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Abstract

Emerging system-area networks provide a variety of features that cantdraliyaeduce network
communication overhead. Such features include reduced latency, protetiei® rmemory access,
cheap broadcast, and ordering guarantees. In this paper, we evaluate theaitpase features on
the implementation of Software Distributed Shared Memory (SDSM), artti@fashmere system in
particular. Cashmere has been implemented on the Compag Memory Channel netvichisupports
remote memory writes, inexpensive broadcast, and total ordering of networtpack

We evaluate the performance impact of these special network features tmebdinds of SDSM
protocol communication: shared data propagation, protocol metadata maintenance, anonsac
tion, using an 8-node, 32-processor system. Among other things, we compare our base prbtokcol, w
leverages all of Memory Channel’s special features, to a protocol baségl@oleliable point-to-point
messages. We found that the special features improved performance by 18—44%daf thur appli-
cations, but less than 12% for our other seven applications. The message-baseanl past the added
benefit of allowing shared memory size to grow beyond the addressing limits oétiverk interface.
Moreover, it enables us to implemenhame node migration optimization that sometimes more than
offsets the advantages of the protocol that fully leverages the Memory Chanhgkefamproving
performance by as much as 67%. These results suggest that for systems of medkst $atency is
much more important for SDSM performance than are remote writes, broadcésial ordering. At
the same time, results on an emulated 32-node system indicate that broadedstrbasnote writes of
widely-shared data may improve performance by up to 56% for some applicatitvasdifare broad-
cast or multicast facilities can be made to scale, they can be behgfititure system-area networks.



1 Introduction

Recent technological advances have led to the commercial availabilitgxpénsive system area net-
works (SANs) on which a processor can access the memory of a remote noddrsaialger space [5,
6, 15]. These memory-mapped network interfaces provide users with high bandwitimg/s), low
latency (2—3.s) communication. This latency is two to three decimal orders of magnitude kaear
that of traditional networks. In addition, these SANs sometimes also providéles inexpensive
broadcast and total ordering of packets [10, 15, 16].

In comparison to the traditional network of (uniprocessor) workstations, a chissgmmetric mul-
tiprocessor (SMP) nodes on a high-performance SAN can see much lower commuanearhead.
Communication within the same node can occur through shared memory, while 84&ssegmuni-
cation overhead can be ameliorated by the high performance network. Spweenas have developed
software distributed shared memory (SDSM) protocols that exploit losnst networks [18, 22, 24,
28].

In this paper, we examine the impact of advanced networking features on the aréerof the
state-of-the-art Cashmere-2L [28] protocol. The Cashmere protocol uses tred megmory subsys-
tem to track data accesses, allows multiple concurrent writers ogmpbme nodes.é. maintains one
master copy of each shared data page), a global page directory, and levbiagesnsemory within
SMPs to reduce protocol overhead. In practice, Cashmere-2L has been shwave teery good per-
formance [12, 28].

Cashmere was originally designed to maximize performance by placing shasedigtly in re-
motely writable memory, using remote-write and broadcast to replicatedge directory among nodes,
and relying on network total order and reliability to avoid acknowledging theipeof metadata infor-
mation. This paper evaluates the performance implications of each of thege desisions.

Our investigation builds on earlier results from the GeNIMA SDSM [4]. GeNIMA researchers
examined the performance impact of remote-read, remote-write, and Iggeetlacking suport in the
network interface. In our investigation, we examine remote-write, alatiyfeatures for inexpensive
broadcast and network total order. In subsequent sections, we will explain hosvfdatares are
used by Cashmere and could be or are used by GeNIMA. We also examine twiveffeotocol
optimizations home node migration andadaptive data broadcast, both of which affect the use of the
special network interface support.

In general, an SDSM protocol incurs three kinds of communicationprbygagation of shared data,
the maintenance of internal protocol data structures (called protostatiata), andsynchronization.
We have constructed several variants of the Cashmere protocol that allowsadate the impact of
Memory Channel features on communication in each of the above areas. |Qweréihd that only
three of our ten benchmark applications can obtain significant performance immoige(more than
12%) from a protocol that takes full advantage of the Memory Channel’s speciaidsah comparison
with an alternative protocol based entirely on point to point messages. Thesagaesnly protocol has
simpler hardware requirements, and allows the size of shared memorydgyond the addressing
limits of the network interfacé. It also enables us to implement variants of Cashmere that employ

!Most current commaodity remote access networks have a limited remotely-ite@ssmory space. Methods to elim-
inate this restriction are a focus of ongoing research [7, 30].



home node migration. These variants improve performance by as much as 67%, martsisding
the advantage of using the network interface support in the base protocol. Theseswggéist that for
systems of modest size (up to 8 nodes), low latency is much more important &vl rformance
than are remote writes, broadcast, or total ordering. However, broadcasitiggyemote writes, if it can
be scaled to larger numbers of nodes, can be beneficial for applications witly shdeéd data. Results
on an emulated 32-node system suggest that the availability of inexpensive braasicasprove the
performance of these applications by as much as 56%.

The next section discusses the Memory Channel and its special features, #@lotigewCashmere
protocol. Section 3 evaluates the impact of the Memory Channel features and ta@bdenmigration
optimization. Section 4 covers related work, and Section 5 outlines our canus

2 Protocol Variantsand I mplementation

Cashmere was designed for SMP clusters connected by a high performance sgsteetwork, such
as Compagq’s Memory Channel network [15]. Earlier work on Cashmere [12, 28] and yghesns [12,
14, 22, 23, 24] has quantified the benefits of SMP nodes to SDSM performance. In this papdt, w
examine the performance impact of the special network features.

We begin by providing an overview of the Memory Channel network and its programmerdgice.
Following this overview is a description of the Cashmere protocol and of itsanktvemmunication in
particular. A discussion of the design decisions related to SMP nodes can beriaartier work [28].

2.1 Memory Channel

The Memory Channel is a reliable, low-latency network with a memory-mapmpedrammed 1/O
interface. The hardware providesr@mote-write capability, allowing processors to modify remote
memory without remote processor intervention. To use remote writes, a processt firstattach to
Transmit or Receive regions in the Memory Channel’s address space. Transmit regions are mapped to
uncacheable I/O addresses on the Memory Channel’s PCI-based network adegedre Regions are
backed by physical memory.

An application sets up a message channel by logically connecting Transmit aeydReegions. A
st or e to a Transmit region passes from the host processor to the Memory Channel adéapter,
the data is placed into a packet and injected into the network. At the destintite network adapter
removes the data from the packet and uses DMA to write the data to thepmmrdasg Receive region
in main memory.

A st or e to a transmit region can optionally be reflected back to a Receive regidmecsotirce
node by instructing the source adaptor to leepback mode for a given channel. A loopback message
goes out through the hub and back, and is then processed as a normal message.

By connecting a transmit region to multiple receive regions, nodes can maké he@ware broad-
cast. The network guarantees that broadcast messages will be observedamé¢herder by all re-
ceivers. It also guarantees that all messages from a single source whiskeved in the order sent.
Broadcast is more expensive than point-to-point messages, because it musivégkie crossbar-



based network hub. Broadcast and total ordering, along with loopback transmit reg@nseful in
implementing cluster-wide synchronization, as will be described in the netxbsec

2.2 Protocol Overview

Cashmere is aMP-aware protocol. The protocol allows all data sharing within an SMP to occur
through the hardware coherence mechanism in the SMP. Software coherencedigeitaared only
when sharing spans nodes.

Cashmere uses the virtual memory (VM) subsystem to track data accEssasoherence unit is an
8KB VM page. Cashmere implements “moderately lazy” release consistéigyNodifications are
propagated (as invalidation messages) at release operations, but neechootperated until a subse-
guent acquire operation. Cashmere requires all applications to folllatea ace-free[1] programming
model. Simply stated, one process must synchronize with another in order torseglifisations, and
all synchronization primitives must be visible to the system.

In Cashmere, each page of shared memory has a single, distingh@hedode and also an entry
in a globalpage directory. The home node maintains a master copy of the page. The directory entry
contains sharing set information and home node location.

The main protocol entry points are page faults and synchronization operations. On aydggaé
protocol updates the sharing set information in the directory and obtains an up-tmpgief the page
from the home node. If the fault is due to a write access, the protocol will aésdeca pristine copy of
the page (called awin) and add the page to thierty list. As an optimization in the write fault handler,
a page that is shared by only one node is movedexttusive mode. In this case, the twin and dirty
list operations are skipped, and the page will incur no protocol overhead until anotharesnarges.

At a release operation, the protocol examines each page in the dirty list andresrtipapage to its
twin in order to identify the modifications. These modifications are colleateeither written directly
into the master copy at the home node (using remote writes) or, if the page is notthoeyppdlemory
Channel space, sent to the home node in the form diffamessage, for local incorporation. After
applying diffs, the protocol downgrades permissions on the dirty pages andwsetelsotices to all
nodes in the sharing set. These write notices are accumulated into distaistination and processed
at the node’s next acquire operation. All pages named by write notices are itwdlampart of the
acquire.

2.3 Protocol Variants

In order to isolate the effects of Memory Channel features on shared data propageotocol meta-
data maintenance, and synchronization, we evaluate seven variants of thee@aphstocol, summa-
rized in Table 1. For each of the areas of protocol communication, the protocolsleitbage the full
Memory Channel capabilities.€. remote write access, total ordering, and inexpensive broadcast) or
instead send explicit messages between processors. We assume amebabl& (as is common in
current SANs). Since we wish to establish ordering, however, explicgsages require an acknowl-
edgement.



Protocol Name Data Metadata| Synchronization Home Migration
CSM-DMS MC MC MC No
CSM-MS Explicit MC MC No
CSM-S Explicit | Explicit MC No
CSM-None Explicit | Explicit Explicit No
CSM-MS-Mg Explicit MC MC Yes
CSM-None-Mg| Explicit | Explicit Explicit Yes
CSM-ADB MC/ADB MC MC No

Table 1: These protocol variants have been chosen to isolate the performanceahspacial network
features on the areas of SDSM communication. Use of special Memory Chartnet¢$aia denoted by
a “MC” under the area of communication. Otherwise, explicit messages areTUsedse of Memory
Channel features is also denoted in the protocol suffix (D, M, and/or S), as isdéhe heme node
migration (Mg). ADB (Adaptive Data Broadcast) indicates the use of broadeasbmmunicating

widely shared data modifications.

Message Polling:  All of our protocols rely in some part on efficient explicit messages. To mini-
mize delivery overhead [18], we arrange for each processor to poll for gessa every loop back
edge, branching to a handler if appropriate. The polling instructions are added ta#ppllwnaries
automatically by an assembly language rewriting tool.

231 CSM-DMS: Data, Metadata, and Synchronization using Memory Channel

The base protocol, denoted CSM-DMS, is the Cashmere-2L protocol described irudyrost the
effects of SMP clusters [28]. This protocol exploits the Memory Channel for @il dDommunication:
to propagate sharathta, to maintainmetadata, and forsynchronization.

Data: All shared data is mapped into the Memory Channel address space. Each pagnisca
home node, which is chosen to be the first node to touch the page after initializatiemome node
creates a receive mapping for the page. All other nodes create a transmihgappiell as a local copy
of the page. Shared data is fetched from the home node using messages. Fetchesopiunddssl by
a remote read operation or by allowing the home node to write the data direttly voorking address
on the requesting node. Unfortunately, the first optimization is not available die¢hery Channel.
The second optimization is also effectively unavailable because it esgstvared data to be mapped at
distinct Memory Channel addresses on each node. With only 128MBytes of Memory Chddresisa
space, this significantly limits the maximum dataset size. (For eight ndaesiaximum dataset would
be only about 16MBytes.)

Modifications are written back to the home node in the form of diffsith home node copies keptin
Memory Channel space these diffs can be applied with remote writes, avtigimgeed for processor

2An earlier Cashmere study [18] investigated using write-throughdpagate data modifications. Diffs were found to
use bandwidth more efficiently than write-through, and to provideebperformance.



intervention at the home. Address space limits still constrain datasetlsit the limit is reasonably
high (approximately 128MBytes).

To avoid race conditions, Cashmere must be sure all diffs are completed bgiting a Release
operation. To avoid the need for explicit acknowledgements, CSM-DMS wiiltdsfa to the Memory
Channel and then resets a synchronization location in Memory Channel space teteaimpkelease.
Network total ordering ensures that the diffs will be complete before the completthe Release is
observed.

Metadata: System-wide metadata in CSM-DMS consists of the page directory and wride fists.
CSM-DMS replicates the page directory on each node and uses remote writaticdst all changes.
It also uses remote-writes to deliver write notices to a list on @ade. At an acquire, a node simply
reads its write notices from local memory. As with diffs, CSM-DMSesladvantage of network
ordering to avoid write notice acknowledgements.

Synchronization: Application locks, barriers, and flags all leverage the Memory Channel’s bastidc
and write ordering capabilities. Locks are represented by an 8-entryiarkdgmory Channel space,
and by a test-and-set flag on each node. A process first acquires the loeaidestt lock and then
asserts and broadcasts its node entry in the 8-entry array. The proces®migstsrite to appear via
loopback, and then reads the entire array. If no other entries are set, the lacfuired; otherwise
the process resets its entry, backs off, and tries again. This lock implatioenallows a processor
to acquire a lock without requiring any remote processor assistance. rBarerepresented by an
8-entry array, a “sense” variable in Memory Channel space, and a local coargach node. The last
processor on each node to arrive at the barrier updates the node’s entry in the &&ytr A single
master processor waits for all nodes to arrive and then toggles the serad@ejaon which the other
nodes are spinning. Flags are write-once notifications based on remote write athchlstoa

2.3.2 CSM-MS: Metadata and Synchronization using Memory Channel

CSM-MS does not place shared data in Memory Channel space and so avoids netwoekhiinteic
itations on dataset size. CSM-MS, however, cannot use remote-wrige difstead, diffs are sent
as explicit messages, which require processing assistance from the home nedglamdacknowl-
edgements to establish ordering. In CSM-MS, metadata and synchronizdtimvetage all Memory
Channel features.

2.3.3 CSM-S: Synchronization using Memory Channel

CSM S uses special network features only for synchronization. Explicit messageseardaoih to
propagate shared data and to maintain metadata. Instead of broadcastintpayditeange, a process
must send the change to the home node in an explicit message. The home node updates the entry a
acknowledges the request. The home node is the only node guaranteed to have an up-tocttate dire
entry.

Directory updates (or reads) can usually be piggybacked onto an existing messagxample,
a directory update is implicit in a page fetch request and so can be piggybaclss].white notices
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always follow diff operations, so the home node can simply piggyback the sharing sete(th&o
identify where to send write notices) onto the diff acknowledgement. In &actxplicit directory
message is needed only when a page is invalidated.

2.34 CSM-None: No Use of Special Memory Channel Features

The fourth protocolCSM None, uses explicit messages (and acknowledgements) for all communi-
cation. This protocol variant relies only on low-latency messaging, and so easlty be ported to
other low-latency network architectures. Our message polling mechaniserjll above, should

be considered independent of remote write; similarly efficient polling can Ipéemrented on other
networks [10, 30].

235 CSM-MSMgand CSM-None-Mg: Home Node Migration

All of the above protocol variants use first-touch home node assignment [20]. Hoigaraesat is
extremely important because processors on the home node write directly to tiee cogy and so do
not incur the overhead of twins and diffs. If a page has multiple writers duringoilnse of execution,
protocol overhead can potentially be reduced by migrating the home node to anvadtve

Migrating home nodes cannot be used when data is remotely accessible. Theamignatld force
a re-map of Memory Channel space that can only be accomplished through a global syatiomniz
The synchronization would be necessary to ensure that no diffs or other remoteyysanesses occur
while the migration is proceeding. Hence, home node migration cannot be combined WMtDUIS.
In our experiments we incorporate it into CSM-MS and CSM-None, creating ®&vW(g and CSM-
None-Mg. When a processor incurs a write fault, these protocols check the logabicihye directory
to see if the home is actively writing the page. If not, a migration requestns to the home. The
request is granted if received when the home is not writing the page. The home ctiendesctory
entry to point to the new home. Since the new home node has touched the page, the transéer of dat
occurs as part of the corresponding page update operation. The marginal cost of changing the home
node identity is therefore very low.

CSM-None-Mg uses a local copy of page directory information to see whether the hode is
writing the page. If this copy is out of date, useless migration requests can &e do not present
CSM-S-Mg because its performance does not differ significantly from that of-SSM

2.3.6 CSM-ADB: Adaptive Shared Data Broadcast

The protocol variants described in the previous sections all use invalidatd-bakerence; data is
updated only when accessed. CSM-ADB uses Memory Channel broadcast to éffmxemtnunicate
application data that is widely shared (read by multiple consumers). Tabthilprotocol, we modified
the messaging system to create a new set of buffers, each of which is nfappedsmit by a single
node and for receive by all nodes. Pages are written to these globally mapped beféectively, based
on the following heuristics: multiple requests for the same page are rdcgiveltaneously; multiple
requests for the same page are received within the same synchronizatigaliotethe home node
(where a new interval is defined at each release); or there were morevihaequests for the page in



Operation MC Features Explicit Messages
Diff (usecs) 31-129 70-245
Lock Acquire (usecs) 10 33
Barrier (usecs) 29 53

Table 2: Basic operation costs at 32-processors. Diff cost varies accoodimg size of the diff.

the previous interval. These heuristics enable us to capture multiple-constoess @atterns that are
repetitive, as well as those that are not. Pages in the broadcast buffensaidated at the time of a
release if the page has been modified in that interval (at the time at wieadtlirectory on the home
node is updated). Nodes that are about to update their copy of a page check the broadcagobaffe
valid copy before requesting one from the home node. The goal is to reduce contention andittandw
consumption by eliminating multiple requests for the same data. In an atteragseéss the effects of
scaling, we also report CSM-ADB results using 32 processors on a one-levet@r@ine that does
not leverage hardware shared memory for sharing within the node) describetieanwark [18].

3 Resaults

We begin this section with a brief description of our hardware platform and ourcagiph suite. Next,
we discuss the results of our investigation of the impact of Memory Channel ésadnd the home
node migration optimization.

3.1 Platform and Basic Operation Costs

Our experimental environment is a set of eight AlphaServer 4100 5/600 servdisyigadour 600
MHz 21164A processors, 8 MB direct-mapped 64-byte line size per-processor bodrchlgve, and
2 GBytes of memory. The 21164A has two levels of on-chip cache. The first levebt®n$i8 KB
each of direct-mapped 32-byte line size instruction and data (write-throughg.cébe second level is
a combined 3-way set associative 96 KB cache, with a 64-byte line size. Meessare connected with
a Memory Channel Il system area network, a PCl-based network with a peak@giatat bandwidth
of 75 MBytes/sec and a one-way, cache-to-cache latency for a 64-bit remtteoperation of 3.3
[1SECS.

Each AlphaServer runs Digital Unix 4.0F, with TruCluster v1.6 (Memory Chanmétnsions. The
systems execute in multi-user mode, but with the exception of normal Unix daemoatiser processes
were active during the tests. In order to increase cache efficiencycatiph processes are pinned to
a processor at startup. No other processors are connected to the Memory ChxecelioR times
represent the lowest values of three runs.

In practice, the round-trip latency for a null message in Cashmere jisé&s. This time includes
the transfer of the message header and the invocation of a null handler function. Afmdgeperation
costs 22Qusecs, and a twin operation requires;gcs.

As described earlier, Memory Channel features can be used to signifioaaitige the cost of diffs,



Program Problem Size Time (sec.)
Barnes 128K bodies (26Mbytes 120.4
CLU 2048x2048 (33Mbytes 75.4
LU 2500x2500 (50Mbytes 143.8
EM3D 64000 nodes (52Mbytes) 30.6
Gauss 2048x2048 (33Mbytes 234.8
llink CLP (15Mbytes) 212.7
SOR 3072x4096 (50Mbytes 36.2
TSP 17 cities (1Mbyte) 1342.49
Water-nsquared 9261 mols. (6Mbytes 332.6
Water-spatial 9261 mols. (16Mbytes 20.2

Table 3: Data set sizes and sequential execution time of applications.

directory updates, write notice propagation, and synchronization. Table 2 shows théocakff op-
erations, lock acquires, and barriers, both when leveradit@@Keatures) and not leveragingexplicit
Messages) the Memory Channel features. The cost of diff operations varies according sizthef
the diff. Directory updates, write notices, and flag synchronization all uséMémaory Channel’s
remote-write and total ordering features. (Directory updates and flag $ymzhtion also rely on the
inexpensive broadcast support.) Without these features, these operations are isbean explicit
messages. Directory updates are small messages with simple handllgrsir £ost is only slightly
more than the cost of a null message. The cost of write notices will depend gryedtig write notice
count and destinations. Write notices sent to different destinations can Hdappest, thus reducing
the operation’s overall latency. Flags are inherently broadcast operatutnag&in the flag update
messages to the processors can be overlapped so perceived latency shouldunc beore than that
of a null message.

3.2 Application Suite

Our applications are well-known benchmarks from the Splash [25, 31] and TreadMaskstgs. Due

to space limitations, we refer the reader to earlier descriptions [112¢ applications are Barnes, an
N-body simulation from the TreadMarks [2] distribution (and based on the samiatpp in the
SPLASH-1 [25] suite); CLU and L&from the SPLASH-2 [31] suite, a lower and upper triangular
matrix factorization kernel with and without contiguous allocation of a singbegssor’s data, respec-
tively; EM3D, a program to simulate electromagnetic wave propagation through &otsif9]; Gauss,

a locally-developed solver for a system of linear equatidms= B using Gaussian Elimination and
back-substitution; Ilink, a widely used genetic linkage analysis program from th&lHAK 2.3P [11]
package that locates disease genes on chromosomes; SOR, a Red-Black \&uCsegdRelaxation

3Both CLU and LU tile the input matrix and assign each column of tiles tordgigaous set of processors. Due to its
different allocation strategy, LU incurs a large amount of false shangss tiles. To improve scalability, we have modified
LU to assign a column of tiles to only processors within an SMP. Timigd the false sharing across SMP node boundaries,
improving scalability on an SMP-aware SDSM.



program, from the TreadMarks distribution; TSP, a traveling salesman pnpbiem the TreadMarks
distribution; and Water-spatial, another SPLASH-2 fluid flow simulatiat solves the same problem
as Water-nsquared, but where the data is partitioned spatially.

The data set sizes and uniprocessor execution times for these applicatipnssarged in Table 3.
The size of shared memory space is listed in parentheses. Executieniamne measured by running
each uninstrumented application sequentially without linking it to the protocalribr

3.3 Performance

Throughout this section, we will refer to Figure 1 and Table 4. Figure 1 shows a brealkd@xecu-
tion time, normalized to that of the CSM-DMS protocol, for the first six proteealriants. Execution
time is broken down to show the time spent executing application ddsler(), executing protocol
code Pr ot ocol ), waiting on synchronization operationA4| t ), and sending or receiving messages
(Message). Table 4 lists the speedups and statistics on protocol communication for ethehagdpli-
cations running on 32 processors. The statistics include the number of page tram&édations, and
diff operations. The table also lists the number of home migrations, along with theemaimigration
attempts (listed in parentheses).

3.3.1 Thelmpact of Memory Channel Features

This subsection begins by discussing the impact of Memory Channel support, in partieaiate-
write capabilities, inexpensive broadcast, and total-ordering propertigegedhree types of protocol
communication: shared data propagation, protocol metadata maintenance, and syrtahmonidha
protocols described in this subsection use a first-touch home node assignment.

Five of our ten applications show measurable performance improvements runningMibDlIS
(fully leveraging Memory Channel features) as opposed to CSM-None (usingienmggsages). Barnes
runs 80% faster on CSM-DMS than it does on CSM-None, while EM3D and Water-Nestjuam 20-
25% faster. LU and Water-spatial run approximately 10% faster. CLU, GHuds SOR, and TSP
are not sensitive to the use of Memory Channel features and do not show any sigp&darmance
differences across our protocols.

Barnes exhibits a high degree of sharing and incurs a large Wait time on all protr@oitg (see
Figure 1). CSM-DMS runs roughly 40% faster than CSM-MS and 80% faster than Ca&hd-SESM-
None. This performance difference is due to the lower Message and Waititir@&M-DMS. In this
application, the Memory Channel features are very useful for optimizing datagatpa and meta-
data maintenance. The optimized communication in these two areas reduceat@ppperturbation,
resulting in reduced wait time. Due to the large amount of false sharingsmglication, application
perturbation also results in large variations in the number of pages tratsfés is true with most of
our applications, the use of Memory Channel features to optimize synchronizati@cienestics has
little impact on overall performance. Synchronization time is affetigdoftware coherence protocol

4In the case of multiple sharers per page, the timing differences betweeggreariants can lead to first-touch differ-
ences. To eliminate these differences and isolate Memory Channel impact, weedapifirst-touch assignments from
CSM-DMS and used them to explicitly assign home nodes in the othtyquis.



overhead, and in general limits the performance of applications with dote«grain synchronization
on SDSM.

At the given matrix size, LU incurs a large amount of protocol communication duleetovtite-
write false sharing at row boundaries. In this application, CSM-DMS pedadt@% better than the
other protocols. The improvement is due primarily to optimized data propagati@§MsDMS uses
remote-write and total-ordering to reduce the diffing overhead. The Messagent CSM-DMS is
much lower than in the other protocols. In CSM-MS, CSM-S, and CSM-None, sbthe increased
Message time is hidden by existing Wait time.

CSM-DMS also provides the best performance for EM3D, in particular, a 23%oweprent over
the other protocols. Again, the advantage is due to the use of Memory Channel featopésine
data propagation. Unlike Barnes and LU, the major difference in performance qirdb@cols is
in Wait time, instead of Message time. Performance of EM3D is extieswisitive to higher data
propagation costs. The application exhibits a nearest neighbor sharing pattern, ancdsbiPeaware
protocol, diff operations in this application only occur between adjacent procegsamging nodes.
These processors will perform diff operations when entering barriers, thuagthe diffs directly in
the critical synchronization path. Any increase in diff cost will directhpact the overall Wait time.
Figure 1 shows this effect, as Message time increases slightly fromO88 to CSM-MS (18% and
24%, respectively), but Wait time increases dramatically (41% and 65%Sb-ODMS and CSM-MS,
respectively). This application provides an excellent example of the satysifi synchronization Wait
time to any protocol perturbation.

Water-nsquared obtains its best performance again on CSM-DMS. As cambie Eegure 1, CSM-
MS, CSM-S, and CSM-None all have much higher Protocol times than CSM-DM&.ilBd instru-
mentation shows that the higher protocol times are due to increased time speitéifault handlers.
The increase is due to contention for a set of per-page locks shared by the wtisnfadiff message
handlers. The average time spent acquiring these locks shows a four-fold entnaasCSM-DMS
to CSM-MS. CSM-DMS does not experience this contention since it uses the M&hannel fea-
tures to deliver diffs and does not invoke a message handler for diffs. The Méharmnnel features
also produce noticeable performance improvement by optimizing synchronizatioriiop&ia this
application. Water-nsquared uses per-molecule locks, and so performs anggynumber of lock
operations. Overall, CSM-DMS performs 13% better than CSM-MS and CSN#3.8% better than
CSM-None.

Similar to EM3D, Water-Spatial is also sensitive to the data propawgatosts. The higher cost
of data propagation in CSM-MS, CSM-S, and CSM-None perturb the synchronizatibtiméand
hurt overall performance. In this application, CSM-DMS produces a 10% impreweover the other
protocols considered.

CLU shows no significant difference in overall performance across the preto€bls application
has little communication that can be optimized. Any increased Messagegindden by the existing
synchronization time. llink performs a large number of diffs, and might be expezteentfit signif-
icantly from remote-write support. However, 90% of the diffs are applieth@thibme node by idle
processors, so the extra overhead is somewhat hidden from application coamputatnce, the bene-
fits are negligible. Of the remaining applications, Gauss, SOR, and TSP ametiu&ably affected by
the underlying Memory Channel support.
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Figure 1. Normalized execution time breakdown for the applications on the protic@2sprocessors.
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Application CSM-DMS | CSM-MS | CSM-S | CSM-None | CSM-MS-Mg | CSM-None-Mg

Barnes Speedup (32 procs 7.6 5.5 4.2 4.2 6.3 5.9
Page Transfers (K) 66.0 63.4 96.8 96.1 69.1 78.5

Invalidations (K) 214.2 201.6 209.9 210.2 210.5 210.2

Diffs (K) 60.8 50.2 66.4 61.8 451 475

Migrations (K) 0 0 0 0 15.6 (15.6) 11.6 (67.4)

CLU Speedup (32 procs 18.3 18.4 18.0 18.0 18.2 17.7
Page Transfers (K) 8.3 11.9 11.9 11.9 11.9 11.9

Invalidations (K) 0 0 0 0 1.3 8.6

Diffs (K) 0 0 0 0 0 0

Migrations (K) 0 0 0 0 3.5(3.5) 3.5(3.5)

LU Speedup (32 procs 4.0 3.5 3.6 3.6 12.5 12.4
Page Transfers (K) 44.1 44.4 44.6 44.4 51.1 53.1

Invalidations (K) 32.6 33.3 31.8 32.5 124.0 91.0

Diffs (K) 285.6 278.06 278.9 277.4 1.1 1.1

Migrations (K) 0 0 0 0 5.5(5.5) 5.5(5.5)

EM3D Speedup (32 procs 135 10.5 10.5 10.3 10.2 9.8
Page Transfers (K) 32.8 32.8 33.1 33.1 43.9 43.8

Invalidations (K) 33.1 33.1 33.4 33.4 41.0 40.9

Diffs (K) 7.1 7.1 7.1 7.1 0 0

Migrations (K) 0 0 0 0 1.9(1.9) 1.9(1.9)

Gauss Speedup (32 procs 22.7 21.9 23.2 23.0 22.1 21.9
Page Transfers (K) 38.2 42.2 40.1 40.3 43.9 44.1

Invalidations (K) 59.6 74.7 64.4 63.8 73.4 78.7

Diffs (K) 3.6 3.6 3.6 3.6 0.5 0.1

Migrations (K) 0 0 0 0 4.5 (4.5) 4.6 (4.6)

llink Speedup (32 procs 12.5 12.1 111 111 11.6 11.4
Page Transfers (K) 50.0 50.0 53.1 53.1 51.9 56.1

Invalidations (K) 199.6 199.6 196.0 196.0 206.8 204.9

Diffs (K) 12.0 12.2 12.4 12.4 8.7 8.6

Migrations (K) 0 0 0 0 1.9 (2.7) 1.9(6.2)

SOR Speedup (32 procs 31.2 30.1 30.1 29.9 31.2 30.9
Page Transfers (K) 0.3 0.3 0.3 0.3 0.7 0.7

Invalidations (K) 0.3 0.3 0.3 0.3 0.7 0.7

Diffs (K) 1.4 1.4 1.4 1.4 0 0

Migrations (K) 0 0 0 0 0 0

TSP Speedup (32 procs 33.9 34.0 33.8 34.2 33.9 34.0
Page Transfers (K) 12.6 12.2 12.3 12.2 14.1 13.9

Invalidations (K) 16.2 15.7 15.9 15.8 18.3 18.0

Diffs (K) 8.0 7.8 7.8 7.8 0.1 0.1

Migrations (K) 0 0 0 0 5.0 (5.0) 5.0 (5.0)

Water-NSQ | Speedup (32 procs 20.6 18.0 17.8 17.0 19.6 19.3
Page Transfers (K) 315 290.8 29.4 22.9 28.3 32.9

Invalidations (K) 55.1 58.2 55.8 54.3 55.1 59.2

Diffs (K) 251.1 234.4 249.7 243.7 17.2 26.3

Migrations (K) 0 0 0 0 9.2 (9.3) 11.0(11.7)

Water-SP Speedup (32 procs 7.7 7.0 7.0 7.2 12.3 11.8
Page Transfers (K) 4.0 4.5 4.8 49 5.2 5.6

Invalidations (K) 11.8 11.8 11.7 11.8 17.6 17.4

Diffs (K) 6.2 6.2 6.4 6.4 0.1 0.1

Migrations (K) 0 0 0 0 0.3(0.3) 0.3(0.3)

Table 4: Application speedups and statistics at 32 processors.
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3.3.2 HomeNode Migration: Optimization for a Scalable Data Space

Home node migration can reduce the number of remote memory accesses by moving thetdeme
to active writers. Our results show that this optimization is vergaive. Of our ten applications, six
are affected by our migration optimization. Of the six, four perform better usamge node migration
and explicit data propagation (CSM-MS-Mg) than using the first-touch counte@@M{MS). Home
node migration can reduce protocol overhead by reducing the number of twin/diffisdatians, and
sometimes the amount of data transferred across the network. In fact, the&éshe migration are so
great that two of our applications obtain the best overall performance when ugjragion and explicit
messages fall protocol communication (CSM-None-Mg).

LU and Water-spatial both benefit greatly from migration because the numbef (drdifattendant
twin) operations is significantly reduced (see Table 4). In fact, for thesé&capphs, CSM-None-Mg,
which does not leverage the special Memory Channel features at all, outpetfarridl Memory
Channel protocol, CSM-DMS, reducing execution time by 67% in LU and 34% in Watgiat The
large improvement from migration in LU is due to a four-fold reduction in th@amt of data trans-
ferred. Water-spatial, as mentioned in the last section, is verytsens data propagation overhead,
so the main performance improvement when using migration is due to the redoictidioperations.
Figure 1 shows the dramatic reduction in protocol-related overhead in dpgdeations when using
migration.

In Barnes and Water-nsquared, there are also benefits, albeit smaiteyding migration. In both of
these applications, CSM-MS-Mg and CSM-None-Mg outperform their first-tgociterparts, CSM-
MS and CSM-None. Both of these applications show large reductions in diffs wheg nsgration
(see Table 4). The smaller number of diffs (and twins) directly reduces Pitdiow, and indirectly,
Wait time. Overall, in Barnes, the execution time for CSM-MS-Mg &&M-None-Mg is lower by
12% and 27% compared to their first-touch counterparts, CSM-MS and CSM-None,ngripeyi-
formance to within 30% of CSM-DMS for CSM-None-Mg. Water-nsquared shows aar@¥d2%
improvement in CSM-MS-Mg and CSM-None-Mg, respectively, bringing peréorce to within 7%
of CSM-DMS for CSM-None-Mg.

Home migration hurts performance in EM3D and Illink. The reduction in the number oboi#i-
ations comes at the expense of increased page transfers due to requests by thercaiscimeas
originally the home node. Only a subset of the data in a page is modified. The net reslaligera
amount of data transferred, which negatively impacts performance. For EM3M;:MS-Mg and
CSM-None-Mg perform 3% and 6% worse than CSM-MS and CSM-None, respec@relifarly, for
llink, CSM-MS-Mg and CSM-None-Mg both perform 5% worse than their first-tocctnterparts.
Also, CSM-None-Mg suffers from a large number of unsuccessful migration rexqj(sest Table 4).
These requests are denied because the home node is actively writing the pa§\-MIEMg, the
home node’s writing status is globally available in the replicated page diggesb a migration request
can be skipped if inappropriate. In CSM-None-Mg, however, a remote node only Gaclopy of a
page’s directory entry, and may not always have current information concernihgitinenode. Thus,
unnecessary migration requests can not be avoided.

Overall, the migration optimization improves performance for four of our apggtios, while hurting

°As described earlier, migration can not be used when data is placed in remotelgialecestwork address space (for
example, in CSM-DMS), because of the high cost of remapping.
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Figure 2: Normalized execution time breakdown for the applications using addptadcast of data
(CSM-ADB) in comparison to CSM-DMS at 8 and 32 nodes.

performance in only two. (The other four applications are unaffected.) The perfoen@sxis fairly
low, less than 5%, while the observed performance improvements can be up.té6édigration-based
protocol delivers very good performance, while avoiding the need to map shaeethitathe limited
amount of remotely addressable address space.

3.3.3 Sdective Broadcast for Widely Shared Data

Selective use of broadcast for data that is accessed by multiple consumeesiuae the number of
messages and amount of data sent across the network, in addition to reducing coatehpootocol
overhead at the producer (home node). Our preliminary results (see Figure 2)hstt@uit adaptive
protocol is effective in capturing and optimizing multiple-consumer behavioweder, at 8 nodes, the
performance improvement we see across all applications is a maximum of S8#ddnto determine
the effects on performance when using a larger cluster, we emulated a 32-ntmhe Bysising a one-
level protocol where each processor is in effect a separate node, since riatdegerage hardware
shared memory for sharing within a node. Performance improvements at 329mecgsnp to 52,

53 and 56% for LU, Gauss, and llink, respectively. Barnes and CLU also bermfitthe use of
the adaptive broadcast protocol, but only by a small amount, since the data is not Bsshated.
The performance of other applications such as SOR, which exhibit only nearest-nepgtitvase
sharing, remain unaffected. The large gains for Ilink, LU, and Gauss come freauation in the
Communication and Wait time. The protocol is able to detect and optimize the goitation of each
pivot row to the multiple consumers in the case of Gauss (181K out of a total of 189K pagesupdate
are satisfied by the broadcast buffers, while 7K pages are actually platieel buffers at 32 nodes).

In the case of llink, the protocol is once again able to capture the single-productpleacbnsumer
access pattern (168K out of a total of 205K page updates are satisfied by the broadeestwhile
only 6.8K pages are placed in the broadcast buffers at 32 nodes). The number of consuchkrs in
is not as large (170K out of a total of 1.1M page updates are satisfied by the broadcast laffier
30K pages are placed in the broadcast buffers). However, due to the large amtals¢ sharing in
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this application, the adaptive broadcast protocol is able to significantly redusgrtbleronization wait
time by reducing protocol perturbation.

4 Related Work

Bilas et al. [4] use their GeNIMA SDSM to examine the impact of special network featnmeSDSM
performance. Their network has remote-write, remote-read, and spedildck support, but no broad-
cast or total ordering. GeNIMA disseminates write notices through broadcasbaaild benefit from
efficient network support. In base Cashmere, the lock implementation useteremte, broadcast, and
total ordering to obtain the same benefits as GeNIMA's specialized lock suppor

The GeNIMA results show that a combination of remote-write, remote-f@ad synchronization
support help avoid the need for interrupts or polling and provide moderate improveim&sM
performance. However, their base protocol uses inter-processor interrggaabmessaging delivery.
Interrupts on commodity machines are typically on the order of a hundred microsecomds,largely
erase the benefits of a low-latency network [18]. Our evaluation here asshatesessages can be
detected through a much more efficient polling mechanism, as is found with otinNg BA, 13], and
so each of our protocols benefits from the same low messaging latency. Wetalsd the GeNIMA
work by examining protocol optimizations that depend heavily on the use of the networadeter
support. One of the protocol optimizations, home node migration, can not be used when shared dat
is remotely accessible, while the other optimization, adpative data braacklas on a very efficient
mapping of remotely accessible memory.

Speight and Bennett [26] evaluate the use of multicast and multithreading iaritextof SDSM on
high-latency unreliable networks. Among the drawbacks of their environment is theoegdrrupt
remote processors in order to process multicast messages, therebygasuftigher penalties when
updates are unnecessary. In addition, while their adaptive protocol is purelyHisteed, we rely on
information about the current synchronization interval to predict requests foathe data by multiple
processors. This allows us to capture multiple-consumer access pattéohs tiod repeat.

Our home node migration policy is conceptually similar to a current page migratiay polnd in
some CC-NUMA multiprocessors [19, 29]. Both policies attempt to migrate pagastive writers.
The respective mechanisms are very different, however. In the CCAlMtiprocessors, the system
will attempt to migrate the page only after remote write misses excéee@shold. The hardware will
then invoke the OS to transfer the page to the new home node. In Cashmere, theomigreurs
on the first write to a page and also usually requires only an inexpensive direbimnge. The page
transfer has most likely already occurred on a processor’s previous (reassdo the page. Since the
migration mechanism is so lightweight, Cashmere can afford to be veryssijgge

Amzaet al. [3] describe adaptive extensions to the TreadMarks [2] protocol that avoid tviin/dif
operations on shared pages with only a single writer (pages with multiplersvsitid use twins and
diffs). In Cashmere, if a page has only a single writer, the home always esgi@that writer, and
so twin/diff operations are avoided. In the presence of multiple concurrentrsyriaar scheme will
always migrate to one of the multiple concurrent writers, thereby avoidingdiffioirerhead at one
node. Cashmere is also able to take advantage of the replicated directarynvalkég migration
decisionsi(e. to determine if the home is currently writing the page). Adaptive DSM (AD301/)also
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describes a history-based sharing pattern characterization techniquetbeiieen single and multi-
writer modes, and between invalidate and update-based coherence. Oureadpgéite mechanism
uses the initial request to detect sharing, and then uses broadcast to mowarizead on the processor
responding to the request. As already stated, it also captures multiple-camretoass patterns that do
not repeat, in addition to history-based access patterns.

5 Conclusions

In this paper, we have studied the effect of advanced network features,ticufzar remote writes,
inexpensive broadcast, and total packet ordering, on SDSM. Our evaluation usdtéief-the-art
Cashmere protocol, which was designed with these network features spigarficaind.

We have found that these network features do indeed lead to a performanceeémprityv Two
applications improve by 18% and 23%. A third application improves by 44%. Howeven after
improvement, the application only obtains a speedup of 7.6 on 32 processors. Themgrsaugn
applications improve by less than 12%. The network features have little tropagynchronization
overhead: the actual cost of a lock, barrier, or flag is typically dwarfed hyftihe attendant software
coherence protocol operations. The features are somewhat more useful for protcadteanetain-
tenance. They are primarily useful, however, for data propagation. The dmelatation of diffs, in
particular, reduces synchronization wait time and the cost of communication falsdsharing, and
minimizes the extent to which protocol operations perturb application timing.

On the other hand, we found that home node migration, made possible by moving shared data out
of the network address space, is very effective at reducing the number of fivogdrations and
the resulting protocol overhead. The mechanism is so effective, in Fattilie benefits sometimes
outweigh those of using advanced network features for shared data propagation. éldrgalowing
shared data to reside in private memory, we eliminate the need for page pamdrajlow the size of
shared memory to exceed the addressing limits of the network interfacepyhiecreasing system
flexibility and scalability.

Overall, these results suggest that for systems of modest size, lowyl&enach more important for
SDSM performance than are remote writes, broadcast, or total orderingrgen teetworks, however,
we found that an adaptive protocol capable of identifying widely-shared data caniglbtemiake
effective use of broadcast with remote-writes.

In the future, we would like to examine the impact of other basic network issug®&M perfor-
mance. These issues include DMA versus programmed /O interfaces,gimgskdency, and band-
width. We are also interested in incorporating predictive migration nmeshs [8, 21, 27] into the
protocol. Such mechanisms would identify migratory pages and then trigger raigedtthe time of
an initial Read fault, thereby eliminating the overhead of a subsequenttioigraquest.
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A Appendix: Early Results

In this Appendix, we present early results of this study collected on a 16-progaatorm with an
older generation of hardware. In combination with Section 3, these resultstehqrerformance dif-
ference of Cashmere executed on successive hardware generations, asdlthals® provide insights
into scalability issues in using the special network features.

A.l1 First-Generation Platform

Our early experimental environment consisted of four DEC AlphaServer 2100 4/233 eosdtich
AlphaServer was equipped with four 21064A processors operating at 233 MHz and with 256MB of
shared memory, as well as a Memory Channel network interface. The 21064A has-thp caches:

a 16K instruction cache and 16K data cache. The off-chip secondary cache sizéoigel M cache

line is 64 bytes. Each AlphaServer runs Digital UNIX 4.0D with TruCluster v.(i1&8mory Channel)
extensions.

The first-generation Memory Channel had a point-to-point bandwidth of approximately 385IByt.
One-way latency for a 64-bit remote-write operation is 4s@cs. The round-trip latency for null mes-
sage in Cashmere is 3&ecs.

A.2 Resultson First-Generation Platform

The results in the Appendix use the same protocols and applications as describetdans2 and 3.
Table 6 presents the sequential execution time for each application. FignteTable 6 present the
execution time breakdown and important statistics, respectively,afcin epplication running on the
Cashmere protocol variants.

Overall, our qualitative conclusions stated in Section 5 also hold for oly e=sults. The special
network features provide very little performance improvement on a 16 prarcgkgform. Improve-
ment is less than 11% on the applications. Home node migration improves perforengmceantly
in two applications (LU and Water-spatial). Together these observations $upparonclusion that
low-latency messaging is the most important network feature.

We can not draw direct observations on scalability since the hardware platBmenso different.
(On our new platform, processor cycle time is three times faster and nebaodwidth is more than
doubled.) However, by examining the relative performance of protocol variants awahg@atforms
separately, we can see the impact of increased false sharing as the ofiproeessors scale.

Barnes has a large amount of false sharing, and, as described in Section 3, ttetiapplins 80%
faster on CSM-DMS than on CSM-None. The improvement is due to the reducedwuooation
overhead provided by fully leveraging the Memory Channel features. On 16 pavsds®wever, the
the performance difference between CSM-DMS and CSM-None is only 11% (see Bgu®n the
smaller number of processors, the false sharing is less dramatic and sositekgceommunication.
Potential for improvement by optimizing communication is therefore smaller

On our 32-processor platform, EM3D and llink both perform poorer on the migration-basted pr
cols (CSM-MS-Mg and CSM-None-Mg) than on their first-touch counterpartd® and CSM-
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Program Problem Size Time (sec.)
Barnes 128K bodies (26Mbytes 469.4
CLU 2048x2048 (33Mbytes 294.7
LU 2500x2500 (50Mbytes 254.8
EM3D 64000 nodes (52Mbytes) 137.3
Gauss 2048x2048 (33Mbytes 948.1
llink CLP (15Mbytes) 755.9
SOR 3072x4096 (50Mbytes 194.8
TSP 17 cities (1Mbyte) 4036.24
Water-nsquared 9261 mols. (6Mbytes 1120.6
Water-spatial 9261 mols. (16Mbytes 74.0

Table 5: Data set sizes and sequential execution time of applicationss®atare the same as those in
Section 3.

None). On 16 processors however, the opposite is true. Again, both EM3D and llinkydfajge
sharing that increases in degree with the number of processors. The incralaseshfiring interacts
with the migration mechanism to degrade performance relative to thedush protocols. Both ap-
plications modify only small amounts of pages, and it may be beneficial to perfofsn(idither than
migration), especially on a 32-processor platform.

On the other hand, both LU and Water-spatial show larger improvement fromtmaigoa 32 pro-
cessors. For these applications, migration triggers a much larger reductdfi operations at 32
processors. This reduction translates into a larger performance improzeme
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Figure 3: Normalized execution time breakdown for the applications on the protcbésprocessors
on the first-generation platform.
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Application CSM-DMS | CSM-MS | CSM-S | CSM-None | CSM-MS-Mg | CSM-None-Mg

Barnes Speedup (16 procs 7.3 7.1 6.8 6.8 7.1 6.4
Page Transfers (K) 37.4 37.5 39.3 39.2 35.6 37.5

Invalidations (K) 100.6 100.8 94.0 94.0 87.6 87.0

Diffs (K) 31.6 311 32.1 32.2 25.6 24.0

Migrations (K) 0 0 0 0 5.8 6.5

CLU Speedup (16 procs 12.4 12.7 12.5 12.5 12.6 12.4
Page Transfers (K) 9.3 9.3 9.3 9.3 9.3 9.3

Invalidations (K) 0 0 0 0 1.2 1.8

Diffs (K) 0 0 0 0 0 0

Migrations (K) 0 0 0 0 1.2 1.8

LU Speedup (16 procs 6.7 6.2 6.0 6.0 10.2 10.2
Page Transfers (K) 21.0 21.3 21.7 21.6 22.7 23.0

Invalidations (K) 41.3 41.3 40.7 40.2 52.6 50.0

Diffs (K) 65.4 65.4 65.5 65.5 1.0 1.0

Migrations (K) 0 0 0 0 4.6 4.6

EM3D Speedup (16 procs 6.2 6.2 5.7 5.8 6.4 6.2
Page Transfers (K) 35.3 35.2 35.2 35.2 41.7 41.7

Invalidations (K) 35.3 35.2 35.2 35.2 38.6 38.6

Diffs (K) 3.2 3.2 3.2 3.2 0 0

Migrations (K) 0 0 0 0 1.0 1.0

Gauss Speedup (16 procs 12.1 12.0 11.7 11.7 11.5 11.6
Page Transfers (K) 17.2 17.3 175 17.6 20.6 21.9

Invalidations (K) 27.8 275 27.6 27.6 36.4 45.3

Diffs (K) 4.4 4.4 4.4 4.4 1.2 0.2

Migrations (K) 0 0 0 0 3.7 4.0

llink Speedup (16 procs 8.3 8.3 8.4 8.5 8.5 8.2
Page Transfers (K) 20.2 20.2 22.1 22.1 21.0 22.8

Invalidations (K) 80.7 80.7 80.0 80.0 83.6 83.4

Diffs (K) 4.7 4.8 4.9 4.9 4.3 4.1

Migrations (K) 0 0 0 0 1.7 14

SOR Speedup (16 procs 14.1 139 13.7 13.7 14.2 14.3
Page Transfers (K) 144 144 144 144 288 288

Invalidations (K) 144 144 144 144 288 288

Diffs (K) 960 960 960 960 0 0

Migrations (K) 0 0 0 0 0 0

TSP Speedup (16 procs 14.4 14.3 14.2 141 14.3 14.1
Page Transfers (K) 7.3 7.3 7.3 7.4 9.7 9.7

Invalidations (K) 9.9 9.8 9.8 9.9 13.0 13.0

Diffs (K) 6.6 6.5 6.6 6.6 0.5 0.3

Migrations (K) 0 0 0 0 4.5 4.5

Water-NSQ | Speedup (16 procs 11.4 10.9 10.5 10.1 11.5 10.9
Page Transfers (K) 10.5 16.6 135 11.7 221 12.7

Invalidations (K) 21.8 27.7 24.8 24.2 31.8 23.6

Diffs (K) 101.3 120.0 120.4 123.7 14.6 19.6

Migrations (K) 0 0 0 0 8.2 6.0

Water-SP Speedup (16 procs 6.5 6.4 6.1 6.2 8.7 8.6
Page Transfers (K) 2.3 2.7 2.9 2.9 3.4 3.7

Invalidations (K) 7.5 7.6 7.5 7.5 11.5 11.4

Diffs (K) 4.0 4.0 4.0 4.0 0.1 0.1

Migrations (K) 0 0 0 0 0.1 15

Table 6: Application speedups and statistics at 16 processors on first-gem@tatform.
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