
Common Runtime Support for High-Performance Parallel Languages 

Parallel Compiler Runtime Consortium * 
Geoffrey C. Fox, Sanjay Ranka, Michael Scott, Allen D. Malony, 

Jim Browne, Marina C. Chen, Alok Choudhary, Thomas Cheatham, 
Jan Cuny, Rudolf Eigenmann, Amr Fahmy, Ian Foster, 

Dennis Gannon, Tom Haupt, Mike Karr, Carl Kesselman, 
Chuck Koelbel, Wei Li, Monica Lam, Thomas LeBlanc, 

Jim Openshaw, David Padua, Constantine Polychronopoulos, Joel Saltz, 
Alan Sussman, Gil Weigand, Kathy Yelick 

1 Introduct ion 

Parallel Computers have recently become powerful 
enough to outperform conventional vector based su- 
percomputers. Several parallel languages are currently 
under development for exploiting the data and/or task 
parallelism available in the applications. In this re- 
port, we propose the development of a basic public 
domain infrastructure to provide runtime support for 
high level parallel languages. This would support sev- 
eral projects developing different compilers for a given 
language such as C + + ,  ADA, or Fortran but also give 
a unified support for compilers of different languages. 
There are two particularly important motivations for 
this common runtime support system. 

Firstly, it will accelerate the development of new 
compiler projects investigating particular modules or 
concepts by providing a public domain infrastructure 
which can be built on and not replicated. 

Secondly there is currently no universally "best" 
language; each excels in different aspects of the per- 
formance, expressivity, reliability, user familiarity and 
other metrics. This fact is corroborated by the find- 
ings of the recent multiagency workshop onHPCC and 
grand challenge applications at Pittsburgh. A typi- 
cal example of software development involved using 
C++ as a high level language to achieve modularity, 
Fortran as a high performance assembly language for 
coding the computationally intensive fragments, and 

'The workshop at Syracuse was sponsored hy DARPA under 
contract # DABT63-91-C-0028. The content of the information 
does not necessarily reflect the position or the policy of the 
Government and no official endorsement should he inferred. 
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using AVS for visualization and some coarse grain soft- 
ware integration. Thus integrated support of different 
languages appears an essential pragmatic feature of 
high performance computing environments. 

The above issues were discussed by several re- 
searchers which led to a workshop at Syracuse Uni- 
versity on common runtime support for compilers and 
formation of the Parallel Compiler Runtime Support 
Consortium. Three central and relatively orthogonal 
topics were identified for common runtime support: 

1. Common Runtime Support for Data parallelism 

2. Common Runtime Support for Task parallelism 

3. Performance and Debugging Infrastructure for 
Compiler Runtime Systems 

Data parallelism and Task parallelism are two impor- 
tant kinds of exploitable parallelism available in most 
applications. The need for debuggers and performance 
estimation is of utmost importance for any software 
environment. 

The parallel runtime compiler consortium was orig- 
inally put together on the initiative of Gil Weigand. 
The current members of the consortium represent 
many of the major compiler groups supported by 
ARPA. The purpose of this report is t o  present im- 
portant issues in providing a common framework for 
runtime support of compilers. The report is organized 
into three general parts, corresponding to the above 
three topics. Each part represents the discussions of 
a working group and provides a detailed analysis of 
the issues, implications and organization required for 
a common runtime support. The working groups were 
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coordinated by Sanjay Ranka, Michael Scott and Alan 
Malony respectively. 

Details and background of this report can be ac- 
cessed via anonymous ftp from minerva.npac.syr.edu 

2 Data Parallelism 

way that assumes the availability of multiple inde- 
pendent processors and an interface to a message 
passing system (such as PVM, Express, propri- 
etary vendor message passing systems, MPI, etc.). 
Alternately compilers and runtime support can 
assume the existence of hardware supported ad- 
dress translation and data miaration mechanisms, 

Recently there have been major efforts in develop- 
ing programming language and compiler support for 
parallel machines. For example, High Performance 
Fortran has  been standardized. A similar effort is 
currently in progress for HPC++. We use the term 
High Performance Language (HPL), to refer to HPF, 
HPC++, an extended (data parallel) form of ADA, or 
some other relevant language. 

A system that would allow different components, 
perhaps written in various HPLs, to operate with each 
other and execute in an integrated fashion is sorely 
needed for the following reasons: (1) different pieces of 
an application program in one HPL may be best han- 
dled by different runtime components (e.g. program 
segments with regular data access patterns versus ir- 
regular access patterns); (2) different components may 
be best written in one or more HPLs due to  the na- 
ture of the components and the particular types of 
language support (e.g. Ada/HPF combination); (3) 
building components that are reusable across different 
applications, perhaps written in different HPLs; (4) 
sharing of infrastructure (data structures, iutermedi- 
ate forms, etc.) across systems. 

We believe that there is a great deal of commonal- 
ity in the support for parallelism in these languages, 
since parallelism is inherent in the problem and not in 
the problem's representation in a particular HPL. We 
should develop a unified framework for integrating and 
accommodating different program transformation and 
runtime components for supporting data parallelism. 
The runtime components developed will be available 
in the public domain. This will allow groups to build 
and test compiler subsystems and will accelerate re- 
search and development in this area. 

The following is a summary of important research 
issues and innovations that would result from design- 
ing such a unified framework: 

Portable and Scalable Multi-platform Runtime 

Runtime support must efficiently support the ad- 
dress translations and data movements that oc- 
cur when one embeds a globally indexed program 
onto a multiple processor architecture. Compilers 
and runtime support for HPLs can be built in a 
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such as those found on Kendall Square KSR-1 ma- 
chines. The issue there will be purely figuring out 
how data should be migrated. 
We expect that all HPL compilers will make use 
of at  least some optimizations for reducing com- 
munication costs such as message blocking, collec- 
tive communication, message coalescing, aggrega- 
tion and latency hiding. Prototype runtime sup- 
port has been developed to carry out these op- 
timizations in the contexts of structured, adap- 
tive, block structured and tree structured prob- 
lems [l, 2, 3, 4, 5, 6, 71. We will develop an in- 
tegrated runtime support system that carries out 
address translation and communication optimiza- 
tions, this runtime support will be built on top of 
a message passing interface. 
We will also develop versions of common run- 
time support to take advantage of hardware sup- 
ported distributed shared memory mechanisms. 
HPL data structure decompositions and proces- 
sor mappings will make it necessary to carry out 
rather complex mappings between logical pro- 
gram addresses and locations in the machine's 
distributed memory. Given these complex map- 
pings, we do not expect hardware supported dis- 
tributed shared memory alone to  be able to effi- 
ciently handle data migration and address trans- 
lation. Instead, we will develop runtime support 
capable of leveraging the capabilities of hardware 
supported distributed shared memory. 

Methodology for Integrated Multilanguage Sup- 
port 
We would design and develop common code and 
data descriptors, and libraries and routines which 
operate on them for supporting data parallelism 
in HPLs. This would allow different programming 
languages to share data structures that are dis- 
tributed across the memory hierarchy of scalable 
parallel systems and operate upon them. 
We would design a common compiler data move- 
ment interface specification that will provide a set 
of communication standards that compilers can 
link into the runtime system for applications. Un- 
like the user level message passing interface stan- 
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dard, the compiler interface can be more exten- 
sive in its capabilities, ranging from very low level 
primitives that exploit special hardware proper- 
ties to very high level primitives directly coupled 
to the common array and data structure formats. 
The interface standard will make it possible to 
write compilers that achieve a much greater ef- 
ficiency on a wider variety of machines than we 
can with current user level message passing mech- 
anisms. In addition, a common runtime interface 
will allow a compiler to be easily adapted to a 
new machine, and still allow customization in the 
library implementation to improve performance. 

Methodology for structuring code and data rep- 
resentations to support extensibility 

We will develop a methodology for the engineer- 
ing aspect of the described runtime support to al- 
low ease of use, modification, specialization, and 
extension. The kind of extension we consider in- 
cludes support for new distributed data struc- 
tures, new language features, new runtime sys- 
tem mechanisms and algorithms, and new mes- 
sage passing or distributed shared memory inter- 
faces. 

3 Task Parallelism 

We define task parallelism as parallelism not dic- 
tated by the distribution of data structures. It in- 
cludes the execution of different functions in parallel, 
as well as the parallelization of loops via mechanisms 
other than (or in addition to) the “owner computes“ 
rule commonly found in HPF, pC++, etc. Task par- 
allelism is common in many existing systems. It is 
particularly useful for irregular applications. Recent 
research also suggests that there are important classes 
of applications that require both task and data paral- 
lelism in order to obtain good performance 18, 9, 101. 

The requirements of a runtime system for task-level 
parallelism are different from those for data paral- 
lelism. First, there is a need for dynamic creation of 
tasks or processes. Dynamic load balance is necessary 
since these tasks generally have very different execu- 
tion times. Second, the interactions between different 
tasks can be very complex and need the support of 
sophisticated synchronization primitives. Finally, to 
take advantage of locality of reference, it is important 
to cache and replicate data  dynamically. The runtime 
system must provide support for processes to locate 
data in the distributed address space and to manage 
the local memory. 

We recommend that research efforts in task-parallel 
runtime systems be combined to build common run- 
time infrastructure. The common infrastructure 
would be built in layers, and all layers would be 
accessible to top-level clients. The infrastructure 
should run on a variety of high performance paral- 
lel machines, including cache-coherent mnltiproces- 
sors like DASH or the KSR-1, NUMA machines like 
the Cray T3D, and distributed-memory multicom- 
puters like the Intel Paragon or the Thinking Ma- 
chines CM-5. It should support high level parallel 
languagessuch as CC++ [ l l ] ,  Jade [ lZ] ,  Natasha [ZO], 
and Fortran M [13], as well as parallelizing com- 
pilers that generate multithreaded or task parallel 
code [14,15, 16,17,18,19]. Prototypes of many of the 
layers we envision already exist (often as part of work- 
ing runtime systems for specific languages and ma- 
chines), so the implementation effort should be man- 
ageable. 

A common runtime infrastructure for task paral- 
lelism would have the following benefits: 

Provide a machine-independent layer for portabil- 
ity across machines. This will leverage the lower 
level system construction currently being done by 
individual groups. 

Enable shared efforts, both within the group of 
developers and for external groups that currently 
lack the resources to build portable runtime sys- 
tems. 

e Encourage better software design through the def- 
inition of interfaces between pieces of software. 

Provide validation of results by facilitating com- 
parisons between different approaches on a com- 
mon software architecture. 

Allow for inter-operability between different run- 
time systems. With an open layered architec- 
ture, compiler writers would be able to  access 
whichever level provides appropriate functional- 
ity. 

Enable the comparative study of multiple pro- 
gramming paradigms and multiple machine ar- 
chitectures. Because top-level clients will run on 
a common substrate, which in turn runs on many 
machines, “apples and apples” comparisons be- 
tween languages and compilers will be consid- 
erably easier, as will comparisons between ma- 
chines. 

e Provide a framework for identifying commonality 
in runtime systems built for ostensibly different 
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environments (e.g. on different hardware, or for 
different languages). Beyond the common facili- 
ties described in this report, it is likely that ad- 
ditional opportunities for standardization will be 
found as research progresses, e.g. in the area of 
scheduling policies. 

There are currently a number of efforts t o  develop 
task-parallel runtime systems for a variety of high- 
level programming languages, such as CC++ [ll], 
Jade (121, Natasha [ZO], and Fortran M [13]. In addi- 
tion, several groups are developing parallelizing com- 
pilers that recognize implicit task parallelism in se- 
quential programs [14, 15, 16, 17, 18,191. These efforts 
have resulted in runtime software for a large set of ma- 
chines, but because the systems were developed inde- 
pendently, each typically runs on only one or two ma- 
chines. A common runtime system for task-level paral- 
lelism would support multiple machines, and multiple 
high-level programming languages and compilers. 

To manage the complexity of such a system, we 
recommend development of a runtime system archi- 
tecture consisting of well-defined layers of abstraction. 
Each layer will be exposed to the user-some compil- 
ers may be built only on lower layers whereas others 
may use a mixture of all layers. In addition, multiple 
instances of a single layer may exist to permit efficient 
implementations on different architectures, or to pro- 
vide a different set of abstractions to higher layers. For 
example, locality may be achieved by a shared object 
system, a virtual shared memory layer, or hardware 
shared memory. 

In describing our system architecture, we separate 
functions into control and data hierarchies. The con- 
trol hierarchy provides threads, scheduling, synchro- 
nization, and load balancing facilities, while the data 
hierarchy contains names (addresses), data objects, 
and object relocation facilities. In practice, of course, 
control and data management facilities are seldom in- 
dependent; a single software module is likely to pro- 
vide a combination of both. Interactions between 
them include reduction operations, aligning data and 
control (i.e. scheduling for locality), associating syn- 
chronization objects with data objects (to facilitate re- 
laxed consistency) and waiting for prefetch/poststore 
operations to complete. 

We expect there to be substantial commonality in 
both the control and data hierarchies across the spec- 
trum of architectures and programming paradigms. 
At the same time, alternative module implementa- 
tions, and even alternative interfaces, will be needed 
in certain layers in order to accommodate major ar- 
chitectural differences, or to provide the performance 

and functionality required by dissimilar programming 
paradigms. Protocol hierarchies for communication 
networks provide an instructive analogy. The I S 0  hi- 
erarchy [ Z l ]  provides a conceptual framework for lay- 
ered protocols, and Arizona’s $-kernel project [22] pro- 
vides an excellent example of the identification and ex- 
ploitation of commonality in different protocol stacks. 

4 Performance and Debugging Infras- 
tructure 

The rapidly evolving state of system, run-time, and 
application software demands performance evaluation 
and debugging technology that is portable across di- 
verse implementation platforms, and that can be read- 
ily extended to include the results of emerging re- 
search. Creating a common performance evaluation 
and debugging infrastructure that meets these require- 
ments for current application and run-time software 
implies a research effort with two specific foci: 

integration of application and run-time software 
with both extant and proposed performance and 
debugging analysis systems through the specifica- 
tion and development of software interfaces that 
isolate the implementation of specific instrumen- 
tation and analysis techniques behind software 
“firewalls,” ensuring that instrumented software 
can be ported to systems with different instru- 
mentation implementations; and 

application of performance evaluation and dehug- 
ging techniques during run-time software execu- 
tion through new, dynamic performance and de- 
bugging instrumentation, query, and presentation 
techniques, enabling the development of adaptive 
application and run-time software. 

No single performance analysis or debugging tool 
provides all the functionality needed to debug and 
optimize all software, nor should it; experience has 
shown that a collection of simpler tools is preferable 
to a single, complex tool. However, software develop- 
ers should he able to easily integrate, combine, and 
analyze data from multiple instrumentation and data 
analysis tools. At present, this is not possible. The 
goal of the software integration focus is to provide run- 
time system software developers a set of standard, 
high-level interfaces to performance and debugging 
tools. Without these standard interfaces, individual 
run-time system projects would likely design and de- 
velop performance and debugging software specific to 
their problem area, rather than deal with the nuances 
of each tool’s use. Not only would these systems he 
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incompatible, they would be unable to  exploit cross- 
domain information (e.g., run-time library and com- 
piler information) in a uniform way. A common plat- 
form can be achieved only through the standardiza- 
tion of software interfaces that isolate the implemen- 
tation of specific performancefdebugging instrumen- 
tation and analysis techniques behind software bound- 
aries. These interfaces provide an integration veneer 
which ensures that application and run-time software 
can be ported to systems with differing performance 
and debugging implementations. For tool developers, 
the standard interfaces will provide broad access to 
performance and debugging software that is compli- 
ant with the interface definitions. 

Although standard software interfaces support a 
portable, reusable performance evaluation and debug- 
ging infrastructure, the requirements posed by emerg- 
ing software systems challenge existing performance 
and debugging technology. Run-time systems for high- 
level languages (e.g., for HPF and HPC++); environ- 
ments for creating and accessing parallel, distributed 
data structures; and software for adaptive applica- 
tion execution and run-time decision analysis will all 
require new performance and debugging techniques, 
particularly for dynamic instrumentation, run-time 
queries, dynamic guidance, and execution state access. 
The present opportunity to develop new performance 
and debugging techniques in concert with run-time 
software is unique. Exploiting this opportunity will 
maximize the likelihood that the resulting software 
will be well-targeted, quickly applied, and reused by 
future run-time system development efforts. 

The Performance Evaluation and DebuggInG soft- 
waRE infrastructurE (PEDIGREE)’ research project 
will create a portable, extensible performance evalu- 
ation and debugging infrastructure, based on the re- 
search foci above, that is broadly applicable to both 
run-time libraries and application software. In partic- 
ular, the PEDIGREE infrastructure will include the 
following key Components: 

standard software interfaces for performance and 
debugging tools; 

dynamically activated performance instrumenta- 
tion, application-initiated performance queries, 
performance-directed decision procedures, and 
data presentation techniques that allow software 
developers to guide computations; and 

‘The PEDIGREE acronym is intended to imply a common 
basis for performance and debugging support that will be ap- 
plicable to all run-time system software. 

. run-time debugging infrastructure that utilizes 
techniques for dynamic breakpointing to uni- 
formly support run-time breakpoint manage- 
ment, state and event-based query, and dynamic 
visualization. 

Standard interfaces will allow both instrumented 
run-time systems and applications to be moved to dif- 
ferent parallel systems without porting a particular 
performance or debugging implementation. In addi- 
tion, standard interfaces will encourage the develop- 
ment of “meta-tools” that combine data from multi- 
ple performance and debugging systems. The primary 
focus of existing tools is user-level performance analy- 
sis and debugging; the new infrastructure will enable 
run-time systems to access performance and debug- 
ging data during their execution and to  use this data 
as input to dynamic decision procedures. 

We believe that by delivering these three PEDI- 
GREE components, current and future runtime sys- 
tem and application software developments will more 
likely utilize common performance evaluation and de- 
bugging tools rather than develop specialized software, 
leading to a sorely needed integration and uniformity 
of technology in the two areas. 
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