
Coherence Controller Architectures for SMP-Based CC-NUMA Multiprocessors*

Maged M. Michaelt, Ashwini K. Nandat, Beng-Hong Limt, and Michael L. Scottt

tuniversity of Rochester SIBM Research
Department of Computer Science Thomas J. Watson Research Center

Rochester, NY 14627 Yorktown Heights, NY 10.598
{michael,scott}@cs.rochester.edu {ashwini,bhlim}@watson.ibm.com

Abstract

Scalable distributed shared-memory architectures rely on coher-
ence controllers on each processing node to synthesize cache-
coherent shared memory across the entire machine. The coher-
ence controllers execute coherence protocol handlers that may be
hardwired in custom hardware or programmed in a protocol proces-
sor within each coherence controller. Although custom hardware
runs faster, a protocol processor allows the coherence protocol to
be tailored to specific application needs and may shorten hardware
development time. Previous research show that the increase in ap-
plication execution time due to protocol processors over custom
hardware is minimal.

With the advent of SMP nodes and faster processors and net-
works, the tradeoff between custom hardware and protocol proces-
sors needs to be reexamined. This paper studies the performance
of custom-hardware and protocol-processor-based coherence con-
trollers in SMP-node-based CC-NUMA systems on applications
from the SPLASH-2 suite. Using realistic parameters and detailed
models of existing state-of-the-art system components, it shows
that the occupancy of coherence controllers can limit the perfor-
mance of applications with high communication requirements,
where the execution time using protocol processors can be twice
as long as using custom hardware.

To gain a deeper understanding of the tradeoff, we investigate
the effect of varying several architectural parameters that influence
the communication characteristics of the applications and the un-
derlying system on coherence controller performance. We identify
measures of applications’ communication requirements and their
impact on the performance penalty of protocol processors, which
can help system designers predict performance penalties for other
applications. We also study the potential of improving the perfor-
mance of hardware-based and protocol-processor-based coherence
controllers by separating or duplicating critical components.

*This work was supported and performed at IBM Thomas J. Watson Research Cen-
ter. Michael Scoti was supported in part by NSF grants (CDA-9401142 and CCR-
9319445).

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
ISCA ‘97 Denver, CO, USA
0 1997 ACM 0-89791-901-7/97/0006...$3.50

219

1 introduction

Previous research has shown convincingly that scalable shared-
memory performance can be achieved on directory-based cache-
coherent multiprocessors such as the Stanford DASH [6] and MIT
Alewife [I] machines. A key component of these machines is the
coherence controller on each node that provides cache coherent ac-
cess to memory that is distributed among the nodes of the multi-
processor. In DASH and Alewife, the cache coherence protocol is
hardwired in custom hardware finite state machines (FSMs) within
the coherence controllers. Instead of hardwiring protocol handlers,
the Sun Microsystems S3.mp [lo] multiprocessor uses hardware
sequencers for modularity in implementing protocol handlers.

Subsequent designs for scalable shared-memory multiproces-
sors, such as the Stanford FLASH [S] and the Wisconsin Typhoon
machines 1121, have touted the use of programmable protocol pro-
cessors instead of custom hardware FSMs to implement the co-
herence protocols. Although a custom hardware design generally
yields better performance than a protocol processor for a particular
coherence protocol, the programmable nature of a protocol proces-
sor allows one to tailor the cache coherence protocol to the appli-
cation [2, 81, and may lead to shorter design times since protocol
errors may be fixed in software. The study of the performance ad-
vantage of custom protocols is beyond the scope of this paper.

Performance simulations of the Stanford FLASH and Wiscon-
sin Qphoon systems find that the performance penalty of protocol
processors is small. Simulations of the Stanford FLASH, which
uses a customized protocol processor optimized for handling co-
herence actions, show that the performance penalty of its protocol
processor in comparison to custom hardware controllers is within
12% for most of their benchmarks [3]. Simulations of the Wiscon-
sin nphoon Simple-COMA system, which uses a protocol pro-
cessor integrated with the other components of the coherence con-
troller, also show competitive performance that is within 30% of
custom-hardware CC-NUMA controllers [12] and within 20% of
custom-hardware Simple-COMA controllers [13].

Even so, the choice between custom hardware and protocol pro-
cessors for implementing coherence protocols remains a key de-
sign issue for scalable shared-memory multiprocessors. The goal
of this research is to examine in detail the performance tradeoffs
between these two alternatives in designing a CC-NUh4A multi-
processor coherence controller. We consider symmetric multipro-
cessor (SMP) nodes as well as uniprocessor nodes as the building
block for a multiprocessor. The availability of cost-effective SMPs,
such as those based on the Intel Pentium Pro [l l] makes SMP nodes
an attractive choice for CC-NUMA designers [7]. However, the
added load presented to the coherence controller by multiple SMP
processors may affect the choice between custom hardware FSMs
and protocol processors.

mls
Oval

mls
Highlight

We base our experimental evaluation of the alternative coher-
ence controller architectures on realistic hardware parameters for
state-of-the-art system components. What distinguishes our work
from previous research is that we consider commodity protocol
processors on SMP-based CC-NUMA and a wider range of ar-
chitectural parameters. We simulate eight applications from the
SPLASH-2 benchmark suite [14] to compare the application per-
formance of the architectures. The results show that for a 64-
processor system based on four-processor SMP nodes, protocol
processors result in a performance penalty (increase in execution
time relative to that of custom hardware controllers) of 4% - 93%.

The unexpectedly high penalty of protocol processors occurs
for applications that have high-bandwidth communication require-
ments, such as Ocean, Radix, and FFT. The use of SMP nodes ex-
acerbates the penalty. Previous research did not encounter such
high penalties because they were either comparing customized pro-
tocol processors in uniprocessor nodes, or they did not consider
such high-bandwidth applications. We find that under high-
bandwidth requirements, the high occupancy of the protocol pro-
cessor significantly degrades performance relative to custom hard-
ware.

We also study the performance of coherence controllers with
two protocol engines. Our results show that for applications with
high communication requirements on a 4x 16 CC-NUMA system,
a two-engine hardware controller improves performance by up to
18% over a one-engine hardware controller, and a controller with
two protocol processors improves performance by up to 30% over
a controller with a single protocol processor

This paper makes the following contributions:
! It provides an in-depth comparison of the performance trade-

offs between using custom hardware and protocol proces-
sors, and demonstrates situations where protocol processors
suffer a significant penalty.

! It characterizes the communication requirements for eight
applications from SPLASH-2 and shows their impact on the
performance penalty of protocol processors over custom
hardware. This provides an understanding of application re-
quirements and limitations of protocol processors.

! It evaluates the performance gains of using two protocol en-
gines for custom hardware and protocol-processor-based co-
herence controllers.

! It introduces a methodology for predicting the impact of pro-
tocol engine implementation on the performance of impor-
tant large applications through the detailed simulation of sim-
pler applications.

The rest of this paper is organized as follows. Section 2 presents
the multiprocessor system and details the controller design altema-
tives and parameters. Section 3 describes our experimental method-
ology and presents the experimental results. It demonstrates the
performance tradeoffs and provides analysis of the causes of the
performance differences between the architectures. Section 4 dis-
cusses related work. Finally, Section 5 presents the conclusions
drawn from this research and gives recommendations for custom
hardware and protocol processor designs in future multiprocessors.

2 System Description

To put our results in the context of the architectures we studied, this
section details these architectures and their key parameters. First
we describe the organization and the key parameters of the com-
mon system components for the architectures. Then, we describe
the details of the alternative coherence controller architectures. Fi-
nally, we present key protocol and coherence controller latencies
and occupancies.

yr-l__l1
Figure 1: A node in a SMP-based CC-NUMA system,

response
Bus address strobe to next address strobe 4
Bus address strobe to start of data transfer from 20
memory II
Network point-to-point 11 14

Table 1: Base system no-contention latencies in compute processor
cycles (5 ns.).

2.1 General System Organization and Parameters

The base system configuration is a CC-NUMA multiprocessor
composed of 16 SMP nodes connected by a 32 byte-wide fast stntc-
of-the-art IBM switch. Each SMP node includes four 200 MHz
PowerPC compute processors with 16 Kbyte Ll and 1 Mbyte L2 4-
way-associative LRU caches, with 128 byte cache lines. The SMP
bus is a 100 MHz 16 byte-wide fully-pipelined split-transaction
separate-address-and-data bus. The memory is interleaved and the
memory controller is a separate bus agent from the coherence con-
troller. Figure 1 shows a block diagram of an SMP node, Ta-
ble 1 shows the no-contention latencies of key system components,
These latencies correspond to those of existing state-of-the-art com-
ponents. Note that memory and cache-to-cache data transfers drive
the critical quad-word first on the bus to minimize latency,

2.2 Coherence Controller Architectures

We consider two main coherence controller designs: a custom hard-
ware coherence controller similar to that in the DASH [6] and
Alewife [l] systems, and a coherence controller based on commod-
ity protocol processors similar to those in the Typhoon [121 system
and its prototypes [13].

The two designs share some common components and fcaturcs
(see Figures 2 and 3). Both designs use duplicate directories to al-
low fast response to common requests on the pipelined SMP bus
(one directory lookup per 2 bus cycles). The bus-side copy IS ab-
breviated (2-bit state per cache line) and uses fast SRAM memory.
The controller-side copy is full-bit-map and uses DRAM memory,
Both designs use write-through directory caches for reducing di-
rectory read latency. Each directory cache holds up to 8K full-blt-
map directory entries (e.g. approximately 16 Kbytes for a 16 node
CC-NUMA system). The hardware-based design uses a custom
on-chip cache, while the protocol-processor-based design uses the

to SMP bus
r------------------------------- _--___--____--___--_--------------- I I I I I + :

protocol : I I
protocol FSM + dispatch I I

controlle: I I 8 I t I I I I
network interface I

Figure 2: A custom-hardware-based coherence controller design
mw. to SMI? bus

bus interface I
I

bus#$pt di;rey protocol
ry

controller dispatch
controlle.

controller-side , I I I I

Figure 3: A commodity PP-based coherence controller design
@PC>.

commodity processor’s on-chip data caches. ’ We assume perfect
instruction caches in the protocol processors, as the total size of all
protocol handlers in our protocol is less than 16 Kbytes.

Both designs include a custom directory access controller for
keeping the bus-side copy of the directory consistent with the
controller-side copy, and a custom protocol dispatch controller for
arbitration between the request queues from the local bus and the
network. There are 3 input queues for protocol requests: bus-side
requests, network-side requests, and network-side responses. The
arbitration strategy between these queues is to let the network trans-
action nearest to completion be handled first. Thus, the arbitration
policy is that network-side responses have the highest priority, then
network-side requests, and finally bus-side requests. In order to
avoid live-lock, the only exception to this policy is to allow bus-
side requests which have been waiting for a long time (e.g. four
subsequent network-side requests) to proceed before handling any
more network-side requests.

Figure 2 shows a block diagram of a custom hardware coher-
ence controller design (HWC). The controller runs at 100 MHz, the
same frequency as the SMP bus. All the coherence controller com-
ponents are on the same chip except the directories. Figure 3 shows
a block diagram of a protocol-processor-based coherence controller
(PPC). The protocol processor (PP) is a PowerPC running at 200
MHz. The other controller components run at 100 MHz. The proto-
col processor communicates with the other components of the con-
troller through loads and stores on the local (coherence controller)
bus to memory-mapped off-chip registers in the other components.
The protocol processor access to the protocol dispatch controller

t Although most processors use write-back caches, current processors (e.g. Pentium
Pm [l I]) allow users to designateregions of memory to be cached write-through.

221

to SMP bus
r------------------------------- ---__-_-__--________--------------- I I 1 I 8 I
I I bus interface
I I -----_----_ ________. t I k

r-l! controller-side I
diiectory :

I to network I
Figure 4: A custom hardware coherence controller design with lo-
cal and remote protocol FSMs (2HWC).

to SMP bus

t
bus interface

I I
bu y&&ast

ry
directory local remote protocol

access PP PP
controller dispatch

CJ p controlle ’

controller-side , I I I I I #
I directory
I

I I nehvork interface
I I I

t

I

t tonetwork 1
Figure 5: A commodity PP-based coherence controller design with
local and remote protocol processors (2PPC).

register is read-only. Its access to the network interface registers is
write-only (for sending network messages and starting direct data
transfer from the bus interface), since reading the headers of incom-
ing network messages is performed only by the protocol dispatch
controller.

Both HWC and PPC have a direct data path between the bus
interface and the network interface. The direct data path is used to
forward write-backs of dirty remote data from the SMP bus directly
to the network interface to be sent to the home node without waiting
for protocol handler dispatch. Also, in the case of PPC, the PP only
needs to perform a single write to a special register on either the
bus interface or the network interface to invoke direct data transfer,
without the need for the PP to read and write the data to perform
the transfer.

In order to increase the bandwidth of the coherence controller
we also consider the use of two protocol processors in the PPC im-
plementation and two protocol FSMs in the HWC implementation.
We use the term “protocol engine” to refer to both the protocol pro-
cessor in the PPC design and the protocol FSM in the HWC design.
For distributing the protocol requests between the two engines, we
use a policy similar to that used in the S3.mp system [lo], where
protocol requests for memory addresses on the local node are han-
dled by one protocol engine (LPE) and protocol requests for mem-
ory addresses on remote nodes are handled by the other protocol
engine (RPE). Only the LPE needs to access the directory. Fig-
ures 4 and 5 show the two-engine HWC design (2HWC), and the
two PP controller design (2PPC), respectively.

Write sue&l bus interface retisters

I- I nG fner iteration)
C-l> -“-I? \r-

Clear bit nerd
Extract bit field
Other bit

Table 2: Protocol engine sub-operation occupancies for HWC and
PPC in compute processor cycles (S ns.).

1 Step 11 H.wc 1 PPC 1
1 detect L2 miss II 8 I 8 i

*. ..-.--- .- 1, I -
-.-___-- I_ L^--_ --A.. II 1 I n

network latency

II 2 I6 1

I dinnatr.h handler II 2 II

II 14 I 14 I

..- UC.... 1, i I
-- ---- 11 Ii

I tntn1 II 142 1 212 1

Table 3: Breakdown of the no-contention latency of a read miss to
a remote line clean at home in compute processor cycles (S ns.).

2.3 Controller Latencies and Occupancies

We modeled HWC and PPC accurately with realistic parameters.
Table 2 lists protocol engine sub-operations and their occupancies 2
for each of the HWC and PPC coherence controller designs, as-
suming a 100 MHz HWC and a 100 MHz PPC with a 200 MHz
off-the-shelf protocol processor. The occupancies in the table as-
sume no contention on the SMP bus, memory, and network, and
all directory reads hit in the protocol engine data cache. The other
assumptions used in deriving these numbers are:

! Accesses to on-chip registers for HWC take one system cycle

20ccupaocy of sub-operations is the time a protocol engine is occupied by tbe sub-
operation and camot service otbcrrcquesu.

(2 CPU cycles).

! Bit operations on HWC are combined with other actions,
such as conditions and accesses to special registers.

! PP reads to off-chip registers on the local PPC bus take 4
system cycles (8 CPU cycles). Searching a set of associative
registers takes an extra system cycle (2 CPU cycles).

! PP writes to off-chip registers on the local PPC bus take 2
system. cycles (4 CPU cycles) before the PP can proceed,

! PP compute cycles are based on the PowerPC instruction cy-
cle counts produced by the IBM XLC C compiler.

! HWC can decide multiple conditions in one-cycle.

To gain insight into the effect of these occupancies and delays
on the latency of a typical remote memory transaction, Table 3
presents the no-contention latency breakdown of a read miss from
a remote node to a clean shared line at the home node. The relative
increase in latency from HWC to PPC is only 49%, which is consis-
tent with the 33% increase reported for Typhoon [13], taking into
account that we consider a more decoupled coherence controller
design and we use a faster network than that used in the Typhoon
study. It is worth noting that in Table 3 there is no entry for updat-
ing the directory state at the home node. The reason is that updat-
ing the directory state can be performed after sending the response
from the home node, thus minimizing the read miss latency, In our
protocol handlers, we postpone any protocol operations that arc not
essential for responding to requests until after issuing responses.

Finally, in order to gain insight into the relative occupancy times
of the HWC and PPC coherence controller designs, Table 4 presents
the no-contention protocol handler occupancies for the most frc-
quently used handlers. Handler occupancy times include: handler
dispatch time, directory reference time, access time to special regis-
ters, SMP bus and local memory access times, and bit held manip-
ulation for PPC. Note that memory is sequentially consistent, and
that we use the same full-map directory, invalidation-based, writc-
back protocol, for both HWC and PPC. In our protocol, we allo\~
remote owners to respond directly to remote requesters with data,
but invalidation acknowledgments are collected only at the home
node.

3 Experimental Results

In this section, we present simulation results of the relative per-
formance of the different coherence controller architectures with
several variations of communication-related architectural paramc-
ters. Then, we present analysis of the key statistics and communi-
cation measures collected from these simulations, and we conclude
this section by presenting statistics and analysis of the utilization
and workload distribution on two-protocol-engine coherence con-
trollers. We start with the experimental methodology.

3.1 Experimental Methodology
Weuse execution-driven simulation (based on a version of the Attg-
mint simulation toolkit [9] that runs on the PowerPC architecture)
to evaluate the performance of the four coherence controller de-
signs, HWC, PPC, 2HWC, and 2PPC. Our simulntor includes dc-
tailed contention models for SMP buses, memory controllers, in-
terleaved memory banks, protocol engines, directory DRAM, and
external point contention for the interconnection network. Protocol
handlers are simulated at the granularity of the sub-operations in
Table 2, in addition to accurate timing of the interaction between
the coherence controller and the SMP bus, memory, directory, and

222

Handler
bus read remote
bus read exclusive remote
bus read local (dirty remote)
bus read excl. local (cached
remote)
remote read to home (clean)
remote read to home (dirty
remote)
remote read excl. to home
(uncached remote)
remote read excl. to home
(shared remote)
remote read excl. to home
(dirty remote)
read from remote owner
(request from home)
read from remote owner
(remote requester)
read excl. from remote owner
(request from home)
read excl. from remote owner
(remote requester)
data response from owner to a
read request from home
write back from owner to
home in response to a read
req. from remote node
data response from owner to a
read excl. request from home
ack. from owner to home in
response to a read excl.
request from remote node
invalidation request from
home to sharer
inv. acknowledgment (more
expected)
inv. ack. (last ack, local
request)
inv. ack. (last ack, remote
request)
data in response to a remote
read request
data in response to a remote
read excl. reouest

PPC

Table 4: Protocol engine occupancies in compute processor cycles
(5 ns.).

network interface. All coherence controller implementations use
the same cache coherence protocol.

We use eight benchmarks from the SPLASH-2 suite [14], (,Ta-
ble 5) to evaluate the performance of the four coherence controller
implementations. All the benchmarks are written in C and com-
piled using IBM XLC C compiler with optimization level -02. All
experimental results reported in this paper are for the parallel phase
only of these applications. We use a round-robin page placement
policy except for FFT where we use an optimized version with pro-
grammer hints for optimal page placement. We observed slightly
inferior performance for most applications when we used a first-
touch-after-initialization page placement policy, due to load imbal-
ance, and memory and coherence controller contention as a result
of uneven memory distribution. LU and Cholesky are run on 32-

223

r Application Type
LU Blocked dense linear

algebra

Water- Study of forces and
Spatial potentials of water

molecules in a 3-D grid
Barnes Hierarchical N-body
Cholesky Blocked sparse linear

Problem size
512x512
matrix, 16x16
blocks
512 molecules

SK particles
tkl5.0

FFr PFI computation

Ocean Study of ocean

keys, radix 1K
64K complex
doubles
258x258 ocean

movements 1 grid I

Table 5: Benchmark types and data sets.

processor systems (8 nodes x 4 processors each) as they suffer
from load imbalance on 64 processors with the data sets used [14].
We ran all the applications with data sizes and systems sizes for
which they achieve acceptable speedups.

3.2 Performance Results

In order to capture the main factors influencing PP performance
penalty (the increase in execution time on PPC relative to the ex-
ecution time on HWC), we ran experiments on the base system
configuration with the four coherence controller architectures. We
then varied some key system parameters to investigate their effect
on the PP performance penalty.

Base Case

Figure 6 shows the execution times for the four coherence con-
troller architectures on the base system configuration normalized
by the execution time of HWC. We notice that the PP penalty can
be as high as 93% for Ocean and 52% for Radix, and as low as
4% for LU. The significant PP penalties for Ocean, Radix and
PPT indicate that commodity PP-based coherence controllers can
be the bottleneck when running communication-intensive applica-
tions. This result is in contrast to the results of previous research,
which showed the cases where custom PP-based coherence con-
trollers suffer small performance penalties relative to custom hard-
ware.

Also, we observe that for applications with high bandwidth re-
quirements, using two protocol engines improves performance sig-
nificantly relative to the corresponding single engine implementa-
tion, up to 18% on IIWC and 30% on PPC, for Ocean.

We varied other system and application parameters that are ex-
pected to have a big impact on the communication requirements of
the applications. We start with the cache line size.

Smaller cache line size

with 32 byte cache lines, we expect the PP penalty to increase from
that experienced with 128 byte cache lines, especially for applica-
tions with high spatial locality, due to the increase in the rate of
requests to the coherence controller. Figure 7 shows the execution

times normalized to the execution time of HWC on the base config-
uration. We notice a significant increase in execution time (regard-
less of the coherence controller architecture) relative to the corre-
sponding execution times on the base system, for FFT, Cholesky,
Radix, and LU, which have high spatial locality [14], and a minor
increase in execution time for the other benchmarks.

Also, we notice a significant increase in the PP penalty (com-
pared to the PP penahy on the base system) for applications with
high spatial locality, due to the increase in the number of requests
to the coherence controllers, which increases the demand on PP oc-
cupancy. For example, the PP penalty for FFT increases from 45%
to 68%.

Slower network

To determine the impact of network speed on the PP performance
penalty, we simulated the four applications with the largest PP
penalties on a system with a slow network (1 ,os. latency). Fig-
ure 8 shows the execution times normalized to the execution time
of HWC on the base configuration. We notice a significant de-
crease in the PP penalty from that for the base system. The PP
penalty for Ocean drops from 93% to 28%. Accordingly, systems
designs with slow networks can afford to use commodity protocol
processors instead of custom hardware, without significant impact
on performance, when cache line size is large.

Also, we notice a significant increase in execution time (regard-
less of the coherence controller architecture) relative to the corre-
sponding execution times on the base system, for Ocean and Radix,
due to their high communication rates.

Larger data size

To determine the effect of data size on the PP penalty, we sim-
ulated Ocean and FFT on the base system with larger data sizes,
256K complex doubles for FPT, and a 514x514 grid for Ocean.
Figure 9 shows the execution times normalized by the execution
time of HWC for each data size. We notice a decrease in the PP
penalty in comparison to the penalty with the base data sizes, since
the communication-to-computation ratios for Ocean and FPT de-
crease with the increase of the data size 3. The PP penalty for FFT
drops from 46% to 33%, and for Ocean from 93% to 67%.

However, since communication rates for applications like Oc-
ean increase with the number of processors at the same rate that
they decrease with larger data sizes, we can think of high PP per-
formance penalties as limiting the scalability of such applications
on systems with commodity PP-based coherence controllers.

Number of processors per SMP node

Varying the number of processors per SMP node (i.e. per coher-
ence controller), proportionally varies the demand on the coher-
ence controller occupancy, and thus is expected to impact the PP
performance penalty. Figure 10 shows the execution times on 64-
processor systems (32 for LU and Cholesky) with 1,2,4, and 8 pro-
cessors per Sh4P node, normalized to the execution time of HWC
on the base configuration (4 processors/node).

We notice that for applications with low communication rates,
the increase in the number of processors per node has only a minor
effect on the PP performance penalty. For applications with high
communication rates, the increase in the number of processors in-
creases the PP performance penalty (e.g. the PP penalty increases
from 93% for Ocean on 4 processors per node to 106% on 8 pro-
cessors per node). However, the PP penalty can be as high as 79%
(for Ocean) even on systems with one processor per node.

3Applications like Radix maintain a constant communication rate with different
data sizes [14].

224

W-SP samss Chldc,’ W-Nsq FFT OCDLI”

Figure 6: Normalized execution time on the base system configu-
ration.

Figure r No~~ze~&ntt~~ tiieNzr s$ernRiyb SE;;; (32
byte) cache lines.

W-Nsq

Figure 8: Normalized exeizon time foyz;stern with high (1 /&
network latency.

TweFsM,cmMHr:Hw ,.
C,,o-FSM,WMHzHW~...~.~.. .

s4K 2.9x 2as*aa S14X(il4

Figure 9: NormalizF:execution time for base syi;E with base and
large data sizes.

For each of the coherence controller architectures, performance
of applications with high communication rates degrades with more
processors per node, due to the increase in occupancy per coher-
ence controller, which are already critical resources on systems
with fewer processors per node.

Also, we observe that for applications with high communica-
tion rates (except FFI’), the use of two protocol engines in the
coherence controllers achieves similar or better performance than
controllers with one protocol engine with half the number of pro-
cessors per nodes. In other words, using two protocol engines in the
coherence controllers, allows integrating twice as many processors
per SMP node, thus saving the cost of half the Sh4P buses, memory
controllers, coherence controllers, and I/O controllers.

3.3 Communication Statistics and Measures

In order to gain more insight into quantifying the application char-
acteristics that affect PP performance penalty, we present some of
the statistics generated by our simulations. Table 6 shows commu-
nication statistics collected from simulations of HWC and PPC on
the base system configuration (except that Cholesky and LU are run
on 32 processors). The statistics are:

! PP penalty: The increase in the execution time of PPC rela-
tive to the execution time of HWC.

! RCCPI (Requests to Coherence Controller Per Instruction)
is the total number of requests to the coherence controllers
divided by the total number of instructions.

! The total of the occupancies of all coherence controllers for
PPC divided by that for HWC.

! Average HWC (PPC) utilization is the average HWC (PPC)
occupancy divided by execution time.

! Average HWC (PPC) queuing delay is the average time a
request to the coherence controller waits in a queue while
the controller is occupied by other requests.

0 Arrival rate of requests to HWC (PPC) per ps. (200 CPU cy-
cles) is derived from the reciprocal of the mean inter-arrival
time of requests to each of the coherence controllers.

In Table 6 we notice that as RCCPI increases, the PP perfor-
mance penalty increases proportionally except for Cholesky. In the
case of Cholesky, the high load imbalance inflates the execution
time with both HWC and PPC. Therefore, the PP penalty which is
measured relative to the execution time with HWC is less than the
PP penalty of other applications with similarRCCP1 but with better
load balance.

Also, as RCCPI increases, the arrival rate of requests to the co-
herence controller per cycle for PPC diverges from that of HWC,
indicating that the PPC has saturated, and that the coherence con-
troller is the bottleneck for the base system configuration. This is
also supported by the observation of the high utilization rates of
HWC with Ocean, and of PPC with Ocean, Radix, and FFT, indi-
cating that the coherence controller has saturated these cases, and
it is the main bottleneck.

However, we notice that the queuing delays do not increase pro-
portionally with the increase in RCCPI, since the queuing effect of
the coherence controller behaves like a negative feedback system
where the increase in RCCPI (the input) increases the queuing de-
lay in proportion to the difference between the queuing delay and a
saturation value, thus limiting the increase in queuing delay. Note
that the high queuing delay for FFT is attributed to its bursty com-
munication pattern [141.

225

Barnes

1.3-
1.2-
I.1 -

I-

0.9 -
0.8 -

Figure IO: Normalized execution time with 1,2,4, and 8 processors
per SMP node.

,

:

,

i

1,

I
!

c

i-

I

I
I

; _

I ..

Application PP 1000 x PPUHWC HWC PPC HWC PPC Average Average
Penalty RCCPI occupancy utilization utilization queu- queu- requests to requests to

ing delay ing delay HWCper PPC per
(ns.) bs.1 W P*

Ill A 17% 12 7. 17 4.21% 9.58% 101 305 0.41 0.40
-r ““._” .- _.- -5 10.95% 25.99% 100 375 1.19 I,06

II lSQl% I 71 I 2.52 13.2h% 28.88% 67 266 1’ .d
..”

Ba
Cholesxy
Water-Nsq
FFl--25hK

1 -.---.- I -- --

R 1 77 lva 1 39.54% 289 837 1.83 1,38
340 864 2.58 1,77 .“._” ,.. “.” , ~_.-~. , 46.96%

G7 Q’.lVn 1 ox I 7 76 1 76.82% 1 56.75% 229 640 3.66 2.33
I ‘iA% I 65 n7oln 22fi fiA8 3.87 2.31

&64K ” ----- Ii AS 59% 1 1 h? I 2.31 1 29.61% 1
Radix “rI.“d ,” ..” -.-., --
Ocean-5 14 67.26% 14.0 2.29 1 4i.d.-,” , “I.“, ,” ,

2%
I - .- I 1

Ocean-258 92.88% 23.2 2.47 1 52.89% 1 67.72% 1 1 720 1 iii’ 1 2,41

Table 6: Communication statistics on the base system configuration.

Also, we observe that the ratio between the occupancy of PPC
and the occupancy of HWC is more or less constant for the different
applications, approximately 2.5.

Figure 11 plots the arrival rate of requests to each of the coher-
ence controller architectures against RCCPI for all the applications
on the base system configuration (except Cholesky and LU as they
were run on 32 processors) including Ocean and FFI’ with large
data sizes. The dotted lines show the trend for each architecture.
The figure shows clearly the saturation levels of the different co-
herence controller architectures. The divergence in the arrival rates
demonstrates that the coherence architecture is the performance
bottleneck of the base system.

Figure 12 shows the effect of RCCPI on the PP penalty for the
same experiments as those in Figure 11. We notice a clear propor-
tional effect of RCCPI on the PP penalty. The gradual slope of the
curve can be explained by the fact that the queuing model of the co-
herence controller resembles a negative feedback system. Without
the negative feedback, the PP penalty would increase exponentially
with the increase in RCCPI. The lower PP penalty for applications
with low RCCPI such as Barnes and Water-Spatial is due to the fact
that in those cases the coherence controller is under-utilized.

The previous analysis can help system designers predict the
relative performance of alternative coherence controller designs.
They can obtain the RCCPI measure for important large applica-
tions using simple simulators (e.g. PRAM) and relate that RCCPI
to a graph similar to that in Figure 12 that can be obtained through
the detailed simulation of simpler applications covering a range of
communication rates similar to that of the large application. Al-
though RCCPI is not necessarily independent of the implementa-
tion of the coherence controller, for practical purposes the effect
of the architecture on RCCPI can be ignored. In our experiments
the difference in RCCPI between the four implementations (HWC,
PPC, 2HWC, and 2PPC) is less than 1% for all applications.

3.4 Utilization of Two-Engine Controllers

For coherence controller architectures with two protocol engines,
there is more than one way to split the workload between the two
protocol engines. In this study, we use a policy where protocol
requests for memory addresses on the local node are handled by one
protocol engine (LPE) and protocol requests for memory addresses
on remote nodes are handled by the other protocol engine (RPE).
In order to quantify the effectiveness of this policy, Table 7 shows
the communication statistics collected from simulations of 2HWC
and 2PPC on the base system configuration (except ChoIesky and
LU are run on 32 processors).

We observe that although most requests are handled by RPE

226

6
x Two-FSM 100 MHz HW OCEd-250
+ One-FSM 100 MHz HW
x Two 200 MHz PPa

ocem-51.4 /‘-.+~
/,/@’

,.-‘#I

5 -0 on0 200 MHZ PP
_***

! "#$%"&"
.,,-+

*
'

()*+ ,-."%

/%"& 0

1%)"
%!%)%"2"3

4

%#%5#6
%!%"%" 2

%3 #%
%3 #&

%3 %#% #"%"%"%"%7&"

8!9!:!%!%"%" "#"5"5");

'<"

=

FFT-%K At,.’
.“..4 ,,/

.,fl

p Waler-Nsq .(..’ &’ ,4-‘-
._ ___. d .-*-....-,-I-‘- “““‘0

:2-
a

.,&$Z..*~”

I-
,g+&=T”2,6K

writer----¥

90 5 10 IS 20 PG
low x RCCPI

Figure 11: Coherence controller bandwidth limitations.
1 OC9UW280 .M o.cl - .c’+

~0.8 - ‘C” .A

is -O.,- ocean-514 lg.‘* .A ..**

8 s 0.6 - ./
.z Ra.QX .A
.+?? 0.5 - FFT-B4K /

-. /.’

ftL.&. ..j-
.AG=-*56K
* Water-Nsq

%02-
I Barnes

0.1 - 1* rater-sp

Oo 5 10 15 20 20
1000x RCCPI

Figure 12: Effect of communication rate on PP penalty.

(53-630/o), the occupancy of LPE is up to 3 times that of RPE for
2HWC, and up to 2 times for 2PPC (derived from the utillzntlon
numbers). This is because the average occupancy of protocol han-
dlers performed on LPE are more than those on RPE, since the for-
mer are more likely to access the directory and main memory, Also,
we observe that the sum of the average utilization numbers for LPE
and RPE is more than the average utilization for the corresponding
one-engine coherence controller (Table 6). This is due to the fact
that the sum of the occupancies of LPE and RPE are almost fhc
same as that for the one-engine controller, but the execution time
decreases with the use of two protocol engines.

Due to the imbalance between the utilization figures of LPE and
RPE, the queuing delays for RPE are lower than those for the cor-
responding one-engine controllers, while those for LPE are higher

Application Architecture Utilization Request distribution
LPE 1 RPE

Queuing delay (ns.)
LPE RPE LPE RPE

LU ZHWC 3.20% 1.09% 35.67% 64.33% 182 2
2PPC . 0 . 0 35.74% 64.26% 501 14

Water-Sp 2HWC 6.82% 4.29% 38.09% 61.91% 60 40
2PPC 14.66% 12.38% 38.08% 61.92% 263 78

Barnes ZHWC 8.43% 5.22% 39.38% 60.62% 67 11
2PPC 16.64% 13.85% 39.41% 60.59% 237 53

Cholesky ZHWC 20.26% 7.48% 38.27% 61.73% 128 8
2PPC . 0 . 0 . 0 61.73% 348 36

Water-Nsq ZHWC 11.30% 7.89% 39.26% 60.74% 82 49
2PPC 22.87% 19.81% 39.22% 60.78% 384 167

FFT256K ZHWC 17.93% 5.92% 46.33% 53.67% 378 10
2PPC 30.64% 15.05% 46.33% 53.67% 934 38

FFI-64K ZHWC 25.63% 7.45% 41.40% 58.60% 478 8
2PPC . 0 19.17% 41.40% 58.60% 1137 39

Radix ZHWC 21.63% 21.32% 39.95% 60.05% 138 91
2PPC 30.70% 40.86% 39.94% 60.06% 243 366

ocean-514 ZHWC 38.10% 18.33% 41.03% 58.97% 210 35
2PPC 50.42% 36.59% 41.02% 58.98% 480 138

Ocean-258 ZHWC 40.02% 25.97% 40.45% 59.55% 173 48
2PPC 52.60% 1 44.19% 40.39% 59.61% 476 185

Table 7: Communication statistics for controllers with two protocol engines on the base system configuration.

for most applications despite the decrease in demand, due to the ex-
clusion of the requests to RPE which typically have low occupancy
requirements.

The large imbalance in the distribution of occupancy between
LPE and RPE (derived from the utilization statistics) for most ap-
plications indicate that there is potential for further improvement in
performance by using a more even policy for distributing the work-
load on the two (or possibly more) protocol engines. However, it is
worth noting that in the design used in this paper, only one protocol
engine, LPE, needs to access the directory. Furthermore, in the case
of custom hardware, none of the handlers in the LPE FSM needs
to be duplicated in the RPE FSM, and vice versa, thus minimiz-
ing the hardware overhead of two-engine HWC over one-engine
HWC. Alternative distribution policies, such as splitting the work-
load dynamically or based on whether the request is from the local
bus or another node, might lead to a more balanced distribution of
protocol workloads on the protocol engines, but would also require
allowing multiple protocol engines to access the directory, which
increases the cost and complexity of coherence controllers.

4 Related Work

The proponents of protocol processors argue that the performance
penalty of protocol processors is minimal, and that the additional
flexibility is worth the performance penalty. The Stanford FLASH
designers find that the performance penalty of using a protocol pro-
cessor is less than 12% for the applications that they simulated, in-
cluding Ocean and Radix [3]. Their measured penalties are signifi-
cantly lower than ours for the following reasons: 1) FLASH uses a
protocol processor that is highly customized for executing protocol
handlers, 2) they consider only tmiprocessor nodes in their experi-
ments, and 3) they assume a slower network latency of 220 ns., as
opposed to 70 ns. in our base parameters.

In [12], Reinhardt et al. introduce the Wisconsin Typhoon ar-
chitecture that relics on a SPARC processor core integrated with the
other components of the coherence controller to execute coherence
handlers that implement a Simple COMA protocol. Their simula-

tions show that Simple COMA on Typhoon is less than 30% slower
than a custom hardware CC-NUMA system. It is hard to compare
our results to theirs because of the difficulty in determining what
fraction of the performance difference is due to Simple COMA vs.
CC-NUMA, and what fraction is due to custom hardware vs. pro-
tocol processors.

In [13], Reinhardt et al. compare the Wisconsin Typhoon and
its first-generation prototypes with an idealized Simple COMA sys-
tem. Here, their results show that the performance penalty of using
integrated protocol processors is less than 20%. In contrast, we
find larger performance penalties of up to 106%. There are two
main reasons for this difference: 1) we are considering a more de-
coupled design than Typhoon, and 2) the application set used in the
studies. Our results largely agree with theirs for Barnes, the only
application in common between the two studies. However, we also
consider applications with higher bandwidth requirements, such as
Ocean, Radix, and FFT. Other differences between the two studies
are: a) they compare Simple COMA systems, while we compare
CC-NUMA systems, b) they assume a slower network with a la-
tency of 500 ns., which mitigates the penalty of protocol proces-
sors, and c) they consider only uniprocessor nodes.

Holt et al. [4] perform a study similar to ours. They also find
that the occupancy of coherence controllers is critical to the perfor-
mance of high-bandwidth applications. However, their work uses
abstract parameters to model coherence controller performance,
whereas our work considers practical, state-of-the-art controller de-
signs. Also, our work provides strong insight into coherence con-
troller bottlenecks, and we study the effect of having multiple pro-
cessors per node and two protocol engines per coherence controller.

227

5 Conclusions

The major focus of our research is on characterizing the perfor-
mance tradeoffs between using custom hardware versus protocol
processors to implement cache coherence protocols. By comparing
designs that differ only in features specific to either approach and
keeping the rest of the architectural parameters identical, we are

able to perform a systematic comparison of both approaches. We
find that for applications with high bandwidth requirements, like
Ocean, Radix, and FFJ?, the occupancy of off-the-shelf protocol
processors significantly degrades performance by up to 106% for
the applications we studied. On the other hand, the programmable
nature of protocol processors allows one to tailor the cache coher-
ence protocol to the application, and may lead to shorter design
times since protocol errors may be fixed in software.

We also find that using a slow network or large data sizes results
in tolerable protocol processor performance, and that for comm-
unication-intensive applications, performance degrades with the in-
crease in the number of processors per node, as a result of the de-
crease in the number of coherence controllers in the system.

Our results also demonstrate the benefit of using two protocol
engines in improving performance or maintaining the same per-
formance of systems with large? number of coherence controllers.
We are investigating other optimizations such as using more pro-
tocol engines for different regions of memory, and using custom
hardware to implement accelerated data paths and handler paths for
simple protocol handlers, which usually incur the highest penalties
on protocol processors relative to custom hardware.

Our analysis of the application characteristics captures the com-
munication requirements of the applications and their_impact on
performance penalty. Our characterization-RCCPI-can help sys-
tem designers predict the performance of coherence controllers
with other applications.

The results of our research imply that it is crucial to reduce pro-
tocol processor occupancy in order to support high-bandwidth ap-
plications. One approach is to custom design a protocol processor
that is optimized for executing protocol handlers, as in the Stanford
FLASH multiprocessor. Another approach is to customize coher-
ence protocols to the communication requirements of particular ap-
plications. We are currently investigating an alternative approach:
to add incremental custom hardware to a protocol-processor-based
design to accelerate common protocol handler actions.

References

228

Acknowledgments
We would like to thank several colleagues at IBM Research for

their help in this research: Moriyoshi Ohara for his valuable in-
sights and his generosity with his time and effort, Mark Giampapa
for porting Augmint to the PowerPC, Kattamuri Ekanadham for
useful discussions on coherence controller architectures, and
Michael Rosenfield for his support and interest in this work. We
also thank Steven Reinhardt at the University of Wisconsin for pro-
viding us with information about Qphoon performance, and Mark
Heinrich and Jeffrey Kuskin at Stanford University for providing
us with information about custom protocol processors.

[l] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K Mackenzie, and D. Yeung. The
MIT Alewife Machine: Architecture and Performance. In
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 2-13, June 1995.

[2] B. Falsafi, A. Lebeck, S. Reinhardt, I. Schoinas, M. Hill,
J. Lams, and D. Wood. Application-Specific Protocols for
User-Level Shared Memory. In Proceedings of Supercomput-
ing ‘94, November 1994.

[3] M. Heitich, J. Ku&in, D. Ofelt, J. Heinlein, J. P. Singh,
R. Simoni, K. Gharachorloo, J. Baxter, D. Nakahira,
M. Horowitz, A. Gupta, M. Rosemblum, and J. Hennessy.
The Performance Impact of Flexibility in the Stanford

FLASH Multiprocessor. In Proceedings ofthe Sixth brterna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 274-285, October
1994.

[4] C. Holt, M. Heimich, J. R Singh, E. Rothberg, and J, Hcn-
nessy. The Effects of Latency, Occupancy, and Bandwidth in
Distributed Shared Memory Multiprocessors. Technical Re-
port CSL-TR-95-660, Stanford University, January 1995.

[S] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahhira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy, The
Stanford FLASH Multiprocessor. In Proceedings of the 21st
Annual International Symposium on Computer Architecture,
pages 302-313, April 1994.

[6] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A, Gupta,
J. Hennessy, M. Horowitz, and M. Lam, The Stanford DASH
Multiprocessor. IEEE Computer, 25(3):63-79, March 1992,

[7] T. Lovett and R. Clapp. STiNG: A CC-NUMA Computer
System for the Commercial Marketplace, In Proceedings of
the 23rd Annual International Symposium on Computer Ar-
chitecture, pages 308-317, May 1996.

[S] S. Mukhejee, S. Sharma, M. Hill, J. Larus, A. Rogers, and
J. Saltz. Efficient Support for Irregular Applications on
Distributed-Memory Machines. In Proceedings of the F&h
ACM Symposium on Principles and Practice of Parallel Pro-
gramming, pages 68-79, July 1995.

[9] A.-T. Nguyen, M. Michael, A. Shanna, and J, Torrellas. The
Augmint Multiprocessor Simulation Toolkit for Intel x86 Ar-
chitectures. In Proceedings of the 1996 IEEE Internallonal
Conference on Computer Design, pages 486-490, October
1996.

[lo] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin,
B. Radke, and S.Vishin. The S3.mp Scalable Shared Mcm-
ory Multiprocessor. In Proceedings of the 1995 Internallonal
Conference on Parallel Processing, August 1995.

[I I] Pentium Pro Family Developer’s Manual. Intel Corporation,
1996.

[12] S. Reinhardt, J. Lams, and D. Wood. Tempest and ‘Ij-
phoon: User-Level Shared Memory. In Proceedings of the
21st Annual International Symposium on Computer Archltcc-
ture, pages 32.5-336, April 1994.

[13] S. Reinhardt, R. Pfile, and D. Wood. Decoupled Hardwnrc
Support for Distributed Shared Memory, In Proceedings of
the 23rd Annual International Symposium on Computer Ar-
chitecture, pages 34-43, May 1996.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 24-36,
June 1995.

