A Guided Tour of the Coign Automatic Distributed Partitioning System

Galen C. Hunt
Microsoft Research

Michael L. Scott
Department of Computer Science
University of Rochester

July 1998

Technical Report
MSR-TR-98-32

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Submitted for Publication

A Guided Tour of the Coign Automatic Distributed Partitioning System

Galen C. Hunt
Microsoft Research
One Microsoft Way

Redmond, WA 98052
galenh@microsoft.com

Abstract
Distributed object systems such as CORBA and DCOM
bring many advances to distributed computing. The dis-
tribution process itself, however, has changed little: pro-
grammers still manually divide applications into sub-
programs and assign those sub-programs to machines
with little automated assistance. Often the techniques
used to choose a distribution are ad hoc. Due to high
intellectual cost, applications are seldom repartitioned
even in drastically changing network environments.
We describe Coign, an automatic distributed partitioning
system (ADPS) that significantly facilitates the develop-
ment of distributed applications. Given an application (in
binary form) built from distributable COM components,
Coign constructs a graph model of the application’s inter-
component communication through scenario-based pro-
filing. Later, Coign applies graph-cutting algorithms to
partition the application across a network and minimize
distribution costs. Using Coign, an end user without
source code can transform a non-distributed application
into an optimized, distributed application.
Through a guided tour of Coign’s architecture and usage,
we present an overview of its features. We describe the
automatic distributed partitioning of three applications:
Microsoft Picture It!, the Octarine word processor, and
the Corporate Benefits Sample program. All are distrib-
uted automatically, sometimes with startling results. For
example, Coign makes significant changes to the pro-
grammer-assigned distribution of the Corporate Benefits
Sample.

1. Introduction

Distributed object systems such as CORBA and
DCOM bring the advantages of service location fpans
ency, dynamic program instantiation, and objectued

programming to distributed applications. Unforttaig,

Michael L. Scott
Department of Computer Science
University of Rochester
Rochester, NY 14627
scott@cs.rochester.edu

Given the effort required, applications are seldan
partitioned even in drastically different networkveaon-
ments. User usage patterns can severely stretstia s
distribution of an application. Changes in undiedy
network, from ISDN to 100BaseT to ATM, strain stati
distributions as bandwidth-to-latency tradeoffs rde by
more than an order of magnitude. Nonetheless, pro-
grammers resist repartitioning the application lseait
often requires extensive modifications to sourcdecand
program structure.

In this paper, we present a guided tour of Coigndh
automatic distributed partitioning system (ADPShtth
promises to significantly ease the developmentonfipo-
nent-based distributed applications. Given an appbn
built with COM components, Coign uses inexpensive
scenario-based profiling on a single computer tantjify
inter-component communication costs for both single
machine and multi-machine distributions. Inter-
component communication is modeled as a graph with
nodes representing components and edges repragentin
inter-component communication and location constsai
Using graph-cutting algorithms, Coign selects drithis-
tion of the application that minimizes communicatio
costs. At run time, Coign manipulates program exken
(with negligible overhead) to produce the desirésird
bution.

Coign analyzes an application, chooses a distohuti
and produces the desired distribution all withoztess to
application source. As a corollary, Coign is coately
language neutral; it neither knows nor cares alibat
source language of the components in the applicatio
Moreover, because it operates on binaries, Coign pr
serves the ability to build applications from renisa
third-party components.

In the following section we describe related worlk
Section 3, we illustrate how to use Coign to autibcatly
distribute an application. We describe Coign’shész-
ture in Section 4. Section 5 contains an expertaien

the process to distribute program components hasévaluation of Coign’s effectiveness in distributitiyee

changed little: programmers still manually dividpph-

cations into sub-programs and manually assign teabe
Often the techniques used to

programs to machines.
choose a distribution are ad hoc, one-time solstion

applications. Finally, in Section 6 we concludel atis-
cuss future work.

2. Related Work

2.1. ICOPS

components, not the fine-grained objects nativEnmll-
talk. Kimelman's team has tested their system onra-
ber of real Smalltalk applications, but in eachecahe
application had “far fewer than 100" components [7]

The idea of an ADPS is not new. The Interconnected The latest version of IDAP generates C++ code for

Processor System (ICOPS) [8, 14, 16] supportedilatist
uted application partitioning in the 1970’s. Undée
direction of Andries van Dam, ICOPS pioneered tee u
of compiler-generated stubs for inter-process comimu
cation. ICOPS was the first system to use scetimsed
profiling to gather statistics for distributed ptoning;
the first system to support multiple distributiopsr ap-
plication based on host-processor load; and ttst $iys-
tem to use a maximum-flow-minimum-cut (MAX-
FLOW/MIN-CUT) algorithm [4] to choose distributions

connecting CORBA components, but still does not- sup
port dynamic component instantiation [6]. Morequée

use of CORBA restricts IDAP to a distribution gréamty

of whole processes because CORBA does not support
loading multiple component servers into the santress
space. The IDAP programmer must be vary aware of
distribution choices. IDAP helps the user to ojzirthe
distribution, but does not raise the level of asion
above the distribution mechanisms. With a fulltfeed
ADPS, such as Coign, the programmer can focus on co

ICOPS was used to automatically distribute HUGS, a Ponent development and leave distribution to tretesy.

two dimensional drafting program developed at Brown

University. HUGS consisted of seven modules. &lok

Although it supports multiple languages, IDAP st}
quires that applications be constructed with a ifipec

these—consisting of 20 procedures in all—could be lo- application development toolkit, the VisualAge Gene

cated on either the client or the server.

tor. Like ICOPS, IDAP supports automatic distrisit

ICOPS was never intended for shrink-wrapped, com- Partitioning of static application pieces only. tire case

mercial applications. Tied to a single language eom-
piler, it relied on metadata generated by the ctenpo
facilitate transfer of data and control between patars.

Modules compiled in another language or by another

compiler could not be distributed because they mid
contain appropriate metadata. ICOPS gave the appli
tion the luxury of location transparency, but stéquired
the programmer or user to explicitly select a disition
based on machine load.

2.2. IDAP

Kimelmanet al. [7] describe the Intelligent Dynamic
Application Partitioning (IDAP) system, an ADPS for
Smalltalk applications. IDAP is an add-on to IBM'’s
VisualAge Generator. Using VisualAge Generatois v
ual builder, a programmer designs an applicationrby
stantiating and connecting components in a grapkica
vironment. The builder emits code for the creapgli-
cation.

The “dynamic” in the IDAP name refers to scenario-

based profiling as opposed to static analysis. RCfikst
generates a version of the application with anrinst

of ICOPS, the application pieces are proceduresthé
case of IDAP, the pieces are CORBA components or
large-grain Smalltalk objects.

2.3. Summary

Prior to Coign, no ADPS allowed distributed parti-
tioning of binary components dynamically instarecht
during the execution of the application. Dynanienpo-
nent instantiation is an integral feature of modeesktop
applications. One of the major contributions of auork
is a set of dynamic component classification athoms
that map newly-created components to similar compo-
nents identified during scenario based profiling.

Our research differs in scope from prior work bessau
we automatically distribute an existing class omooer-
cial applications. All of the applications in otast suite
were developed by third parties with no knowledfj¢he
Coign system.

3. A Guided Tour

To solidify the concept of an ADPS, we describe a

mented message-passing mechanism. IDAP runs the indetailed example of Coign’'s usage to automaticdiby

strumented application under control of a testlifoivith
the VisualAge system. After the application exenut
the programmer either manually partitions the compo
nents or invokes an automatic graph-partitioningoal
rithm. The algorithm used is an approximation atfon
capable of multi-way cuts for two or more hosts [3§f-
ter choosing a distribution, VisualAge generateseav
version of the application.

IDAP supports distributed partitioning only for sta
cally allocated components. Although initially bdson
Smalltalk, the distributable components are largery

tribute an existing COM application. The applioati
used in this example is a preliminary version dtiare
release oMicrosoft Picture It! [12]. (The original, un-
instrumented version dicture It! application is designed
to run on a single computer—it provides no explgtip-
port for distribution.)

3.1. Creating a Distributed Application

Starting with the original binary files foPicture It!,
we use theset coi gn utility to insert the Coign profiling

instrumentation package, see Figure 1Set coi gn
makes two modifications to thpi . exe binary file.
First, it inserts an entry to load the Coign RumtitBx-
ecutive (RTE) Dynamic-Link Library (DLL) into therét
slot in the application’s DLL import table. Second
set coi gn adds a data segment containing configuration
information to the end opi . exe. The configuration
information tells the Coign RTE how the application
should be profiled and which of several algorithshsuld

be used to identify components during execution.

Because it occupies the first slot in the appla@s
DLL import table, the Coign RTE will always load can
execute before the application or any of its ofbeLs. It
therefore has a chance to modify the applicatiaddress
space before the application runs. The Coign Rakes
advantage of this opportunity to insert binary insten-
tation into the image of system libraries in thelaga-
tion’s address space. The instrumentation trapsoah-
ponent instantiation functions in the COM librafgefore
returning control to the application, the Coign Ribads
any additional Coign components (described in 8act)
as stipulated by the configuration information etbrin
the application.

With the Coign runtime configured for profiling, éh
application is ready to be run through a set offiling
scenarios; see Figure 2. Because the binary has be
modified transparently to the user (and to the iappbn
itself), profiling runs behave from the user’s poifi view
as if there were no instrumentation in place. Trstru-
mentation gathers profiling information in the bgaodund
while the user controls the application. The onisible
effect of profiling is a degradation in applicatiparform-
ance of up to 85%. For our simple example, wet star
Picture It!, load a file for preview, and exit the applica-
tion. For more advanced profiling, scenarios can b
driven by an automated testing tool, such as ViJigst
[2].

During profiling, the Coign instrumentation maimai

running summaries of the inter-component communica-

tion within the application. Coign quantifies eyenter-
component function call through a COM interfaceheT
instrumentation measures the number of bytes tloatddv
have to be transferred between machines if thecovo-
municating components were distributed. The nunaber
bytes is calculated by invoking portions of the D@O
code, including the interface proxy and stub, witlie
application’s address space. Coign measuremeoi®l
precisely the deep-copy semantics of DCOM. Afigr c

culating communication costs, Coign compresses and

summarizes the data online to keep instrumentagion

age requirements at a minimum. If desired, theiegp
tion may be run through profiling scenarios for slayr

even weeks to more accurately track user usagerpait
In all of our tests, storage overhead for Coignemesx-

ceeded 1.5 MB.

D\ apps\ pi ctureit\bin> setcoign /p pi.exe

Config
Logger: Coi gn Profile Logger
I nf or ner: Coi gn NDR I nterface Inforner
Classifier: Coign EP3C O assifier

Sections: 4
. text

___VAddr ___VSize ___VAEnd ___FAddr ___FSize R
1000 10e343 10f 343 400 10e400 0
110000 501c3 1601c3 50200 0
161000 0
173000 0
189000 0

10e800
15ea00
16be00
181800

.rdata
. data
.rsrc
.coign
Debug Directories:
0. 00000000 00181800..00181910 -> 00188600..00188710
1. 00000000 00181910..001819c0 -> 00188710..001887c0

11224 172224
15868 188868

6cdo 18f cd0

2. 00000000 001819c0..001819ea -> 001887c0..001887ea
Extra Data: 512 (181a00 - 181800)
Coi gn Extra Data:
{ 9CEEBO2F- E415- 11D0- 98D1- 006097B010E3} : 4 bytes.

Figure 1, Inserting Coign into the Application.
Set coi gn rewrites the pi.exe binary to insert Coign
profiling instrumentation int®icture It!.

" Microsoft Picture It! - [msr. mix]

t Tools Arange Window Help Debug Addons

Z

Qutandcrop TouchUp Effects Colog Effects

DERSRRe|) =R |FN o

| ==

~ Hide[T]

[501 » 663

A S [[ForHelp, press F1 [

Figure 2, Executing a Profiling Scenario. With
Coign instrumentation in place, the applicationua
through one or more profiling scenarios to measure
inter-component communication. In this scenario,
Picture It! loads and renders a composite image.

At the end of the profiling execution, Coign writd®
summary log of inter-component communication tdle f
for later analysis; see Figure 3. In additionrtfioimation
about the number and sizes of messages and coniponen
in the application, the profile log also contaim$orma-
tion to classify components to determine comporent
cation constraints. Log files from multiple prafily exe-
cutions may be combined and summarized during later
analysis. Alternatively, at the end of each piojl exe-
cution, information from the log file may be inssdtinto
the configuration record in the application exeblggthe
pi.exe file in this example). The latter approasies less
storage because summary information in the cordiim
record accumulates communication from similar ifstes
calls into a single entry.

Invoking adpcoi gn initiates post-profiling analysis,
see Figure 4.Adpcoi gn examines the system service
libraries to determine any location constraintsapplica-
tion components. For client-server distributions,
adpcoi gn recognizes components that must be placed

D: \ apps\ pi cturei t\ bi n> pi.exe
Coi gn Runtine Environnent: 00000080 636f 6900 00000000]
Coi gn EP3C O assifier/9999]
Coi gn NDR Interface Inforner]
Coi gn Profiling Logger (16 cycles)]
Coi gnRTE: DLL_PROCESS_ATTACH|
Coi gnRTE: DLL_THREAD_ATTACH
CreateFi | eMoni ker (D: \apps\ pi cturei t\docs\MSR. mi x)]
St gOpensSt orage(D:\apps\pictureit\docs\MSR nix)]
Coi gnRTE: DLL_THREAD_DETACH|
El apsed tinme: 26400 ns]
Coi gnRTE: DLL_PROCESS_DETACH|
I nt er- conponent communi cati on:]
Messages 16 _ 64 __ 256 __1024 __4096 _ 16384 _ Totals]
45
12
237963
70019

I'n Counts : 105240 1629
[CQut Counts: 102980 4303
[In Bytes : 782022 57912
[CQut Bytes : 455207 130140

473 1599 66
843 783 131
49616 815034 157619
95473 304592 239239

109052 |
109052 |
2100166]
1294670]

Figure 3, Logging Communication. At the conclu-
sion of the profiling scenario, Coign logs the mte
component communication to a file for later anadysi

D: \ apps\ pi cturei t\ bi n> adpcoi gn pi.log
Bi naries:
pi . exe
ns097d. dl |
nfc42d. dl |
nf co42d. dl |
ol eaut 32. dl |
Dependenci es:
01 D:\apps\pictureit\bin\pi.exe
pi perf.dll
ol eaut 32.dl |
00 D:\apps\pictureit\bin\piserv.dll
nfc42d. dl |
00 D:\apps\pictureit\bin\nfco42d.dlI
00 C:\winnt\systenB2\ol e32.dlI
112
792
38286
743534
200MHz

bj ects:
Interfaces:
Calls:
Bytes:

Proc. Speed:

Figure 4, Post-Profiling Analysis. Adpcoi gn ana-

lyzes the log file to create an abstract modelnbér-
component communication.

D:\ apps\ pi cturei t\bin> setcoign /f:pi.set pi.exe
Config: pi . set

I nforner: Coi gn Light Interface Inforner

Classifier: Coign EP3C C assifier
Sections: 5 __VAddr ___VSize ___VAEnd ___FAddr __ _FSize RL RL
. text 1000 10e343 10f 343 400 10e400 0 0 0 O
.rdata 110000 501c3 1601c3 10e800 50200 0 0 0 0
.data 161000 11224 172224 15ea00 d400 0 0 0 O
.rsrc 173000 15868 188868 16be00 15a00 0 0 0 O
. coign 189000 83f 8 1913f8 181800 8400 0 0 0 O
Debug Directories:
0. 00000000 00189a00..00189b10 -> 00189c00..00189d10

1. 00000000 00189b10..00189bc0 -> 00189d10..00189dcO

2. 00000000 00189bc0..00189bea -> 00189dc0..00189dea
Coi gn Extra Data:

{ 9CEEB022- E415- 11D0- 98D1- 006097B010E3} :

{ 9CEEB030- E415- 11D0- 98D1- 006097B010E3} :

{ 9CEEBO2F- E415- 11D0- 98D1- 006097B010E3} :

4980 bytes.

904 bytes.

4 bytes.

Figure 5, Inserting the Model into the Application.

An abstract model of inter-component communication
is written into the application binary for distritbon.

on the client in order to access the Windows GhhHaliies
or that must be placed on the server in order tese
persistent storage directly.

Combining location constraints and information abou
inter-component communicatioadpcoi gn creates an
abstract graph model of the application. In therant
implementationadpcoi gn combines the abstract graph
model with data about the network configuratiorcteate
a concrete model of the cost of distribution oreal met-
work. Adpcoi gn then uses a graph-cutting algorithm to
choose a distribution that minimizes communication
costs. In the future, the construction of the cete

model and the graph-cutting algorithm could be per-
formed at application execution time, thus potéiytia
producing a new distribution tailored to currentvnerk
characteristics.

After analysis, the application’s inter-component
communication model is written into the configuoati
record in the application binary; see Figure 5. Aegid-
ual profiling logs are then removed from the confafion
record. The configuration record is also modifteddis-
able the profiling instrumentation. In its plaee light-
weight version of the instrumentation will be lodd®
realize (enforce) the distribution chosen by thepgr
cutting algorithm.

Aside from the inter-component communication
model, perhaps the most important information writt
into the application configuration is data for tbempo-
nent classifier. The component classifier matcbes-
ponents created during distributed executions toppm
nents created during the profiling scenarios. &hstract
model of inter-component communication containsesod
for all known components and edges representing the
communication between components. To determine
where a component should be located in a distribute
execution, the classifier tries to match it to thest simi-
lar component in the profiling scenario. The presnof
scenario-based profiling is that profiled execusi@tosely
match post-analysis executions. Therefore, if mpo
nent is similar to a component in a profiling extéau,
then it will most likely have similar communicatiqrat-
terns. Based on the chosen distribution for alaimgiro-
filed component, the classifier decides where nem-<
ponents created during the distributed executiaulshbe
instantiated.

Figure 6 shows the distribution chosen for our pedf
scenario. In this scenario, the user loads andigaes an
image inMicrosoft Picture It! from a server. Each of the
large black dots in Figure 6 represents a dynamiopn-
nent in the profiled scenario. Lines between tbmpo-
nents represent COM interfaces through which the- co
nected components communicate. In the on-screen ve
sion of Figure 6, lines are colored according t@ th
amount of communication flowing across the intesfac
Red lines represent interfaces with large amourfts o
communication (communication hot spots) and bloedi
represent interfaces with minimal communication.

Solid, black lines represent interfaces that arerae
motable (i.e., pairs of components that must resit¢he
same machine). An interface may not be remotaine f
any of the following reasons: the interface hasimer-
face Definition Language (IDL) description to erabl
parameter marshaling; one or more of the interfpae
rameters is opaque, such asvai‘d*”; the client directly
accesses the component’s internal data; or the aoem
must reside on the client or the server becaudeattly
accesses system services.

The “pie” slice in the top half of Figure 6 contsin
those components that should be located on therstv
minimize network traffic and thus execution timkn our
example, the operating storage services, the dooufihe
component, and three “property set” componentsadire
located on the server. Note that approximately doeen
“property set” components (of the “Pl.PropSet” slaare
located on the client. In order to achieve optipeiform-

ance, a component-based ADPS must be able to place

components of the same class on different machines.
After the abstract distribution model is writteriarthe
binary, the application is prepared for distributioWhen
the application user instrucBcture It! to load an image
from the server, the lightweight version of the @orun-
time will trap the related instantiation requestl aelocate
it to the server. The four components chosen istridu-
tion in Figure 6 are automatically distributed he tserver.
Coign distributes the component to the server aytisg

£k Coign: Automatic Distributed Partitioning

BAN SN
=

- e
A SR
—

AN

A ‘_m:‘::z\s\“:\ e

Figure 6, Choosing a Distribution Coign cuts the

asurrogate process on the server. The surrogate acts as a graph using online network performance parameters t

distributed extension of the application; descriloeon-
ponents reside in its address space. A distribuégsion
of the Coign runtime maintains communication lirdes
tween the original application process on the tliand
the surrogate process on the server.

Figure 7 shows the distributed version Ritture It!.
The window in the lower right corner of Figure 7ntains
the surrogate process and the components distdbarte
the server. Coign automatically created a distatwer-
sion of Microsoft Picture It! without access to the appli-
cation source code or the programmer’s knowledginef
application. The automatic distributed applicaticn
customized for the specific network to minimizetdis
uted communication costs.

3.2. Discussion

We envision two Coign usage models to create Histri
uted applications. In the first model, Coign i®diswith
other profiling tools as part of the developmenbgass.
Coign shows the developer how to distribute thelieap
tion optimally and provides the developer with feack
about which interfaces are communication “hot spots
The programmer can fine-tune the distribution bgeit-

ing custom marshalling and caching on communication

intensive interfaces. The programmer can also lenab
disable specific distributions by inserting or resimy
location constraints on specific components anarint
faces. Alternatively, the programmer can creatkstrib-
uted application with minimal effort simply by ruing
the application through profiling scenarios andtiwg the
corresponding distribution model into the applioatibi-
nary without modifying application sources.

In the second usage model, Coign is used onsitaey
application user or system administrator. The ieer
ables application profiling through a simple GUI ttee
set coi gn utility. After “training” the application to the

minimize distributed communication costs. The pie
slice in the upper right contains the components se
lected for distribution on the server.

[_[Clx]

° Microsolt Picture It! - [msr.mix]
Tl Ele Edit Wew Insert ok Arpange Window e Debug Addons
@,
Text CuandCrop Touchlp Effects Color Effects

DeEaled = nlo - o[\ e g 0O @0

K1 T
A o [For Help, press FT

Figure 7, The Distributed Application. Component
instantiation requests are relocated to producdalihe
tributed application. The new, distributed appiizca
is functionally equivalent to the original, non-
distributed application. Distribution is achieve b
modifying the application binary at run time, naet
application sources.

user’s usage patterns—by running the applicatioouiin
representative tasks with profiing—the GUI triggers
post-profiling analysis and writes the distributiorodel
into the application. In essence, the user hastedea
customized version of the distributed applicatioithout
any knowledge of the underlying details.

In the future, the Coign could automatically decide
when usage differs significantly from the profilete-

narios and silently enable full profiling for a pmt to re-
optimize the distribution. The Coign runtime ablga
contains sufficient infrastructure to allow “fullauto-
matic” distribution optimization. The lightweigkersion

of the runtime, which relocates component instaiotia
requests to produce the chosen distribution, cacolant
messages between components with only slight additi
overhead. Run time message counts could be cothpare
with relative message counts from the profilingrer@s

to recognize changes in application usage.

4. Architecture of the Coign ADPS

The Coign runtime is composed of a small collection
of replaceable COM components; see Figure 8. Tost m
important components are tl@ign Runtime Executive
(RTE), theinterface informer, theinformation logger, the
component classifier, and thecomponent factory. The
RTE provides low-level services to the other congrs
in the Coign runtime. Thanterface informer identifies
interfaces by their static type and provides suppor
walking the parameters of interface function call§he
information logger receives detailed information about all
component-related events in the application froemRTE
and the other Coign runtime components. The inferm
tion logger is responsible for recording relevavems for
post-profiling analysis. Theomponent classifier identi-
fies components with similar communication patterns
across multiple program executions. Themponent
factory decides where component instantiation requests
should be fulfilled and relocates instantiationuests as
needed to produce a chosen distribution.

4.1. Runtime Executive

The Coign Runtime Executive is the first DLL loaded
into the application address space. As such, e Rns
before the application or any of its componentse RTE
patches the COM library and other system serviocesap
component instantiation requests. The RTE reads th
configuration information written into the appliat
binary by theset coi gn utility. Based on information
in the configuration record, the RTE loads othempo-
nents of the Coign runtime.

The RTE provides a number of low-level services to
the other components in the Coign runtime including
interception of component instantiation requestsapwy
ping of component interfaces to intercept inter-poment
messages; management of thread-local stack stdoage
use by other components in the Coign runtime; aess
to configuration information stored in the applioat bi-
nary.

The current Coign runtime contains a single RTle T
DLLs for profiling and “regular” program executiahf-
fer in the choice of components to run on top efRTE.

Information
Logger

Interface
Informer

Component
Classifier

Component
Factory

¢ ¢ ¢

Coign Runtime Executive (RTE)

¢

Figure 8, Coign’s Component Architecture. Run-
time components can be replaced to produce light-
weight instrumentation, detailed inter-component
communication trace logs, or remote component in-
stantiation.

4.2. The Interface Informer

The interface informer locates and manages interfac
metadata. With assistance from the interface méor
other components can determine the static type@DM
interface, and walk both the input and output patans
of an interface function call. The current Coigmtime
contains two interface informers. The first interé in-
former operates during scenario-based profiling.he T
profiling interface informer uses format stringsngeated
by the MIDL compiler [13] and interface marshalling
code to analyze all function call parameters aretipely
measure inter-component communication. Profiling- c
rently adds up to 85% to execution run time. Mafsthis
overhead is incurred by the interface informer.

The second interface informer is used after prailio
produce the distributed application. The distrdglitin-
former only examines enough function call paranseter
locate interface pointers. As a result of aggkesgire-
execution optimization of interface metadata, tisrith-
uted informer imposes an execution overhead oftlems
3% on most applications.

4.3. The Information Logger

The information logger summarizes and records data
for automatic distributed partitioning analysis. ndér
direction of the RTE, Coign runtime components pass
information about a number of events to the infarora
logger. The logger is free to process the eveststa
wishes. Depending on the implementation, it miigjt
nore the event, write the event to a log file oskdior
accumulate information about the event into in-mgmo
data structures. The current implementation ofCGlogn
runtime contains three separate information loggérke
profiling logger summarizes data describing inter-
component communication into in-memory data struc-
tures. At the end of execution, these data strastare
written to disk for post-profiling analysis. Tlegent log-
ger creates detailed traces of all component-relatents
during application execution. One of our colleagbas

used traces generated by the event logger to detailed
simulations of the execution of component-basedicgpp
tions. Thenull logger ignores all events. Use of the null
logger insures that no extra files are generatedngu
execution of the automatically distributed applicat

4.4. Component Classifier

The component classifier identifies components with
similar communication patterns across multiple exec
tions of an application. Coign’s scenario-basegraach
to automatic distribution depends on the premige the
communication behavior of a component during arithst
uted application can be predicted based on the cemp
nent’s similarity to another component in a profijisce-
nario. Since, in the general case, it is imposstbl de-
terminea priori the communication behavior of a compo-
nent, the component classifier groups componenth wi
similar instantiation histories. The classifiereogtes on
the theory that two components created under Sirita
cumstances will display similar behavior. The autpf
the post-profiling graph-cutting algorithm is a rpap of
component classifications to computers in the ngtwo

The current Coign runtime includes eight component
classifiers created for evaluation purposes. Erpamts
indicated that the most accurate results are pexdiat
reasonable cost) by grouping components of the sam
type that are created in the presence of the sdawk s
backtrace.

4.5. Component Factory

The component factory produces the distributediappl
cation. Using output from the component classified
the graph-cutting algorithm, the component factoigves
each component instantiation request to the apiatepr
computer within the network. During distributedeex-
tion, a copy of the component factory is replicatedo
each machine. The component factories act as .peer
Each traps component instantiation requests orvis
machine, forwards them to another machine as approp
ate, and fulfills instantiation requests destinedifs ma-
chine by invoking COM to create the new component
instance. The job of the component factory is very
straightforward since most of the difficult problenn
creating a distributed application are handledegithy the
underlying DCOM system or by the component classifi
Coign currently contains a symbiotic pair of comeoh
factories. Used simultaneously, the first factbandles
communication with peer factories on remote machine
while the second factory interacts with the compiine
classifier and the interface informer.

4.6. Summary

The component structure of the Coign runtime allows
it to be used for a wide range of analysis and tadiam
tasks. The scenario-profiling runtime is convertedhe
distribution-realization runtime by changing theeirfiace
informer and information logger components. Byrmdra
ing just the information logger component, one of o
colleagues has generated extensive traces of thetyac
of component-based applications. These traces usze
to drive a simulator to analyze the performancelgb-
rithms for a large distributed object system.

5. Evaluation

Because it makes distribution decisions at compbnen
boundaries, Coign depends on programmers to bpid a
plications with significant numbers of componentSor
our experiments, we use a suite of three applinathmuilt
from COM componentsMicrosoft Picture It!, Octarine,
and theCorporate Benefits Sample. We believe that these
applications represent a wide class of COM apptioat

Microsoft Picture It! [12] is a consumer application for
manipulating digitized photograph<Ricture It! includes
tools for selecting a subset of an image, applyrsget of
transforms to the subset, and inserting the tramsfd
&ubset into another image®icture It! is a non-distributed
application composed of approximately 112 COM com-
ponent classes in 1.8 million lines of C++ sourcdec

Designed as a prototype to explore the limits ahco
ponent granularity, Octarine is a document processi
application similar taVlicrosoft Word. Octarine contains
approximately 150 classes of components ranging in
granularity from less than 32 bytes to several rhgtes.
Octarine’s components range in functionality frosex
interface buttons to generic dictionaries to sheeisic
editors. Octarine manipulates three major typedaafu-
ments: word-processing documents, sheet-music docu-
Jnents, and table documents. Fragments of any ef th
three document types can be combined into a single
document. Octarine is composed of approximately
120,000 lines of C and 500 lines of x86-assemblyrc®
code.

The Corporate Benefits Sample [11] is an applicatio
distributed by Microsoft Corporation to demonstréte
use of COM for creating client-server applicationshe
Corporate Benefits Sample provides windows for modi
fying, querying, and creating graphical reportsaodata-
base of corporate employees and their benefitse drit
tire sample application contains two separate tliemt-
ends and four distinct server back-ends. For aur p
poses, we use a client front-end consisting of aypr
mately 5,300 lines of Visual Basic code and a gerve
back-end of approximately 32,000 lines of C++ seurc
code with approximately one dozen component classes
Benefits leverages commercial components (diseithir

binary form only) such as the graphing componeainfr
Microsoft Office [10].

Each of the applications in our test suite is dyitam
and user-driven.
instantiated in a given execution is determinedulsgr
input at run time. For example, a scenario in Wwhaauser
inserts a sheet music component into an Octarire-do
ment will instantiate different components tharcarario
in which the user inserts a table component inte th
document.

5.1. Simple Distributions

For our first set of experiments, we ran each appli
tion in the test suite through a simple profilingesario
consisting of the simplest practical usage of thpliaa-
tion. After profiling, Coign partitioned each ajgation
between a client and server of equal computatipoaler
on an isolated 10BaseT Ethernet network. For saity|
we assume that there is no contention for the serve

Figure 9 contains a graphical representation ofdike
tribution of Microsoft Picture Itl. In the profiling sce-
nario, Picture It! loaded a 3 MB graphical composition
from storage, displayed the image, and exited. 298
components in the application, eight were placedhan
server. One of the components located on the sé&sve
the component that reads the document file. Tiherot
seven components are high-levyaloperty sets created
directly from data in the file. The property sei® lo-
cated on the server because their output dats setaller
than their input data set.

As can be seen in Figure Ricture It! contains a large
number of interfaces that can not be distributexhre-
sented by solid black lines. The most importanh-no
distributable interfaces connect thgrite cache compo-
nents (on the bottom and right) with the user faiss

The number and type of components

Figure 9, Microsoft Picture Itl. Of 295 components
in the application, eight are placed on the server.

Figure 10, Distribution of Octarine. Of 458 compo-
nents in the application, two are placed on theeser

components. Each sprite cache component manages th

pixels for an image in the composition. Most o thata

passed between sprite caches moves through share
memory regions. These shared-memory regions corre-,

spond to non-distributable component interfaceshil&V
Coign can extract a functional distribution fraPicture
It!, most of the distribution granularity in the ajpliion
is hidden by non-distributable interfaces. To daalther,
potentially better distributions, either the nostdbutable
interfaces inPicture It! must be replaced with distributed
IDL interfaces, or Coign must be extended to suppor
transparent migration of shared memory regionsesn
sence leveraging the features of a software digeib
shared memory (DSM) system [1, 15].

Figure 10 contains a graphical representation ef th
distribution of the Octarine word processor. listhce-

ario, Octarine loaded and displayed the first pafa
5-page, text-only document. Only two componerits o
58 are located on the server. One of the comgsnen
reads the document from storage; the other provides
formation about the properties of the text to test of the
application. While Figure 10 contains a humbemnoh-
distributable interfaces, these interfaces conmechpo-
nents of the GUI, and are not directly relatedh® docu-
ment file. Unlike the other applications in ousttsuite,
Octarine is composed of literally hundreds of compo
nents. It is highly unlikely that these GUI compats
would ever be located on the server. Direct docume
related processing for this scenario is limited2tb com-
ponents.

Figure 11, The Corporate Benefits Sample Of 196

components in the client and middle tier, Coign lo-
cates 135 of the components on the middle tiererath
than the 187 components chosen by the programmer.

Figure 12, Octarine with a Multi-page Table.
Coign locates only a single component on the server
for a document containing five-page table.

Figure 11 plots the distribution for the CorporBiene-
fits Sample. As shipped, Benefits can be distaluas
either a 2-tier or a 3-tier client-server applicati In the
2-tier scenario, the Visual Basic front-end and husi-
ness-logic components are located on the clientevihe
database is located on the server and accesseagkhro
ODBC [9]. In the 3-tier scenario, the Visual BaBiont-
end is located on the client, the business-logicpm
nents are located on the middle tier, and the @datalis
located on the server. Coign cannot analyze petgm

In the original distribution, chosen by a programme
187 of 196 components are located in the middle tie
The programmer’s distribution is a result of twosidm
choices. First, the middle tier represents a cpuuzaly
clean separation of business logic from the otlergs of
the application. Second, the front-end is writteVisual
Basic, an extremely popular language for rapid thgpre
ment of GUI applications while the business logic i
written in C++.

Coign analysis shows that application performarate c
be improved by moving some of the business-logim-co
ponents from the middle tier into the client. Tdistribu-
tion chosen by Coign is quite surprising. Of 1@8npo-
nents in the client and middle tier, Coign woulddt®
just 135 on the middle tier. It would be extremalyk-
ward for the programmer to create the distributihiosen
by Coign because it runs counter to the programsner’
logical separation of the application. The Corpera
Benefits Sample demonstrates that Coign can imptioee
distribution of applications designed by experighod-
ent-server programmers.

5.2 Changing Scenarios and Distributions

The results in the previous section demonstraté¢ tha
Coign can automatically choose a partition andritiste
an application. The Benefits example notwithstagdi
one could argue that an experienced programmer with
appropriate tools could partition the applicatidieast as
well manually. Unfortunately, a programmer’s beffort
manual distribution is static; it cannot readilyaptl to
changes in network performance or user-driven usage
patterns. In the realm of changing environmenig®
has a distinct advantage as it can repartitiondasigibute
the application arbitrarily often. In the limit,on can
create a new distributed version of the application
each execution.

The merits of a distribution customized to a pathc
usage pattern are not merely theoretical. Fig@&elbts
the optimized distribution for Octarine loading acd-
ment containing a single, 5-page table. For tbénario,
Octarine places only a single component out of ih8be
application on the server. The results are confparto
those of Octarine loading a document containingptstr
text, see Figure 10. However, if fewer than a dozmall
tables are added to the 5-page text document,gtiemal
distribution changes radically. As can be seefigure
13, Coign places over 282 component on the semweof
786 created in the scenario. The difference itritigtion
is due to the complex negotiations for page placgéme
between the table components and the text companent

connections between the ODBC driver and the dagabas Output from the page-placement negotiation to &% of

server. We therefore focus our analysis on thé&idis
tion of components in the front end and middle. tier

the application is minimal.
In a traditional distributed system, the programmer
would most likely be forced to optimize the applioca

Figure 13, Tables Interspersed Between TextWith a
five-page document containing fewer than a dozen em
bedded tables, Coign places 282 of 786 applicaibon-
ponents on the server.

for the most common usage pattern. At best, tlee pr
grammer could embed a minimal number of distributio
alternatives into the application. With Coign, thso-
grammer need not favor one distribution over anothe
The application can be distributed with an inter-
component communication model optimized for the tmos
common scenarios. Over the installed lifetimelef &p-
plication, Coign can periodically re-profile thepdigation
and adjust the distribution accordingly. Even wiih
updating the inter-component communication model,
Coign can adjust to changes in application infragtre,
such as changes in the relative computation povéhneo
client or server (through an extension to the graptting
algorithm), or changes in network latency and badtw

6. Conclusions and Future Work

We have described the Coign ADPS. Coign is thst fir
ADPS to automatically distribute binary applicasaouilt
from components. Coign has successfully distrithute
three commercial-grade applications: Microsoft et
It!, the Octarine word processor, and the CorpoBxae-
fits Sample from the Microsoft Developer Network
(MSDN). The largest of these programs is 1.8 onilli
lines of source code. In terms of complexity, savef
the Octarine scenarios we have tested instantiaé o
3,800 components. Coign has even proven effedtive
re-optimizing manually distributed applications.

Coign is part of the Millennium project at Microsof
Research. The project aims to develop distribiggst
tems that provide a new level of abstraction foplaa-

tion programmers and users, managing machines and

network connections for the programmer in the sarag

that operating systems today manage pages of memory10]

and disk sectors. Beyond the capabilities of Coldit-

10

lennium will provide automatic migration of live gmpo-
nents. We are attempting to create distributedesys
that are self-tuning and self-configuring; autorally
adapting to changes in hardware resources andcafiph
workload.

Creating a higher level of abstraction does not €om
without cost in performance. However, Millennium
hopes to gain efficiency by spontaneously optingzin
applications for the current distributed environinand
eliminating unnecessary boundaries between theabper
ing system and programming language runtimes.
Bibliography
[1] Amza, Cristiana, Alan L. Cox, Sandhya
Dwarkadas, Pete Keleher, Honghui Lu, Ramak-
rishnan Rajamony, Weimin Yu, and Willy
Zwaenepoel. TreadMarks: Shared Memory
Computing on Networks of Workstations. In
Computer, 29(2):18-28, February 1996.

Arnold, Thomas R., Il,Software Testing with
Visual Test 4.0. IDG Books Worldwide, Foster
City, CA, August 1996.

Dahlhaus, E., D. S. Johnson, C. H. Papadimi-
triou, P. D. Seymour, and M. Yannakakis. The
Complexity of Multiterminal Cuts. 1&8AM
Journal on Computing, 23(4):864-894, August
1994.

Ford, Lester R., Jr. and D. R. Fulkersétows

in Networks. Princeton University Press,
Princeton, NJ, 1962.

Hunt, Galen C. Automatic Distributed Parti-
tioning of Component Applications. Ph.D. Dis-
sertation, Department of Computer Science.
University of Rochester, July 1998.
International Business Machine, Indsual Age
Generator. Version 3.0, Raleigh. NC, September
1997.

Kimelman, Doug, Tova Roth, Hayden Lindsey,
and Sandy Thomas. A Tool for Partitioning
Distributed Object Applications Based on Com-
munication Dynamics and Visual Feedback. In
Proceedings of the Advanced Technology Work-
shop, Third USENIX Conference on Object-
Oriented Technologies and Systems. Portland,
OR, June 1997.

Michel, Janet and Andries van Darxperi-
ence with Distributed Processing on a
Host/Satellite Graphics System. In Proceed-
ings of the ACM SIGGRAPH, pp. 190-195.
Philadelphia, PA, July 1976.

Microsoft CorporationMicrosoft Open Data-
base Connectivity Software Development Kit.
Version 2.0. Microsoft Press, 1994.

Microsoft CorporationMicrosoft Office 97. ,
Redmond, WA, February 1997.

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

(11]

(12]

(13]

(14]

(15]

(16]

11

Microsoft Corporation. Overview of the Corpo-
rate Benefits System. Microsoft Devel oper
Network, January 1997.

Microsoft CorporationPicture It! Version 2.0,
Redmond, WA, September 1997.

Microsoft CorporationMIDL Programmer’s

Guide and Reference. Windows Platform SDK,
Redmond, WA, April 1998.

Stabler, George M. A System for Interconnected
Processing. Ph.D. Dissertation, Department of
Applied Mathematics. Brown University, Provi-
dence, RI, October 1974.

Stets, Robert, Sandhya Dwarkadas, Nikolaos
Hardavellas, Galen Hunt, Leonidas Kontothanas-
sis, Srivinasan Parthasarathy, and Michael Scott.
Cashmere-2L: Software Coherent Shared Mem-
ory on a Clustered Remote-Write Network. In
Proceedings of the Sixteenth ACM Symposium

on Operating Systems Principles, pp. 170-183.
Saint Malo, France, October 1997.

van Dam, Andries, George M. Stabler, and Rich-
ard J. Harrington. Intelligent Satellites for Inte
active Graphics. IRroceedings of the IEEE,
62(4):483-492, April 1974.

