remote operations 
but also of the (presumably more frequent) local operations that access the same 
data structure. The impact of explicit synchronization on local operations is easy to 
underestimate. The case study in the following Section includes operations in which lock 
acquisition and release account for 49% of the total execution time (in the absence of 
contention). This overhead could probably be reduced by a coarser granularity of locking, 
but only with considerable effort: fine-grain locking introduces fewer opportunities for 
deadlock, and allows for greater concurrency. 

On a machine in which nodes are bus-based multiprocessors (with parallel execution 
of one local copy of the kernel), explicit synchronization may be required for certain data 
structures even if remote invocation is always used for operations on those data structures 
requested by other nodes. On the other hand, clever use of atomic fetch-and-$ operations 
to create concurrent no-wait data structures[20] may allow explicit synchronization to be 
omitted even for data structures whose operations are implemented via remote memory 
access? 

If remote memory accesses are used for many data structures, large portions of the 
kernel data space on other processors will need to be mapped into each instance of the 
kernel. Since virtual address space is limited (at least on 32-bit processors), this mapping 
may make it difficult to scale the kernel design to very large machines, particularly if 
kernel operations must also be able to access the full range of virtual addresses in the 
currently running user process. Mapping remote kernel data structures on demand is 
likely to cost more than sending a request for remote invocation. Mechanisms to cache 
information about kernel data structures may be limited in their effectiveness by the lack 
of address locality. Systems that map remote kernel data into a separate kernel-kernel 
address space[21] may waste large amounts of time switching back and forth between 
the kernel-kernel space and the various user-kernel spaces. 

4.3. Competition for processor and memory cycles 

Operations that access a central resource must serialize at some level. Operations 
implemented via remote invocation serialize on the processor that executes those 
operations. Operations implemented via remote memory accesses serialize at the memory. 
Because an operation does more than access shared data, there is more opportunity with 
remote memory access for overlapped computation. Operations implemented via remote 
memory access may still serialize if they compete for a common coarse-grain lock, but 
operations implemented via remote invocation will serialize even if they have no data in 
common whatsoever. 

A parallel data structure is said to be wait-free if each of its access functions is guaranteed to complete 
within a bounded amount of time. As designed by Herliiy and others, wait-free data structures employ fetch- 
and-$ operations (e.g. compare-and-swap, fetbd-store ,  fetch-and-add, and the newer 1oadJinked and 
store-conditional provided by the MIPS R4000 and DEC Alpha processors) to divert competing processors 
into different code paths, without ever spinning or blocking. 
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If competition for a shared resource is high enough to have a noticeable impact on 
overall system throughput, it will be desirable to reorganize the kernel to eliminate the 
bottleneck. The amount of competition that can occur before inducing a bottleneck may be 
slightly larger with remote memory access because of the ability to overlap computation. 
Even in the absence of bottlenecks, we expect that operations on a shared data structure 
will occasionally conflict in time. The coarser the granularity of the resulting serialization, 
the higher the expected variance in completion time will be. The desire for predictability 
in kernel operations suggests that operations requiring a large amount of time should be 
implemented via remote memory access, in order to serialize at the memory instead of 
the processor. This suggestion conflicts with the desire to minimize operation latency, as 
described above; it may not be possible to minimize latency and variance simultaneously. 

Given that the requestor of an interrupt-level RI busy-waits for notice of completion, 
the desirability of remote invocation in comparison to remote memory access may then 
depend on whether we are interested in latency or throughput. An interrupt-level RI 
may execute quickly from the requesting processor's point of view, but in the absence 
of unrelated interrupts it ties up both the requesting and responding processors for the 
duration of the requested operation. 

4.4. Compatibility with the conceptual model of kernel organization 

There are two broad classes of kernel organization, identified by Lauer and Needham[22] 
as the message-based and procedure-based approaches (see Figure 2). In a procedure- 
based kernel there is no fundamental distinction between a process in user space and 
a process in the kernel. Each user program is represented by a process that enters the 
kernel via traps, performs kernel operations and returns to user space. Kernel resources 
are represented by data structures shared between processes. In a message-based kernel 
each major kernel resource is represented by a separate kernel process, and a typical 
kernel operation requires communication (via queues or message-passing) among the set 
of kernel processes that represent the resources needed by the operation. 

We have found the choice between the procedure-based and message-based 
organizations to have a more pervasive impact on the rest of the operating system than any 
other single design decision. (Psyche is procedure-based, but we have built message-based 
kernels as well.) Both approaches can be aesthetically appealing, depending on one's point 
of view. The procedure-based organization presents a uniform model for user- and kernel- 
level processes, and closely mimics the hardware organization of a UMA multiprocessor. 
The message-based organization, on the other hand, leads to a compartmentalization of 
the kernel in which all synchronization is subsumed by message-passing. The message- 
based organization closely mimics the hardware organization of a distributed-memory 
multicomputer. Because it minimizes context switching, the procedure-based organization 
is likely to perform better on a machine with uniform memory[23]. The message- 
based organization may be easier to debug[24]. Most Unix kernels are procedure-based. 
Demos [25] and Minix[26] are message-based. 

Remote invocation seems to be more in keeping with the message-based approach 
to kernel design. Remote memory access seems appropriate to the procedure-based 
approach. When porting an operating system from some other environment, the pre- 
existence of a procedure-based or message-based bias in the implementation may suggest 
the use of the corresponding mechanism for kernel-kernel communication, though mixed 
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Figure 2.  Alternative kernel organizations. Shaded boxes represent processes; unshaded boxes 
represent data abstractions 

approaches are possible[27]. If a procedure-based kernel is used on a uniprocessor, the 
lack of context switching in the kernel may obviate the need for explicit synchronization 
in many cases. Extending the procedure-based approach to include remote memory access 
may then incur substantial new costs for locks. On a machine with multiprocessor nodes, 
however, such locking may already be necessary. 

5. CASE STUDY: PSYCHE ON THE BBN BUTTERFLY 

Our experimentation with alternative communication mechanisms took place in the kernel 
of the Psyche operating system[21] running on a BBN Butterfly Plus multiprocessor[28]. 
The Psyche implementation is written in C++, and uses shared memory as the 
primary kernel communication mechanism. The Psyche kernel was modified to provide 
performance figures for remote invocation as well, with and without fine-grain locking. 
Our results are based on experiments using these modified versions of the kernel. 

The Psyche implementation displays a high degree of node locality. The kernel object 
representing an application-level abstraction (process, address space, memory segment) 
is allocated and initialized on a single node, either on the node where the creation request 
originated or another specified node. Other kernel data structures associated with a node's 
local resources are also local to that node. It is quite common, therefore, for a kernel 
operation not to need access to data on another node. In those cases where kernel-kernel 
communication is required, local accesses still tend to dominate. 

Among those kernel operations requiring access to data on more than one node, it was 
common in the original Psyche implementation for remote memory accesses to occur at 
several different times in the course of the operation. In an attempt to optimize our remote 
procedure call mechanism we found that many, though not all, of these accesses could be 
grouped together by restructuring the code, thereby permitting them to be implemented 
by a single remote invocation. 
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5.1. Fundamental costs 

The Butterfly Plus is a NUMA machine with one processor per node, no caches and a 
remote-to-local memory access time ratio of approximately 12: 1. The average measured 
execution time[29] of an instruction to read a 32-bit remote memory location using 
register indirect addressing is 6.88 ps; the corresponding instruction to read local memory 
takes 0.518 us. The time to write memory is slightly lower 4.27 ps and 0.398 ps for 
remote and local memory, respectively.' Microcoded support for block copy operations 
can be used to move large amounts of data between nodes in about a fifth of the time 
required for a word-by-word copy (345 ps instead of 1.76 ms for 1K byte). None of the 
experiments reported below moved enough data to need this operation. 

Our remote invocation mechanisms rely on remote memory access and on the ability 
of one processor to cause an interrupt on another. A processor that requires a remote 
operation writes an operation code and any necessary parameters into a preallocated 
local buffer. It then writes a pointer to that buffer into a reserved location on the 
remote node, and issues a remote interrupt. The requesting processor then spins on 
an 'operation received' flag in the local buffer. When the target processor receives the 
interrupt, it checks its reserved location to obtain a pointer to the buffer. It sets the 
'operation received' flag, at which point the requesting kernel process either blocks (in 
the case of a process-level RI), or begins to spin on an 'operation completed' flag (in 
the case of an interrupt-level RI). If another request from a different node overwrites 
the original request, the second request will be serviced instead. After a fixed period of 
unsuccessful waiting for the 'operation received' flag, the first processor will time-out 
and resend its request. In case a processor's request is completed just before a resend, 
receiving processors ignore request buffers whose 'operation received' flag is already 
set. 

The mechanism to trigger a remote invocation is optimistic, in that it minimizes latency 
in the absence of contention and admits starvation in the presence of contention. The 
average latency of an interrupt-level RI, excluding parameter copying and operation costs, 
is 56 ps (measured by timing a large number of consecutive invocations, and dividing). 
An earlier, non-optimistic, implementation relied on microcoded atomic queues, but these 
required approximately 60 us for the enqueue and dequeue operations alone. The average 
latency of a process-level RI, again excluding parameter copying and operation costs, is 
about 421 us. Process-level RI could be made faster with some more hand optimization, 
but it is unlikely that we could get it under 300 us. Interrupt-level RI is highly optimized; 
we see no way to make it significantly faster. 

5.2. Explicit synchronization 

Psyche uses spin locks to synchronize access to kernel data structures. To achieve a high 
degree of concurrency within the kernel, access to each component data structure requires 
possession of a lock. This approach admits simultaneous operations on different parts 
of the same kernel data structure, but also introduces a large number of synchronization 
points in the kernel. Mapping a memory segment into the current address space, for 

' The original Butterfly architecture had a remote-to-local access time ratio of approximately 5:l. The speed 
of local memory was significantly improved in the Butterfly Plus, with only a modest improvement in the 
speed of remote accesses. 
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example, can require up to nine lock acquisitions. Creating a segment can require 38 
lock acquisitions. A cheap implementation of locks is critical. 

We use a test-and-test&set lock[30] to minimize latency in the absence of contention. 
If the lock is in local memory, we use the native MC68020 TAS instruction. Otherwise, 
we use a more expensive atomic instruction implemented in microcode on the Butterfly. 
(TAS is not supported on remote locations.) The slight cost of checking to see whether 
the lock is local (involving a few bit operations on its virtual address) is more than 
balanced by the use of a faster atomic primitive in the common, local case. Moreover, 
this cost must also be incurred when using remote invocation, rather than remote access, 
to determine the node to interrupt. 

A lock can be acquired and released manually by calling in-line subroutines, or 
automatically using features of C++. The automatic approach passes the lock as an 
initialization parameter to a dummy variable in the block of code to be protected. 
The constructor for the dummy variable acquires the lock; the destructor (called by 
the compiler automatically at the end of a scope) releases it. Constructor-based critical 
sections are slightly slower, but make it harder to forget to release a lock. Manual 
locking is used for critical sections that span function boundaries or that do not 
properly nest. Acquiring and releasing a local lock manually requires a minimum of 
5 us, and may require as much as 10 us, depending on instruction alignment, the 
ability of the compiler to exploit common subexpressions and the number of registers 
available for temporary variables. Acquiring and releasing a remote lock manually 
requires 38 to 45 us. The additional time required to acquire and release a lock through 
constructors is about 1 to 3 us. Synchronization using remote locks is expensive because 
the Butterfly's microcoded atomic operations are significantly more costly than native 
processor instructions. Extensive use of no-wait data structures[20] might reduce the 
need for fine-grain locks, but would probably not be faster, given the cost of atomic 
operations. 

The performance of semaphores is indistinguishable from that of spin locks in the 
absence of lock competition; the only thing that differs on the code path is a check in 
the V operation to determine whether any processes are waiting. Disabling and enabling 
of interrupt-level RIs is slightly cheaper: a critical section counter can be incremented 
and then decremented again in just over 5 us. 

5.3. Impact on the cost of kernel operations 

To assess the impact of alternative kernel-kernel communication mechanisms on the 
performance of typical kernel operations, we measured the time to perform several such 
operations via local memory access, remote memory access, and remote invocation, 
with and without explicit synchronization. The results appear in Table 1. The first 
three lines give times for low-latency operations. The first of these inserts and then 
removes an element in a doubly linked list-based queue; the second and third search for 
elements in a list Remote invocations for all three are implemented in interrupt-level 
routines. The last three lines give times for high-latency operations: creating a segment, 
mapping a segment and adding a new process to an address space. Remote invocations 
for these are implemented at the process level. All times are accurate to about Â± in 
the third significant digit. Times for the low-latency operations are averaged over 10,000 
consecutive trials. They are stable in any particular kernel load image, but fluctuate with 
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Table 1. Latency of kernel operations 

Operation 
Local access Remote access Remote inv.* 

locking locking locking 
on off on off on off 

enqueue + dequeue 42.4 21.6 247 154 197 174 
find last in list of 5 (us) 25.0 16.1 131 87.6 115 96.7 
find last in list of 10 40.6 30.5 211 1 69 125 105 

create segment 6.20 5.69 14.8 13.1 7.42 6.88 
map segment (ms) 0.96 0.86 3.05 2.62 1.94 1.77 
create process 1.43 1.35 3.30 3.04 1.89 1.75 

*Interrupt-level remote invocation is used for low-latency operations (top half of table); process-level remote 
invocation is used for high-latency operations (bottom half of table). 

changes in instruction alignment. They are also sensitive to the context in which they 
appear, due to variations in the success of compiler optimizations? Times for the high- 
latency operations are averaged over a small number of consecutive trials in several 
separate runs. 

Times in columns 1 and 2 are with all data on the local node. Times in columns 
3 to 6 arc with target data on a remote node, but with temporary variables still in 
the local stack. Columns 1 and 3 give times for the original, unmodified version of 
the Psyche kernel. Column 2 indicates what operations would cost if synchroni&tion 
were achieved through lack of context switching, with no direct access to remote data 
structures. Column 4 indicates what operations on remote data structures would cost if 
subsumed in some other operation with coarse-grain locking. Column 6 indicates what 
remote operations would cost if the data structures they manipulate were always accessed 
via remote invocation, with no explicit synchronization required beyond recognizing that 
invocations were not disabled. Column 5 indicates the cost of performing operations via 
remote invocation in a hybrid kernel that continues to rely on locks. 

5.3.1 Explicit synchronization 

We can calculate the fraction of the cost of each of our kernel operations due to 
synchronization by comparing figures in adjacent columns of Table 1. The comparisons 
appear in Figure 3. Synchronization clearly dominates the cost of simple operations 
on queues, contributing in some cases nearly 50% for local operations and 40% for 
remote operations. Although less overwhelming, synchronization impacts more complex 
operations as well, due to the use of fine-grain locks. Segment creation requires acquiring 
and releasing approximately 38 constructor-based locks, contributing over 500 us, or 8%, 
to the cost in the local case and 1.7 ms, or 11% to the cost in the remote case. The 
overhead of fine-grain locking combined with automatically acquired locks is clearly 
significant. More to the point, in the case of process-level data structures this overhead 
is imposed on local access simply to permit remote access. We could reduce the cost of 
synchronization by locking data structures at a coarser grain. This change would reduce 

We have read through the assembly language output of the compiler to make sure the optimizer is not 
removing any apparently useless code of importance to the timing tests. 
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Figure 3. Percentage of latency due to explicit locking, for local access (LA), remote access (RA), 
and remote invocation (RI) 

the number of locks required by a typical operation, but would simultaneously reduce 
the potential level of concurrency. 

5.3.2 Remote references 

We can assess the impact of remote memory references by comparing the cost of local and 
remote operations in Table 1. Figure 4 indicates the marginal cost of remote references 
for each of our kernel operations. Without locking, this marginal cost is 86% for a 
remote enqueueldequeue operation pair, remote references exclusive of synchronization 
account for 54% of the cost even when locking is used (154 us to perform the operation 
remotely excluding synchronization costs minus 21.6 us to perform the operation locally 
over 247 us total time). When searching for the tenth element in a list, remote references 
exclusive of synchronization account for two-thirds of the cost of the operation. Even for 
complex operations such as segment creation, which performs much of its work using 
stack variables, remote references account for over half of the total cost. 

The overhead associated with explicit synchronization and remote references is a 
function of the complexity of the operation, while the overhead associated with remote 
invocation is fixed. In addition, if using process-level RI exclusively we can rely on 
implicit synchronization (non-pre-emption in the kernel), thereby reducing the cost of 
operations significantly. In Table 1 the times in the last three rows of column 6 are 
not only much faster than the corresponding times in column 3, they are in several 
cases close to the times in column 1; the ability to avoid lock acquisition and release 
almost hides the cost of remote invocation and parameter passing. Given that a remote 
memory access costs more than 6 us more than a local access, the 60 us overhead of 
an interrupt-level FU with a single parameter can be justified on the Butterfly Plus to 
avoid 11 remote references. The 421 us overhead of a process-level RI can be justified 
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Figure 4 .  Remote access penalty for hrnel operatwns, with (L) and without (NL) locking 

to avoid 71-7k remote references, where k is the number of lock acquisitions that can be 
eliminated by exclusive use of process-level RI. If hand optimization were to yield an 
implementation of process-level RI that cost 300 ps, it could be justified to avoid 50-7k 
remote references. 

5.3.3 Comparative latency of remote access and remote invocation 

Figure 5 presents three different comparisons of the cost of remote invocation and the 
cost of remote memory access. The first bar in each group expresses column 6 in Table 
1 as a percentage of column 3; it compares remote memory access with explicit locking 
to remote invocation without explicit locking. The second bar in each group expresses 
column 5 in 'lhble 1 as a percentage of column 3; it includes locking overhead for both 
remote memory mess and remote invocation, as would exist in a hybrid kernel. The 
third bar in each p u p  expresses column 6 in Table 1 as a percentage of column 4; it 
considers the case in which the desired operation is subsumed in some other operation 
with coarse-@ locking. 

Figures greater than 1 indicate scenarios in which remote memory access displays a 
lower latency. Based on this metric alone, our experiments would seem to indicate that 
remote memory access is justified only for the most trivial of operations. Other factors 
soften this conclusion, however, and make remote invocation less of a clear win than 
it might at first appear. In particular, our experiments highlight the extreme cases of 
operations simple enough to perform via interrupt-level RI, or complex enough to absorb 
the overhead of a process-level RI. For medium-size operations we may be unwilling 
to accept either the limitations of interrupt-level RI or the overhead of process-level 
RI. Moreover, even for tiny operations the throughput of interrupt-level RI may be 
unacceptably low, as discussed in the following Section. 

5.3.4. Throughput for interrupt-level remote invocations 

On the Bumfly Plus remote memory accesses steal bus cycles from the processor 
on which the memory resides, thereby slowing that processor's progress. Remote 
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Figure 5. Remote invocation time as a percentage of remote mmoty access time, with locking in 
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invocations, however, steal the entire processor for the duration of the operation. In 
the case of interrupt-level RIs, parallelism is lost the requesting processor remains idle 
until the invocation completes. In the case of process-level RIs, the requesting processor 
has the opportunity to do something else instead. These obse~ations suggest that latency 
provides a reasonable measure of the performance of pmess-level RI, but that throughput 
must also be considered for interrupt-level RI. 

We conducted a simple experiment to compare the impact of remote memory accesses 
and interrupt-level RIs on the progress of other computations on a given processor. We 
timed the slowdown of a compute-bound application on a processor subjected to remote 
memory accesses and interrupt-level RIs. For a set of low-latency operations whose 
aggregate latency was 19 ms when using remote memory access and 22 ms when using 
interrupt-level RI, we measured application slowdowns of 1 ms and 17 ms, respectively. 
From these figures we can see that interrupt-level RI significantly affects the throughput 
of the remote processor, whereas remote access does not. Thus, in all cases where the 
latency of the two alternatives is comparable, and even in some cases where the latency 
of remote access is higher, remote access would be preferred for reasons of throughput. 

6. CONCLUSIONS 

Architectural features strongly influence operating system design. The choice between 
remote invocation and remote access as the basic communication mechanism between 
kernels on a shard-memory multiprocessor is highly dependent on the cost of the remote 
invocation mechanism, the cost of the atomic operations used for synchronization, and 
the ratio of remote to local memory access time. On a cache-coherent machine it is also 
dependent on the cache line sue, the degree to which lines are falsely shared, and the 
extent to which prefetching and caching effects can reduce the cost of typical kernel 
operations. Since the overhead associated with remote access scales with the operation, 
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while the overhead associated with remote invocation is fixed, there will for any machine 
be a break-even point above which process-level RI enjoys an increasingly compelling 
performance advantage. For smaller operations the operating system designer must weigh 
h issues of latency, throughput, conceptual appeal and the possibility of eliminating 
explicit synchronization in order to make a choice between remote access and the two 
forms of remote invocation. 

Our experience with Psyche indicates that the natural node locality of kernel operations 
is sufficient to allow us to perform most large operations with only one or two remote 
invocations. Without this locality many invocations would be needed just to collect the 
data necessary to perform an operation. Under those circumstances remote access would 
be competitive with process-level RI, but performance would be p r ;  a kernel without 
node locality is not a reasonable option for the Butterfly architecture. 
Our oxiginal decision to use remote memory access as the principal kernel-kernel 

commu~cation mechanism was based primarily on the conceptual appeal of a uniform 
procedure-based organization across the en& machine. We underestimated the impact 
that locking would have on the cost of typical operations, and did not give adequate 
consideration to lengthy operations early in the design process. If we were to rebuild the 
kernel at this point, we would make more extensive use of process-level RI for lengthy 
operations. We would also attempt to identify data structures for which process-level RI 
alone would suffice, allowing us to eliminate explicit locking. Finally, we would attempt 
where possible to increase the granularity of our remaining locks, being careful to avoid 
the intmduction of bottlenecks. 

There are only a small number of cases in which interrupt-level RI is the mechanism 
of choice. The most plausible scenario arises with low-latency operations that cannot be 
performed via remote access. TLB shootdown is such an operation on most machines; 
instructions that manipulate the TLB cannot be invoked remotely. We also use interrupt- 
level RI for console YO, and to implement our remote kernel debugging facility[21]. 
Interrupt-level RI may also be preferred over remote access when the target processor 
of a remote operation is idle, or when the latency of remote access is more than twice 
the latency of interrupt-level RI (e.g. for a memory-intensive operation on a machine in 
which remote memory is exceptionally slow). In both these latter scenarios interrupt-level 
RI will outperform remote memory access even in terms of throughput. 

On the Buuerfly Plus, remote invocation is relatively fast, explicit synchronization 
is costly and remote references are significantly more expensive than local references. 
Increases in processor speed relative to memory and intercomect latencies are likely to 
make remote references even more expensive in future machines. All but the shortest 
operations on the Buuerfly Plus display lower latency with remote invocation than they 
do with remote memory access, and the disparity between the two options is likely to 
increase. 

It is not yet clear whether the large-scale multiprmessors of the future will provide 
system-wide hardware cache coherence. Several projects are moving in that directionL5- 
81, but others are pursuing software-managed coherence beyond the bounds of a single 
bus[4,31,32]. NUMA machines are likely to be cheaper to build than their cache-coherent 
cousins, and recent studies suggest1331 that they can provide comparable performance for 
reasonable applications. Our results apply most directly to NUMA machines, but suggest 
that remote invocation should be attractive for kernel-kernel communication on cache- 
coherent machines as well. Deliberate exploitation of node locality in the kernel for a 
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cache-coherent machine would associate each data structure with a 'home node' on which 
that structure is accessed most often. As interprocessor communication becomes slower 
and slower relative to processor performance[34], operations that touch several cache 
lines that 'belong' to another processor might profitably be dispatched to that pmessor 
for execution rather than ruming locally. Further performance studies will be needed to 
quantify kernel-kernel communication trade-offs more precisely on large cache-cohe~nt 
machines. 

For small operations, interrupt-level RI can display lower latency than remote access, 
but it may display lower throughput as well, and is limited by the need to use coarse, 
interrupt-masking locks and to restore al l  data structures to a consistent state before 
performing an outgoing interrupt-level RI. Momver, we strongly suspect that the desire 
to keep data structures out of the interrupt-level portion of the kernel will mean that 
some operations that are too small to absorb the overhead of process-level RI will still 
touch too much data to use interrupt-level RI. These observations imply that performance 
will be maximid if remote access is used for operations comprising up to a few dozen 
remote memory references, and process-level RI is used above this limit. Interrupt-level 
RI should be reserved for special cases. 
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