
A Guided ur of the Coign Automatic Distributed
Partitioning Svstem

Galen C. Hunt
Microsoft Research
One Microsoft Way

Redmond, WA 98052
galenh @microsoft.com

Abstract-Distributed object systems such as CQRBA and
DCOM bring many advances to distributed computing. The
distribution process itself, however, has changed little: pro-
grammers still manually divide applications into sub-
programs and assign those sub-programs to machines with
little automated assistance. Qften the techniques used to
choose a distribution are ad hoc. Due to high intellectual
cost, applications are seldom repartitioned even in drasti-
cally changing network environments.
We describe Coign, an automatic distributed partitioning

system (ADPS) that significantly facilitates the development
of distributed applications. Given an application (in binary
form) built from distributable CQM components, Coign
constructs a graph model of the application's inter-
component communication through scenario-based profil-
ing. Later, Coign applies graph-cutting algorithms to parti-
tion the application across a network and minimize distribu-
tion costs. Using Coign, an end user without source code can
transform a non-distributed application into an optimized,
distributed application.
Through a guided tour of Coign's architecture and usage,

we present an overview of its features. We describe the
automatic distributed partitioning of three applications:
Microsoft Picture It!, the Octarine word processor, and the
Corporate Benefits Sample program. All are distributed
automatically, sometimes with startling results. For exam-
ple, Coign makes significant changes to the programmer-
assigned distribution of the Corporate Benefits Sample.

I. INTRODUCTION
Distributed object systems such as CORBA and

DCOM bring the advantages of service location transpar-
ency, dynamic program instantiation, and object-oriented
programming to distributed applications. Unfortunately,
the process to distribute program components has
changed little: programmers still manually divide appli-
cations into sub-programs and manually assign those sub-
programs to machines. Often the techniques used to
choose a distribution are ad hoc, one-time solutions.

Given the effort required, applications are seldom re-
partitioned even in drastically different network environ-
ments. User usage patterns can severely stress a static
distribution of an application. Changes in underlying
network, from ISDN to lOOBaseT to ATM, strain static

0-7803-5060-X/98/$10.00 0 1998 IEEE

Michael L. Scott
Department of Computer Science

University of Rochester
Rochester, NY 14627

Scott@ cs. rochester.edu

distributions as bandwidth-to-latency tradeoffs change by
more than an order of magnitude. Nonetheless, pro-
grammers resist repartitioning the application because it
often requires extensive modifications to source code and
program structure.

In this paper, we present a guided tour of Coign [SI, an
automatic distributed partitioning system (ADPS) that
promises to significantly ease the development of compo-
nent-based distributed applications. Given an application
built with COM components, Coign uses inexpensive
scenario-based profiling on a single computer to quantify
inter-component communication costs for both single-
machine and multi-machine distributions. Inter-
component communication is modeled as a graph in
which nodes represent components and edges represent
inter-component communication and location constraints.
Using graph-cutting algorithms, Coign selects a distribu-
tion of the application that minimizes communication
costs. At run time, Coign manipulates program execution
(with negligible overhead) to produce the desired distri-
bution.

Coign analyzes an application, chooses a distribution,
and produces the desired distribution all without access to
application source. As a corollary, Coign is completely
language neutral; it neither knows nor cares about the
source language of the components in the application.
Moreover, because it operates on binaries, Coign pre-
serves the ability to build applications from reusable,
third-party components.

In the following section we describe related work. In
Section 111, we illustrate how to use Coign to automati-
cally distribute an application. We describe Coign's ar-
chitecture in Section IV. Section V contains an experi-
mental evaluation of Coign's effectiveness in distributing
three applications. In Section VI, we discuss the rele-
vance of Coign to distributed enterprise applications. Fi-
nally, in Section VI1 we conclude and discuss future
work.

11. RELATED WORK
While Coign is the first ADPs for binary applications,
the idea of an ADPs is not new.

252

mailto:microsoft.com
http://rochester.edu
mls
EDOC '98

A. ICOPS
The Interconnected Processor System (ICOPS) [8, 14,

161 supported distributed application partitioning in the
1970’s. Under the direction of Andries van Dam, ICOPS
pioneered the use of compiler-generated stubs for inter-
process communication. ICOPS was the first system to
use scenario-based profiling to gather statistics for dis-
tributed partitioning; the first system to support multiple
distributions per application based on host-processor load;
and the first system to use a maximum-flow-minimum-cut
(MAX-FLOWMIN-CUT) algorithm [4] to choose distri-
butions.

ICOPS was used to automatically distribute HUGS, a
two dimensional drafting program developed at Brown
University. HUGS consisted of seven modules. Three of
these-consisting of 20 procedures in all-could be 10-
cated on either the client or the server.

ICOPS was never intended for shrink-wrapped, com-
mercial applications. Tied to a single language and com-
piler, it relied on metadata generated by the compiler to
facilitate transfer of data and control between computers.
Modules compiled in another language or by another
compiler could not be distributed because they did not
contain appropriate metadata. ICOPS gave the applica-
tion the luxury of location transparency, but still required
the programmer or user to explicitly select a distribution
based on machine load.

B. IDAP
Kimelman et al. [7] describe the Intelligent Dynamic

Application Partitioning (IDAP) system, an ADPs for
Smalltalk applications. IDAP is an add-on to IBM’s
VisualAge Generator. Using VisualAge Generator’s vis-
ual builder, a programmer designs an application by in-
stantiating and connecting components in a graphical en-
vironment. The builder emits code for the created appli-
cation.

The “dynamic” in the IDAP name refers to scenario-
based profiling as opposed to static analysis. IDAP first
generates a version of the application with an instru-
mented message-passing mechanism. IDAP runs the in-
strumented application under control of a test facility with
the VisualAge system. After the application execution,
the programmer either manually partitions the conipo-
nents or invokes an automatic graph-partitioning algo-
rithm. The algorithm used is an approximation algorithm
capable of multi-way cuts for two or more hosts [3] . Af-
ter choosing a distribution, VisualAge generates a new
version of the application.

IDAP supports distributed partitioning only for stati-
cally allocated components. Although initially based on
Smalltalk, the distributable components are large-grain
components, not the fine-grained objects native to Small-
talk. Kimelman’s team has tested their system on a num-

ber of real Smalltalk aLpplications, but in each case, the
application had “far fewer than 100’ components [7] .

The latest version of IDAP generates C++ code to
connect CORBA components, but still does not support
dynamic component instantiation [6]. Moreover, the use
of CORBA restricts IDAP to a distribution granularity of
whole processes because CORBA does not support load-
ing multiple component servers into the same address
space. The IDAP programmer must be vary aware of
distribution choices. IDAP helps the user to optimize the
distribution, but does not raise the level of abstraction
above the distribution mechanisms. With a full-featured
ADPS, such as Coign, the programmer can focus on com-
ponent development and leave distribution to the system.

Although it supports multiple languages, IDAP still re-
quires that application’s be constructed with a specific
application development toolkit, the VisualAge Genera-
tor. Like ICOPS, IDAP supports automatic distributed
partitioning of static application pieces only. In the case
of ICOPS, the application pieces are procedures. In the
case of IDAP, the pieces are CORBA components or
large-grain Smalltalk objects.

C. Summary
Prior to Coign, no ADPs allowed distributed parti-

tioning of binary components dynamically instantiated
during the execution of the application. Dynamic csmpo-
nent instantiation is an integral feature of modern desktop
applications. One of thie major contributions of our work
is a set of dynamic coimponent classification algorithms
that map newly-created components to similar compo-
nents identified during scenario based profiling.

Our research differs in scope from prior work because
we automatically distribute an existing class of commer-
cial applications. All of the applications in our test suite
were developed by third parties with no knowledge of the
Coign system.

111. A GUIDED TOUR
To solidify the concept of an ADPS, we describe a

detailed example of Coign’s usage to automatically dis-
tribute an existing COM application. The application
used in this example is a preliminary version of a future
release of Microsoy? Picture It! [121. (The original, un-
instrumented version of Picture It! application is designed
to run on a single computer-it provides no explicit sup-
port for distribution.)

A. Creating a Distributed Application
Starting with the original binary files for Picture It!,

we use the setcoign utility to insert the Coign profiling
instrumentation package, see Fig. 1. setcoign makes

inserts an entry to load the Coign Runtime Executive
(RTE) Dynamic-Link Library (DLL) into the first slot in

two modifications to the pi. exe binary file. First, it

253

the application’s DLL import table. Second, setcoign
adds a data segment containing configuration information
to the end of pi. exe. The configuration information
tells the Coign RTE how the application should be pro-
filed and which of several algorithms should be used to
identify components during execution.

Because it occupies the first slot in the application’s
DLL import table, the Coign RTE will always load and
execute before the application or any of its other DLLs. It
therefore has a chance to modify the application’s address
space before the application runs. The Coign RTE takes
advantage of this opportunity to insert binary instrumen-
tation into the image of system libraries in the applica-
tion’s address space. The instrumentation traps all com-
ponent instantiation functions in the COM library. Before
returning control to the application, the Coign RTE loads
any additional Coign components (described in Section 4)
as stipulated by the configuration information stored in
the application.

With the Coign runtime configured for profiling, the
application is ready to be run through a set of profiling
scenarios; see Fig. 2. Because the binary has been modi-
fied transparently to the user (and to the application it-
self), profiling runs behave from the user’s point of view
as if there werexo instrumentation in place. The instru-
mentation gathers profiling information in the background
while the user controls the application. The only visible
effect of profiling is a degradation in application perform-
ance of up to 85%. For our simple example, we start
Picture It!, load a file for preview, and exit the applica-
tion. For more advanced profiling, scenarios can be
driven by an automated testing tool, such as Visual Test
P I .

During profiling, the Coign instrumentation maintains
running summaries of the inter-component communica-
tion within the application. Coign quantifies every inter-
component function call through a COM interface. The
instrumentation measures the number of bytes that would
have to be transferred between machines if the two com-
municating components were distributed. The number of
bytes is calculated by invoking portions of the DCOM
code, including the interface proxy and stub, within the
application’s address space. Coign measurement follows
precisely the deep-copy semantics of DCOM. After cal-
culating communication costs, Coign compresses and
summarizes the data online to keep instrumentation stor-
age requirements at a minimum. If desired, the applica-
tion may be run through profiling scenarios for days or
even weeks to more accurately track user usage patterns.
In all of our tests, storage overhead for Coign never ex-
ceeded 1.5 MB.

At the end of the profiling execution, Coign writes the
summary log of inter-component communication to a file
for later analysis; see Fig. 3. In addition to information
about the number and sizes of messages and components
in the application, the profile log also contains informa-

D:\apps\pictureit\bin> s.rcoip /p pi.-.

Logger: Caign Profile Logger
Informer: Caigm NDR Interface Informer
Classifier: Coign EP3C Classifier

ConfIg:

Sections: 4 - VAddr -Vslze -VAEnd -FAddr -FSize R L R I,
.text 1000 10e343 10f343 400 lOe400 0 0 0 0
.=data 110000 5 0 1 ~ 3 1601~3 lOe8OO 50200 0 0 0 0
.data 161000 11224 172224 15ea00 d400 0 0 0 0
.ZSTC 173000 15868 188868 16be00 15a00 0 0 0 0
.caign 189000 6cdO l8fcdO 181800 be00 0 0 0 0

Debug Directories:
0 00000000 00181800..00181910 -> 00188600..00188710
1. 00000000 00181910..001819~0 -> 00188710..001887~0
2. 00000000 001819cO..O01819ea -> 001887c0..001887ea

Extra. Data: 512 (181a00 - 1818001
Coign Extra Data:

(9CEEBO2F-E415-11DO-98D1-~06097BOlOE3) : 4 bytes.

Fig. 1. Inserting Coign into the Application.
Setcoign rewrites the pi.exe binary to insert Coign

profiling instrumentation into Picture It!.

Fig. 2. Executing a Profiling Scenario. With Coign
instrumentation in place, the application is run through

one or more profiling scenarios to measure inter-
component communication. In this scenario, Picture

It! loads and renders a composite image.

tion to classify components to determine component lo-
cation constraints. Log files from multiple profiling exe-
cutions may be combined and summarized during later
analysis. Alternatively, at the end of each profiling exe-
cution, information from the log file may be inserted into
the configuration record in the application executable (the
pi.exe file in this example). The latter approach uses less
storage because summary information in the configuration
record accumulates communication from similar interface
calls into a single entry.

Invoking adpcoign initiates post-profiling analysis,
see Fig. 4. Adpcoign examines the system service li-
braries to determine any location constraints on applica-
tion components. For client-server distributions,
adpcoign recognizes components that must be placed
on the client in order to access the Windows GUI libraries

254

D \apps\pictureit\bm> pi.rx.
[Colgn Runtme Environment 00000080 636f6900 000000001
[C o u p EP3C Classifier199991
[Colgn NDR Interface Informer1
[Coign Profiling Logger (16 cyc1es)I
[CorgnRTE DLL-PROCESS-ATTACH1
[ColgnRTE DLL-THREAD-ATTACH]
ICreateFileMonlker(D \app.;\pictureit\d~cs\HSR m i x 1 1
[stgopenstorage(D \apps\pictureit\docs\MSR m i x) I
IColgnRTE DLL-TWREAD-DETACH]
[Elapsed time 26400 m s l
[ColgnRTE DLL_PROCESS-DETACHI
[Inter-component comunication 1
[Messages ___ 16 -64 -256 -1024 4 0 9 6 -16384 -Totals 1
1 In Counts 105240 1629 473 1599 66 45 109052 1
[Out Counts 102980 4303 843 183 131 12 109052 1
[In Bytes 782022 57912 49616 815034 157619 237963 2100166 1
[Out Bytes 155207 130140 95473 304592 239239 70019 1294670 1

Fig. 3. Logging Communication. At the conclusion of
the profiling scenario, Coign logs the inter-component

communication to a file for later analysis.

D \apps\pictureit\bm> adpcoisn pi.10.
BIMT1.S

. .
oleaut32 dll

mfc42d dll
00 D \apps\pictureit\bm\prserv dll

00 D \apps\pictureit\bm\mfco42d dll
00 C \u~nnt\sy~tem32\ale32 dll

Objects 112
Interfaces 792
Calls 38286
Bytes. 743534
Proc Speed 2OOHHz

Fig. 4. Post-Profiling Analysis. Adpcoign analyzes
the log file to create an abstract model of inter-

component communication.

D \apps\pictureit\bin> matsoign It1pi.m.t p i . . m
Config pl set

Informer Coign Light Interface Informer
Classifier CoLgn EP3C Classifier

Sections 5 - VAddr -Vslze -VAEnd -FAddr -FSIze R L U L
.text lo00 10e343 10f343 400 lOe400 0 0 0 0
rdata 110000 5 0 1 ~ 3 1601~3 lOe8OO 50200 0 0 I 1 0
data 161000 11224 172224 lSea00 d400 0 0 I 1 0
r*rc 173000 15868 188868 16be00 15aiOO 0 0 11 0

0 83f8 191Jf8 181800 8400 0 0 11 0

189610 -> 00189~00 OO189dlO
189bc0 -> 00189d10 00189dc0
189bea -> 00189dc0 00189dea

11D0-98D1-0060978010E3) 4980 bytes
llD0-98D1-006097B010E3) 904 bytes
llDO-98D1-006097B010E3) 4 bytes

Fig. 5. Inserting the Model into the Application. An
abstract model of inter-component communication is

written into the application binary for distribution

or that must be placed on the server in order to access
persistent storage directly.

Combining location constraints and information about
inter-component communication, adpcoign creates an
abstract graph model of the application. In the current
implementation, adpcoign combines the abstract graph
model with data about the network configuration to create
a concrete model of the cost of distribution on a real met-
work. Adpcoign then uses a graph-cutting algorithm to
choose a distribution that minimizes communication

costs. In the future, the construction of the concrete
model and the graph-cutting algorithm could be per-
formed at application execution time, thus potentially
producing a new distribution tailored to current network
characteristics.

After analysis, the application’s inter-component
communication model is written into the configuration
record in the application binary; see Fig. 5 . Any residual
profiling logs are then removed from the configuration
record. The configuration record is also modified to dis-
able the profiling instrumentation. In its place, a light-
weight version of the instrumentation will be loaded to
realize (enforce) the distribution chosen by the graph-
cutting algorithm.

Aside from the inter-component communication
model, perhaps the most important information written
into the application configuration is data for the compo-
nent classifier. The component classifier matches com-
ponents created during distributed executions to compo-
nents created during the profiling scenarios. The abstract
model of inter-component communica,tion contains nodes
for all known components and edges representing the
communication between components. To determine
where a component should be located in a distributed
execution, the classifier tries to match it to the most simi-
lar component in the pnofiling scenario. The premise of
scenario-based profiling is that profiled executions closely
match post-analysis executions. Therefore, if the circum-
stances of a component’s creation are similar to those of a
component in a profiling execution, then the components
will most likely have similar communication patterns.
Based on the chosen distribution for similar profiled com-
ponents, the classifier decides where new components
created during the distributed execution should be instan-
tiated.

Fig. 6 shows the distribution chosen for our profiled
scenario. In this scenario, the user loads and previews an
image in Microsoji Picture It! from a server. Each of the
large black dots in Fig. 61 represents a dynamic component
in the profiled scenario. Lines between the components
represent COM interfaces through which the connected
components communicate. In the on-screen version of
Fig. 6, lines are colored according to the amount of com-
munication flowing across the interface. Red lines repre-
sent interfaces with lalrge amounts of communication
(communication hot spots) and blue lines represent inter-
faces with minimal communication.

Solid, black lines represent interfaces that are non-
remotable (i.e., pairs of components that must reside on
the same machine). An interface may not be remotable
for any of the following reasons: the interface has no In-
terface Definition Language (IDL) description to enable
parameter marshaling; one or more of the interface pa-
rameters is opaque, such as a “void*”; the client directly
accesses the component’s internal data; or the component

255

must reside on the client or the server because it directly
accesses system services.

The “pie” slice in the top half of Fig. 6 contains those
components that should be located on the server to mini-
mize network traffic and thus execution time. In our ex-
ample, the operating storage services, the document file
component, and three “property set” components are all
located on the server. Note that approximately one dozen
“property set” components (of the “PI.PropSet” class) are
located on the client. In order to achieve optimal perform-
ance, a component-based ADPs must be able to place
components of the same class on different machines.

After the abstract distribution model is written into the
binary, the application is prepared for distribution. When
the application user instructs Picture It! to load an image
from the server, the lightweight version of the Coign run-
time will trap the related instantiation request and relocate
it to the server. The four components chosen for distribu-
tion in Fig. 6 are automatically distributed to the server.
Coign distributes components to the server by starting a
surrogate process on the server. The surrogate acts as a
distributed extension of the application; described com-
ponents reside in its address space. A distributed version
of the Coign runtime maintains communication links be-
tween the original application process on the client and
the surrogate process on the server.

Fig. 7 shows the distributed version of Picture It!. The
window in the lower right corner of Fig. 7 represents the
surrogate process and the components distributed on the
server. Coign automatically created a distributed version
of Microsoji Picture It! without access to the application
source code or the programmer’s knowledge of the appli-
cation. The automatic distributed application is custom-
ized for the specific network to minimize distributed
communication costs.

B. Discussion
We envision two Coign usage models to create distrib-

uted applications. In the first model, Coign is used with
other profiling tools as part of the development process.
Coign shows the developer how to distribute the applica-
tion optimally and provides the developer with feedback
about which interfaces are communication “hot spots.”
The programmer can fine-tune the distribution by insert-
ing custom marshalling and caching on communication-
intensive interfaces. The programmer can also enable or
disable specific distributions by inserting or removing
location constraints on specific components and inter-
faces. Alternatively, the programmer can create a distrib-
uted application with minimal effort simply by running
the application through profiling scenarios and writing the
corresponding distribution model into the application bi-
nary without modifying application sources.

In the second usage model, Coign is used on-site by
the application user or system administrator. The user
enables application profiling through a simple GUI to the

Fig. 6. Choosing a Distribution. Coign cuts the graph
using online network performance parameters to

minimize distributed communication costs. The pie
slice in the upper right contains the,components se-

lected for distribution on the server.

Fig. 7. The Distributed Application. Instantiation re-
quests are relocated to produce the distributed appli-

cation.

setcoign utility. After “training” the application to the
user’s usage patterns-by running the application through
representative scenarios-the GUI triggers post-profiling
analysis and writes the distribution model into the appli-
cation. In essence, the user has created a customized ver-
sion of the distributed application without any knowledge
of the underlying details.

In the future, the Coign could automatically decide
when usage differs significantly from the profiled sce-
narios and silently enable full profiling for a period to re-
optimize the distribution. The Coign runtime already

256

contains sufficient infrastructure to allow “fully auto-
matic” distribution optimization. The lightweight version
of the runtime, which relocates component instantiation
requests to produce the chosen distribution, could c:ount
messages between components with only slight additional
overhead. Run time message counts could be compared
with relative message counts from the profiling scenarios
to recognize changes in application usage.

IV. ARCHITECTURE OF THE COIGN ADPs
The Coign runtime is composed of a small collection

of replaceable COM components; see Fig. 8. The most
important components are the Coign Runtime Exec,rutive
(RTE), the interface informer, the information logger, the
component classifier, and the component factory. The
RTE provides low-level services to the other components
in the Coign runtime. The interface informer identifies
interfaces by their static type and provides support to
walk the parameters of interface function calls. The in-
formation logger receives detailed information about all
component-related events in the application from the RTE
and the other Coign runtime components. The informa-
tion logger records relevant events for post-profile analy-
sis. The component classifier identifies components with
similar communication patterns across multiple program
executions. The component factory decides where c om-
ponent instantiation requests should be fulfilled and relo-
cates instantiation requests as needed to produce a chosen
distribution.

A. Runtime Executive
The Coign Runtime Executive is the first DLL loaded

into the application address space. As such, the RTE runs
before the application or any of its components. The RTE
patches the COM library and other system services to trap
component instantiation requests. The RTE reads the
configuration information written into the application
binary by the setcoign utility. Based on information
in the configuration record, the RTE loads other conipo-
nents of the Coign runtime.

The RTE provides a number of low-level services to
the other components in the Coign runtime including:
interception of component instantiation requests; wrap-
ping of component interfaces to intercept inter-component
messages; management of thread-local stack storage for
use by other components in the Coign runtime; and access
to configuration information stored in the application bi-
nary.

The current Coign runtime contains a single RTE. The
DLLs for profiling and “regular” program execution dif-
fer in the choice of components to run on top of the RTE.

B. The Interface Informer
The interface informer locates and manages interl-ace

With. assistance from the interface informer, metadata.

Fl Fq Information Fl Componenl Fl Component

Coign Rmtime Executive (RTE)

4 4 4 & II Coign Rmtime Executive (RTE)

Fig. 8. Coign’s Component Architecture. Runtime
components can be replaced to produce lightweight

instrumentation, detailed inter-component communi-
cation trace logs, or remote component instantiation.

other components can determine the static type of a COM
interface, and walk botih the input and output parameters
of an interface function call. The current Coign runtime
contains two interface informers. The first interface in-
former operates during scenario-based profiling. The
profiling interface informer uses format strings generated
by the MIDL compiler [13] and interface marshalling
code to analyze all function call parameters and precisely
measure inter-compone,nt communication. Profiling cur-
rently adds up to 85% to execution run time. Most of this
overhead is incurred by the interface informer.

The second interface informer is used after profiling to
produce the distributed application. The distributed in-
former examines function call parameters only enough to
locate interface pointers. As a result of aggressive pre-
execution optimization of interface metadata, the distrib-
uted informer imposes ain execution overhead of less than
3% on most applications.

C. The Information Logger
The information logger summarizes and records data

for automatic distributed partitioning analysis. Under
direction of the RTE, Coign runtime components pass
information about a number of events to the information
logger. The logger is free to process the events as it
wishes. Depending on the implementation, it might ig-
nore the event, write the event to a log file on disk, or
accumulate information about the event into in-memory
data structures. The current implementation of the Coign
runtime contains three separate information loggers. The
profiling logger summarizes data describing inter-
component communication into in-memory data struc-
tures. At the end of execution, these data structures are
written to disk for post-profile analysis. The event logger
creates detailed traces of all component-related events
during application execution. One of our colleagues has
used traces generated by the event logger to drive detailed
simulations of the execution of component-based applica-
tions. The null logger ignores all events. Use of the null
logger insures that no extra files are generated during
execution of the automatically distributed application.

257

D. Component Classifier
The component classifier identifies components with

similar communication patterns across multiple execu-
tions of an application. Coign’s scenario-based approach
to automatic distribution depends on the premise that the
communication behavior of a component during a distrib-
uted application can be predicted based on the compo-
nent’s similarity to another component in a profiling sce-
nario. Because in the general case it is impossible to de-
termine u priori the communication behavior of a compo-
nent, the component classifier groups components with
similar instantiation histories. The classifier operates on
the theory that two components created under similar cir-
cumstances will display similar behavior. The output of
the post-profiling graph-cutting algorithm is a mapping of
component classifications to computers in the network.

The current Coign runtime includes eight component
classifiers created for evaluation purposes. Experiments
indicated that the most accurate results are produced (at
reasonable cost) by grouping components of the same
type that are created in the presence of the same stack
backtrace.

E. Component Factory

The component factory produces the distributed appli-
cation. Using output from the component classifier and
the graph-cutting algorithm, the component factory moves
each component instantiation request to the appropriate
computer within the network. During distributed execu-
tion, a copy of the component factory is replicated onto
each machine. The component factories act as peers.
Each traps component instantiation requests on its own
machine, forwards them to another machine as appropri-
ate, and fulfills instantiation requests destined for its ma-
chine by invoking COM to create the new component
instance. The job of the component factory is very
straightforward since most of the difficult problems in
creating a distributed application are handled either by the
underlying DCOM system or by the component classifier.
Coign currently contains a symbiotic pair of component
factories. Used simultaneously, the first factory handles
communication with peer factories on remote machines
while the second factory interacts with the component
classifier and the interface informer.

F. Summary

The component structure of the Coign runtime allows
it to be used for a wide range of analysis and adaptation
tasks. The scenario-profiling runtime is converted to the
distribution-realization runtime by changing the interface
informer and information logger components. By chang-
ing just the information logger component, one of our
colleagues has generated extensive traces of the activity
of component-based applications. These traces were used

to drive a simulator to analyze the performance of algo-
rithms for a large distributed object system.

V. EVALUATION
Because it makes distribution decisions at component

boundaries, Coign depends on programmers to build ap-
plications with significant numbers of components. For
our experiments, we use a suite of three applications built
from COM components: Microsoft Picture It!, Octarine,
and the Corporate Benefits Sample. We believe that these
applications represent a wide class of COM applications.

Microsofl Picture It! [12] is a consumer image ma-
nipulation application. Picture It! includes tools to select
a subset of an image, apply a set of transforms to the sub-
set, and insert the transformed subset into another image.
Picture It! is a non-distributed application composed of
approximately 112 COM component classes in 1.8 mil-
lion lines of C++ source code.

Designed as a prototype to explore the limits of com-
ponent granularity, Octarine is a document processing
application similar to Microsofr Word Octarine contains
approximately 150 classes of components ranging in
granularity from less than 32 bytes to several megabytes.
Octarine’s components range in functionality from user-
interface buttons to generic dictionaries to sheet music
editors. Octarine manipulates three major types of docu-
ments: word-processing documents, sheet-music docu-
ments, and table documents. Fragments of any of the
three document types can be combined into a single
document. Octarine is composed of approximately
120,000 lines of C and 500 lines of x86-assembly source
code.

The Corporate Benefits Sample [111 is an application
distributed by Microsoft Corporation to demonstrate the
use of COM to create client-server applications. The
Corporate Benefits Sample provides windows to modify,
query, and graph a database of corporate employees and
their benefits. The entire sample application contains two
separate client front-ends and four distinct server back-
ends. For our purposes, we use a client front-end con-
sisting of approximately 5,300 lines of Visual Basic code
and a server back-end of approximately 32,000 lines of
C++ source code with approximately one dozen compo-
nent classes. Benefits leverages commercial components
(distributed in binary form only) such as the graphing
component from Microsofr OfSice [101.

Each of the applications in our test suite is dynamic
and user-driven. The number and type of components
instantiated in a given execution is determined by user
input at run time. For example, a scenario in which a user
inserts a sheet music component into an Octarine docu-
ment will instantiate different components than a scenario
in which the user inserts a table component into the
document.

25 8

A. Simple Distributions
For our first set of experiments, we ran each applica-

tion in the test suite through a simple profiling scenario
consisting of the simplest practical usage of the applica-
tion. After profiling, Coign partitioned each application
between a client and server of equal computational power
on an isolated l0BaseT Ethernet network. For simplbcity,
we assume that there is no contention for the server.

Fig. 9 contains a graphical representation of the distri-
bution of Microsoft Picture It!. In the profiling scenario,
Picture It! loaded a 3 MB graphical composition from
storage, displayed the image, and exited. Of 295 compo-
nents in the application, eight were placed on the server.
One of the components located on the server is the com-
ponent that reads the document file. The other seven
components are high-level property sets created directly
from data in the file. The property sets are located on the
server because their output data sets are smaller than their
input data sets. The new distribution reduces overall ap-
plication communication latency by 2 1 %.

As can be seen in Fig. 9, Picture It! contains a large
number of interfaces that can not be distributed; these are
represented by solid black lines. The most important non-
distributable interfaces connect the sprite cache cornpo-
nents (on the bottom and right) with the user interface
components. Each sprite cache component manages the
pixels for an image in the composition. Most of the data
passed between sprite caches moves through shared
memory regions. These shared-memory regions corre-
spond to non-distributable component interfaces. While
Coign can extract a functional distribution from Picture
It!, most of the distribution granularity in the application
is hidden by non-distributable interfaces. To enable other,
potentially better distributions, either the non-distributable
interfaces in Picture It! must be replaced with distributed
IDL interfaces, or Coign must be extended to support
transparent migration of shared memory regions; in es-
sence leveraging the features of a software distributed
shared memory (DSM) system [l, 151.

Fig. 10 contains a graphical representation of the dis-
tribution of the Octarine word processor. In this scenario,
Octarine loaded and displayed the first page of a 35-page,
text-only document. Only two components of 458 are
located on the server. One of the components reads the
document from storage; the other provides informaltion
about the properties of the text to the rest of the applica-
tion. While Fig. 10 contains a number of lion-
distributable interfaces, these interfaces connect conipo-
nents of the CUI, and are not directly related to the dscu-
ment file. Unlike the other applications in our test suite,
Octarine is composed of literally hundreds of conipo-
nents. It is highly unlikely that these CUI components
would ever be located on the server. Direct document-

ponents.
related processing for this scenario is limited to 24 com-

Fig. 9. Microsoft Picture It!. Of 295 components in
the application, eight are placed on the server.

Fig. 10. Distribution of Octarine. Of 458 components
in the application, two are placed on the server.

Fig. 11 plots the distribution for the Corporate Benefits
Sample. As shipped, Benefits can be distributed as either
a 2-tier or a 3-tier client-server application. In the 2-tier
scenario, the Visual Basic front-end and the business-
logic components are located on the client, while the da-
tabase is located on the server and accessed through
ODBC, a commercial database-access system [9]. In the
3-tier scenario, the Visual Basic front-end is located on
the client, the business- logic components are located on
the middle tier, and the database is located on the server.
Coign cannot analyze proprietary connections between
the ODBC driver and the database server. We therefore
focus our analysis on the distribution of components in
the front end and middle tier.

In the original distribution, chosen by a programmer,
187 of 196 components arc located in the middle tier.
The programmer’s distribution is a result of two design
choices. First, the midfdle tier represents a conceptually

259

Fig. 1 1. The Corporate Benefits Sample. Of 196
components in the client and middle tier, Coign lo-

cates 135 on the middle tier, rather than the 187 com-
ponents chosen by the programmer.

Fig. 12. Octarine with a Multi-page Table. Coign lo-
cates only a single component on the server for a

document containing five-page table.

clean separation of business logic from the other pieces of
the application. Second, the front-end is written in Visual
Basic, a popular language for rapid development of GUI
applications, while the business logic is written in C++.

Coign analysis shows that application performance can
be improved by moving some of the business-logic com-
ponents from the middle tier into the client. The distribu-
tion chosen by Coign is quite surprising. Of 196 compo-
nents in the client and middle tier, Coign would locate
just 135 on the middle tier. The new distribution reduces
communication latency by 35%. Note that this distribu-
tion does not violate any data security restriction in the
original distribution. The new distribution would be ex-

Fig. 13. Tables Interspersed Between Text. With a
five-page document containing fewer than a dozen

embedded tables, Coign places 28 1 of 786 application
components on the server.

tremely awkward for the programme: to create the distri-
bution chosen by Coign because it runs counter to the
programmer’s logical separation of the application. The
Corporate Benefits Sample demonstrates that Coign can
improve the distribution of applications designed by expe-
rienced client-server programmers.

B. Changing Scenarios and Distributions
The results in the previous section demonstrate that

Coign can automatically choose a partition and distribute
an application. The Benefits example notwithstanding,
one could argue that an experienced programmer with
appropriate tools could partition the application at least as
well manually. Unfortunately, a programmer’s best-effort
manual distribution is static; it cannot readily adapt to
changes in network performance or user-driven usage
patterns. In a changing environment, Coign has a distinct
advantage, as it can repartition and distribute the applica-
tion arbitrarily often. In the limit, Coign can create a new
distributed version of the application for each execution.

The merits of a distribution customized to a particular
usage pattern are not merely theoretical. Fig. 12 plots the
optimized distribution for Octarine loading a document
containing a single, 5-page table. For this scenario, Oc-
tarine places only a single component out of 480 in the
application on the server. The results are comparable to
those of Octarine loading a document containing strictly
text, see Fig. 10. However, if fewer than a dozen small
tables are added to the 5-page text document, the optimal
distribution changes radically. As can be seen in Figure
13, Coign places over 281 components on the server out
of 786 created in the scenario. The difference in distribu-
tion is due to the complex negotiations for page place-
ment between the table components and the text compo-

260

nents. Output from the page-placement negotiation to the
rest of the application is minimal.

VI. IMPLICATIONS FOR ENTERPRISE APPLICATIONS
In a traditional distributed system, the programmer

wishing to optimize distributed communication is forced
to tune the application’s distribution for the most common
usage pattern. As our Coign-based experiments Iiave
shown, one size does not fit all. While a particular distri-
bution may be optimal for some users, it is not necessarily
optimal for all users.

With Coign, the programmer need not favor one distri-
bution over another. The application can be delivered to
customers with an inter-component communication model
optimized for the most common scenarios. Over the in-
stalled lifetime of the application, Coign can periodically
re-profile the application and adjust the distribution ac-
cordingly. Even without updating the inter-component
communication model, Coign can adjust to changes in
application infrastructure, such as changes in the relative
computation power of the client or server (through an
extension to the graph-cutting algorithm), or changes in
network latency and bandwidth.

Experimental results from the Corporate Benefits
Sample suggest that even existing distributed applications
can be modified to reduce communication costs. Pro-
grammers choose a distribution based on a set of distribu-
tion constraints, such as constraints on the location of
physical resources or constraints necessary to insure cor-
porate security or data consistency. The important insight
is that these constraints affect only a limited number of
objects. All other objects can be redistributed as needed
to minimize the application’s communications costs. The
location of these distributable object can be chosen either
by hand (as in current distributed applications) or auto-
matically (with Coign).

Based on experimental evidence, we assert that most,
if not all, objects within enterprise applications should be
distributed automatically by system software (such1 as
Coign) not manually by application programmers.

VII. CONCLUSIONS AND FUTURE WORK
We have described the Coign ADPS. Coign is the first

ADPs to automatically distribute binary applications built
from components. Coign has successfully distributed
three commercial-grade applications: Microsoft Picture
It!, the Octarine word processor, and the Corporate Bene-
fits Sample from the Microsoft Developer Network
(MSDN). The largest of these programs is 1.8 million
lines of source code. In terms of complexity, several of
the Octarine scenarios we have tested instantiate over
3,800 components. Coign has even proven effective in
re-optimizing manually distributed applications.

Coign is part of the Millennium project at Microsoft
Research. The project aims to develop distributed !;yS-

tems that provide a new level of abstraction for applica-
tion programmers and users, managing machines and
network connections for the programmer in the same way
that operating systems today manage pages of memory
and disk sectors. Beyond the capabilities of Coign, Mil-
lennium will provide automatic migration of live compo-
nents. We are attempting to create distributed systems
that are self-tuning and self-configuring; automatically
adapting to changes in hardware resources and application
workload.

Creating a higher level of abstraction does not come
without cost in performance. However, Millennium
hopes to gain efficiency by spontaneously optimizing
applications for the current distributed environment and
eliminating unnecessary boundaries between the operat-
ing system and programming language runtimes.

BIBLIOGRAPHY
Amza, Cristiana, Alan L. Cox, Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Ra-
jamony, Weimin Yu, and Willy Zwaenepoel.
TreadMarks: Shared Memory Computing on Net-
works of Workstations. In Computer, 29(2): 18-28,
February 1996.
Arnold, Thomas R., 11,. Software Testing with Vis-
ual Test 4.0. IDG 13ooks Worldwide, Foster City,
CA, August 1996.
Dahlhaus, E., D. S. Johnson, C. H. Papadimitriou, P.
D. Seymour, and h4. Yannakakis. The Complexity
of Multiterminal Cuts. In SIAM Journal on Com-
puting, 23(4):864-894, August 1994.
Ford, Lester R., Jr. and D. R. Fulkerson. Flows in
Networks. Princeton University Press, Princeton, NJ,
1962.
Hunt, Galen C. Automatic Distributed Partitioning
of Component Applications. Ph.D. Dissertation,
Department of Cornputer Science. University of
Rochester, July 1998.
International Business Machine, Inc. VisualAge
Generator. Version 3.0, Raleigh. NC, September
1997.
Kimelman, Doug, Tova Roth, Hayden Lindsey, and
Sandy Thomas. A Tool for Partitioning Distributed
Object Applications Based on Communication Dy-
namics and Visual Feedback. In Proceedings of the
Advanced Technology Workshop, Third USENIX
Conference on Object-Oriented Technologies and
Systems. Portland, OR, June 1997.
Michel, Janet and Andries van Dam. Experience
with Distributed F’rocessing on a HosVSatellite
Graphics System. In Proceedings ofthe ACM
SIGGRAPH, pp. 190- 195. Philadelphia, PA, July
1976.

26 I

[9] Microsoft Corporation. Microsoft Open Database
Connectivity Software Development Kit. Version
2.0. Microsoft Press, 1994.

[101 Microsoft Corporation. Microsoft OfJice 97. ,
Redmond, WA, February 1997.

[111 Microsoft Corporation. Overview of the Corporate
Benefits System. In Microsoft Developer Network,
January 1997.

[121 Microsoft Corporation. Picture It! Version 2.0,
Redmond, WA, September 1997.

[131 Microsoft Corporation. MIDL Programmer's Guide
and Reference. Windows Platform SDK, Redmond,
WA, April 1998.

Processing. Ph.D. Dissertation, Department of Ap-
plied Mathematics. Brown University, Providence,
RI, October 1974.

[15] Stets, Robert, Sandhya Dwarkadas, Nikolaos Har-
davellas, Galen Hunt, Leonidas Kontothanassis,
Srivinasan Parthasarathy, and Michael Scott.
Cashmere-2L: Software Coherent Shared Memory
on a Clustered Remote-Write Network. In Pro-
ceedings of the Sixteenth ACM Symposium on Oper-
ating Systems Principles, pp. 170-183. Saint Malo,
France, October 1997.

[161 van Dam, Andries, George M. Stabler, and Richard
J. Harrington. Intelligent Satellites for Interactive
Graphics. In Proceedings of the IEEE, 62(4):483-
492, April 1974.

[141 Stabler, George M. A System for Interconnected

262

