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Abstract

Memory-mapped network interfaces provide users
with fast and cheap access to remote memory on
clusters of workstations. Software distributed shared
memory (DSM) protocols built on top of these net-
works can take advantage of fast messaging to im-
prove performance. The low latencies and remote
memory access capabilities of these networks suggest
the need to re-evaluate the assumptions underlying
the design of DSM protocols. This paper describes
some of the approaches currently being used to sup-
port shared memory efficiently on such networks. We
discuss other possible design options for DSM systems
on a memory-mapped network interface and propose
methods by which the interface can best be used to
implement coherent shared memory in software.

1 Introduction

Software distributed shared memory (DSM) is an
attractive design alternative for cheap shared memory
computing on workstation networks. Traditional DSM
systems rely on virtual memory hardware and simple
message passing to implement shared memory. State-
of-the-art DSM systems employ sophisticated proto-
col optimizations, such as relaxed consistency models,
multiple writable copies of a page, and lazy processing
of all coherence-related events. These optimizations
recognize the very high (millisecond) latency of com-
munication on workstation networks; their aim is to
minimize the frequency of communication, even at the
expense of additional computation.
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Recent technological advances have led to the com-
mercial availability of inexpensive workstation net-
works on which a processor can access the memory
of a remote node safely from user space [3, 8, 4]. The
latency of access is two to three orders of magnitude
lower than that of traditional message passing. These
networks suggest the need to re-evaluate the assump-
tions underlying the design of DSM protocols. This
paper describes existing protocols that take advantage
of the low-latency memory-mapped network interface,
and discusses the trade-offs involved in efficiently ex-
ploiting its capabilities. We discuss the design options
for DSM systems on a memory-mapped network inter-
face and propose methods by which the interface can
best be used to implement software coherent shared
memory.

We restrict ourselves to a discussion of systems that
support more-or-less “generic” shared-memory pro-
grams, such as might run on a machine with hardware
coherence. The memory model presented to the user
is release consistency [7], with explicit synchronization
operations visible to the run-time system.

We begin with a summary of existing protocols and
implementations. Cashmere [11] employs a directory-
based multi-writer protocol that exploits the write-
through capabilities of its network (in software) to
merge updates by multiple processors. AURC [9] is
an interval-based multi-writer protocol that exploits
the hardware write-through capabilities of the Shrimp
network interface [3]. Shasta [20] uses a single-writer
directory protocol with in-line protocol operations to
support variable-size coherence blocks. Finally, Tread-
Marks [1] uses a multi-writer interval-based protocol
to provide DSM on message-passing networks; on a
memory-mapped network it uses the extra functional-
ity only for fast messages.

These protocols represent only a small subset of


mls
Bull. of the IEEE Technical Committee on Computer Architecture (TCCA),
Mar. 1997


choices in a very large design space. We enumerate al-
ternatives for DSM systems on a memory-mapped net-
work interface, and discuss methods to exploit that in-
terface for high-performance software shared memory.
Issues we consider include: 1) coherence granularity
and miss detection mechanism; 2) metadata represen-
tation (directories vs. intervals); 3) home node place-
ment/migration; 4) update collection mechanism; 5)
use of remote-mapped address space; and 6) syn-
chronous remote operations (interrupts, etc.)

The rest of the paper is organized as follows.
Section 2 describes existing protocols implemented
on memory-mapped network interfaces. Section 3
discusses performance tradeoffs in more detail, and
presents a summary of results from a comparison of
two of the protocols. Section 4 concludes with a sum-
mary of future directions.

2 Discussion of Existing Protocols
2.1 Background

Software distributed shared memory (DSM) com-
bines the ease of programming of shared memory
machines with the scalability of distributed memory
(message passing) machines. DSM systems provide
an avenue for affordable, easy-to-use supercomputing
for computationally demanding applications in a vari-
ety of problem domains. A survey of both hardware
and software DSM systems can be found in [18].

The original idea of using the virtual memory sys-
tem on top of simple messaging to implement software
coherence on networks dates from Kai Li’s thesis work
on Ivy [13]. A host of other systems were built fol-
lowing Li’s early work; Nitzberg and Lo [16] provide
a survey of early VM-based systems. Many of these
systems often exhibited poor performance due to false
sharing resulting from the large granularity of the co-
herence blocks and the sequential consistency memory
model used.

Relaxed consistency models result in considerable
improvements in DSM performance. Munin [5] was
the first DSM system to adopt a release consistency
model and to allow multiple processors to concurrently
write the same coherence block. Processors kept track
of what modifications they had made on a page by
making a copy of the page before starting to write
it (called twinning), and then comparing the page to
its twin (called diffing). TreadMarks [1] uses a lazy
implementation of release consistency [10], which fur-
ther limits communication to only those processes that
synchronize with one another.

Recent advances in network technology have nar-
rowed the gap in communication performance between
single-chassis systems and clusters of workstations. At
the high end (in terms of cost), recent commercial of-
ferings from Sequent and SGI construct large, cache-
coherent systems from multiprocessor nodes on a high-
speed network. Several other academic and commer-
cial projects are developing special-purpose adaptors
that extend cache coherence (at somewhat lower per-
formance, but potentially lower cost) across a col-
lection of SMP workstations on a commodity net-
work; these include the Dolphin SCI adaptor [14],
the Avalanche project [6] at the University of Utah,
and the Typhoon project at the University of Wis-
consin [19]. At still lower cost, memory-mapped net-
work interfaces without cache coherence allow mes-
sages (typically triggered by ordinary loads and stores)
to be sent from user space with microsecond laten-
cies; examples here include the Princeton Shrimp [3],
DEC Memory Channel [8] based on Encore’s reflective
memory [18], and HP Hamlyn [4] networks. Software
DSM systems built on top of these very fast networks
are an attractive cost-efficient alternative to full hard-
ware coherence. In the rest of this section, we fo-
cus on four software DSM systems implemented on a
memory-mapped network interface.

2.2 Software DSMs on Memory-Mapped
Network Interfaces

TreadMarks [1] is a distributed shared memory
system based on lazy release consistency (LRC) [10].
Lazy release consistency guarantees memory consis-
tency only at synchronization points and permits mul-
tiple writers per coherence block. Time on each node
is divided into intervals delineated by remote acquire
synchronization operations. FEach node maintains a
timestamp consisting of a vector of such intervals: en-
try ¢ on processor j indicates the most recent interval
on processor ¢ that logically precedes the current in-
terval on processor j. When a processor takes a write
page fault, it creates a write notice for the faulting
page and appends the notice to the list of such notices
associated with its current interval. During synchro-
nization events the synchronizing processors exchange
their vector timestamps and invalidate all pages that
are described in write notices associated with inter-
vals known to one processor but not known to the
other. The write notices are appended to the data
structures that describe the invalidated pages. In sub-
sequent faults, the list of write notices associated with
a page is perused and the changes made by the pro-
cessors specified in the write notices are fetched. Asin



Munin, each processor keeps track of its own changes
by using twins and diffs. There is a one-to-one corre-
spondence between diffs and write notices.

Our implementation of TreadMarks for the DEC
Memory Channel makes use of the memory-mapped
network interface for fast messaging and for a user-
level implementation of polling, allowing processors to
exchange asynchronous messages inexpensively. We
do not currently use broadcast or remote memory ac-
cess for either synchronization or protocol data struc-
tures, nor do we place shared memory in Memory
Channel space.

Cashmere [11] is a software coherence system ex-
pressly designed for memory-mapped network inter-
faces. It was inspired by Petersen’s work on coher-
ence for small-scale, non-hardware-coherent multipro-
cessors [17]. Cashmere maintains coherence informa-
tion using a distributed directory data structure. For
each shared page in the system, a single directory en-
try indicates one of three possible page states: un-
cached, read-shared, or write-shared. At a release op-
eration a processor consults the directory regarding
pages it has written, and, if the page is not already in
write-shared state, sends a write notice to all proces-
sors that have a copy of the page. At an acquire oper-
ation, a processor invalidates all write-shared pages in
its sharing set. As in TreadMarks there may be multi-
ple concurrent writers of a page. Rather than keeping
diffs and twins, however, Cashmere arranges for every
processor to write its changes through, as they occur,
to a unique home copy of each page. When a proces-
sor needs a fresh copy of a page it can simply make a
copy from the home; this copy is guaranteed to con-
tain all changes made by all processors up to the last
release visible to the processor. Cashmere currently
runs on the Memory Channel. Because the network
adaptor does not snoop on the memory bus, Cashmere
binaries must be modified to “double” every write to
shared memory: one write goes to the local copy of the
data; the other goes to 1/O space, where it is caught
by the adaptor and forwarded to the home node.

AURC [9] is a multi-writer protocol designed for
the Princeton Shrimp [3]. Like TreadMarks, AURC
uses distributed information in the form of timestamps
and write notices to maintain sharing information.
Like Cashmere, it relies on (remote) write-through to
merge changes into a home copy of each page. Be-
cause the Shrimp interface connects to the memory
bus of its 486-based nodes, it does not need to aug-
ment the executable like Cashmere does, thus avoid-

ing a major source of overhead. Experimental results
for AURC are currently based on simulation; imple-
mentation results await the completion of a large-scale
Shrimp testbed.

Shasta [20], developed at DEC WRL, employs
a single-writer relaxed consistency protocol with
variable-size coherence blocks.  Like TreadMarks,
Shasta uses the Memory Channel only for fast messag-
ing and for an inexpensive implementation of polling
for remote requests. A major difference between
Shasta and the above DSMs is the mechanism used
to detect coherence misses. Rather than rely on VM,
Shasta inserts consistency checks in-line when access-
ing shared memory. Aggressive compiler optimiza-
tions attempt to keep the cost of checks as low as pos-
sible. Because of its software miss detection, Shasta
can maintain coherence at granularities smaller than
a page, thus reducing false sharing effects seen by the
previous three systems, and reducing the need for mul-
tiple writers. If different data ranges within an ap-
plication display different access patterns, Shasta can
use a different coherence granularity for each, thereby
allowing the user to customize the protocol. Small
coherence blocks have also been explored in the Bliz-
zard system [21], but with a much less aggressive,
sequentially-consistent protocol.

3 Performance Trade-Offs

Figure 1 presents results comparing two of the sys-
tems discussed above—TreadMarks and Cashmere.
On the whole, the TreadMarks protocol with polling
provides the best performance, though the Cashmere
protocol comes close in several cases [12]. In general,
the Cashmere protocol suffers from the overhead of
write doubling, thrashing in the L1 cache, and the lack
of bandwidth for write-throughs. The cache problems
stem from the combination of a very small cache size
(16KB on the 21064A processor used in our experi-
ments) and cache pressure from write doubling. Both
bandwidth and cache size will improve dramatically
in future hardware from DEC. In Barnes, Cashmere
already scales better than TreadMarks, by taking ad-
vantage of write-through to merge updates by multiple
processors at a single location.

The DSM protocols discussed above and in sec-
tion 2 represent only a small subset of choices in a
very large design space. In this section we enumerate
alternatives for DSM systems on a memory-mapped
network interface, and discuss methods to exploit that
interface for high-performance software shared mem-
ory.
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Figure 1: Cashmere and TreadMarks speedups on the
Memory Channel, with 32 processors computing.

3.1 Coherence Granularity and Miss De-
tection Mechanism

Software DSM systems require a mechanism for
processes to detect when they are trying to access data
that is not present in their sharing set, or for which
they do not have the appropriate access permissions.
Two such mechanisms exist: hardware faults and in-
line checks before shared loads and stores. Of the four
systems outlined in Section 2, three—TreadMarks,
Cashmere, and AURC—use page faults and therefore
maintain coherence at the granularity of pages. In
some systems it is possible to generate faults at a finer
granularity using the ECC bits in memory [21].

Shasta checks a directory in software before shared
loads and stores. If the check reveals an inconsistent
state the program branches into a software handler
that performs the necessary protocol actions. Inline
checks are significantly cheaper than faults but have
the disadvantage that they have to be performed on
load and store instructions that would not cause a
fault in a VM-based system. Aggressive compiler op-
timizations help to reduce the cost of inline checks;
further reductions are an active area of research. Like
ECC faults, in-line checks allow programs to use finer
(and even variable) grain coherence blocks. Smaller
blocks mitigate false sharing effects that might oth-
erwise be observed with page-size coherence blocks.
Multi-writer protocols also mitigate false sharing, but
less effectively.

In general software DSM systems work best when
applications employ larger blocks, thus minimizing
the network startup latency and software overhead to

transfer a given amount of data. The smaller blocks of
Shasta would seem to be of the greatest benefit for ap-
plications in which hardware DSM enjoys the largest
comparative advantage.

3.2 Metadata Representation

Cashmere and Shasta utilize directories in order to
maintain sharing information on coherence blocks. Di-
rectories need to be updated when a processor misses
on a coherence block, and also during synchronization
events. Directories make more sense with a memory-
mapped network than they do with a message-passing
network, due to the low latency of messages. The fact
that directories maintain global information (based on
wall-clock time) means that processors may perform
invalidations not strictly required by the happens-
before relationship.

Distributed time-stamps allow processes to proceed
without communication until they synchronize. A dis-
advantage of this approach is the accumulation of con-
sistency information, requiring garbage collection. In
addition, the lack of centralized information on a page
may force processes to exchange write notices regard-
ing pages that they are not actively sharing.

3.3 Home Node Placement/Migration

For protocols such as Cashmere, AURC, and
Shasta, which maintain a “home” copy of each page,
the choice of home node is important. Ideally, a page
should be placed at the node that accesses it the most.
At the very least, it should be placed at a node that
accesses it some. Cashmere currently uses a “first
touch after initialization” policy, resulting in reason-
ably good home node placement [15].

A fixed choice of home node may lead to poor per-
formance for migratory data in Cashmere and AURC,
because of high write-through traffic. Similarly, a
home node for directory entries in Shasta implies a 3-
way request for invalid data, which is directed through
the home node to the current dirty copy. While data
traffic is still 2-hop, care must be taken at compile-
time to choose the correct granularity of directory ac-
cess to avoid the ping-pong effect of false sharing. Un-
fortunately, in the presence of write-through there ap-
pears to be no way to change a home node at run-time
without global synchronization. Remapping of pages
is also fairly expensive.

Because modifications in TreadMarks are kept on
the processor making the changes, and distributed
only on demand, the issue of home node placement
does not arise. Requests for updates to migratory data



are automatically directed to the modifying processor.
This localization of updates comes at the expense of
additional computation for diffing and twinning. This
overhead can be considerably reduced by combining
single and multi-writer protocols [2].

3.4 Update Collection Mechanism

Cashmere and AURC avoid the computation over-
heads of diffing and twinning by writing data through
to a home node. In the case of multiple concurrent
writers, this has the advantage that subsequent re-
quests for data by processors whose pages have been
invalidated can be satisfied in their entirety by the
home node. In contrast, TreadMarks must request
diffs from all concurrent writers in order to update
such a page. This results in a large number of mes-
sages in comparison to Cashmere or AURC, and a
corresponding loss in performance. The amount of
data traffic could, however, be lower, in the case of
multiple writes to the same location since data is only
transferred via an explicit request. Cashmere does,
however, incur software overhead for write doubling.

The Shasta protocol disallows multiple concurrent
writers. Cache blocks that are actively write-shared
will ping-pong between the sharing processors. Shasta
reduces ping-ponging due to false sharing by using
small coherence blocks. This of course increases the
number of messages required to bring in the same
amount of data. In order for small blocks to be prof-
itable, the latency of messages must be low.

An attractive alternative would be to combine sin-
gle and multiple-writer protocols, and use home nodes
only to accumulate concurrent updates with the help
of diffs and twins. We are adopting this approach in
a version of Cashmere currently under development.

3.5 Use
Space

of Remote-Mapped Address

An important issue when designing DSM protocols
for remote memory access networks is how best to
exploit the ability to access remote memory directly.
Choices include: a) make all shared memory accessi-
ble remotely, as in AURC and Cashmere, b) put all
or some of the DSM metadata (directories, write no-
tices, diffs) in shared space, but keep real data re-
motely inaccessible, and c) use the interface only for
fast messaging and synchronization, as in Shasta and
TreadMarks.

AURC and Cashmere make all shared memory ac-
cessible remotely. The advantage of this approach is

that it allows in-place updates of home nodes, and di-
rect transfers from the home to sharing nodes, without
extra copies or remapping. The disadvantage (other
than the bandwidth requirements of write-through, if
any) is that the shared address space is limited to the
amount of memory that can be remotely mapped. On
the Memory Channel under Digital Unix, we are cur-
rently limited to about 100 MB.

TreadMarks and Shasta use the network interface
only for fast messaging. The advantage of this ap-
proach is scalability, since the size of shared memory
is not limited by the interface. However, the latency of
operations is higher, since data has to be transferred
via the network into a message buffer and then copied
to its final destination.

3.6 Synchronous Remote Operations

A side-effect of making all shared memory
remotely-accessible is that there is no need to inter-
rupt a remote processor in order to update its data.
For networks such as Memory Channel and Shrimp,
however, active cooperation of a remote processor is
still required to read from a remote location—a reader
must ask a remote processor to write the data back
to it. Remote requests can be made using either in-
terrupts or polling. The tradeoff between the two is
similar to the one between fault-based and in-line ac-
cess checks: polling incurs a modest constant over-
head, while remote interrupts impose a large occa-
sional overhead. At present polling outperforms re-
mote interrupts for most of our applications on the
Memory Channel under Digital Unix. Fast remote in-
terrupts might tip the balance the other way.

Cashmere requires synchronous remote operations
only to read remote data. Because all metadata and
shared memory resides in Memory Channel space,
(non-coherent) hardware reads would eliminate the
need for either interrupts or polling. TreadMarks and
Shasta place each processor in charge of maintaining
its own data and metadata. As a result they use re-
mote operations more extensively. AURC is some-
where in-between: it places shared data in remotely-
accessible space, and updates it directly, but uses in-
terrupts to trigger operations on locally-maintained
metadata. A fourth alternative, which we are pursu-
ing in a version of TreadMarks currently under de-
velopment, is to use remotely-accessible space only
for metadata. This option permits very large data
sets, while eliminating most of the interrupts associ-
ated with acquires and facilitating garbage collection
of old intervals and diffs. A similar approach might
also be attractive in Shasta.



4 Conclusion

In this paper, we have presented a survey of ex-
isting DSM protocols developed for remote memory-
mapped network interfaces, and have discussed the
trade-offs involved in their design and implementation.
The trade-offs involved include coherence granularity
(and method of detecting consistency violations), cen-
tralized directory-based coherence versus distributed
vector timestamps, write-through of data to a central
home node versus diffing and twinning versus single-
writer mode, and the use of remote-mapped address
space. We are in the process of systematically evaluat-
ing the design space for software DSM systems on top
of memory-mapped network interfaces. Early experi-
ments indicate that twinning and diffing tends to do
better than write-through if the latter 1s not supported
in hardware. However, write-through has advantages
when used for the maintenance of protocol meta-data
rather than application shared data. Based on our
early findings, we are developing a VM-based proto-
col that will combine the advantages of write-through
for protocol meta-data with the advantages of twin-
ning and diffing for application data.
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