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Recent technological advances have led to the com-mercial availability of inexpensive workstation net-works on which a processor can access the memoryof a remote node safely from user space [3, 8, 4]. Thelatency of access is two to three orders of magnitudelower than that of traditional message passing. Thesenetworks suggest the need to re-evaluate the assump-tions underlying the design of DSM protocols. Thispaper describes existing protocols that take advantageof the low-latency memory-mapped network interface,and discusses the trade-o�s involved in e�ciently ex-ploiting its capabilities. We discuss the design optionsfor DSM systems on a memory-mapped network inter-face and propose methods by which the interface canbest be used to implement software coherent sharedmemory.We restrict ourselves to a discussion of systems thatsupport more-or-less \generic" shared-memory pro-grams, such as might run on a machine with hardwarecoherence. The memory model presented to the useris release consistency [7], with explicit synchronizationoperations visible to the run-time system.We begin with a summary of existing protocols andimplementations. Cashmere [11] employs a directory-based multi-writer protocol that exploits the write-through capabilities of its network (in software) tomerge updates by multiple processors. AURC [9] isan interval-based multi-writer protocol that exploitsthe hardware write-through capabilities of the Shrimpnetwork interface [3]. Shasta [20] uses a single-writerdirectory protocol with in-line protocol operations tosupport variable-size coherence blocks. Finally, Tread-Marks [1] uses a multi-writer interval-based protocolto provide DSM on message-passing networks; on amemory-mapped network it uses the extra functional-ity only for fast messages.These protocols represent only a small subset of
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choices in a very large design space. We enumerate al-ternatives for DSM systems on a memory-mapped net-work interface, and discuss methods to exploit that in-terface for high-performance software shared memory.Issues we consider include: 1) coherence granularityand miss detection mechanism; 2) metadata represen-tation (directories vs. intervals); 3) home node place-ment/migration; 4) update collection mechanism; 5)use of remote-mapped address space; and 6) syn-chronous remote operations (interrupts, etc.)The rest of the paper is organized as follows.Section 2 describes existing protocols implementedon memory-mapped network interfaces. Section 3discusses performance tradeo�s in more detail, andpresents a summary of results from a comparison oftwo of the protocols. Section 4 concludes with a sum-mary of future directions.2 Discussion of Existing Protocols2.1 BackgroundSoftware distributed shared memory (DSM) com-bines the ease of programming of shared memorymachines with the scalability of distributed memory(message passing) machines. DSM systems providean avenue for a�ordable, easy-to-use supercomputingfor computationally demanding applications in a vari-ety of problem domains. A survey of both hardwareand software DSM systems can be found in [18].The original idea of using the virtual memory sys-tem on top of simple messaging to implement softwarecoherence on networks dates from Kai Li's thesis workon Ivy [13]. A host of other systems were built fol-lowing Li's early work; Nitzberg and Lo [16] providea survey of early VM-based systems. Many of thesesystems often exhibited poor performance due to falsesharing resulting from the large granularity of the co-herence blocks and the sequential consistency memorymodel used.Relaxed consistency models result in considerableimprovements in DSM performance. Munin [5] wasthe �rst DSM system to adopt a release consistencymodel and to allowmultiple processors to concurrentlywrite the same coherence block. Processors kept trackof what modi�cations they had made on a page bymaking a copy of the page before starting to writeit (called twinning), and then comparing the page toits twin (called di�ng). TreadMarks [1] uses a lazyimplementation of release consistency [10], which fur-ther limits communication to only those processes thatsynchronize with one another.

Recent advances in network technology have nar-rowed the gap in communication performance betweensingle-chassis systems and clusters of workstations. Atthe high end (in terms of cost), recent commercial of-ferings from Sequent and SGI construct large, cache-coherent systems frommultiprocessor nodes on a high-speed network. Several other academic and commer-cial projects are developing special-purpose adaptorsthat extend cache coherence (at somewhat lower per-formance, but potentially lower cost) across a col-lection of SMP workstations on a commodity net-work; these include the Dolphin SCI adaptor [14],the Avalanche project [6] at the University of Utah,and the Typhoon project at the University of Wis-consin [19]. At still lower cost, memory-mapped net-work interfaces without cache coherence allow mes-sages (typically triggered by ordinary loads and stores)to be sent from user space with microsecond laten-cies; examples here include the Princeton Shrimp [3],DEC Memory Channel [8] based on Encore's re
ectivememory [18], and HP Hamlyn [4] networks. SoftwareDSM systems built on top of these very fast networksare an attractive cost-e�cient alternative to full hard-ware coherence. In the rest of this section, we fo-cus on four software DSM systems implemented on amemory-mapped network interface.2.2 Software DSMs on Memory-MappedNetwork InterfacesTreadMarks [1] is a distributed shared memorysystem based on lazy release consistency (LRC) [10].Lazy release consistency guarantees memory consis-tency only at synchronization points and permits mul-tiple writers per coherence block. Time on each nodeis divided into intervals delineated by remote acquiresynchronization operations. Each node maintains atimestamp consisting of a vector of such intervals: en-try i on processor j indicates the most recent intervalon processor i that logically precedes the current in-terval on processor j. When a processor takes a writepage fault, it creates a write notice for the faultingpage and appends the notice to the list of such noticesassociated with its current interval. During synchro-nization events the synchronizing processors exchangetheir vector timestamps and invalidate all pages thatare described in write notices associated with inter-vals known to one processor but not known to theother. The write notices are appended to the datastructures that describe the invalidated pages. In sub-sequent faults, the list of write notices associated witha page is perused and the changes made by the pro-cessors speci�ed in the write notices are fetched. As in



Munin, each processor keeps track of its own changesby using twins and di�s. There is a one-to-one corre-spondence between di�s and write notices.Our implementation of TreadMarks for the DECMemory Channel makes use of the memory-mappednetwork interface for fast messaging and for a user-level implementation of polling, allowing processors toexchange asynchronous messages inexpensively. Wedo not currently use broadcast or remote memory ac-cess for either synchronization or protocol data struc-tures, nor do we place shared memory in MemoryChannel space.Cashmere [11] is a software coherence system ex-pressly designed for memory-mapped network inter-faces. It was inspired by Petersen's work on coher-ence for small-scale, non-hardware-coherent multipro-cessors [17]. Cashmere maintains coherence informa-tion using a distributed directory data structure. Foreach shared page in the system, a single directory en-try indicates one of three possible page states: un-cached, read-shared, or write-shared. At a release op-eration a processor consults the directory regardingpages it has written, and, if the page is not already inwrite-shared state, sends a write notice to all proces-sors that have a copy of the page. At an acquire oper-ation, a processor invalidates all write-shared pages inits sharing set. As in TreadMarks there may be multi-ple concurrent writers of a page. Rather than keepingdi�s and twins, however, Cashmere arranges for everyprocessor to write its changes through, as they occur,to a unique home copy of each page. When a proces-sor needs a fresh copy of a page it can simply make acopy from the home; this copy is guaranteed to con-tain all changes made by all processors up to the lastrelease visible to the processor. Cashmere currentlyruns on the Memory Channel. Because the networkadaptor does not snoop on the memory bus, Cashmerebinaries must be modi�ed to \double" every write toshared memory: one write goes to the local copy of thedata; the other goes to I/O space, where it is caughtby the adaptor and forwarded to the home node.AURC [9] is a multi-writer protocol designed forthe Princeton Shrimp [3]. Like TreadMarks, AURCuses distributed information in the form of timestampsand write notices to maintain sharing information.Like Cashmere, it relies on (remote) write-through tomerge changes into a home copy of each page. Be-cause the Shrimp interface connects to the memorybus of its 486-based nodes, it does not need to aug-ment the executable like Cashmere does, thus avoid-

ing a major source of overhead. Experimental resultsfor AURC are currently based on simulation; imple-mentation results await the completion of a large-scaleShrimp testbed.Shasta [20], developed at DEC WRL, employsa single-writer relaxed consistency protocol withvariable-size coherence blocks. Like TreadMarks,Shasta uses the Memory Channel only for fast messag-ing and for an inexpensive implementation of pollingfor remote requests. A major di�erence betweenShasta and the above DSMs is the mechanism usedto detect coherence misses. Rather than rely on VM,Shasta inserts consistency checks in-line when access-ing shared memory. Aggressive compiler optimiza-tions attempt to keep the cost of checks as low as pos-sible. Because of its software miss detection, Shastacan maintain coherence at granularities smaller thana page, thus reducing false sharing e�ects seen by theprevious three systems, and reducing the need for mul-tiple writers. If di�erent data ranges within an ap-plication display di�erent access patterns, Shasta canuse a di�erent coherence granularity for each, therebyallowing the user to customize the protocol. Smallcoherence blocks have also been explored in the Bliz-zard system [21], but with a much less aggressive,sequentially-consistent protocol.3 Performance Trade-O�sFigure 1 presents results comparing two of the sys-tems discussed above|TreadMarks and Cashmere.On the whole, the TreadMarks protocol with pollingprovides the best performance, though the Cashmereprotocol comes close in several cases [12]. In general,the Cashmere protocol su�ers from the overhead ofwrite doubling, thrashing in the L1 cache, and the lackof bandwidth for write-throughs. The cache problemsstem from the combination of a very small cache size(16KB on the 21064A processor used in our experi-ments) and cache pressure from write doubling. Bothbandwidth and cache size will improve dramaticallyin future hardware from DEC. In Barnes, Cashmerealready scales better than TreadMarks, by taking ad-vantage of write-through to merge updates by multipleprocessors at a single location.The DSM protocols discussed above and in sec-tion 2 represent only a small subset of choices in avery large design space. In this section we enumeratealternatives for DSM systems on a memory-mappednetwork interface, and discuss methods to exploit thatinterface for high-performance software shared mem-ory.
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Figure 1: Cashmere and TreadMarks speedups on theMemory Channel, with 32 processors computing.3.1 Coherence Granularity and Miss De-tection MechanismSoftware DSM systems require a mechanism forprocesses to detect when they are trying to access datathat is not present in their sharing set, or for whichthey do not have the appropriate access permissions.Two such mechanisms exist: hardware faults and in-line checks before shared loads and stores. Of the foursystems outlined in Section 2, three|TreadMarks,Cashmere, and AURC|use page faults and thereforemaintain coherence at the granularity of pages. Insome systems it is possible to generate faults at a �nergranularity using the ECC bits in memory [21].Shasta checks a directory in software before sharedloads and stores. If the check reveals an inconsistentstate the program branches into a software handlerthat performs the necessary protocol actions. Inlinechecks are signi�cantly cheaper than faults but havethe disadvantage that they have to be performed onload and store instructions that would not cause afault in a VM-based system. Aggressive compiler op-timizations help to reduce the cost of inline checks;further reductions are an active area of research. LikeECC faults, in-line checks allow programs to use �ner(and even variable) grain coherence blocks. Smallerblocks mitigate false sharing e�ects that might oth-erwise be observed with page-size coherence blocks.Multi-writer protocols also mitigate false sharing, butless e�ectively.In general software DSM systems work best whenapplications employ larger blocks, thus minimizingthe network startup latency and software overhead to

transfer a given amount of data. The smaller blocks ofShasta would seem to be of the greatest bene�t for ap-plications in which hardware DSM enjoys the largestcomparative advantage.3.2 Metadata RepresentationCashmere and Shasta utilize directories in order tomaintain sharing information on coherence blocks. Di-rectories need to be updated when a processor misseson a coherence block, and also during synchronizationevents. Directories make more sense with a memory-mapped network than they do with a message-passingnetwork, due to the low latency of messages. The factthat directories maintain global information (based onwall-clock time) means that processors may performinvalidations not strictly required by the happens-before relationship.Distributed time-stamps allow processes to proceedwithout communication until they synchronize. A dis-advantage of this approach is the accumulation of con-sistency information, requiring garbage collection. Inaddition, the lack of centralized information on a pagemay force processes to exchange write notices regard-ing pages that they are not actively sharing.3.3 Home Node Placement/MigrationFor protocols such as Cashmere, AURC, andShasta, which maintain a \home" copy of each page,the choice of home node is important. Ideally, a pageshould be placed at the node that accesses it the most.At the very least, it should be placed at a node thataccesses it some. Cashmere currently uses a \�rsttouch after initialization" policy, resulting in reason-ably good home node placement [15].A �xed choice of home node may lead to poor per-formance for migratory data in Cashmere and AURC,because of high write-through tra�c. Similarly, ahome node for directory entries in Shasta implies a 3-way request for invalid data, which is directed throughthe home node to the current dirty copy. While datatra�c is still 2-hop, care must be taken at compile-time to choose the correct granularity of directory ac-cess to avoid the ping-pong e�ect of false sharing. Un-fortunately, in the presence of write-through there ap-pears to be no way to change a home node at run-timewithout global synchronization. Remapping of pagesis also fairly expensive.Because modi�cations in TreadMarks are kept onthe processor making the changes, and distributedonly on demand, the issue of home node placementdoes not arise. Requests for updates to migratory data



are automatically directed to the modifying processor.This localization of updates comes at the expense ofadditional computation for di�ng and twinning. Thisoverhead can be considerably reduced by combiningsingle and multi-writer protocols [2].3.4 Update Collection MechanismCashmere and AURC avoid the computation over-heads of di�ng and twinning by writing data throughto a home node. In the case of multiple concurrentwriters, this has the advantage that subsequent re-quests for data by processors whose pages have beeninvalidated can be satis�ed in their entirety by thehome node. In contrast, TreadMarks must requestdi�s from all concurrent writers in order to updatesuch a page. This results in a large number of mes-sages in comparison to Cashmere or AURC, and acorresponding loss in performance. The amount ofdata tra�c could, however, be lower, in the case ofmultiple writes to the same location since data is onlytransferred via an explicit request. Cashmere does,however, incur software overhead for write doubling.The Shasta protocol disallows multiple concurrentwriters. Cache blocks that are actively write-sharedwill ping-pong between the sharing processors. Shastareduces ping-ponging due to false sharing by usingsmall coherence blocks. This of course increases thenumber of messages required to bring in the sameamount of data. In order for small blocks to be prof-itable, the latency of messages must be low.An attractive alternative would be to combine sin-gle and multiple-writer protocols, and use home nodesonly to accumulate concurrent updates with the helpof di�s and twins. We are adopting this approach ina version of Cashmere currently under development.3.5 Use of Remote-Mapped AddressSpaceAn important issue when designing DSM protocolsfor remote memory access networks is how best toexploit the ability to access remote memory directly.Choices include: a) make all shared memory accessi-ble remotely, as in AURC and Cashmere, b) put allor some of the DSM metadata (directories, write no-tices, di�s) in shared space, but keep real data re-motely inaccessible, and c) use the interface only forfast messaging and synchronization, as in Shasta andTreadMarks.AURC and Cashmere make all shared memory ac-cessible remotely. The advantage of this approach is

that it allows in-place updates of home nodes, and di-rect transfers from the home to sharing nodes, withoutextra copies or remapping. The disadvantage (otherthan the bandwidth requirements of write-through, ifany) is that the shared address space is limited to theamount of memory that can be remotely mapped. Onthe Memory Channel under Digital Unix, we are cur-rently limited to about 100 MB.TreadMarks and Shasta use the network interfaceonly for fast messaging. The advantage of this ap-proach is scalability, since the size of shared memoryis not limited by the interface. However, the latency ofoperations is higher, since data has to be transferredvia the network into a message bu�er and then copiedto its �nal destination.3.6 Synchronous Remote OperationsA side-e�ect of making all shared memoryremotely-accessible is that there is no need to inter-rupt a remote processor in order to update its data.For networks such as Memory Channel and Shrimp,however, active cooperation of a remote processor isstill required to read from a remote location|a readermust ask a remote processor to write the data backto it. Remote requests can be made using either in-terrupts or polling. The tradeo� between the two issimilar to the one between fault-based and in-line ac-cess checks: polling incurs a modest constant over-head, while remote interrupts impose a large occa-sional overhead. At present polling outperforms re-mote interrupts for most of our applications on theMemory Channel under Digital Unix. Fast remote in-terrupts might tip the balance the other way.Cashmere requires synchronous remote operationsonly to read remote data. Because all metadata andshared memory resides in Memory Channel space,(non-coherent) hardware reads would eliminate theneed for either interrupts or polling. TreadMarks andShasta place each processor in charge of maintainingits own data and metadata. As a result they use re-mote operations more extensively. AURC is some-where in-between: it places shared data in remotely-accessible space, and updates it directly, but uses in-terrupts to trigger operations on locally-maintainedmetadata. A fourth alternative, which we are pursu-ing in a version of TreadMarks currently under de-velopment, is to use remotely-accessible space onlyfor metadata. This option permits very large datasets, while eliminating most of the interrupts associ-ated with acquires and facilitating garbage collectionof old intervals and di�s. A similar approach mightalso be attractive in Shasta.
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