
ELSEVIER Information Processing Letters 60 (1996) 15 1-1 57

Information
Processing
Letters

An efficient algorithm for concurrent priority queue heaps
Galen C . Hunt ', Maged M. Michael *, Srinivasan Parthasarathy I , Michael L. Scott '

Department of Computer Science, University of Rochester, Rochester, NY 14627-0226, USA

Received 30 March 1995; revised 2 September 1996
Communicated by G.R. Andrews

Abstract

We present a new algorithm for concurrent access to array-based priority queue heaps. Deletions proceed top-down as
they do in a previous algorithm due to Rao and Kumar (1988), but insertions proceed bottom-up, and consecutive insertions
use a bit-reversal technique to scatter accesses across the fringe of the tree, to reduce contention. Because insertions do not
have to traverse the entire height of the tree (as they do in previous work), as many as 0 (M) operations can proceed in
parallel, rather than O(log M) on a heap of size M. Experimental results on a Silicon Graphics Challenge multiprocessor
demonstrate good overall performance for the new algorithm on small heaps, and significant performance improvements
over known alternatives on large heaps with mixed insertionldeletion workloads.

Keywords: Concurrency; Data structures; Priority queue; Heap; Bit-reversal; Synchronization

1. Introduction

The heap data structure is widely used as a priority
queue [2] . The basic operations on a priority queue are
insert and delete. Insert inserts a new item in the queue
and delete removes and returns the highest priority
item from the queue. A heap is a binary tree with the
property that the key at any node has higher priority
than the keys at its children (if they exist). An array
representation of a heap is the most space efficient:
the root of the heap occupies location 1 and the left
and right children of the node at location i occupy the
locations 2i and 2i + 1, respectively. No items exist in
level 1 of the tree unless level 1 - 1 is completely full.

Many applications (e.g. heuristic search algorithms,
graph search, and discrete event simulation [5 ,6])

* Corresponding author. Email: michael@cs.rochester.edu.
Email: {gchunt,srini,scott} @cs.rochester.edu.

on shared memory multiprocessors use shared prior-
ity queues to schedule sub-tasks. In these applications,
items can be inserted and deleted from the heap by
any of the participating processes. The simplest way
to ensure the consistency of the heap is to serialize the
updates by putting them in critical sections protected
by a mutual exclusion lock. This approach limits con-
current operations on the heap to one. Since updates
to the heap typically modify only a small fraction of
the nodes, more concurrency should be achievable by
allowing processes to access the heap concurrently as
long as they do not interact with each other.

Biswas and Browne [11 proposed a scheme that al-
lows many insertions and deletions to proceed concur-
rently. Their scheme relies on the presence of main-
tenance processes that dequeue sub-operations from a
FIFO work queue. Sub-operations are placed on the
work queue by the processes performing insert and
delete operations. The work queue is used to avoid

0020-0190/96/$12.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved.
PI1 S0020-0190(96)00148-2

152 G.C. Hunt et al./Information Processing Letters 60 (1996) 151-157

deadlock due to insertions and deletions proceeding
in opposite directions in the tree. The need for a work
queue and maintenance processes causes this scheme
to incur substantial overhead. Rao and Kumar [7]
present another scheme that avoids deadlock by us-
ing top-down insertions, where an inserted item has
to traverse a path through the whole height of the heap
(insertions in a traditional sequential heap proceed
bottom-up) . Jones [3] presents a concurrent prior-
ity queue algorithm using skew heaps. He notes that
top-down insertions in array-based heaps are ineffi-
cient, while bottom-up insertions would cause dead-
lock if they collide with top-down deletions without
using extra server processes.

This paper presents a new concurrent priority
queue heap algorithm that addresses the problems
encountered in previous research. On large heaps the
algorithm achieves significant performance improve-
ments over both the serialized single-lock algorithm
and the algorithm of Rao and Kumar, for various
insertionldeletion workloads. For small heaps it still
performs well, but not as well as the single-lock
algorithm. The new algorithm allows concurrent in-
sertions and deletions in opposite directions, without
risking deadlock and without the need for special
server processes. It also uses a "bit-reversal" tech-
nique to scatter accesses across the fringe of the tree
to reduce contention.

2. The new algorithm

The new algorithm augments the standard heap data
structure [2] with a mutual-exclusion lock on the
heap's size and locks on each node in the heap. Each
node also has a tag that indicates whether it is empty,
valid, or in a transient state due to an update to the
heap by an inserting process. Nodes that contain no
data are tagged EMPTY. Nodes that are available for
deletion are tagged AVAILABLE. A node that has been
inserted, and is being moved into place, is tagged with
the process identifier (p id) of the inserting process.

Array based heaps can be considered as a binary tree that is
filled at all levels except possibly the last level. In skew heaps
this restriction is relaxed; the representative binary tree need not
be filled at all the intermediate levels.

A delete operation in the new algorithm, as in the
sequential algorithm, starts by reading the data and
priority of the root of the heap and then replacing them
with those of as rightmost node in the lowest level of
the heap. Then, the delete operation "heapifies" the
heap. It compares the priority of the root with that of
each of its children (if any). If necessary, it swaps
the root item with one of its children in order to en-
sure that none of the children has priority higher than
the root. If no swapping is necessary the delete oper-
ation is complete; it returns the data that was origi-
nally in the root. Otherwise, the operation recursively
"heapifies" the subheap rooted at the swapped child.
To handle concurrency all these steps are performed
under the protection of the locks on the individual
nodes and a lock on the size of the heap. In each
step of the heapify operation, the lock of the subtree
root is already held. It is not released until the end of
that step. Prior to comparing priorities, the locks of
the children are acquired. If swapping is performed,
the lock on the swapped child is retained through the
next recursive heapify step, and the locks on the root
and the unswapped child are released. Otherwise, all
the locks are released, and the delete operation com-
pletes.

An insert operation starts by inserting the new data
and priority in the lowest level of the heap. If the in-
serted node is the root of the heap, then the insert oper-
ation is complete. Otherwise, the operation compares
the priority of the inserted node to that of its parent.
If the child's priority is higher than that of its parent,
then the two items are swapped, otherwise the insert
operation is complete. If swapping was necessary, then
the same steps are applied repeatedly bottom-up un-
til reaching a step in which no swapping is necessary,
or the inserted node has become the root of the heap.
To handle concurrency, all these steps are performed
under the protection of the locks and tags on the indi-
vidual nodes and the lock on the size of the heap. In
every step of the bottom-up comparison, the lock of
the parent is acquired first, followed by the lock on the
inserted node. After comparison and swapping (if nec-
essary), both locks are released. Locks are acquired
in the same order as in the delete operation, parent-
child, to avoid deadlock. This mechanism requires re-
leasing and then acquiring the lock on the inserted
item between successive steps, opening a window of
vulnerability during which the inserted item might be

G.C. Hunt et at. /Information Processing Letters 60 (1996) 151-157 153

swapped by other concurrent operations. Tags are used
to resolve these situations.

An insert operation tags the inserted item with its
pid. In every step, an insert operation can identify the
item it is moving up the heap even if the item has been
swapped upwards by a deletion. In particular, tags are
used in the following manner:

If the tag of the parent node is equal to AVAILABLE
and the tag of the current node is equal to the insert
operation's pid, then no interference has occurred
and the insertion step can proceed normally.
If the tag of the parent node is equal to EMPTY,
then the inserted item must have been moved by a
delete operation to the root of the heap. The insert
operation is complete.
If the tag of the current node is not equal to the op-
eration'spid, then the inserted item must have been
moved upwards by a delete operation. The insert
operation moves upward in pursuit of the inserted
item.
In some definitions of heaps [2] , all nodes in the last

level of the heap to the left of the last item have to be
non-empty. Since this is not required by priority queue
semantics, in the new algorithm we chose to relax
this restriction to reduce lock contention, and thereby
permit more concurrency. Under our relaxed model,
consecutive insertions traverse different sub-trees by
using a "bit-reversal" technique similar to that of an
FFT computation [2] . For example, in the third level
of a heap (nodes 8-15, where node 1 is the root), eight
consecutive insertions would start from the nodes 8,
12, 10, 14,9, 13, 11, and 15, respectively. Notice that
for any two consecutive insertions, the two paths from
each of the bottom level nodes to the root of the heap
have no common nodes other than the root. This lack
of overlap serves to reduce contention for node locks.
Consecutive deletions from the heap follow the same
pattern, but in reverse order. The relation between the
indices of parents and children remains as it is in heaps
without bit reversal. The children of node i are nodes
2i and 2i + I, and the parent of node i > 1 is node
i / 2 . Moreover, if a node has only one child, it is still
2i, never 2i + 1.

Since insertions in the new algorithm do not have
to traverse the whole height of the heap, they have a
lower bound of 0 (1) time, while the algorithm due to
Rao and Kumar requires 0 (log M) time for insertions
(top-down) in a heap of size M, as insertions have

record dataitem
lock := FREE, tag := EMPTY; priority := 0

record heap
lock := FREE; bit-reversed-counter size; dataitem i t e m

define LOCK(x) as lock(heap.items [d .lock)
define UNLOCK(x) as unlock(heap.items[x 1 .lock)
define TAG(^) as heap.items[x] .tag
define PRIORITY (x) as heapitems [x] .priority

procedure concurrentinsert(prioriiy, heap)
I / Insert new item at bottom o f the heap.
lock(heap.lock); i := bit-reversedincrement(heap.size)
LOCK(i) ; unlock(heap.lock) ; PRIORITY (i) := priority
TAG(i) := pi4 UNLOCKS)

/ 1 Move item towards top o f heap while it has higher priority
/ I than parent.
while i > 1 do

parent := i/2; LOCK(parent); LOCK(i)
if TAG(parent) = AVAILABLE and TAG(i) = pid then

if PRIORITY (i) > PRIORITY (parent) then
swapitems(i, parent); i := parent

else
TAG(i) := AVAILABLE; i := 0

else if TAG(parent) = EMPTY then
i := 0

else if TAG(i) # pid then
i := parent

UNLOCK(i) ; UNLOCK(parent)
enddo
if i = 1 then

LOCK(()
if TAG(i) = pid then

TAG(i) := AVAILABLE
UNLOCK(i)

Fig. 1 . Concurrent insert operation. For conciseness, we treat
priority as i f it were the only datum in each dataitem.

to traverse the entire height of the heap. In addition to
reducing traversal overhead, the bottom-up insertion
approach of the new algorithm reduces contention on
topmost nodes.

We next consider the space requirements for algo-
rithms under consideration. Let M be the maximum
number of nodes in the heap, and P the maximum
number of processes operating on the heap. Assume
that each lock requires one bit of memory. The new
algorithm requires 1 bit for the lock on the heap size
variable, 3 log M bit-reversal bits, and 1 + log P lock
and tag bits per node, for a total of 1 + 3 log M + (1 +
log P) M bits of memory. The single lock algorithm
requires 1 bit of memory for the single lock. Rao and
Kumar's algorithm requires 3 bits per node for a total

154 G.C. Hunt et at./Information Processing Letters 60 (1996) 151-157

function concurrent-delete(heap)
/ / Grab item from bottom o f heap to replace to-be-deleted
/ / top item.
lock(heaplock)
bottom := bit-reversedJdecrement(heap.size);
LOCK(bottom); unlock(11eap.lock)
priority := PRIORITY(bottom)
TAG(bottom) := EMPTY; UNLOCK(bottorn)

/ / Lock first item. Stop i f it was the only item in the heap.
LOCK(I) ; if TAG(1) = EMPTY then UNLOCK(1)
return priority

/ / Replace the top item with the item stored from
/ / the bottom.
swap(priority, PRIORITY(1)) ; TAG(I) := AVAILABLE

/ / Adjust heap starting at top. Always hold lock on item
/ / being adjusted.
i := 1
while (i < MAX-SIZE / 2) do

left := i * 2; right := i * 2 + 1 ; LOCK(1eft); LOCK(righ2)
if TAG(1eft) = EMPTY then

UNLOCK(rig1zt) ; UNLOCK(left) ; break
else if TAG(rig1zt) = EMPTY
or PRIORITY (left) > PRIORITY (right) then

UNLOCK(righ2); child := left
else

UNLOCK(1eft); child := right

/ / I f child has higher priority than parent then swap.
/ / I f not, stop.
if PRIORITY (child) > PRIORITY (i) then

swapitems(child, i) ; UNLOCK(i); i := child
else

UNLOCK(chi1d) ; break
enddo
UNLOCK(i)
return priority

Fig. 2. Concurrent delete operation.

of 3M bits of memory. If bit reversal were added to
Rao and Kumar's algorithm, it would require 3 log M
extra bits, for a total of 3 log M + 3M bits of mem-
ory. The single lock algorithm is significantly more
space efficient than the multiple lock algorithms. Rao
and Kumar's algorithm requires less space than the
new algorithm (@(M) for the former compared to
@(M\og P) for the latter). In practice, however, bit
packing results in false sharing in cache-coherent sys-
tems, and should therefore be avoided. If overhead bits
for different nodes occupy different memory words,
and if the number of processes operating on the heap
does not exceed 2" - 2, where n is the number of

record bit-reversedsounter
counter := 0 ; reversed := 0 ; highhit := - 1

function bit-reversedincrement(c)
c.counter := c.counter + 1
for bit := c.high-bit - 1 to 0 step - 1

c.reversed := not(c.reversed, bit)
if test(c.reversed, bit) = TRUE then

break
if bit < 0 then

c.reversed := c.counter; c.highhit := c.high-bit + I
return c.reversed

function bit-reverseddecrement(c)
c.counter := c.counter - 1
for bit := c.highhit - 1 to 0 step - 1

c.reversed := not(c.reversed, bit)
if test(c,reversed, bit) = FALSE then

break
if bit < 0 then

c.reversed := c.counter; c.highhit := c.high-bit - 1
return c.reversed

Fig. 3. A bit-reverse counter.

bits per memory word, then the space overhead of the
new algorithm is the same as that of Rao and Kumar's
algorithm, except for three words for the bit-reverse
counter.

Figs. 1 and 2 present pseudo code for the insert and
delete operations of the new algorithm, respectively.
Initially, all locks are free, all node tags are set to
EMPTY, and the number of elements in the heap is zero.

Bit reversals can easily be calculated in O(n) time,
where n is the number of bits to be reversed. For long
sequences of increments only or decrements only, we
can improve this bound to an amortized time of 0(1)
by remembering the high-order bit (see Fig. 3). Al-
ternating increments and decrements may still require
O(n) time.

3. Experimental methodology

We use a 12-processor Silicon Graphics Challenge
multiprocessor to compare the performance of the
new algorithm, the single-lock algorithm, and Rao and
Kumar's algorithm. We tried the latter both with and
without adding our bit-reversal technique, in order to
determine if it suffices to improve performance. For
mutual exclusion we used test-and-test-and-set locks
with backoff using the MIPS R4000 load-linked

G.C. Hunt et al. /Information Processing Letters 60 t4995) 151-157

17 level 100,000 ins 17 level 100,000 del

new multi-lock -+

R&K multi-lock +

R&K multi-lock w/ bit-rev 0

single lock *

1 2 3 4 5 6 7 8 9 1 0 1 1
processors

new multi-lock -
R&K multi-lock -+---

R&K multi-lock wl bit-rev e -
single lock

1 2 3 4 5 6 7 8 9 1 0 1 1
processors

Fig. 4. Performance results for (a) 100,000 insertions and (b) 100,000 deletions.

and store-condit ional instructions. On small-
scale multiprocessors like the Challenge, these locks
have low overhead compared to other more scalable
locks [4].

To evaluate the performance of the algorithms under
different levels of contention, we varied the number
of processes in our experiments. Each process runs on
a dedicated processor in a tight loop that repeatedly
updates a shared heap. Thus, in our experiments the
number of processors corresponds to the level of con-
tention. We believe these results to be comparable to
what would be achieved with a much larger number
of processes, each of which was doing significant real
work between queue operations. In all experiments,
processors are equally loaded. We studied the perfor-
mance under workloads of insertions only, deletions
only, and various mixed insertldelete distributions. We
also varied the initial number of full levels in the heap
before starting time measurements to identify perfor-
mance differences with different heap sizes. For the
experiments we used workloads of around 100,000 to
200,000 heap operations. Experiments with smaller
workloads are too fast to time. Inserted item priori-
ties were chosen from a uniform distribution on the
domain of 32-bit integers.

The sources for all the algorithms were carefully
hand-optimized. For example in the multiple-lock al-
gorithms we changed the data layout to reduce the ef-
fect of false sharing. This was not applied to the single
lock algorithm as it does not support concurrent ac-
cess; aligning data to cache lines would only increase
the total number of cache misses. We believe we have

empty 10,000 (1 0 ins 10 del)

new multi-lock -+

R&K multi-lock
R&K multi-lock w/ bit-rev a

6 single lock

"
1 2 3 4 5 6 7 8 9 1 0 1 1

processors

Fig. 5. Performance results for 10,000 sets of 10 insertions and
10 deletions on an empty heap.

implemented each algorithm as well as is reasonably
possible, resulting in fair comparisons.

Figs. 4(a) and 4(b) show the time taken to perform
100,000 insertions and deletions on a heap with 17
full levels. Fig. 5 shows the time taken to perform
10,000 sets of 10 insertions and 10 deletions on an
empty heap. Figs. 6(a) and 6(b) show the time taken
to perform 100,000 insertldelete pairs on a 7-level-
full heap and a 17-level-full heap.

In the case of insertions only (Fig. 4(a)), the
single-lock and the new algorithm have better per-
formance because insertions do not have to traverse
the whole height of the tree (as they do in Rao and

3The programs are accessible at ftp://ftp.cs.rochester.edu/
pub [packages /concurrent-heap

G.C. Hunt et al./Information Processing Letters 60 (1996) 151-157

7 levels 100,000 (1 ins 1 del) 17 levels 100,000 (1 ins 1 del)
, , . . , . . , , .

new multi-lock -
R&K multi-lock -+----

R&K multi-lock w/ bit-rev 0

single lock *

1 2 3 4 5 6 7 8 9 1 0 1 1
processors

Â¥* ,' ~, new multi-lock +-

/ a, '.,~ . . . R&K multi-lock ~ + ~ + ,, ; ., ~,
;; , . , , . '

R&K multi-lock w/bit-rev e . .
*,: .,,,
; ' Â \

single lock

1 2 3 4 5 6 7 8 9 1 0 1 1
processors

Fig. 6 . Performance results for (a) 100,000 insert/delete pairs on a 7-level-full heap and (b) 100,000 insert/delete pairs on a 17-level-full
heap

Kumar's algorithm), and most inserted items settle in
the two bottom-most levels of the heap. Insert oper-
ations for the single-lock algorithm in this case are
fast enough that greater potential for concurrency in
the new multi-lock algorithm does not help much.

In the case of deletions only (Fig. 4(b)), the multi-
lock algorithms outperform the single-lock algorithm.
This is because most deletions have to traverse the
whole height of the tree and may not traverse the same
path each time. As a result, the concurrency permitted
in the multi-lock algorithms is higher and outweighs
the overhead of locking, since there is little contention
along the paths. Deletions in the new algorithm pro-
ceed top-down, similar to deletions in Rao and Ku-
mar's algorithm; therefore the two algorithms display
similar performance.

In the case of alternating insertions and deletions on
an initially empty heap (Fig. 5), the height of the heap
is very small. The single-lock algorithm outperforms
the other algorithms because it has low overhead and
there is little opportunity for the multi-lock algorithms
to exploit concurrency. Comparing the new algorithm
with that of Rao and Kumar, we find that the new
algorithm yields better performance as it suffers less
from contention on the topmost nodes of the heap.
Note that after several insertldelete cycles, the items
remaining in the heap tend to have low priorities, so
new insertions have to traverse most of the path to
the root in the new algorithm. This means that the
performance advantage of the new algorithm over that
of Rao and Kumar in this case is due more to reduced

contention for the topmost nodes of the tree (due to
opposite directions for insertion and deletion) than to
shorter traversals.

In the case of alternating insertions and deletions
on a 7-level-full heap (Fig. 6(a)), the heap height
remains almost constant. The single-lock algorithm
outperforms the others due to its low overhead, but the
difference between it and the new algorithm narrows as
the level of contention increases, since 7 levels provide
the new algorithm with reasonable opportunities for
concurrency. Rao and Kumar's algorithm suffers from
high contention on the topmost nodes.

In the case of alternating insertions and deletions on
a 17-level-full heap (Fig. 6(b)) , the larger heap height
makes concurrency, rather than locking overhead, the
dominant factor in performance. The multi-lock algo-
rithms therefore perform better than the single-lock
algorithm. As in the case of the empty and 7-level-full
heaps, new insertions tend to have higher priorities
than the items already in the heap, and tend to settle
near the top of the heap. In spite of this, the new al-
gorithm outperforms that of Rao and Kumar because
of reduced contention on the topmost nodes.

4. Conclusions

We have presented a new algorithm that uses multi-
ple mutual exclusion locks to allow consistent concur-
rent access to array-based priority queue heaps. The
new algorithm avoids deadlock among concurrent ac-

G.C. Hunt et al./Information Processing Letters 60 (1996) 151-157

cesses without forcing insertions to proceed top-down
[7] , or introducing a work queue and extra processes
[1] . Bottom-up insertions reduce contention for the
topmost nodes of the heap, and avoid th~e need for
a full-height traversal in many cases. The new algo-
rithm also uses bit-reversal to increase concurrency
among consecutive insertions, allowing them to fol-
low mostly-disjoint paths. Empirical results, compar-
ing the new algorithm, the single-lock algorithm, and
Rao and Kumar's top-down insertion algorithm [7]
on an SGI Challenge, show that the new algorithm
provides reasonable performance on small heaps, and
significantly superior performance on large heaps un-
der high levels of contention.

Acknowledgments

We thank Greg Andrews and the anonymous refer-
ees for their useful comments that improved both the
quality and conciseness of this paper. This work was
supported in part by NSF grants nos. CDA-8822724
and CCR-9319445, and by ONR research grant no.
N00014-92-J-1801 (in conjunction with the DARPA
Research in Information Science and Tec:hnology -
High Performance Computing, Software Science and
Technology program, ARPA Order no. 8930).

References

[I] J. Biswas and J.C. Browne, Simultaneous update of priority
structures, in: Proc. 1987 Internat. Con$ on Parallel
Processing, St. Charles, IL (1987) 124-1 3 1.

[2] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction
to Algorithms (MIT Press, Cambridge, MA, 1990).

[31 D.W. Jones, Concurrent operations on priority queues, Comm.
ACM 32 (1) (1989) 132-137.

[4] J.M. Mellor-Cmmmey and M.L. Scott, Algorithms for scalable
synchronization on shared-memory multiprocessors, ACM
Trans. Comput. Systems 9 (1) (1991) 21-65.

[5] J. Mohan, Experience with two parallel programs solving the
travelling salesman problem, in: Proc. 1983 Internal. Con$
on Parallel Processing (1983) 191-193.

[6] M.J. Quinn and N. Deo, Parallel graph algorithms, ACM
Comput. Surveys 16 (3) (1984) 319-348.

[7] V.N. Rao and V. Kumar, Concurrent access of priority queues,
IEEE Trans. Comput. 37 (12) (1988) 1657-1665.

