
Fast Mutual Exclusion, Even With Contention

�

Maged M. Michael Michael L. Scott

Computer Science Department

University of Rochester

Rochester, NY 14627-0226

fmichael,scottg@cs.rochester.edu

June 1993

Abstract

We present a mutual exclusion algorithm that performs well both with and without contention, on

machines with no atomic instructions other than read and write. The algorithm capitalizes on the ability

of memory systems to read and write at both full- and half-word granularities. It depends on predictable

processor execution rates, but requires no bound on the length of critical sections, performs only O(n)

total references to shared memory when arbitrating among con
icting requests (rather than O(n

2

) in the

general version of Lamport's fast mutual exclusion algorithm), and performs only 2 reads and 4 writes

(a new lower bound) in the absence of contention. We provide a correctness proof.

We also investigate the utility of exponential backo� in fast mutual exclusion, with experimental

results on the Silicon Graphics Iris multiprocessor and on a larger, simulated machine. With backo� in

place, we �nd that Lamport's algorithm, our new algorithm, and a recent algorithm due to Alur and

Taubenfeld all work extremely well, outperforming the native hardware locks of the Silicon Graphics

machine, even with heavy contention.

1 Introduction

Many researchers have addressed the problem of n-process mutual exclusion under a shared-memory pro-

gramming model in which reads and writes are the only atomic operations. Early solutions to the problem

entail a lock acquisition/release protocol in which each process that wishes to execute the critical section

makes
(n) references to shared memory, where n is the total number of processes [3, 7].

On the assumption that contention is relatively rare, Lamport in 1987 suggested two mutual exclusion

algorithms [4] in which a process performs only a constant number of shared memory references in its

acquisition/release protocol, so long as no other process attempts to do so simultaneously. The �rst algorithm

requires a bound on the length of a critical section (which is not always possible), and a bound on the relative

rates of process execution. The second algorithm performs
(n

2

) total references to shared memory (
(n)

in each process) when attempting to arbitrate among n concurrent lock acquisition attempts (see section 2).

We have developed an algorithm that retains the O(1) bound of Lamport's algorithms in the absence of

contention, while arranging to elect a winner after only O(n) shared memory references in the presence of

contention. Like Lamport's �rst algorithm, the new algorithm requires a bound on relative rates of process

execution; it does not however require a bound on the length of a critical section.

Several researchers have recently presented algorithms with similar characteristics. These are summarized

in table 1. The �rst column of the table indicates the number of references a process makes to shared memory

�

This work was supported in part by NSF Institutional Infrastructure award number CDA-8822724, NSF grant number

CCR-9005633, and ONR research contract number N00014-92-J-1801 (in conjunction with the ARPA Research in Information

Science and Technology|High Performance Computing, Software Science and Technology program, ARPA Order No. 8930).

1

mls
Tech. Rep. 460, Computer Science Dept., Univ. of Rochester

shared memory references needs

Algorithm to choose winner speed comments

no contention contention bound?

Lamport 1 [4]

2 reads,

O(n) yes

requires bound on

3 writes critical section length

Lamport 2 [4]

2 reads,

(n

2

) no

5 writes

Styer [8]

3 reads,

(ln

2=l

) no

l can be chosen anywhere

(4 + l) writes in (O(1); O(logn))

Yang and

O(logn) O(logn) no

starvation free

Anderson 1 [10] no remote spins

Yang and 6 reads, O(n)

no

starvation free

Anderson 2 [10] 9 writes

a

[O(logn) \typical"] no remote spins

Alur and 3 reads,

O(n) yes

Taubenfeld [1] 5 writes

new

2 reads,

O(n) yes

requires multi-grain

4 writes atomic reads and writes

Table 1: Comparative characteristics of fast mutual exclusion algorithms.

a

With appropriate assignment of variables to local memory locations, 5 of the 9 writes need not traverse the

processor-memory interconnection network.

when acquiring and releasing a lock for which there is no contention. The second column indicates the number

of references that may need to execute sequentially in order for some process to enter its critical section when

n processes wish to do so. (This notion of \time" di�ers from that of most other researchers; we assume that

references may serialize if they are made by the same process or require the use of the same memory bank or

communication link.) Our algorithm performs fewer shared memory references than any but the bounded-

critical-section version of Lamport's algorithm. It is also substantially simpler than the algorithms of Styer

or Yang and Anderson, both of which employ a hierarchical collection of sub-n-process locks. There is a

strong resemblance between our algorithm and that of Alur and Taubenfeld, though the two were developed

independently. In e�ect, we reduce the number of shared-memory operations by exploiting the ability of

most memory systems to read and write atomically at both full- and half-word granularities.

Following the presentation of our algorithm in section 2, we present a correctness proof in section 3,

experimental performance results in section 4, and conclusions in section 5. In our experiments, we employ

limited exponential backo� to reduce the amount of contention caused by concurrent attempts to acquire

a lock. This technique, originally suggested by T. Anderson, works very well for test and set locks [2, 5],

and our results show it to be equally e�ective for locks based on reads and writes. In fact, on our Silicon

Graphics multiprocessor, fast mutual exclusion algorithms with backo� (and the new algorithm in particular)

outperform the native hardware spin locks by a signi�cant margin, with or without contention. Results on

a larger, simulated machine also show the new algorithm outperforming both Lamport's second algorithm

and Alur and Taubenfeld's algorithm.

2 Algorithms

Lamport [4] presents two mutual exclusion algorithms. Both allow a process to enter its critical section in

constant time. The �rst algorithm requires a bound on the relative rates of execution of di�erent processes,

and on the time required to execute critical sections. In the absence of contention a process requires �ve

accesses to shared memory to acquire and release the lock. Process i executes the code on the left side of

�gure 1. Variable Y is initialized to free, and the delay in line 7 is assumed to be long enough for any

process that has already read Y = free in line 3 to complete lines 5, 6, and (if appropriate) 10 and 11.

The second algorithm does not require any bounds on execution rates or lengths of critical sections. In

the absence of contention a process requires seven accesses to shared memory to acquire and release the lock,

2

1: start:

2: X i

3: if Y 6= free

4: goto start

5: Y i

6: if X 6= i

7: f delay g

8: if Y 6= i

9: goto start

10: f critical section g

11: Y free

12: f non-critical section g

13: goto start

1: start:

2: B[i] true

3: X i

4: if Y 6= free

5: B[i] false

6: repeat until Y = free

7: goto start

8: Y i

9: if X 6= i

10: B[i] false

11: for j 1 to N

12: repeat while B[j]

13: if Y 6= i

14: repeat until Y = free

15: goto start

16: f critical section g

17: Y free

18: B[i] false

19: f non-critical section g

20: goto start

Figure 1: Lamport's fast mutual exclusion algorithms.

and O(n

2

) time with contention.

1

Process i executes the code on the right side of �gure 1. Variable Y is

initialized to free and each element of the B array is initialized to false.

We have devised a new mutual exclusion algorithm that allows a process to enter its critical section with

only six shared memory references in the absence of contention. In the presence of contention, it requires

O(n) time. As in Lamport's �rst algorithm, we assume a bound on relative rates of process execution. Such

an assumption is permissible if the algorithm is executed by an embedded system, or by an operating system

routine that executes with hardware interrupts disabled. We do not, however, require a bound on the length

of critical sections. Process i in our algorithm executes the code in �gure 2. Variables Y and F are initialized

to free and out, respectively. They are assumed to occupy adjacent half-words in memory, where they can

be read or written either separately or together, atomically. The delay in line 7 is assumed to be long enough

for any process that has already read Y = free in line 3 to complete line 5, and any process that has already

set Y in line 5 to complete line 6 and (if not delayed) line 10.

A similar algorithm, due to Alur and Taubenfeld [1], appears in �gure 3. Rather than read and write

at multiple granularities, this algorithm relies on an additional
ag variable (Z) to determine whether any

process has entered the critical section by the end of the delay. When releasing the lock, process i �rst clears

Z, and then clears Y only if Y still equals i. If Y has changed, the last process to change it is permitted to

enter the critical section as soon as Z is cleared. Both our algorithm and Alur and Taubenfeld's assume a

bound on relative rates of process execution, with identical delays on the slow code path, when contention

is detected. Both algorithms require only O(n) time when arbitrating among n concurrent lock acquisitions,

and O(1) time in the absence of contention. On the fast code path, however, our algorithm performs 25%

fewer shared memory references. As shown in section 4, this translates not only into lower overhead in the

no-contention case, but also, given backo�, in most cases of contention as well.

1

As noted in section 1, we assume that a reference to shared memory may take time linear in the number of processes

attempting to access the same location concurrently.

3

1: start:

2: X i

3: if Y 6= free

4: goto start

5: Y i

6: if X 6= i

7: f delay g

8: if (Y; F) 6= (i; out)

9: goto start

10: F in

11: f critical section g

12: (Y; F) (free, out)

13: f non-critical section g

14: goto start

Figure 2: A new fast mutual exclusion algorithm.

1: start:

2: X i

3: repeat until Y = free

4: Y i

5: if X 6= i

6: f delay g

7: if Y 6= i

8: goto start

9: repeat until Z = 0

10: else

11: Z 1

12: f critical section g

13: Z 0

14: if Y = i

15: Y free

16: f non-critical section g

17: goto start

Figure 3: Alur and Taubenfeld's algorithm.

4

3 Correctness

In this section we present proofs of mutual exclusion and livelock freedom for our algorithm.

As it concerns the algorithm, each process i can be conceptualized as a sequence of non-looping subpro-

cesses. Thus, the execution time of a subprocess is bounded except for the critical section. A subprocess

either acquires the lock, executes the critical section, releases the lock, and terminates; or fails to acquire

the lock at some point, terminates, and the next subprocess begins execution from start. It is clear that

at any moment each process has at most one subprocess running.

Let U be the set of (non-looping) subprocesses running at time t. U can be partitioned into �ve disjoint

sets A, B, C, D, and E, de�ned in terms of the truth of the four conditions in lines 3, 6, and 8 in the

algorithm, where the condition in line 8 can be considered as two sequential conditions, the �rst testing Y

and if it is equal to i, the second testing F . The sets are de�ned as follows:

A =

�

i

�

�

�

�

Y = free

X = i

�

, B =

8

>

>

<

>

>

:

i

�

�

�

�

�

�

�

�

Y = free

X 6= i

Y = i

F = out

9

>

>

=

>

>

;

, C =

8

<

:

i

�

�

�

�

�

�

Y = free

X 6= i

Y 6= i

9

=

;

, D =

8

>

>

<

>

>

:

i

�

�

�

�

�

�

�

�

Y = free

X 6= i

Y = i

F 6= out

9

>

>

=

>

>

;

, and

E =

�

i

�

�

Y 6= free

	

.

In the proof we use the following notation: 8i; j 2 U , il denotes the time at which subprocess i executes

line l in the algorithm, and il < jm denotes that i executes line l before j executes line m.

3.1 Mutual Exclusion

Let W be the set of subprocesses executing their critical sections at time t. W = fiji 2 A [B and

i10 � t � i12g. To prove mutual exclusion it su�ces to prove that 8t, jW j � 1.

Lemma 1: 8i 2 A [B, 6 9j 2 A [B such that j5 < i12 < j12.

By de�ning the \order" of a subprocess to be the number of subprocesses that set Y to free before it does,

Lemma 1 can be proved by induction on the order of subprocesses in A [B. A complete proof is presented

in the appendix.

Now we can de�ne supersets for A and B by transforming the conditions on the values of state variables

to conditions on the order of setting and reading them by the subprocess under consideration and other

concurrent subprocesses.

8i 2 A, and 8j 2 U � fig, for Y to be equal to free at i3, either i3 < j5 or j12 < i3 (Lemma 1). And

for X to be equal to i at i6, either j2 < i2 or i6 < j2.

Therefore, A �

8

>

>

<

>

>

:

i

�

�

�

�

�

�

�

�

i 2 U and 8j 2 U � fig,

j2 < i2 and i3 < j5 or

i6 < j2 or

j2 < i2 and j12 < i3

9

>

>

=

>

>

;

.

8i 2 B and 8j 2 U � fig, for Y to be equal to free at i3, either i3 < j5 or j12 < i3 (Lemma 1). For Y

to be equal to i at i8, either i8 < j5, j5 < i5 and i8 < j12, or j12 < i5. And for F to be equal to out at i8,

either i8 < j10 or j12 < i8.

Therefore, B �

8

>

>

>

>

<

>

>

>

>

:

i

�

�

�

�

�

�

�

�

�

�

i 2 U and 8j 2 U � fig,

i8 < j5 or

i3 < j5 < i5 and i8 < j10 or

i3 < j5 and j12 < i5 or

j12 < i3

9

>

>

>

>

=

>

>

>

>

;

.

Let AA = f(i:j)ji; j 2 A and i 6= jg then AA �

8

<

:

(i; j)

�

�

�

�

�

�

i; j 2 U such that

j6 < i2 and j12 < i3 or

i6 < j2 and i12 < j3

9

=

;

.

5

Let BB = f(i; j)ji; j 2 B and i 6= jg then BB �

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(i; j)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

i; j 2 U such that

j3 < i5 and i8 < j5 and j8 < i10 or

j3 < i5 and i12 < j5 or

i12 < j3 or

i3 < j5 and j8 < i5 and i8 < j10 or

i3 < j5 and j12 < i5 or

j12 < i3

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

.

Let AB = f(i; j)ji 2 A and j 2 Bg, then AB �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(i; j)

�

�

�

�

�

�

�

�

�

�

�

�

i; j 2 U such that

j2 < i2 and i3 < j5 and j8 < i5 or

j2 < i2 and j3 < i5 < j5 and j8 < i10 or

j2 < i2 and j3 < i5 and i12 < j5 or

i6 < j2 and i12 < j3 or

j2 < i2 and j12 < i3

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.

Let BA = f(i; j)ji 2 B and j 2 Ag then BA = f(i; j)j(j; i) 2 ABg.

With su�cient delay,

BB �

8

>

>

>

>

<

>

>

>

>

:

(i; j)

�

�

�

�

�

�

�

�

�

�

i; j 2 U such that

j3 < i5 and i12 < j5 or

i12 < j3 or

i3 < j5 and j12 < i5 or

j12 < i3

9

>

>

>

>

=

>

>

>

>

;

and AB �

8

>

>

<

>

>

:

(i; j)

�

�

�

�

�

�

�

�

i; j 2 U such that

j2 < i2 and j3 < i5 and i12 < j5 or

i6 < j2 and i12 < j3 or

j2 < i2 and j12 < i3

9

>

>

=

>

>

;

.

Let W

2

= f(i; j)ji; j 2 W and i 6= jg, then W

2

� AA [BB [AB [BA. Then, W

2

= ;. Then, jW j � 1.

This completes the proof of mutual exclusion 2

3.2 Livelock Freedom

Lemma 2: 8i 2 U , if i sets Y to i and terminates at time t while Y = i, then 9j 2 A [B such

that j10 < t < j12

Proof:

If i 2 A [B then i sets Y to free and terminates. If i 2 C then i terminates while Y 6= i. If i 2 E

then i never sets Y to i. If i 2 D then at i8, F = in then it must be the case that 9j 2 A [B such that

j10 < i8 < j12. If j12 < i8 then i terminates while Y 6= i, otherwise i terminates after j10 and before j12 2

Lemma 3: 8i 2 C, A [B [D 6= ;, for some t, i5 � t � i8

Proof:

Assume that the lemma is false i.e. 9i 2 C, 8t, i5 � t � i8, A [B [D = ;. Since i 2 C then at i8, Y 6= i.

Hence either Y = free or Y = j 6= i, where j 2 U . If Y = free then 9k 2 A [B such that i5 < k12 < i8,

which contradicts the initial assumption. Thus Y = j i.e. 9j 2 A[B [C [D such that j is the last process

to set Y between i5 and i8. Then according to the initial assumption, j 2 C. Therefore 9k 2 A[B [C [D

that sets Y between j5 and j8. This again implies that k 2 C. Since j is the last subprocess to set Y

before i8, i8 < k5. If i8 < k3 then 9l 2 A [B such that i8 < l12 < k3 i.e. j5 < l12 < j8. Contradiction.

Therefore, k3 < i8. If i5 < k3 then 9l 2 A [B such that i5 < l12 < k3 i.e. i5 < l12 < i8. Contradiction.

Therefore k3 < i5. Thus k3 < i5 and i8 < k5 which is not possible with su�cient delay. Therefore, the

initial assumption is false and the lemma is true 2

De�ne t

1

and t

2

such that 8i 2 U i starts after t

1

and terminates before t

2

. Assuming that the critical

sections are �nite, (t

1

; t

2

) can be chosen to be �nite. Let U

0

be the set of subprocesses running in the interval

(t

1

; t

2

), and similarly de�ne A

0

, B

0

, C

0

, D

0

, and E

0

. It is clear that U � U

0

, A � A

0

, B � B

0

, C � C

0

,

D � D

0

, and E � E

0

.

6

The algorithm is livelock free if U 6= ; implies that A

0

[B

0

6= ;. Assuming that U 6= ;, 9i 2 A[B [C [

D [E.

If i 2 E then at i3, Y 6= free. Hence 9j, Y = j and j 2 A

0

[B

0

[C

0

[D

0

which is the last to set Y

before i3. j is either running at i3 or has already terminated. If j is running then A [B [C [D 6= ;. If j

has already terminated then according to Lemma 2, 9k 2 A[B that was executing its critical section while

j terminated. It cannot be the case that k12 < i3 because j is the last to set Y before i3. Therefore it must

be the case that k10 < i3 < k12 then A [B 6= ;. Therefore E 6= ; implies that A

0

[B

0

[C

0

[D

0

6= ;. If

i 2 C then according to Lemma 3, A

0

[B

0

[D

0

6= ;. Finally, if i 2 D then at i8, F 6= out. Hence 9j 2 A[B

such that j10 < i8 < j12. Therefore, A

0

[B

0

6= ;.

Therefore, U 6= ; implies that A

0

[B

0

6= ;. This completes the proof of livelock freedom 2

4 Experiments

In this section we present the experimental results of implementing three mutual exclusion algorithms|

Lamport's second, Alur and Taubenfeld's, and ours|on an 8-processor Silicon Graphics (SGI) Iris 4D/480

multiprocessor and on a larger simulated machine. Based on relative numbers of shared-memory reads and

writes (see table 1), we expected these algorithms to dominate the others. Among them, we expected the

new algorithm to perform the best, both with and without contention. We also expected exponential backo�

to substantially improve the performance of all three algorithms.

It was not clear to us a priori whether Alur and Taubenfeld's algorithm would perform better or worse

than Lamport's algorithm. The former performs more shared memory references on its fast code path, but

has a lower asymptotic complexity on its slow code path. How often each path would execute seemed likely

to depend on the e�ectiveness of backo�. For similar reasons, it was unclear how large the performance

di�erences among the algorithms would be. Our experiments therefore serve to verify expected relative

orderings, determine unknown orderings, and quantify di�erences in performance.

4.1 Real Performance on a Small Machine

To obtain a bound on relative rates of processor execution, we exploited the real-time features of SGI's

IRIX operating system, dedicating one processor to system activity, and running our test on the remaining

seven processors, with interrupts disabled. The system processor itself was lightly loaded, leaving the bus

essentially free. We disabled caching for the shared variables used by the lock algorithms, but enabled it

for private variables and code. We compiled all three locks with the MIPS compiler's highest ({O3) level of

optimization.

We tested two versions of each algorithm: one with limited exponential backo� and one without. The no-

backo� version of Lamport's algorithm matches the pseudo-code on the right side of �gure 1. The no-backo�

version of the new algorithmmatches the pseudo-code in �gure 2, except that after discovering that Y 6= free

in line 3, or that (Y; F) 6= (i; out) in line 8, we wait for Y = free before returning to start. Similarly, the

no-backo� version of Alur and Taubenfeld's lock matches the pseudo-code in �gure 3, except that (1) if Y 6=

free in line 3, we return to start after Y becomes free, rather than continuing, and (2) if Y 6= i at line 7,

we wait for Y = free before returning to start. In the backo� versions of all three algorithms, each repeat

loop includes a delay that increases geometrically in consecutive iterations, subject to a cap. The base,

multiplier, and cap were chosen by trial and error to maximize performance. C code for our experiments

can be obtained via anonymous ftp from cayuga.cs.rochester.edu (directory pub/scalable sync/fast).

Performance results appear in �gures 4 and 5. In both graphs, point (x; y) indicates the number of

microseconds required for one processor to acquire and release the lock, when x processors are attempting

to do so simultaneously. These numbers are derived from program runs in which each processor executes

100,000 critical sections. Within the critical section, each processor increments a shared variable. After

releasing the lock, the processor executes only loop overhead before attempting to acquire the lock again.

Program runs were repeated several times; reported results are stable to about �2 in the third signi�cant

digit. The one-processor points indicate the time to acquire and release the lock (plus loop overhead) in the

absence of contention. Points for two or more processors indicate the time for one processor to pass the lock

on to the next.

7

0

5

10

15

processors

�sec per

critical

section

1 2 3 4 5 6 7

�

�

�

�

�

�

�

4

4

4

4

4

4

4

2

2

2

2

2

2

2

�

�

�

�
�

� �

A&T

4

new �

Lamport
2

SGI

�

Figure 4: Performance results without backo� on the SGI Iris.

0

1

2

3

4

processors

�sec per

critical

section

1 2 3 4 5 6 7

2

2

2

2

2
2

2

� �

�

�

�

�

�

4 4 4

4

4
4

4

�

�

�

� � � �

SGI

�

A&T

4

Lamport
2

new �

Figure 5: Performance results with backo� on the SGI Iris.

8

Processors

Algorithm 1 2 3 4 5 6 7

Alur & Taubenfeld 100 92.9 94.2 29.5 90.0 29.3 85.0

new 100 51.6 65.8 22.8 61.2 15.1 53.9

Table 2: Percentage of critical section entries in the no-backo� experiments made via the fast (no delay)

code path of the delay-based algorithms.

Backo� is clearly important. Without it, performance degrades rapidly with increasing contention. Lam-

port's algorithm degrades smoothly, while the new algorithm and that of Alur and Taubenfeld behave

erratically (see below). By contrast, with backo�, performance of all three algorithms is excellent, and

roughly proportional to the number of shared memory references on the fast code path. With only six such

references, the new algorithm is the fastest.

We instrumented the two delay-based algorithms in an attempt to explain the strange (but highly re-

peatable) behavior of the new algorithm and that of Alur and Taubenfeld in the no-backo� experiments.

The results appear in table 2. We hypothesize that with odd numbers of processors there is usually one

that is able to enter its critical section without executing a delay, while with even numbers of processors the

test falls into a mode in which all processors are frequently delayed simultaneously, with none in the critical

section. This hypothesis is consistent with memory reference traces recorded for similarly anomalous points

in the simulation experiments, as discussed in the following section.

Surprisingly, all three algorithms with backo� outperform the native test and setlocks supported in

hardware on the SGI machine. These native locks employ a separate synchronization bus, and are generally

considered very fast. With backo�, processes execute the fast path in almost every lock acquisition. This

explains the observation that relative performance of the three locks is proportional to the number of shared

memory references in the fast paths in their acquisition/release protocols.

4.2 Simulated Performance on a Large Machine

To investigate the e�ect of backo� on fast mutual exclusion algorithms with only atomic read and write, and

to evaluate the relative performance of the three algorithms when there is a higher level of contention on

a large number of processors, we simulated the execution of these three lock algorithms on a hypothetical

large machine with 128 processors.

Our simulations use the same executable program employed on the SGI machine. It runs this program

under Veenstra's MIPS interpreter, Mint [9], with a simple back end that determines the latency of each

reference to shared memory. We assume that shared memory is uncached, that each memory request spends

36 cycles in each direction traversing some sort of processor/memory interconnect, that competing requests

queue up at the memory, and that the memory can retire one request every 10 cycles. The minimum time

for a shared-memory reference is therefore 82 cycles. For the delay-based algorithms, we used a delay of

2500 cycles, which provides enough time for the memory to service 2 requests from each of 128 processors.

Figures 6 and 7 show that the performance of all three algorithms (and Lamport's in particular) improves

substantially with the use of exponential backo�. Thus backo� makes mutual exclusion feasible even for large

numbers of processors, with no atomic instructions other than read and write.

For �gure 7, backo� constants (base, multiplier, and cap) were selected for each algorithm to maximize its

performance on 128 processors. On smaller numbers of processors this backo� is too high, and performance

is unstable. With greater than 32 processors, the relative order of the algorithms remains the same over a

wide range of possible backo� constants. Most of the individual data points re
ect simulation runs in which

each processor executes 100 critical sections. We ran longer simulations on a subset of the points in order

to verify that the total number of elapsed cycles was linearly proportional to the number of critical section

executions.

All three algorithms were found to be sensitive not only to the choice of backo� constants, but also

to critical and non-critical section lengths. With many variations of these parameters, the overall relative

performance of the three algorithms was always found to be the same. The presented results are with a single

shared-memory update in each critical section, and nothing but loop overhead in the non-critical sections.

9

0

5000

10000

15000

processors

average

processor

cycles per

critical

section

16 32 48 64 80 96 112 128

�

������
��
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

4
444
44444
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

2

2
22

2

2

2
2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Lamport
2

A&T

4

new �

Figure 6: Performance results without backo� on a (simulated) 128-node machine.

0

500

1000

1500

processors

average

processor

cycles per

critical

section

16 32 48 64 80 96 112 128

�

�

�
��
����

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4

4

4

4
4

4

4

4

4

4

4

4

4

4

44

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Lamport
2

A&T

4

new �

Figure 7: Performance results with backo� on a (simulated) 128-node machine.

10

Unstable parts of the graphs in �gures 6 and 7 were investigated using detailed traces of shared memory

references. The apparently anomalous points can be attributed to the big di�erence in execution time

between the fast and the slow paths of the algorithms. With many variations of the backo� constants and

length of critical and non-critical sections, there are always points (numbers of processors) where most of

the time a processor executes the slow path to acquire and release the lock. But these points were found to

change with di�erent combinations of parameters.

The simulation results verify that the new algorithm outperforms the others with its low number of shared

memory references in the fast path. For large numbers of processors, Alur and Taubenfeld's algorithm always

outperforms Lamport's algorithm despite its higher number of shared memory references in the fast path,

due to the increasing cost of the slow path of Lamport's algorithm.

5 Conclusions

Fast mutual exclusion with only reads and writes is a topic of considerable theoretical interest, and of some

practical interest as well. We have presented a new fast mutual exclusion algorithm that has an asymptotic

time complexity of O(n) in the presence of contention, while requiring only 2 reads and 4 writes in the absence

of contention. The algorithm capitalizes on the ability of most memory systems to read and write atomically

at both full- and half-word granularities. The same asymptotic result has been obtained independently

by Alur and Taubenfeld, without the need for multi-grain memory operations, but with a higher constant

overhead: 3 reads and 5 writes on the fast code path.

From a practical point of view, our results con�rm that mutual exclusion with only reads and writes is

a viable, if not ideal, means of synchronization. Its most obvious potential problem|contention|can be

mitigated to a large extent by the use of exponential backo�.

Most modern microprocessors intended for use in multiprocessors provide atomic instructions designed

for synchronization (test and set, swap, compare and swap, fetch and add, load linked/store condi-

tional, etc). For those that do not, system designers are left with the choice between implementing hardware

synchronization outside the processor (as in the synchronization bus of Silicon Graphics machines), or em-

ploying an algorithm of the sort discussed in this paper. Backo� makes the latter option attractive.

On the SGI Iris, our new algorithm outperforms the native hardware locks by more than 30%. For

arbitrary user-level programs, which cannot assume predictable execution rates, Lamport's second algorithm

(with backo�) outperforms the native locks by 25%. These results are reminiscent of recent studies by Yang

and Anderson, who found that their hierarchical read- and write-based mutual exclusion algorithm (line

4 in table 1) provided performance competitive with that of fetch and �-based algorithms on the BBN

TC2000 [10]. Both Lamport's second algorithm and Yang and Anderson's algorithms require space per lock

linear in the number of contending processes. For systems with very large numbers of processes, Merritt and

Taubenfeld have proposed a technique that allows a process to register, on the
y, as a contender for only

the locks that it will actually be using [6].

For the designers of microprocessors and multiprocessors, we remain convinced that the most cost-

e�ective synchronization mechanisms are algorithms that use simple fetch and � instructions to establish

links between processes that then spin on local locations [5]. For machines without appropriate instructions,

however, fast mutual exclusion remains a viable option.

References

[1] R. Alur and G. Taubenfeld. Results about Fast Mutual Exclusion. Technical report, AT&T Bell

Laboratories, 5 January 1993. Revised version of a paper presented at the Thirteenth IEEE Real-Time

Systems Symposium, December 1992.

[2] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors.

IEEE Transactions on Parallel and Distributed Systems, 1(1):6-16, January 1990.

[3] E. W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor, Programming Languages,

pages 43-112. Academic Press, London, 1968.

11

[4] L. Lamport. A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems, 5(1):1-11,

February 1987.

[5] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on Shared-Memory

Multiprocessors. ACM Transactions on Computer Systems, 9(1):21-65, February 1991.

[6] M. Merritt and G. Taubenfeld. Speeding Lamport's Fast Mutual Exclusion Algorithm. Information

Processing Letters, 45(3):137-142, March 1993.

[7] G. L. Peterson. Myths About the Mutual Exclusion Problem. Information Processing Letters,

12(3):115-116, June 1981.

[8] E. Styer. Improving Fast Mutual Exclusion. In Proceedings of the Eleventh ACM Symposium on

Principles of Distributed Computing, pages 159-168, Vancouver, BC, Canada, 9-12 August 1992.

[9] J. E. Veenstra. Mint Tutorial and User Manual. TR 452, Computer Science Department, University

of Rochester, May 1993.

[10] H. Yang and J. H. Anderson. Fast, Scalable Synchronization with Minimal Hardware Support (extended

abstract). In Proceedings of the Twelfth ACM Symposium on Principles of Distributed Computing, (to

appear) 15-18 August 1993.

12

A Proof of Lemma 1

Lemma 1: 8i 2 A [B, 6 9j 2 A [B such that j5 < i12 < j12.

Proof:

Let the order of a subprocess in A [B be the number of subprocesses that set Y to free before it does.

A proof by induction on the order of subprocesses involves proving that: (1) The lemma is true for the

subprocess of order 0, and (2) If the lemma is true for subprocesses of order less than n, then it is true for

the subprocess of order n.

Basis:

� Let i be the subprocess of order 0, and assume that 9j 2 A [B such that j5 < i12 < j12.

� Assume that i5 < j3. Since j5 < i12 then j3 < i12. Then i5 < j3 < i12. Then for Y to be equal to

free at j3 it must be the case that 9k 2 A [B that sets Y to free before j3 i.e. before i12. Then i

is of order greater than 0. Contradiction. Therefore, it must be the case that j3 < i5.

� Assume that j5 < i3. Since i12 < j12 then i3 < j12. Then j5 < i3 < j12. Then for Y to be equal to

free at i3 it must be the case that 9k 2 A [B that sets Y to free before i3 i.e. before i12. Then i is

of order greater than 0. Contradiction. Therefore, it must be the case that i3 < j5.

� Considering the four possible cases for i and j belonging to A or B:

1. i and j 2 A: Since i3 < j5 then i2 < j6 then for X to be equal to j at j6 it must be the case

that i2 < j2. Since j3 < i5 then j2 < i6. Then i2 < j2 < i6 then at i6 X 6= i. Then i 62 A.

Contradiction.

2. i 2 A and j 2 B:

{ Assume that j5 < i5. For Y to be equal to j at j8 it must be the case that j8 < i5. Then

i3 < j5 and j8 < i5, which is not possible with su�cient delay. Therefore, it must be the

case that i5 < j5.

{ Since i5 < j5 then with su�cient delay it must be the case that i10 < j8. For F to be equal

to out at j8 it must be the case that 9k 2 A [B such that i10 < k12 < j8 (it is possible

that k = i). If k = i then for Y to be equal to j at j8, i12 < j5 which contradicts the initial

assumption. If k 6= i then k12 < j5 < i12, then i is not of order 0. Contradiction.

3. i 2 B and j 2 A:

{ Assume that i5 < j5. For Y to be equal to i at i8 it must be the case that i8 < j5. Then

j3 < i5 and i8 < j5, which is not possible with su�cient delay. Therefore, it must be the

case that j5 < i5.

{ Since j5 < i5 then with su�cient delay it must be the case that j10 < i8. For F to be equal

to out at i8 it must be the case that 9k 2 A[B such that j10 < k12 < i8 (it is possible that

k = j). Then i is not of order 0. Contradiction.

4. i and j 2 B: For Y to be equal to i and j at i8 and j8 respectively, it must be either the case

that i8 < j5 or j8 < i5. Then it must be either the case that i3 < j5 and j8 < i5; or j3 < i5 and

i8 < j5. Both cases are not possible with su�cient delay.

� Therefore, 6 9j 2 A [B such that j5 < i12 < j12, i.e. the lemma is true for the subprocess of order 0.

Induction

� Assume that the lemma is true for all subprocesses of order less than n. Let i 2 A[B be the subprocess

of order n.

� Assume that 9j 2 A [B such that j5 < i12 < j12.

13

� Assume that i5 < j3. Since j5 < i12 then j3 < i12. Then i5 < j3 < i12. Then for Y to be equal to

free at j3 it must be either the case that 9k 2 A [B such that i5 < k12 < j3 i.e. i5 < k12 < i12.

This contradicts the inductive hypothesis. Therefore, it must be the case that j3 < i5.

� Assume that j5 < i3. Since i12 < j12 then i3 < j12. Then j5 < i3 < j12. Then for Y to be equal

to free at i3 it must be the case that 9k 2 A [B such that j5 < k12 < i3 i.e. j5 < k12 < j15 and

k12 < i12. This contradicts the inductive hypothesis. Therefore, it must be the case that i3 < j5.

� Considering the four possible cases for i and j belonging to A or B:

1. i and j 2 A: Since i3 < j5 then i2 < j6 then for X to be equal to j at j6 it must be the case

that i2 < j2. Since j3 < i5 then j2 < i6. Then i2 < j2 < i6 then at i6 X 6= i. Then i 62 A.

Contradiction.

2. i 2 A and j 2 B:

{ Assume that j5 < i5. For Y to be equal to j at j8 it must be the case that j8 < i5. Then

i3 < j5 and j8 < i5, which is not possible with su�cient delay. Therefore, it must be the

case that i5 < j5.

{ Since i5 < j5 then with su�cient delay it must be the case that i10 < j8. Then j3 < i10 < j8.

For F to be equal to out at j8 it must be the case that 9k 2 A[B such that i10 < k12 < j8

(it is possible that k = i). If k = i then for Y to be equal to j at j8, i12 < j5 which contradicts

the initial assumption. If k 6= i then k12 < j5 < i12, then i10 < k12 < i12, which contradicts

the inductive hypothesis.

3. i 2 B and j 2 A:

{ Assume that i5 < j5. For Y to be equal to i at i8 it must be the case that i8 < j5. Then

j3 < i5 and i8 < j5, which is not possible with su�cient delay. Therefore, it must be the

case that j5 < i5.

{ Since j5 < i5 then with su�cient delay it must be the case that j10 < i8. Then i3 < j10 < i8.

For F to be equal to out at i8 it must be the case that 9k 2 A[B such that j10 < k12 < i8

(it is possible that k = j). If k = j then for Y to be equal to i at i8, j12 < i5 which

contradicts the initial assumption. If k 6= j then k12 < i5 < j12, then j10 < k12 < j12,

which contradicts the inductive hypothesis.

4. i and j 2 B: For Y to be equal to i and j at i8 and j8 respectively, it must be either the case

that i8 < j5 or j8 < i5. Then it must be either the case that i3 < j5 and j8 < i5; or j3 < i5 and

i8 < j5. Both cases are not possible with su�cient delay.

� Therefore, 6 9j 2 A [B such that j5 < i12 < j12 2

14

