Cache Performance in Vector Supercomputers

L. I. Kontothanassis®
J. E. Smith$

G. J. Faanest

t Computer Science Dept.
University of Rochester
Rochester, NY 14627-0226
{kthanasi,scott } @cs.rochester.edu

! Cray Research Inc.
900 Lowater Rd.
Chippewa Falls, WI 54729
{rabin,gjf} Qromulus.cray.com

R. A. Sugumar?
M. L. Scott!

§ Dept. of Electrical & Computer Engg.
University of Wisconsin-Madison
Madison, WI 53706
jes@ece.wisc.edu

In Proceedings of Supercomputing 199/

Abstract

Traditional supercomputers use a flat multi-bank
SRAM memory organization to supply high bandwidth
at low latency. Most other computers use a hierarchi-
cal organization with a small SRAM cache and slower,
cheaper DRAM for main memory. Such systems rely
heavily on data locality for achieving optimum perfor-
mance. This paper evaluates cache-based memory sys-
tems for vector supercomputers. We develop a sim-
ulation model for a cache-based version of the Cray
Research C90 and use the NAS parallel benchmarks to
provide a large scale workload. We show that while
caches reduce memory traffic and improve the perfor-
mance of plain DRAM memory, they still lag behind
cacheless SRAM. We identify the performance bottle-
necks in DRAM-based memory systems and quantify
their contribution to program performance degrada-
tion. We find the data fetch strategy to be a significant
parameter affecting performance, evaluate the perfor-
mance of several fetch policies, and show that small
fetch sizes improve performance by mazimizing the use
of available memory bandwidth.

1 Introduction

Time-to-solution has traditionally been the metric
that vector supercomputer designs have tried to opti-
mize. As a result they often use high performance
memory systems constructed of SRAM and multi-
stage interconnection networks that can deal with the
high data rate demands of the applications they are
targeted for. Such memory systems provide high per-

IThis work was supported in part by NSF Institutional In-
frastructure grant no. CDA-8822724 and ONR research grant
no. N00014-92-J-1801 (in conjunction with the DARPA Re-
search in Information Science and Technology—High Perfor-
mance Computing, Software Science and Technology program,
ARPA Order no. 8930).

formance regardless of data size and memory referenc-
ing patterns, but are also a significant portion (often
more than half) of the cost of the machine.

Most other types of computer systems are based on
hierarchical memory organizations with a high-speed
cache, backed by slower DRAM-based main memory.
Using DRAM decreases main memory costs, and data
caches reduce both memory access latency and main
memory bandwidth requirements [6, 10]. The suitabil-
ity of data caches for vector supercomputers has been
the subject of controversy for many years. This con-
troversy revolves around a variety of largely untested
claims. For example:

1. Vector workloads do not exhibit enough spatial
and temporal locality to make good use of the
cache.

2. Caches do not have sufficient bandwidth to match
the load bandwidth of the processor.

3. The low latency property of the cache is not as
desirable as in scalar processors, because vec-
tor code usually has prefetching properties, and
therefore can tolerate higher latencies.

There may be some advantages to using a hi-
erarchical memory system in vector supercomput-
ers. Such systems have potential for improving
cost/performance and/or for increasing main mem-
ory size due to the higher density of DRAMs. In-
deed, DRAM-only supercomputers like the Cray M-
90 already have a place in the market for applications
where performance gains from larger memory sizes off-
set performance losses due to lower bandwidth and
higher latency. Furthermore, vector architectures may
be suitable in lower cost, non-supercomputer systems
and, in that environment, effective cache/DRAM sys-
tems are likely to be essential for achieving lower cost.

performance
Paformance (2

Simulator

aout
Trace generator

Figure 1: Simulation model

In this paper we examine the effectiveness of caches
in (highly-detailed simulations of) vector machines,
using medium and large scale vector applications as
the experimental workload. We use runtime as the
main metric of our studies, because the latency tol-
erance of vector codes may render cache miss ratios
misleading. We focus our study on uniprocessor sys-
tem performance. We show that a simple cache or-
ganization only improves performance marginally (or
is worse) over a no-cache DRAM-based system and
is much worse than an SRAM-based system. We then
show that reducing the fetch size to eliminate memory
traffic amplification makes caches a worthwhile addi-
tion to a DRAM memory system and in many cases
competitive to SRAM memory systems as well.

The rest of the paper is organized as follows. Sec-
tion 2 describes our experimental methodology and
application suite. Section 3 presents our results while
section 4 compares our results to those of related work.
Section 5 summarizes our conclusions.

2 Experimental methodology

We use trace driven simulation to study the per-
formance of a variety of memory systems including
SRAM main memory without a cache, DRAM main
memory without a cache, and DRAM main memory
augmented with three different cache organizations.

The simulation environment is based on the
Crystal! tool for generating and interpreting memory
reference traces of vector programs and its structure
is shown in Figure 1.

The trace generator takes an executable produced
by the Cray Fortran Compiler. Because we trace the
execution of hundreds of millions of memory references
and want complete execution timing information, re-
ducing trace file length is a very important consider-
ation. To do this, the trace generator produces two

I Crystal stands for CRaY processors SimulaTor and memory
AnalLyzer.

files: one contains only conditional branch outcomes;
the second contains memory references. The vector
model allows compaction of the memory reference file
because most vector references can be characterized
with a base address, a vector length, and a stride.

The performance simulator takes as input the exe-
cutable and the two trace files. Instruction timing is
modeled in detail but the actual instruction computa-
tions are not done. This is possible because the C-90’s
instruction execution times are data-independent, ex-
cept for memory references and conditional branches,
for which we have traces. The performance simula-
tor uses the executable file as a trace for straight-line
pieces of code and when it encounters a conditional
branch instruction it consults the “branch direction”
file to ensure control flow correctness. On memory ref-
erence instructions, the addresses accessed are taken
from the “memory reference” file.

The CPU component is an accurate (cycle by cy-
cle) simulator of the Cray C-90 processor. The cache
component simulates the behavior of a direct-mapped
cache with 16 banks and 8 cycles of access latency (A
few of our studies consider 2- or 4-way set-associative
caches). We have used 128-byte cache-lines (16 64-
bit words) and have simulated three different cache
sizes: 512Kbytes, 2Mbytes, and 8Mbytes. Depending
on the organization under study, it may or may not
be possible for individual words within a cache line to
be marked invalid. For each memory reference, the
cache tag store is first checked. On a hit, the refer-
ence goes to the appropriate cache bank. Missing on
an absent line forces a line to be allocated for the ref-
erence. If a dirty line has to be evicted from the cache
to accommodate the new line, all the valid words in
the line are written back to memory. The tag store
is updated, and all words in the portion of the block
being fetched are marked valid and outstanding (in
transit from memory to cache). References to words
that are not present in the cache (due to misses or un-
set valid bits) enter a special buffer called the waiting
store where they wait for the data to return. When a
data word returns from memory, the waiting store is
checked for references that are waiting, and references
matching the fetched word are returned to the CPU.
Returning a word to the CPU clears the reservation of
the register that was the target of the load instruction
which caused the word retrieval. Subsequent instruc-
tions that use that register will then be able to proceed
without stalling. The CPU continues processing on a
miss and does not wait for the miss to be serviced. It
stalls only when a subsequent operation tries to use
the register that is the target of an uncompleted load.
There is no limit on the number of outstanding misses

memory banks

| $

| $

cache interconnect

LI

processor

T T data streams

Figure 2: Memory system overview

for a cache bank, however we have a limit on the to-
tal number of outstanding misses for the processor so
that we can place a limit on the size of the waiting
store. Figure 2 illustrates the generic memory system
that we use for simulations.

For vector processors, memory bandwidth is a cru-
cial performance parameter. Consequently, we model
a supercomputer-style highly interleaved main mem-
ory. Main memory is interleaved on word boundaries,
and the number of banks is varied from 16 to 256.
Memory bank conflicts are modeled, but conflicts in
the processor-to-memory interconnection network are
not. Each bank has an unbounded queue where mem-
ory requests to it are sent.

For DRAM memory systems the bank access time
is 35 processor cycles and the cycle time is 70. For
SRAM memories the corresponding numbers are 5 and
8 processor cycles respectively. Those numbers are in
agreement with the speeds of commercial RAM chips
and the clock speed of the C-90. Note that the C-
90 processor can make up to 6 memory references per
clock period (4 reads and 2 writes). This implies that
420 DRAM banks or 30 SRAM banks (512 and 32
respectively when rounded to a power of two) are re-
quired to satisfy the peak request rate, assuming no
bank conflicts.

For the performance simulations, we selected seven
of the eight NAS parallel benchmarks [2]: CG, SP,
LU, MG, FFT, IS, and BT. The EP (embarrassingly
parallel) benchmark has a very small data set and was

considered uninteresting for a memory system study.
Of the benchmarks, BT, LU, and SP are full-sized
computational fluid dynamics applications; they use
iterative techniques to solve partial differential equa-
tions. The rest of the applications are best described
as kernels. MG is a simple multigrid kernel; CG uses
a conjugate gradient method to compute the smallest
eigenvalue of a large, sparse, symmetric positive defi-
nite matrix; FFT is a 3-D partial differential equation
solver using FFI’s; and IS is an integer sort program
using the “counting sort” algorithm[8]. The bench-
mark characteristics are summarized in Table 1. The
benchmarks range in size from 72 to 448M bytes and
contain hundreds of millions to over a billion memory
references. We feel that it is necessary to study bench-
marks of this size to achieve a realistic characteriza-
tion of a supercomputer workload. This is one of the
major features that differentiates our work from other
research on vector data caches. We traced one intera-
tion or one call to the main solution routine from the
computationally intensive, predominately vector part
of each application. Cache hits are therefore solely due
to intra-iteration use. Considering the size of the data
sets for these programs and the size of the caches we
simulate we do not expect to see much inter-iteration
reuse.

3 Results
3.1 Performance on a standard cache ar-
chitecture

We performed an initial set of simulations for all
the benchmarks with the following memory systems.

1. Perfect: all memory references take one cycle.

2. Infinite: this is a cacheless system with infinite
bandwidth. The latency for all references is 59 cy-
cles (network round-trip plus DRAM access) and
there are no memory bank conflicts. Both perfect
and infinite provide standards for comparison.

3. SRAM: a cacheless memory system with SRAM
main memory.

4. DRAM: a cacheless memory system with DRAM
main memory.

5. 64K, 256K, 1M: cache-based systems with cache
sizes of 64K words, 256K words, and 1M words
(512K bytes, 2M bytes and 8M bytes) and a
DRAM main memory.

Runtime (Millions of cps)

Runtime (Millions of cps)

250

150

100

800

L
32

64
#Mem Banks

L
128

256

Figure 3: CG execution times for different mem-
ory systems

1000

Figure 4: SP execution times for different mem-

ory systems

64
#Mem Banks

I
128

256

1400
64K ——
[25M -+---
L M -8
1200 DRAM -
SRAM -
inf -x
Perfect o~
[1000 -
800 -
600 -
= 400 - x
,,,,,,,,,,,,,,,,,,, 2
.
- ° o -0 - -
200 -
77777777 [
1 I 0 I I I
16 32 64 128 256 16 32 64 128
#Mem Banks #Mem Banks

Figure 5: LU execution times for different mem-
ory systems

Figure 6: MG execution times for different mem-

ory systems

Bench- Size Refs | Reads | Writes | Vector | Scalar Unit | N-Unit | Rnd
mark | Mbytes x10% | %108 x 108 x10% | x10% | x106 x106 | x108
CG 80 182.49 | 164.58 17.91 169.13 0.44 | 134.23 0| 47.82
SP 72 | 335.68 | 242.40 | 93.28 | 335.56 0.12 | 248.31 87.25 0
LU 256 393.75 | 282.34 | 111.41 392.83 0.92 70.71 | 322.12 0
MG 448 | 304.89 | 236.74 | 68.15 | 304.49 0.40 | 304.23 0.26 0
FFT 344 532.17 | 314.55 | 217.62 531.36 0.81 | 483.54 47.82 0
IS 248 | 316.65 | 199.74 | 116.91 | 293.62 1.58 | 231.19 0| 83.88
BT 344 | 1056.25 | 778.30 | 277.95 | 1055.13 1.12 | 823.0 | 232.13 0

256

Table 1: Application Characteristics when compiled with the Cray Research Parallelizing-Vectorizing Compiler.

1400

64K <—
25M -+~
1200 DRAM *]
SRAM -
inf %~
Perfect -o--
1000 J
800 4
600 4
400 N E
200 gmimemnninn s R * &
0 ‘ ‘ ‘
16 32 64 128 256
#Mem Banks
Figure 7: IS execution times for different memory sys-
tems
Application | VL Miss rate
64Kw | .25Mw | 1Mw
CG 109.8 | 4.01% | 3.57% | 3.37%
Sp 85.8 | 2.71% | 1.89% | 1.66%
LU 48.0 | 4.53% | 3.73% | 3.21%
MG 106.4 | 10.52% | 3.05% | 1.21%
IS 124.2 | 23.96% | 21.28% | 9.12%
FFT 126.7 | 10.29% | 2.00% | 0.79%
BT 69.3 | 8.80% | 6.42% | 1.88%
Table 2: Average Vector Lengths and Miss rates for the

NAS

parallel benchmarks

Figures 3 to 8% show the execution times of the
benchmarks for the different memory systems as a
function of the number of main memory banks. The

grap

1.

hs lead to the following observations.

The two flat lines, indicating performance for the
perfect memory system and the infinite band-
width system are close together in several cases.
Their closeness indicates the relative importance
of latency for a particular benchmark. Both lines
represent unlimited bandwidth systems, but per-
fect has single cycle latency and infinite has 59
cycle latency. The performance extremes occur
in FFT and MG, where infinite and perfect per-
formance are almost identical and LU where infi-
nite is about 50% slower than perfect. The differ-
ent behavior among applications can be explained
by looking at the average vector length for each

2We have omitted the graph for FFT due to lack of space

and s

ince it is very similar to that for MG

2000
64K o
25M ~+--
M 8-
DRAM -
SRAM —&--
1500 |- inf - |
Perfect -o--
Q. *.
2 * \
g
5
2
S 1000 []
s)
1 h
2 °
£
g
['4
.
4
;;;;;
500 F T e B T -)
o s °
0 y ‘ :
e p= 4 128 256

#Mem Banks

Figure 8: BT execution times for different memory sys-
tems

16words,

2 BN words

ca sP Lu MG s FET

Figure 9: Traffic ratio for 16 and 4 word lines on a 64Kw
cache

Memory Traffc Ratio

benchmark (Table 2). Applications with short
vectors are more sensitive to latency because they
cannot amortize the vector start-up cost over a
large number of references. IS deviates from the
above generalization. It is relatively sensitive to
latency, despite its long vector lengths. Its be-
havior can be attributed to the relatively high
number of scalar references compared to the other
benchmarks and the large number of random vec-
tor accesses.

2. SRAM performance tends to be bracketed by
performance for the infinite and perfect systems.
With 32 banks, SRAM has adequate bandwidth
to support the observed memory reference rate.
Hence, its performance is similar to the two sys-

tems with infinite bandwidth, but its performance
falls in between the two because its latency falls in
between. For 16 bank systems, bandwidth is an
issue for some of the benchmarks and the SRAM
performance is a little worse than the infinite case.

3. DRAM performance is very sensitive to the num-
ber of banks. This is due to restricted bandwidth.
It takes 420 banks of DRAM to support the max-
imum demand of the processor. With only 32
banks, performance is typically about 5 to 10
times worse than the unlimited bandwidth mem-
ory system. Asymptotically, DRAM performance
with a very large number of banks approaches the
infinite system.

4. When data caches are added to the DRAM sys-
tems, the results become very dependent on spe-
cific benchmarks. In two of the benchmarks, CG
and SP, caches improve performance significantly.
Furthermore, for these two benchmarks there are
improvements for all cache sizes. With CG, per-
formance for all three caches approach the in-
finite performance with 256 DRAM banks. In
SP, this is true of the medium and large caches;
the small cache performance is closer to DRAM
performance at 256 banks. In other benchmarks,
performance with data caches can be worse than
with no cache at all, depending on the cache
size. The worst case is IS where none of the
caches improves performance. In other bench-
marks, the large caches give better performance,
but the small cache does worse.

Caches can lead to degraded performance because
they sometimes amplify memory bandwidth require-
ments. This occurs because a cache miss results in 16
words (a full line) being fetched from main memory.
If some of these words are unused before the line is
replaced (due to low spatial locality) then bandwidth
was wasted in fetching the unused portion of the line.
Non-unit stride or gather/scatter references are an ob-
vious cause of fetches of unused data. Furthermore,
this effect will be greater with smaller caches where
there is less chance that words in a line will be used
before the line has to be replaced.

Figures 9 and 10 show the memory traffic ratios for
six of our applications® with a 16 word and a 4 word
cache line on two different cache sizes. The mem-
ory traffic ratio is the number of words transferred
between main memory and a data cache divided by
the number of words transferred in a system without

3We were unable to gather the data for BT due to lack of
time

16words,

< EEEE words

Memory Traffc Ratio

ca sp Lu MG s FET

Figure 10: Traffic ratio for 16 and 4 word lines on a
1Mw cache

a cache. Hence, the unit line represents the relative
memory traffic for a cacheless system. In all cases
memory traffic is less with the smaller line size (with
significant reductions for some of the applications).
The ramifications of this finding are further discussed
in section 3.2.

Application Miss rate
64Kw | .25Mw 1Mw

CG 60.30% | 56.13% | 53.68%
SP 36.23% | 29.39% | 25.92%
LU 36.03% | 32.10% | 30.73%
MG 65.15% | 46.06% | 18.87%
IS 66.11% | 64.15% | 44.94%
FFT 79.25% | 30.45% | 6.51%
BT 45.57% | 38.95% | 27.75%

Table 3: Average Miss rates for the NAS parallel bench-
marks using the single word fetch strategy

3.2 Line and fetch size effects on perfor-
mance

In the previous section we saw that using long cache
lines can sometime cause memory traffic amplification
due to the fetching of unused data. While the prefetch
effect of long cache lines may be desirable on a micro-
processor based system with limited abilities to toler-
ate memory latency, it is of limited use in the types
of machines we are examining. Vector machines with
sophisticated compiler support can tolerate latencies
quite well; the main benefit of a cache is to reduce the
main memory bandwidth requirements.

Relative Performance

ca sP LU BT 1S MG FFT

Figure 11: Normalized execution time under different
fetching policies for a 64Kw cache

This would tend to indicate that single word lines
should be used. Unfortunately such an approach leads
to a high overhead because each word of data in the
cache must be accompanied by a tag—an overhead of
30 to 50%. An alternative solution is to use a sector
cache [9], in which a line is divided into a number of
sectors, each with a valid bit. Tags are maintained for
lines, but only the data belonging to a sector is fetched
on a miss. Any sector fetched in this way is marked
valid; other sectors are invalid. The type of sector
cache we are interested in uses single word sectors—
i.e. there is a valid bit per word. Smaller fetch sizes
will decrease the amount of memory traffic but will
also decrease spatial locality hits, thus increasing av-
erage memory access latency. The latency tolerances
of vector computers tips the balance in favor of the
reduced memory traffic. A more elaborate design vari-
ant exploits variable fetch sizes by taking advantage
of vector stride information available in the vector in-
struction causing a miss. We can use this information
to invoke a full line fetch for unit stride accesses and
single word fetches for all other references.

Figures 11 and 12 show normalized execution times
for the seven benchmarks under the three different
fetching policies (single word fetch, whole line (16
words) fetch, and variable fetch) for 64Kw and 1Mw
caches with a 256 bank DRAM main memory. Ex-
ecution time with an SRAM memory system is also
provided for comparison purposes. The unit line rep-
resents the execution time of a cacheless DRAM mem-
ory system. Miss rates for the single word fetch policy
are shown in table 3.

The single word fetch policy is the most consistent
at improving application performance. It is interesting

SRAM
1wfetch

16Wfetch
Var. fetch

Relative Performance

ca sP LU BT 1S MG FFT

Figure 12: Normalized execution time under different
fetching policies for a 1Mw cache

to note that better performance is associated with the
higher miss ratios as can be seen from tables 2 and 3.
The explanation is simple; the cost of a miss is radi-
cally different across the single word fetch and whole
line fetch organizations. Whole line fetches cost 16
times as much as single word fetches and low miss rates
do not necessarily translate to less memory traffic. CG
is the only application that performs better with a
whole line fetch policy. This is surprising because CG
has a fairly high proportion of gather/scatter refer-
ences. Closer inspection of the benchmark reveals that
CG still has good spatial locality; that is, its cache
“working set” is small.

The variable fetch policy tries to take advantage of
unit stride accesses but the benefit is small due to the
latency tolerance property of the code. Furthermore in
cases of pathological conflicts (as is the case in some
of the 64K cache experiments) fetching a whole line
can be detrimental to performance even for unit stride
accesses, since the line may be replaced due to conflicts
before it is fully used.

The improved performance with small fetch sizes
is in conflict with the result obtained by Fu and Pa-
tel [4] in a similar study. They found that large fetch
sizes were desirable and significantly improved per-
formance. The reason for this difference is the type
of processor simulated. Fu and Patel assumed that
processors stall on a cache miss waiting for the data
to return. Under such assumptions spatial locality
becomes crucial to performance and the tradeoff of
memory traffic to miss ratio is resolved in the oppo-
site way.

In this study we have not taken into account page or
nibble mode DRAMSs. For such systems that can pro-

vide multiple successive words at low cost, larger sec-
tor sizes may be preferable. The preferred sector size
will depend on cache parameters like size and associa-
tivity and application/compiler properties like spatial
locality and data conflicts. If lines are replaced before
the words in a sector can be used, large sector sizes
will provide no performance benefits.

3.3 Sources of memory overhead

We have identified three categories that contribute
to degraded memory performance.

o Overall limited bandwidth. Performance is de-
graded because more memory references are is-
sued from the processor than the memory system
can handle, even if the references are evenly dis-
tributed among the banks.

e Memory bank conflicts due to uneven reference
patterns. In this case there are some “hot” mem-
ory banks. So while the memory system as a
whole may be underutilized, references that ac-
cess the same bank may be delayed because of
bank conflicts.

e Standard memory latency. Performance is de-
graded because of the amount of memory latency
even in the absence of bank contention.

The addition of a cache doubles the number of cat-
egories to six. The extra three categories are identical
to the ones presented above but apply to the cache
subsystem.

Figure 13 shows the execution breakdown of four of
our benchmarks into processor time and the different
types of memory overhead we have identified above.
The bars from left to right represent the runtime for
a no-cache DRAM memory system with 128 banks, a
1Mw cache system with 128 banks of main memory, a
no-cache DRAM system with 256 banks, and a 1Mw
cache system with 256 banks of main memory. The
different overhead categories are: BC for bank conflicts,
BW for bandwidth, and lat for latency. The prefix M-
or C- signifies whether the overhead is due to the cache
or the memory subsystem.

As can be seen caches reduce the amount of perfor-
mance loss in the memory system for all applications,
albeit for different reasons. In CG, all three overheads
in the cacheless system are reduced when going to a
cached system. The most dramatic improvements are
in the memory bank conflict areas, although latency
is reduced as well. We believe that the unit stride
references of CG benefit from the increase in band-
width while the random access and scalar references

(of which CG has a fair number) benefit mostly from
the reduction in latency. When going from a cache-
less 128 bank system to a cacheless 256 banks system,
overall bandwidth limitations are relieved, but losses
due to hot banks remain virtually unchanged.

In SP, the biggest performance improvements are
due to latency reductions. However, in the 128 bank
system there are some improvements due to better
bandwidth. The LU characteristics are similar to SP;
i.e. the biggest improvements are due to latency re-
ductions. The results for LU and SP are consistent
with the observation that these two applications have
a large number of short vector operations (mostly LU)
that are more sensitive to latency.

In MG, both better bandwidth and latency con-
tribute to performance improvement. Because band-
width overhead is higher in the cacheless system, the
overall improvement due to better bandwidth is higher
than the improvement due to lower latency.

4 Related work

Vector caches have been studied previously by a
number of researchers using miss ratios as the main
performance metric [1, 3, 11]. Our work reports miss
ratios similar to those observed by those studies, (i.e.
predominantly unit stride applications have lower miss
ratios than applications with a lot of non-unit stride
references) but also provides the correlation of miss
ratios with run time which is the ultimate system per-
formance metric.

Gee and Smith [5] also report run time results for
vector caches but with a significantly different work-
load and system architecture. They compare caches
with a limited bandwidth flat memory (8 or 16 way
interleaving only) and use applications that have small
data sets and predominantly unit strides. Their envi-
ronment is therefore more “cache-friendly” than ours,
and they do not observe the memory traffic amplifi-
cation phenomenon that appears in our experiments.
Furthermore since their flat memory has considerably
less bandwidth than the ones we consider, the reported
benefits due to the addition of the cache are much
higher than the ones we observe. The issue of cache
fetch sizes has also been looked at by Fu and Patel [4]
(see the discussion in section 3.2).

Hsu and Smith [7] study cached DRAMs for vector
multiprocessors. They show that a shared cache at the
memory can increase effective memory bandwidth by
factors of about two to four. We recommend further
studies to evaluate the tradeoff between shared and
per-processor caches.

Exec. Time (M cps)

Exec. Time (M cps)

200+
] _ H cBC
160- VLBC
] B csw
120+ — M-BW
] W clat
804 H O Mat
] B cru
404
o]
DRAM 1M DRAM 1M
128b 128b 256b 256b
Memory System
CG
450
400 H csC
350 || M-BC
300 B | B csw
250 M-BW
200 B cuat
M-lat
150 L1 e
B cru
100
50
0

DRAM 1M DRAM 1M
128b 128b 256b 256b

Memory System

LU

Exec. Time (M cps)

Exec. Time (M cps)

250+
1 B cBc
2004 M-BC
] | B csw
1504 M-BW
] B cilat
100+ O M-at
] B cru
50
0.
DRAM 1M DRAM 1M
128b 128b 256b 256b
Memory System
SP
200+]
] H csC
1604 M-BC
| B cBw
1204 B M-BW
; B clat
80+] M-at
] B cru
40
0]

DRAM 1M DRAM 1M
128b 128b 256b 256b

Memory System

MG

Figure 13: Execution time breakdown for system with and without caches

5 Conclusions

In this paper we have looked at the performance im-
pact of caches and cache fetching strategies in vector
processors using detailed simulations of state of the art
vector machines. We have shown that SRAM mem-
ory systems provide the best overall performance with
a relatively small number of memory banks. Their
use in supercomputer-class applications where time-
to-solution is at a premium appears to be justified.
For some of the benchmarks, performance with a data
cache plus DRAM comes close to SRAM performance,
but about eight times as many DRAM memory banks
are required to do so.

For systems where cost/performance is the main
goal, rather than time-to-solution, lower cost systems
based on DRAM main memory and local caches can
help mitigate the two big performance problems with
DRAM systems: relatively high latency and low band-
width. Despite the unfriendliness of the benchmark
suite toward cache memories we find that we can ob-
tain competitive performance using a small fetch size
(1 word) on every miss. The latency tolerating prop-
erty of vector codes allows us to trade a higher miss
ratio for a reduction in main memory traffic. We be-
lieve that caches can be used to provide cost/effective
memory systems for vector processors, especially with
the maturing of compilers that may allow applications
to exploit higher cache reuse.

Acknowledgements

We would like to thank Ram Gupta for his helpful
insights and comments on this paper.

ISSN 1063-9535. Copyright (c) 1994 IEEE. All
rights reserved.

Personal use of this material is permitted. How-
ever, permission to reprint/republish this material
for advertising or promotional purposes or for creat-
ing new collective works for resale or redistribution
must be obtained from IEEE. For information on ob-
taining permission, send a blank email message to
info.pub.permission@ieee.org.

By choosing to view this document, you agree to
all provisions of the copyright laws protecting it.

10

References

[1]

2]

3]

[4]

[7]

(8]

[10]

[11]

W. Abu-Sufah and A. D. Malony. Vector Pro-
cessing on the Alliant FX/8 Multiprocessor. In
International Conference on Parallel Processing,
pages 559-566, August 1986.

D. Bailey, J. Barton, T. Lasinski, and H. Simon.
The NAS Parallel Benchmarks. Report RNR-
91-002, NASA Ames Research Center, January
1991.

R. S. Clark and T. L. Wilson. Vector System
Performance on the IBM 3090. [BM System
Journal, 25(1):63-82, 1986.

J. W. C. Fuand J. H. Patel. Data Prefetching in
Multiprocessor Vector Cache Memories. In Pro-
ceedings of the Eighteenth International Sympo-
stum on Computer Architecture, pages 54-63,
Toronto, Canada, May 1991.

J. D. Gee and A. J. Smith. The Performance
Impact of Vector Processor Caches. Proceedings
of the Twenty-Fifth Hawaii International Con-
ference on System Sciences, 1:437-449, January
1992.

J. R. Goodman. Using Cache Memory to Re-
duce Processor/Memory Traffic. In Proceedings
of the Tenth International Symposium on Com-
puter Architecture, pages 124-131, June 1983.

W.-C. Hsu and J. Smith. Performance of Cached
DRAM Organizations in Vector Supercomput-
ers. In Proceedings of the Twentieth Inter-

national Symposium on Computer Architecture,
San Diego, CA, May 1993.

D. E. Knuth. Sorting and Searching, volume 3 of
The Art of Computer Programming. Addison-
Wesley, Reading, MA, 1973.

J. S. Liptay. Structural Aspects of the Sys-
tem/360 Model 85, Part II: The Cache. IBM
Systems Journal, 7(1):15-21, 1968.

A. J. Smith. Cache Memories. ACM Computing
Surveys, 14(3):473-530, September 1982.

K. So and V. Zecca. Cache Performance on Vec-
tor Processors. In Proceedings of the Fifteenth
International Symposium on Computer Archi-
tecture, pages 261-268, Honolulu, HI, June 1988.

