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Abstract-Distributed object systems such as CQRBA and 
DCOM bring many advances to distributed computing. The 
distribution process itself, however, has changed little: pro- 
grammers still manually divide applications into sub- 
programs and assign those sub-programs to machines with 
little automated assistance. Qften the techniques used to 
choose a distribution are ad hoc. Due to high intellectual 
cost, applications are seldom repartitioned even in drasti- 
cally changing network environments. 
We describe Coign, an automatic distributed partitioning 

system (ADPS) that significantly facilitates the development 
of distributed applications. Given an application (in binary 
form) built from distributable CQM components, Coign 
constructs a graph model of the application's inter- 
component communication through scenario-based profil- 
ing. Later, Coign applies graph-cutting algorithms to parti- 
tion the application across a network and minimize distribu- 
tion costs. Using Coign, an end user without source code can 
transform a non-distributed application into an optimized, 
distributed application. 
Through a guided tour of Coign's architecture and usage, 

we present an overview of its features. We describe the 
automatic distributed partitioning of three applications: 
Microsoft Picture It!, the Octarine word processor, and the 
Corporate Benefits Sample program. All are distributed 
automatically, sometimes with startling results. For exam- 
ple, Coign makes significant changes to the programmer- 
assigned distribution of the Corporate Benefits Sample. 

I. INTRODUCTION 
Distributed object systems such as CORBA and 

DCOM bring the advantages of service location transpar- 
ency, dynamic program instantiation, and object-oriented 
programming to distributed applications. Unfortunately, 
the process to distribute program components has 
changed little: programmers still manually divide appli- 
cations into sub-programs and manually assign those sub- 
programs to machines. Often the techniques used to 
choose a distribution are ad hoc, one-time solutions. 

Given the effort required, applications are seldom re- 
partitioned even in drastically different network environ- 
ments. User usage patterns can severely stress a static 
distribution of an application. Changes in underlying 
network, from ISDN to lOOBaseT to ATM, strain static 
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distributions as bandwidth-to-latency tradeoffs change by 
more than an order of magnitude. Nonetheless, pro- 
grammers resist repartitioning the application because it 
often requires extensive modifications to source code and 
program structure. 

In this paper, we present a guided tour of Coign [SI, an 
automatic distributed partitioning system (ADPS) that 
promises to significantly ease the development of compo- 
nent-based distributed applications. Given an application 
built with COM components, Coign uses inexpensive 
scenario-based profiling on a single computer to quantify 
inter-component communication costs for both single- 
machine and multi-machine distributions. Inter- 
component communication is modeled as a graph in 
which nodes represent components and edges represent 
inter-component communication and location constraints. 
Using graph-cutting algorithms, Coign selects a distribu- 
tion of the application that minimizes communication 
costs. At run time, Coign manipulates program execution 
(with negligible overhead) to produce the desired distri- 
bution. 

Coign analyzes an application, chooses a distribution, 
and produces the desired distribution all without access to 
application source. As a corollary, Coign is completely 
language neutral; it neither knows nor cares about the 
source language of the components in the application. 
Moreover, because it operates on binaries, Coign pre- 
serves the ability to build applications from reusable, 
third-party components. 

In the following section we describe related work. In 
Section 111, we illustrate how to use Coign to automati- 
cally distribute an application. We describe Coign's ar- 
chitecture in Section IV. Section V contains an experi- 
mental evaluation of Coign's effectiveness in distributing 
three applications. In Section VI, we discuss the rele- 
vance of Coign to distributed enterprise applications. Fi- 
nally, in Section VI1 we conclude and discuss future 
work. 

11. RELATED WORK 
While Coign is the first ADPs for binary applications, 
the idea of an ADPs is not new. 
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A. ICOPS 
The Interconnected Processor System (ICOPS) [8, 14, 

161 supported distributed application partitioning in the 
1970’s. Under the direction of Andries van Dam, ICOPS 
pioneered the use of compiler-generated stubs for inter- 
process communication. ICOPS was the first system to 
use scenario-based profiling to gather statistics for dis- 
tributed partitioning; the first system to support multiple 
distributions per application based on host-processor load; 
and the first system to use a maximum-flow-minimum-cut 
(MAX-FLOWMIN-CUT) algorithm [4] to choose distri- 
butions. 

ICOPS was used to automatically distribute HUGS, a 
two dimensional drafting program developed at Brown 
University. HUGS consisted of seven modules. Three of 
these-consisting of 20 procedures in all-could be 10- 
cated on either the client or the server. 

ICOPS was never intended for shrink-wrapped, com- 
mercial applications. Tied to a single language and com- 
piler, it relied on metadata generated by the compiler to 
facilitate transfer of data and control between computers. 
Modules compiled in another language or by another 
compiler could not be distributed because they did not 
contain appropriate metadata. ICOPS gave the applica- 
tion the luxury of location transparency, but still required 
the programmer or user to explicitly select a distribution 
based on machine load. 

B. IDAP 
Kimelman et al. [7] describe the Intelligent Dynamic 

Application Partitioning (IDAP) system, an ADPs for 
Smalltalk applications. IDAP is an add-on to IBM’s 
VisualAge Generator. Using VisualAge Generator’s vis- 
ual builder, a programmer designs an application by in- 
stantiating and connecting components in a graphical en- 
vironment. The builder emits code for the created appli- 
cation. 

The “dynamic” in the IDAP name refers to scenario- 
based profiling as opposed to static analysis. IDAP first 
generates a version of the application with an instru- 
mented message-passing mechanism. IDAP runs the in- 
strumented application under control of a test facility with 
the VisualAge system. After the application execution, 
the programmer either manually partitions the conipo- 
nents or invokes an automatic graph-partitioning algo- 
rithm. The algorithm used is an approximation algorithm 
capable of multi-way cuts for two or more hosts [ 3 ] .  Af- 
ter choosing a distribution, VisualAge generates a new 
version of the application. 

IDAP supports distributed partitioning only for stati- 
cally allocated components. Although initially based on 
Smalltalk, the distributable components are large-grain 
components, not the fine-grained objects native to Small- 
talk. Kimelman’s team has tested their system on a num- 

ber of real Smalltalk aLpplications, but in each case, the 
application had “far fewer than 100’ components [7] .  

The latest version of IDAP generates C++ code to 
connect CORBA components, but still does not support 
dynamic component instantiation [6]. Moreover, the use 
of CORBA restricts IDAP to a distribution granularity of 
whole processes because CORBA does not support load- 
ing multiple component servers into the same address 
space. The IDAP programmer must be vary aware of 
distribution choices. IDAP helps the user to optimize the 
distribution, but does not raise the level of abstraction 
above the distribution mechanisms. With a full-featured 
ADPS, such as Coign, the programmer can focus on com- 
ponent development and leave distribution to the system. 

Although it supports multiple languages, IDAP still re- 
quires that application’s be constructed with a specific 
application development toolkit, the VisualAge Genera- 
tor. Like ICOPS, IDAP supports automatic distributed 
partitioning of static application pieces only. In the case 
of ICOPS, the application pieces are procedures. In the 
case of IDAP, the pieces are CORBA components or 
large-grain Smalltalk objects. 

C. Summary 
Prior to Coign, no ADPs allowed distributed parti- 

tioning of binary components dynamically instantiated 
during the execution of the application. Dynamic csmpo- 
nent instantiation is an integral feature of modern desktop 
applications. One of thie major contributions of our work 
is a set of dynamic coimponent classification algorithms 
that map newly-created components to similar compo- 
nents identified during scenario based profiling. 

Our research differs in scope from prior work because 
we automatically distribute an existing class of commer- 
cial applications. All of the applications in our test suite 
were developed by third parties with no knowledge of the 
Coign system. 

111. A GUIDED TOUR 
To solidify the concept of an ADPS, we describe a 

detailed example of Coign’s usage to automatically dis- 
tribute an existing COM application. The application 
used in this example is a preliminary version of a future 
release of Microsoy? Picture It! [ 121. (The original, un- 
instrumented version of Picture It! application is designed 
to run on a single computer-it provides no explicit sup- 
port for distribution.) 

A. Creating a Distributed Application 
Starting with the original binary files for Picture It!, 

we use the setcoign utility to insert the Coign profiling 
instrumentation package, see Fig. 1. setcoign makes 

inserts an entry to load the Coign Runtime Executive 
(RTE) Dynamic-Link Library (DLL) into the first slot in 

two modifications to the pi. exe binary file. First, it 
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the application’s DLL import table. Second, setcoign 
adds a data segment containing configuration information 
to the end of pi. exe. The configuration information 
tells the Coign RTE how the application should be pro- 
filed and which of several algorithms should be used to 
identify components during execution. 

Because it occupies the first slot in the application’s 
DLL import table, the Coign RTE will always load and 
execute before the application or any of its other DLLs. It 
therefore has a chance to modify the application’s address 
space before the application runs. The Coign RTE takes 
advantage of this opportunity to insert binary instrumen- 
tation into the image of system libraries in the applica- 
tion’s address space. The instrumentation traps all com- 
ponent instantiation functions in the COM library. Before 
returning control to the application, the Coign RTE loads 
any additional Coign components (described in Section 4) 
as stipulated by the configuration information stored in 
the application. 

With the Coign runtime configured for profiling, the 
application is ready to be run through a set of profiling 
scenarios; see Fig. 2. Because the binary has been modi- 
fied transparently to the user (and to the application it- 
self), profiling runs behave from the user’s point of view 
as if there werexo instrumentation in place. The instru- 
mentation gathers profiling information in the background 
while the user controls the application. The only visible 
effect of profiling is a degradation in application perform- 
ance of up to 85%. For our simple example, we start 
Picture It!, load a file for preview, and exit the applica- 
tion. For more advanced profiling, scenarios can be 
driven by an automated testing tool, such as Visual Test 
P I .  

During profiling, the Coign instrumentation maintains 
running summaries of the inter-component communica- 
tion within the application. Coign quantifies every inter- 
component function call through a COM interface. The 
instrumentation measures the number of bytes that would 
have to be transferred between machines if the two com- 
municating components were distributed. The number of 
bytes is calculated by invoking portions of the DCOM 
code, including the interface proxy and stub, within the 
application’s address space. Coign measurement follows 
precisely the deep-copy semantics of DCOM. After cal- 
culating communication costs, Coign compresses and 
summarizes the data online to keep instrumentation stor- 
age requirements at a minimum. If desired, the applica- 
tion may be run through profiling scenarios for days or 
even weeks to more accurately track user usage patterns. 
In all of our tests, storage overhead for Coign never ex- 
ceeded 1.5 MB. 

At the end of the profiling execution, Coign writes the 
summary log of inter-component communication to a file 
for later analysis; see Fig. 3. In addition to information 
about the number and sizes of messages and components 
in the application, the profile log also contains informa- 

D:\apps\pictureit\bin> s.rcoip /p pi.-. 

Logger: Caign Profile Logger 
Informer: Caigm NDR Interface Informer 
Classifier: Coign EP3C Classifier 

ConfIg: 

Sections: 4 - VAddr -Vslze -VAEnd -FAddr -FSize R L R I, 
.text 1000 10e343 10f343 400 lOe400 0 0 0 0 
.=data 110000 5 0 1 ~ 3  1601~3 lOe8OO 50200 0 0 0 0 
.data 161000 11224 172224 15ea00 d400 0 0 0 0 
.ZSTC 173000 15868 188868 16be00 15a00 0 0 0 0 
.caign 189000 6cdO l8fcdO 181800 be00 0 0 0 0 

Debug Directories: 
0 00000000 00181800..00181910 -> 00188600..00188710 
1. 00000000 00181910..001819~0 -> 00188710..001887~0 
2. 00000000 001819cO..O01819ea -> 001887c0..001887ea 

Extra. Data: 512 ( 181a00 - 1818001 
Coign Extra Data: 

(9CEEBO2F-E415-11DO-98D1-~06097BOlOE3) : 4 bytes. 

Fig. 1. Inserting Coign into the Application. 
Setcoign rewrites the pi.exe binary to insert Coign 

profiling instrumentation into Picture It!. 

Fig. 2. Executing a Profiling Scenario. With Coign 
instrumentation in place, the application is run through 

one or more profiling scenarios to measure inter- 
component communication. In this scenario, Picture 

It! loads and renders a composite image. 

tion to classify components to determine component lo- 
cation constraints. Log files from multiple profiling exe- 
cutions may be combined and summarized during later 
analysis. Alternatively, at the end of each profiling exe- 
cution, information from the log file may be inserted into 
the configuration record in the application executable (the 
pi.exe file in this example). The latter approach uses less 
storage because summary information in the configuration 
record accumulates communication from similar interface 
calls into a single entry. 

Invoking adpcoign initiates post-profiling analysis, 
see Fig. 4. Adpcoign examines the system service li- 
braries to determine any location constraints on applica- 
tion components. For client-server distributions, 
adpcoign recognizes components that must be placed 
on the client in order to access the Windows GUI libraries 
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D \apps\pictureit\bm> pi.rx. 
[Colgn Runtme Environment 00000080 636f6900 000000001 
[ C o u p  EP3C Classifier199991 
[Colgn NDR Interface Informer1 
[Coign Profiling Logger (16 cyc1es)I 
[CorgnRTE DLL-PROCESS-ATTACH1 
[ColgnRTE DLL-THREAD-ATTACH] 
ICreateFileMonlker( D \app.;\pictureit\d~cs\HSR m i x  1 1  
[stgopenstorage( D \apps\pictureit\docs\MSR m i x  ) I  
IColgnRTE DLL-TWREAD-DETACH] 
[Elapsed time 26400 m s l  
[ColgnRTE DLL_PROCESS-DETACHI 
[Inter-component comunication 1 
[ Messages ___ 16 -64 -256 -1024 4 0 9 6  -16384 -Totals 1 
1 In Counts 105240 1629 473 1599 66 45 109052 1 
[ Out Counts 102980 4303 843 183 131 12 109052 1 
[ In Bytes 782022 57912 49616 815034 157619 237963 2100166 1 
[ Out Bytes 155207 130140 95473 304592 239239 70019 1294670 1 

Fig. 3. Logging Communication. At the conclusion of 
the profiling scenario, Coign logs the inter-component 

communication to a file for later analysis. 

D \apps\pictureit\bm> adpcoisn pi.10. 
BIMT1.S 

. .  
oleaut32 dll 

mfc42d dll 
00 D \apps\pictureit\bm\prserv dll 

00 D \apps\pictureit\bm\mfco42d dll 
00 C \u~nnt\sy~tem32\ale32 dll 

Objects 112 
Interfaces 792 
Calls 38286 
Bytes. 743534 
Proc Speed 2OOHHz 

Fig. 4. Post-Profiling Analysis. Adpcoign analyzes 
the log file to create an abstract model of inter- 

component communication. 

D \apps\pictureit\bin> matsoign It1pi.m.t p i . . m  
Config pl set 

Informer Coign Light Interface Informer 
Classifier CoLgn EP3C Classifier 

Sections 5 - VAddr -Vslze -VAEnd -FAddr -FSIze R L U L 
.text lo00 10e343 10f343 400 lOe400 0 0 0 0 
rdata 110000 5 0 1 ~ 3  1601~3 lOe8OO 50200 0 0 I 1  0 
data 161000 11224 172224 lSea00 d400 0 0 I 1  0 
r*rc 173000 15868 188868 16be00 15aiOO 0 0 11 0 

0 83f8 191Jf8 181800 8400 0 0 11 0 

189610 -> 00189~00 OO189dlO 
189bc0 -> 00189d10 00189dc0 
189bea -> 00189dc0 00189dea 

11D0-98D1-0060978010E3) 4980 bytes 
llD0-98D1-006097B010E3) 904 bytes 
llDO-98D1-006097B010E3) 4 bytes 

Fig. 5. Inserting the Model into the Application. An 
abstract model of inter-component communication is 

written into the application binary for distribution 

or that must be placed on the server in order to access 
persistent storage directly. 

Combining location constraints and information about 
inter-component communication, adpcoign creates an 
abstract graph model of the application. In the current 
implementation, adpcoign combines the abstract graph 
model with data about the network configuration to create 
a concrete model of the cost of distribution on a real met- 
work. Adpcoign then uses a graph-cutting algorithm to 
choose a distribution that minimizes communication 

costs. In the future, the construction of the concrete 
model and the graph-cutting algorithm could be per- 
formed at application execution time, thus potentially 
producing a new distribution tailored to current network 
characteristics. 

After analysis, the application’s inter-component 
communication model is written into the configuration 
record in the application binary; see Fig. 5 .  Any residual 
profiling logs are then removed from the configuration 
record. The configuration record is also modified to dis- 
able the profiling instrumentation. In its place, a light- 
weight version of the instrumentation will be loaded to 
realize (enforce) the distribution chosen by the graph- 
cutting algorithm. 

Aside from the inter-component communication 
model, perhaps the most important information written 
into the application configuration is data for the compo- 
nent classifier. The component classifier matches com- 
ponents created during distributed executions to compo- 
nents created during the profiling scenarios. The abstract 
model of inter-component communica,tion contains nodes 
for all known components and edges representing the 
communication between components. To determine 
where a component should be located in a distributed 
execution, the classifier tries to match it to the most simi- 
lar component in the pnofiling scenario. The premise of 
scenario-based profiling is that profiled executions closely 
match post-analysis executions. Therefore, if the circum- 
stances of a component’s creation are similar to those of a 
component in a profiling execution, then the components 
will most likely have similar communication patterns. 
Based on the chosen distribution for similar profiled com- 
ponents, the classifier decides where new components 
created during the distributed execution should be instan- 
tiated. 

Fig. 6 shows the distribution chosen for our profiled 
scenario. In this scenario, the user loads and previews an 
image in Microsoji Picture It! from a server. Each of the 
large black dots in Fig. 61 represents a dynamic component 
in the profiled scenario. Lines between the components 
represent COM interfaces through which the connected 
components communicate. In the on-screen version of 
Fig. 6, lines are colored according to the amount of com- 
munication flowing across the interface. Red lines repre- 
sent interfaces with lalrge amounts of communication 
(communication hot spots) and blue lines represent inter- 
faces with minimal communication. 

Solid, black lines represent interfaces that are non- 
remotable (i.e., pairs of components that must reside on 
the same machine). An interface may not be remotable 
for any of the following reasons: the interface has no In- 
terface Definition Language (IDL) description to enable 
parameter marshaling; one or more of the interface pa- 
rameters is opaque, such as a “void*”; the client directly 
accesses the component’s internal data; or the component 
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must reside on the client or the server because it directly 
accesses system services. 

The “pie” slice in the top half of Fig. 6 contains those 
components that should be located on the server to mini- 
mize network traffic and thus execution time. In our ex- 
ample, the operating storage services, the document file 
component, and three “property set” components are all 
located on the server. Note that approximately one dozen 
“property set” components (of the “PI.PropSet” class) are 
located on the client. In order to achieve optimal perform- 
ance, a component-based ADPs must be able to place 
components of the same class on different machines. 

After the abstract distribution model is written into the 
binary, the application is prepared for distribution. When 
the application user instructs Picture It! to load an image 
from the server, the lightweight version of the Coign run- 
time will trap the related instantiation request and relocate 
it to the server. The four components chosen for distribu- 
tion in Fig. 6 are automatically distributed to the server. 
Coign distributes components to the server by starting a 
surrogate process on the server. The surrogate acts as a 
distributed extension of the application; described com- 
ponents reside in its address space. A distributed version 
of the Coign runtime maintains communication links be- 
tween the original application process on the client and 
the surrogate process on the server. 

Fig. 7 shows the distributed version of Picture It!. The 
window in the lower right corner of Fig. 7 represents the 
surrogate process and the components distributed on the 
server. Coign automatically created a distributed version 
of Microsoji Picture It! without access to the application 
source code or the programmer’s knowledge of the appli- 
cation. The automatic distributed application is custom- 
ized for the specific network to minimize distributed 
communication costs. 

B. Discussion 
We envision two Coign usage models to create distrib- 

uted applications. In the first model, Coign is used with 
other profiling tools as part of the development process. 
Coign shows the developer how to distribute the applica- 
tion optimally and provides the developer with feedback 
about which interfaces are communication “hot spots.” 
The programmer can fine-tune the distribution by insert- 
ing custom marshalling and caching on communication- 
intensive interfaces. The programmer can also enable or 
disable specific distributions by inserting or removing 
location constraints on specific components and inter- 
faces. Alternatively, the programmer can create a distrib- 
uted application with minimal effort simply by running 
the application through profiling scenarios and writing the 
corresponding distribution model into the application bi- 
nary without modifying application sources. 

In the second usage model, Coign is used on-site by 
the application user or system administrator. The user 
enables application profiling through a simple GUI to the 

Fig. 6. Choosing a Distribution. Coign cuts the graph 
using online network performance parameters to 

minimize distributed communication costs. The pie 
slice in the upper right contains the,components se- 

lected for distribution on the server. 

Fig. 7. The Distributed Application. Instantiation re- 
quests are relocated to produce the distributed appli- 

cation. 

setcoign utility. After “training” the application to the 
user’s usage patterns-by running the application through 
representative scenarios-the GUI triggers post-profiling 
analysis and writes the distribution model into the appli- 
cation. In essence, the user has created a customized ver- 
sion of the distributed application without any knowledge 
of the underlying details. 

In the future, the Coign could automatically decide 
when usage differs significantly from the profiled sce- 
narios and silently enable full profiling for a period to re- 
optimize the distribution. The Coign runtime already 
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contains sufficient infrastructure to allow “fully auto- 
matic” distribution optimization. The lightweight version 
of the runtime, which relocates component instantiation 
requests to produce the chosen distribution, could c:ount 
messages between components with only slight additional 
overhead. Run time message counts could be compared 
with relative message counts from the profiling scenarios 
to recognize changes in application usage. 

IV. ARCHITECTURE OF THE COIGN ADPs 
The Coign runtime is composed of a small collection 

of replaceable COM components; see Fig. 8. The most 
important components are the Coign Runtime Exec,rutive 
(RTE), the interface informer, the information logger, the 
component classifier, and the component factory. The 
RTE provides low-level services to the other components 
in the Coign runtime. The interface informer identifies 
interfaces by their static type and provides support to 
walk the parameters of interface function calls. The in- 
formation logger receives detailed information about all 
component-related events in the application from the RTE 
and the other Coign runtime components. The informa- 
tion logger records relevant events for post-profile analy- 
sis. The component classifier identifies components with 
similar communication patterns across multiple program 
executions. The component factory decides where c om- 
ponent instantiation requests should be fulfilled and relo- 
cates instantiation requests as needed to produce a chosen 
distribution. 

A. Runtime Executive 
The Coign Runtime Executive is the first DLL loaded 

into the application address space. As such, the RTE runs 
before the application or any of its components. The RTE 
patches the COM library and other system services to trap 
component instantiation requests. The RTE reads the 
configuration information written into the application 
binary by the setcoign utility. Based on information 
in the configuration record, the RTE loads other conipo- 
nents of the Coign runtime. 

The RTE provides a number of low-level services to 
the other components in the Coign runtime including: 
interception of component instantiation requests; wrap- 
ping of component interfaces to intercept inter-component 
messages; management of thread-local stack storage for 
use by other components in the Coign runtime; and access 
to configuration information stored in the application bi- 
nary. 

The current Coign runtime contains a single RTE. The 
DLLs for profiling and “regular” program execution dif- 
fer in the choice of components to run on top of the RTE. 

B. The Interface Informer 
The interface informer locates and manages interl-ace 

With. assistance from the interface informer, metadata. 

Fl Fq Information Fl Componenl Fl Component 

Coign Rmtime Executive (RTE) 

4 4 4 & II Coign Rmtime Executive (RTE) 

Fig. 8. Coign’s Component Architecture. Runtime 
components can be replaced to produce lightweight 

instrumentation, detailed inter-component communi- 
cation trace logs, or remote component instantiation. 

other components can determine the static type of a COM 
interface, and walk botih the input and output parameters 
of an interface function call. The current Coign runtime 
contains two interface informers. The first interface in- 
former operates during scenario-based profiling. The 
profiling interface informer uses format strings generated 
by the MIDL compiler [13] and interface marshalling 
code to analyze all function call parameters and precisely 
measure inter-compone,nt communication. Profiling cur- 
rently adds up to 85% to execution run time. Most of this 
overhead is incurred by the interface informer. 

The second interface informer is used after profiling to 
produce the distributed application. The distributed in- 
former examines function call parameters only enough to 
locate interface pointers. As a result of aggressive pre- 
execution optimization of interface metadata, the distrib- 
uted informer imposes ain execution overhead of less than 
3% on most applications. 

C. The Information Logger 
The information logger summarizes and records data 

for automatic distributed partitioning analysis. Under 
direction of the RTE, Coign runtime components pass 
information about a number of events to the information 
logger. The logger is free to process the events as it 
wishes. Depending on the implementation, it might ig- 
nore the event, write the event to a log file on disk, or 
accumulate information about the event into in-memory 
data structures. The current implementation of the Coign 
runtime contains three separate information loggers. The 
profiling logger summarizes data describing inter- 
component communication into in-memory data struc- 
tures. At the end of execution, these data structures are 
written to disk for post-profile analysis. The event logger 
creates detailed traces of all component-related events 
during application execution. One of our colleagues has 
used traces generated by the event logger to drive detailed 
simulations of the execution of component-based applica- 
tions. The null logger ignores all events. Use of the null 
logger insures that no extra files are generated during 
execution of the automatically distributed application. 
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D. Component Classifier 
The component classifier identifies components with 

similar communication patterns across multiple execu- 
tions of an application. Coign’s scenario-based approach 
to automatic distribution depends on the premise that the 
communication behavior of a component during a distrib- 
uted application can be predicted based on the compo- 
nent’s similarity to another component in a profiling sce- 
nario. Because in the general case it is impossible to de- 
termine u priori the communication behavior of a compo- 
nent, the component classifier groups components with 
similar instantiation histories. The classifier operates on 
the theory that two components created under similar cir- 
cumstances will display similar behavior. The output of 
the post-profiling graph-cutting algorithm is a mapping of 
component classifications to computers in the network. 

The current Coign runtime includes eight component 
classifiers created for evaluation purposes. Experiments 
indicated that the most accurate results are produced (at 
reasonable cost) by grouping components of the same 
type that are created in the presence of the same stack 
backtrace. 

E. Component Factory 

The component factory produces the distributed appli- 
cation. Using output from the component classifier and 
the graph-cutting algorithm, the component factory moves 
each component instantiation request to the appropriate 
computer within the network. During distributed execu- 
tion, a copy of the component factory is replicated onto 
each machine. The component factories act as peers. 
Each traps component instantiation requests on its own 
machine, forwards them to another machine as appropri- 
ate, and fulfills instantiation requests destined for its ma- 
chine by invoking COM to create the new component 
instance. The job of the component factory is very 
straightforward since most of the difficult problems in 
creating a distributed application are handled either by the 
underlying DCOM system or by the component classifier. 
Coign currently contains a symbiotic pair of component 
factories. Used simultaneously, the first factory handles 
communication with peer factories on remote machines 
while the second factory interacts with the component 
classifier and the interface informer. 

F. Summary 

The component structure of the Coign runtime allows 
it to be used for a wide range of analysis and adaptation 
tasks. The scenario-profiling runtime is converted to the 
distribution-realization runtime by changing the interface 
informer and information logger components. By chang- 
ing just the information logger component, one of our 
colleagues has generated extensive traces of the activity 
of component-based applications. These traces were used 

to drive a simulator to analyze the performance of algo- 
rithms for a large distributed object system. 

V. EVALUATION 
Because it makes distribution decisions at component 

boundaries, Coign depends on programmers to build ap- 
plications with significant numbers of components. For 
our experiments, we use a suite of three applications built 
from COM components: Microsoft Picture It!, Octarine, 
and the Corporate Benefits Sample. We believe that these 
applications represent a wide class of COM applications. 

Microsofl Picture It! [12] is a consumer image ma- 
nipulation application. Picture It! includes tools to select 
a subset of an image, apply a set of transforms to the sub- 
set, and insert the transformed subset into another image. 
Picture It! is a non-distributed application composed of 
approximately 112 COM component classes in 1.8 mil- 
lion lines of C++ source code. 

Designed as a prototype to explore the limits of com- 
ponent granularity, Octarine is a document processing 
application similar to Microsofr Word Octarine contains 
approximately 150 classes of components ranging in 
granularity from less than 32 bytes to several megabytes. 
Octarine’s components range in functionality from user- 
interface buttons to generic dictionaries to sheet music 
editors. Octarine manipulates three major types of docu- 
ments: word-processing documents, sheet-music docu- 
ments, and table documents. Fragments of any of the 
three document types can be combined into a single 
document. Octarine is composed of approximately 
120,000 lines of C and 500 lines of x86-assembly source 
code. 

The Corporate Benefits Sample [ 111 is an application 
distributed by Microsoft Corporation to demonstrate the 
use of COM to create client-server applications. The 
Corporate Benefits Sample provides windows to modify, 
query, and graph a database of corporate employees and 
their benefits. The entire sample application contains two 
separate client front-ends and four distinct server back- 
ends. For our purposes, we use a client front-end con- 
sisting of approximately 5,300 lines of Visual Basic code 
and a server back-end of approximately 32,000 lines of 
C++ source code with approximately one dozen compo- 
nent classes. Benefits leverages commercial components 
(distributed in binary form only) such as the graphing 
component from Microsofr OfSice [ 101. 

Each of the applications in our test suite is dynamic 
and user-driven. The number and type of components 
instantiated in a given execution is determined by user 
input at run time. For example, a scenario in which a user 
inserts a sheet music component into an Octarine docu- 
ment will instantiate different components than a scenario 
in which the user inserts a table component into the 
document. 
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A. Simple Distributions 
For our first set of experiments, we ran each applica- 

tion in the test suite through a simple profiling scenario 
consisting of the simplest practical usage of the applica- 
tion. After profiling, Coign partitioned each application 
between a client and server of equal computational power 
on an isolated l0BaseT Ethernet network. For simplbcity, 
we assume that there is no contention for the server. 

Fig. 9 contains a graphical representation of the distri- 
bution of Microsoft Picture It!. In the profiling scenario, 
Picture It! loaded a 3 MB graphical composition from 
storage, displayed the image, and exited. Of 295 compo- 
nents in the application, eight were placed on the server. 
One of the components located on the server is the com- 
ponent that reads the document file. The other seven 
components are high-level property sets created directly 
from data in the file. The property sets are located on the 
server because their output data sets are smaller than their 
input data sets. The new distribution reduces overall ap- 
plication communication latency by 2 1 %. 

As can be seen in Fig. 9, Picture It! contains a large 
number of interfaces that can not be distributed; these are 
represented by solid black lines. The most important non- 
distributable interfaces connect the sprite cache cornpo- 
nents (on the bottom and right) with the user interface 
components. Each sprite cache component manages the 
pixels for an image in the composition. Most of the data 
passed between sprite caches moves through shared 
memory regions. These shared-memory regions corre- 
spond to non-distributable component interfaces. While 
Coign can extract a functional distribution from Picture 
It!, most of the distribution granularity in the application 
is hidden by non-distributable interfaces. To enable other, 
potentially better distributions, either the non-distributable 
interfaces in Picture It! must be replaced with distributed 
IDL interfaces, or Coign must be extended to support 
transparent migration of shared memory regions; in es- 
sence leveraging the features of a software distributed 
shared memory (DSM) system [l,  151. 

Fig. 10 contains a graphical representation of the dis- 
tribution of the Octarine word processor. In this scenario, 
Octarine loaded and displayed the first page of a 35-page, 
text-only document. Only two components of 458 are 
located on the server. One of the components reads the 
document from storage; the other provides informaltion 
about the properties of the text to the rest of the applica- 
tion. While Fig. 10 contains a number of lion- 
distributable interfaces, these interfaces connect conipo- 
nents of the CUI, and are not directly related to the dscu- 
ment file. Unlike the other applications in our test suite, 
Octarine is composed of literally hundreds of conipo- 
nents. It is highly unlikely that these CUI components 
would ever be located on the server. Direct document- 

ponents. 
related processing for this scenario is limited to 24 com- 

Fig. 9. Microsoft Picture It!. Of 295 components in 
the application, eight are placed on the server. 

Fig. 10. Distribution of Octarine. Of 458 components 
in the application, two are placed on the server. 

Fig. 11 plots the distribution for the Corporate Benefits 
Sample. As shipped, Benefits can be distributed as either 
a 2-tier or a 3-tier client-server application. In the 2-tier 
scenario, the Visual Basic front-end and the business- 
logic components are located on the client, while the da- 
tabase is located on the server and accessed through 
ODBC, a commercial database-access system [9]. In the 
3-tier scenario, the Visual Basic front-end is located on 
the client, the business- logic components are located on 
the middle tier, and the database is located on the server. 
Coign cannot analyze proprietary connections between 
the ODBC driver and the database server. We therefore 
focus our analysis on the distribution of components in 
the front end and middle tier. 

In the original distribution, chosen by a programmer, 
187 of 196 components arc located in the middle tier. 
The programmer’s distribution is a result of two design 
choices. First, the midfdle tier represents a conceptually 
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Fig. 1 1. The Corporate Benefits Sample. Of 196 
components in the client and middle tier, Coign lo- 

cates 135 on the middle tier, rather than the 187 com- 
ponents chosen by the programmer. 

Fig. 12. Octarine with a Multi-page Table. Coign lo- 
cates only a single component on the server for a 

document containing five-page table. 

clean separation of business logic from the other pieces of 
the application. Second, the front-end is written in Visual 
Basic, a popular language for rapid development of GUI 
applications, while the business logic is written in C++. 

Coign analysis shows that application performance can 
be improved by moving some of the business-logic com- 
ponents from the middle tier into the client. The distribu- 
tion chosen by Coign is quite surprising. Of 196 compo- 
nents in the client and middle tier, Coign would locate 
just 135 on the middle tier. The new distribution reduces 
communication latency by 35%. Note that this distribu- 
tion does not violate any data security restriction in the 
original distribution. The new distribution would be ex- 

Fig. 13. Tables Interspersed Between Text. With a 
five-page document containing fewer than a dozen 

embedded tables, Coign places 28 1 of 786 application 
components on the server. 

tremely awkward for the programme: to create the distri- 
bution chosen by Coign because it runs counter to the 
programmer’s logical separation of the application. The 
Corporate Benefits Sample demonstrates that Coign can 
improve the distribution of applications designed by expe- 
rienced client-server programmers. 

B. Changing Scenarios and Distributions 
The results in the previous section demonstrate that 

Coign can automatically choose a partition and distribute 
an application. The Benefits example notwithstanding, 
one could argue that an experienced programmer with 
appropriate tools could partition the application at least as 
well manually. Unfortunately, a programmer’s best-effort 
manual distribution is static; it cannot readily adapt to 
changes in network performance or user-driven usage 
patterns. In a changing environment, Coign has a distinct 
advantage, as it can repartition and distribute the applica- 
tion arbitrarily often. In the limit, Coign can create a new 
distributed version of the application for each execution. 

The merits of a distribution customized to a particular 
usage pattern are not merely theoretical. Fig. 12 plots the 
optimized distribution for Octarine loading a document 
containing a single, 5-page table. For this scenario, Oc- 
tarine places only a single component out of 480 in the 
application on the server. The results are comparable to 
those of Octarine loading a document containing strictly 
text, see Fig. 10. However, if fewer than a dozen small 
tables are added to the 5-page text document, the optimal 
distribution changes radically. As can be seen in Figure 
13, Coign places over 281 components on the server out 
of 786 created in the scenario. The difference in distribu- 
tion is due to the complex negotiations for page place- 
ment between the table components and the text compo- 
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nents. Output from the page-placement negotiation to the 
rest of the application is minimal. 

VI. IMPLICATIONS FOR ENTERPRISE APPLICATIONS 
In a traditional distributed system, the programmer 

wishing to optimize distributed communication is forced 
to tune the application’s distribution for the most common 
usage pattern. As our Coign-based experiments Iiave 
shown, one size does not fit all. While a particular distri- 
bution may be optimal for some users, it is not necessarily 
optimal for all users. 

With Coign, the programmer need not favor one distri- 
bution over another. The application can be delivered to 
customers with an inter-component communication model 
optimized for the most common scenarios. Over the in- 
stalled lifetime of the application, Coign can periodically 
re-profile the application and adjust the distribution ac- 
cordingly. Even without updating the inter-component 
communication model, Coign can adjust to changes in 
application infrastructure, such as changes in the relative 
computation power of the client or server (through an 
extension to the graph-cutting algorithm), or changes in 
network latency and bandwidth. 

Experimental results from the Corporate Benefits 
Sample suggest that even existing distributed applications 
can be modified to reduce communication costs. Pro- 
grammers choose a distribution based on a set of distribu- 
tion constraints, such as constraints on the location of 
physical resources or constraints necessary to insure cor- 
porate security or data consistency. The important insight 
is that these constraints affect only a limited number of 
objects. All other objects can be redistributed as needed 
to minimize the application’s communications costs. The 
location of these distributable object can be chosen either 
by hand (as in current distributed applications) or auto- 
matically (with Coign). 

Based on experimental evidence, we assert that most, 
if not all, objects within enterprise applications should be 
distributed automatically by system software (such1 as 
Coign) not manually by application programmers. 

VII. CONCLUSIONS AND FUTURE WORK 
We have described the Coign ADPS. Coign is the first 

ADPs to automatically distribute binary applications built 
from components. Coign has successfully distributed 
three commercial-grade applications: Microsoft Picture 
It!, the Octarine word processor, and the Corporate Bene- 
fits Sample from the Microsoft Developer Network 
(MSDN). The largest of these programs is 1.8 million 
lines of source code. In terms of complexity, several of 
the Octarine scenarios we have tested instantiate over 
3,800 components. Coign has even proven effective in 
re-optimizing manually distributed applications. 

Coign is part of the Millennium project at Microsoft 
Research. The project aims to develop distributed !;yS- 

tems that provide a new level of abstraction for applica- 
tion programmers and users, managing machines and 
network connections for the programmer in the same way 
that operating systems today manage pages of memory 
and disk sectors. Beyond the capabilities of Coign, Mil- 
lennium will provide automatic migration of live compo- 
nents. We are attempting to create distributed systems 
that are self-tuning and self-configuring; automatically 
adapting to changes in hardware resources and application 
workload. 

Creating a higher level of abstraction does not come 
without cost in performance. However, Millennium 
hopes to gain efficiency by spontaneously optimizing 
applications for the current distributed environment and 
eliminating unnecessary boundaries between the operat- 
ing system and programming language runtimes. 
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