
InterWeave: A Middleware System for Distributed
Shared State

�

DeQing Chen, Sandhya Dwarkadas, Srinivasan Parthasarathy,
Eduardo Pinheiro, and Michael L. Scott

Computer Science Department, University of Rochester�
lukechen,sandhya,srini,edpin,scott � @cs.rochester.edu

Abstract. As an alternative to message passing, Rochester’s InterWeave sys-
tem allows the programmer to map shared segments into programs spread across
heterogeneous, distributed machines. InterWeave represents a merger and exten-
sion of our previous Cashmere and InterAct projects, combining hardware co-
herence within small multiprocessors, Cashmere-style lazy release consistency
within tightly coupled clusters, and InterAct-style version-based consistency for
distributed shared segments.
In InterWeave, each shared segment evolves through a series of consistent ver-
sions. When beginning a read-only critical section on a given segment, Inter-
Weave uses a programmer-specified predicate to determine whether the currently
cached version, if any, is “recent enough” to use. Inter-segment consistency is
maintained by means of hashed vector timestamps. Automatic data conversions
allow each program to employ its own natural data format, byte order, and align-
ment, with full support for intra- and inter-segment pointers. Timestamping is
used to determine and communicate only those pieces of a segment that are dif-
ferent from the cached copy.
A preliminary implementation of InterWeave is currently running on our Al-
phaServer cluster. Driving applications include data mining, intelligent distributed
environments, and scientific visualization.

1 Introduction

Advances in processing speed and network bandwidth are creating new interest in such
ambitious distributed applications as interactive data mining, remote scientific visual-
ization, computer-supported collaborative work, and intelligent environments. Most of
these applications rely, at least in the abstract, on some notion of distributed shared state.
When one of their processes must access data that are currently located elsewhere, one
has the option of moving the process to the data or moving the data to the process. Either
option may make sense from a performance point of view, depending on the amounts of
data and computation involved, the feasibility of migration, and the frequency of data
updates.

The first option—move the process to the data—corresponds to remote procedure
call or remote method invocation, and is supported by widely available production-
quality systems. The second option—move the data to the process—is not so well�

This work is supported in part by NSF grants EIA–9972881, CCR–9702466, CCR–9705594,
and CCR-9988361; and an external research grant from Compaq.

mls
5th Wkshp. on Languages, Compilers, and Run-Time Support
for Scalable Systems (LCR), Rochester, NY, May 2000

understood. It still tends to be achieved through special-purpose, application-specific
message-passing protocols. The creation of these protocols is a time-consuming, te-
dious, and error-prone activity. It is complicated by the need, for performance reasons,
to cache copies of data at multiple locations, and to keep those copies consistent in the
face of distributed updates.

At Rochester we have been discussing these issues with colleagues in data mining,
scientific visualization, and distributed intelligent environments, all of whom have very
large distributed data sets. To support their applications, we are developing a system,
known as InterWeave, that allows the programmer to map shared segments into program
components regardless of location or machine type. InterWeave represents a merger and
extension of our previous Cashmere [39] and InterAct [30] projects. Once shared seg-
ments have been mapped, InterWeave can support hardware coherence and consistency
within multiprocessors (level-1 sharing), Cashmere-style software distributed shared
memory within tightly coupled clusters (level-2 sharing), and InterAct-style version-
based consistency across the Internet (level-3 sharing) for these segments (see Figure 1).

Tightly coupled cluster

InterWeave Segment

SMP Node (HSM)

(SDSM)

(3rd level)

Remote Satellites

Fig. 1. InterWeave’s target environment.

At the third level, each segment in InterWeave evolves through a series of consistent
versions. When beginning a read-only critical section on a given segment, InterWeave
uses a programmer-specified predicate to determine whether the currently cached ver-
sion, if any, is “recent enough” to use. Several coherence models (notions of “recent
enough”) are built into the InterWeave system; others can be defined by application
programmers. When the application desires causality among segments, to avoid causal-

ity loops, we invalidate mutually-inconsistent versions of other segments, using a novel
hashing mechanism that captures the history of each segment in a bounded amount of
space.

Like CORBA [29] and many older RPC systems, InterWeave employs a type system
based on a machine- and language-independent interface description language, in our
case Sun XDR [40]. We do not require that programmers adhere to an object-oriented
programming style. We simply ensure that the version of a segment cached by a given
program component is appropriate to the component’s language and machine archi-
tecture. When transmitting data between machines, we convert to and from a standard
wire format. We also swizzle pointers [45], so that references to data currently cached
on the local machine are represented as machine addresses. We even allow programs
to organize dynamically-allocated data within a segment in different ways on different
machines, for the sake of spatial locality.

We describe the design of InterWeave in more detail in section 2, covering synchro-
nization, coherence, consistency, heterogeneity, and integration with existing shared
memory. Our initial implementation and preliminary performance results are described
in section 3. We compare our design to related work in section 4 and conclude with a
discussion of status and plans in section 5.

2 InterWeave Design

The unit of sharing in InterWeave is a self-descriptive data segment within which pro-
grams allocate strongly typed blocks of memory. Every segment has an Internet URL.
The blocks within a segment are numbered and optionally named. By concatenating the
segment URL with a block number/name and offset (delimited by pound signs), we ob-
tain a machine-independentpointer: “http://foo.org/path#block#offset”.
To accommodate heterogeneous data formats, offsets are measured in primitive data
units—characters, integers, floats, etc.—rather than in bytes. To create and initialize a
segment in C, we execute the following calls:

IW_handle_t h = IW_create_segment (url);
IW_wl_acquire (h);
my_type* p = (my_type *) IW_malloc (h, my_type_desc);
*p = ...
IW_wl_release (h);

Every segment is managed by an InterWeave server at the IP address indicated in the
segment’s URL. Assuming appropriate access rights, the IW create segment call
communicates with the server to create an uninitialized segment, and allocates space
to hold (the initial portion of) a local cached copy of that segment in the caller’s ad-
dress space. The handle returned by IW create segment is an opaque, machine-
dependent type that may be passed to IW malloc, along with a type descriptor gen-
erated by our XDR compiler. Copies of a segment cached by a given process need not
necessarily be contiguous in the application’s virtual address space, so long as individ-
ually malloced blocks are contiguous; the InterWeave library can expand a segment
as needed using unrelated address ranges.

Once a segment has been initialized, a process can create a machine-independent
pointer to an arbitrary location within one of its allocated blocks:

IW_mip_t m = IW_ptr_to_mip (p);

This machine-independent pointer can then be passed to another process through a mes-
sage, a file, or even console I/O. Given appropriate access rights, the other process can
convert back to a machine-specific pointer:

my_type *p = (my_type *) IW_mip_to_ptr (m);

The IW mip to ptr call reserves space for the specified segment if it is not already
locally cached (communicating with the server if necessary to obtain layout information
for the specified block), and returns a local machine address. Actual data for the segment
will not be copied into the local machine until the segment is locked. The mechanism
used to specify and verify access rights is still under development.

Any given segment � may contain pointers to data in some other segment � . The
pointer-swizzling and data-conversion mechanisms described in Section 2.3 below en-
sure that such pointers will be valid local machine addresses, and may freely be deref-
erenced. It remains the programmer’s responsibility, however, to ensure that segments
are accessed only under the protection of reader-writer locks. To assist in this task, In-
terWeave allows the programmer to identify the segment in which the datum referenced
by a pointer resides:

IW_handle_t h = IW_get_handle (p);

2.1 Coherence

Given the comparatively high and variable latencies of local-area networks, traditional
hardware-inspired consistency models are unlikely to admit good performance in a dis-
tributed environment. Even the most relaxed of these models, release consistency [16],
guarantees a coherent view of all shared data among all processes at synchronization
points, resulting in significant amounts of communication.

Fortunately, processes in distributed applications can often accept a significantly
more relaxed—and hence less costly—notion of consistency. Depending on the ap-
plication, it may suffice to update a cached copy of a segment at regular (temporal)
intervals, or whenever the contents have changed “enough to make a difference”, rather
than after every change.

The server for a given segment in InterWeave is responsible for the segment’s co-
herence. This coherence is based on the notion that segments move over time through a
series of internally consistent states, under the protection of reader-writer locks.

When writing a segment, a process must have exclusive access to the most recent
version (we do not support branching histories). When reading a segment, however, the
most recent version may not be required. InterWeave inherits five different definitions of
“recent enough” from its predecessor system, InterAct. It is also designed in such a way
that additional definitions (coherence models) can be added easily. Among the current
models, Full coherence always obtains the most recent version of the segment; Null

coherence always accepts the currently cached version, if any (the process must employ
additional, explicit library calls to obtain an update); Delta coherence [38] guarantees
that the segment is no more than � versions out-of-date; Temporal coherence guarantees
that it is no more than � time units out of date; and Diff-based coherence guarantees
that no more than � % of the segment is out of date. In all cases, � can be specified by
the process.

When a process first locks a shared segment, the InterWeave library obtains a copy
from the segment’s server. At each subsequent read-lock acquisition, the InterWeave
library checks to see whether the local copy of the segment is “recent enough”. If not,
it obtains a version update from the server. Twin and diff operations [8], extended to
accommodate heterogeneous data formats (Section 2.3), allow InterWeave to perform
an update in time proportional to the fraction of the data that has changed.

The relaxed semantics of reader locks imply that a process may hold a write lock
(with exclusive access to the current version of the segment) even when other processes
are reading older versions. To support concurrent access by readers that need to exclude
any writer, InterWeave also supports a strict read lock.

Unless otherwise specified, newly-created segments employ Full coherence. The
creator of a segment can specify an alternative default if desired. An individual pro-
cess may then override this default for its own lock operations. Different processes may
therefore use different coherence models for the same segment. These are entirely com-
patible: the server for a segment always has the most recent version; the model used
by a given process simply determines when it decides whether its own cached copy is
recent enough.

The server for a segment need only maintain a copy of the segment’s most recent
version. Older versions are not required, because the API specifies that the current ver-
sion of a segment is always acceptable, and since processes cache whole segments, they
never need an “extra piece” of an old version. To minimize the cost of segment updates,
the server maintains a timestamp on each block of each segment, so that it can avoid
transmitting copies of blocks that haven’t changed.

As noted in Section 1, a Cashmere-style “level-2” sharing system plays the role of
a single node at level 3. A process in a level-2 system that obtains a level-3 lock does
so on behalf of its entire level-2 system, and may share access to the segment with its
level-2 peers. The runtime system guarantees that updates are propagated consistently,
and that protocol overhead required to maintain coherence is not replicated at levels 2
and 3. Further details appear in Section 3.

2.2 Consistency

While InterWeave’s predecessor, InterAct, has proven useful for many applications (in
particular, we have used it successfully for interactive datamining [30]), it does not
respect causality: in the face of multi-version relaxed consistency, the versions of seg-
ments currently visible to a process may not be consistent with what Lamport called the
“happens-before” [26] relationship [26]. Specifically, let ��� refer to version 	 of seg-
ment � . If ��
 was created using information found in ��� , then previous versions of �
are causally incompatible with �

 ; a process that wants to use ��
 (and that wants to re-

spect causality) should invalidate any cached segment versions that predate the versions
on which ��
 depends.

To support this invalidation process, we would ideally like to tag each segment
version with the names of all segment versions on which it depends. Then any process
that acquired a lock on a segment would check to see whether it depends on newer
versions of any segments currently locally cached. If so, the process would invalidate
those segments.

The obvious problem with this scheme is that the number of segments in the system—
and hence the size of tags—is unbounded. The obvious solution is to hash the informa-
tion. We let every segment version ��� carry an � -slot vector timestamp, and choose a
global hash function � that maps segment identifiers into the range � ����� ������� . Slot �
in the vector indicates the maximum, over all segments � whose identifiers hash to � ,
of the most recent version of � on which ��� depends. When acquiring a lock on ��� , a
process checks each of its cached segment versions �! to see whether " is less than the
value in slot �$#% '& of �(� ’s vector timestamp. If so, the process invalidates)! .

To support the creation of segment timestamps, each process maintains a local
timestamp that indicates (in hashed form) the most recent segment versions it has read.
When releasing a writer lock (thereby creating a new segment version), the process in-
crements the version number of the segment itself, updates its local timestamp to reflect
that number, and attaches this new timestamp to the newly-created segment version.
We have developed refinements to this scheme to accommodate roll-over of the values
within timestamps, and to reduce the chance that hash collisions will cause repeated
extraneous invalidations of a segment that seldom changes.

To support operations on groups of segments, we allow their locks to be acquired
and released together. Write locks released together make each new segment version
appear to be in the logical past of the other, ensuring that a process that acquires the
locks together will never obtain the new version of one without the other. To enhance
the performance of the most relaxed applications, we allow an individual process to “opt
out” of causality on a segment-by-segment basis. For sharing levels 1 and 2, consistency
is guaranteed for data-race-free [1] programs.

2.3 Heterogeneity

The Internet is highly heterogeneous. Even our local-area network includes Suns, Linux
and Windows 2000 PCs, SGI machines, Macintoshes, Alphas, and a variety of special-
purpose peripherals. To accommodate such a variety of architectures, remote procedure
call systems usually incorporate a language- and machine-independent notation to de-
scribe the types of parameters, together with a stub compiler that automatically trans-
lates to and from a universal “wire format”. Any system for distributed shared state
must provide a similar level of support for heterogeneity.

Segments in InterWeave are currently similar to those in InterAct, and are derived
from a C++ base class with special constructor, destructor, and synchronization meth-
ods. InterWeave uses the C++ reflection mechanism to obtain type information and to
identify intra- and inter-segment pointers, so that data can be translated appropriately
when sent from one machine to another. Other systems such as Orca [4] provide similar
representations for address-independent segments.

We are in the process of eliminating our dependence on C++ by using Sun’s XDR
language to define the types of data within segments. Pointer swizzling [45] will be used
to accommodate reference types. Briefly, swizzling uses type information to find all
(machine-independent) pointers within a newly-acquired segment, and converts them
to pointers that work on the local machine. Pointers to segments that are not (yet) lo-
cally cached point into reserved but unmapped pages where data will lie once properly
locked. The set of segments currently cached on a given machine thus displays an “ex-
panding frontier” reminiscent of lazy dynamic linking. As noted at the beginning of
this section, each segment is structured as a heap in which blocks may be allocated dy-
namically. Further detail can be found in our paper at WSDSM 2000 [33]. In keeping
with our work on InterAct, we will allow compilers and smart applications to control
the relative placement of blocks within the heap, to maximize cache performance under
different traversal orders. The code that transfers segments from one machine to another
will automatically re-order items in the heap according to local preference, as part of
the swizzling process.

3 Implementation and Performance

In this section, we describe the current version of our implementation prototype, and
present preliminary performance data for remote visualization of an N-body simulation.

3.1 Implementation

Our current implementation (see Figure 2) employs a server process for each segment.
The server keeps metadata for each active client of the segment, as well as a master
copy of the segment’s data. Communication with each client is managed by a separate
thread.

Each segment client can be either a single process or a tightly coupled cluster. When
a client obtains a writer lock, it uses virtual memory mechanisms to identify modified
pages of the segment’s local copy. For each modified page it creates a pristine copy
(twin). At the time of the writer lock release, the runtime library uses the twins and other
local meta-data (specifically, type descriptors) to construct a machine-independent diff
that describes changes in terms of field offsets within blocks. Blocks above a certain
minimum size are logically subdivided into “chunks” so that a small change to a very
large block need not create a large diff. The machine-independent diff is sent back to
the segment server to update its master copy.

When a tightly coupled cluster, such as a Cashmere-2L system, uses an InterWeave
segment, the cluster appears as a single client to the segment server. The InterWeave
system uses cluster-wide shared memory for the segment local copy. Our goal is to
minimize any additional overhead due to incorporating the third level into the system.
In the current implementation, we designate a node inside the cluster as the cluster’s
manager node. All of the third level interactions with the segment server go through the
manager node. During the period between a writer lock acquire and release, the same
twins are used by both the second and third level systems (see [39] for details on the
Cashmere-2L implementation). At a second level release, in addition to sending diffs

Service threads

Segment Data:

 (diffs)
rl. acq.wl. rel. updates

SatelliteCluster

Manager process

Fig. 2. Current InterWeave implementation.

to the second level home node, the runtime system sends a third level diff to the man-
ager node. The manager node merges all of these diffs and sends them to the segment
server at the time of third level write-lock release. One optimization would be to have
the second-level home nodes maintain the cumulative third level diffs. This would elim-
inate communication with a possibly separate manager node entirely. We are currently
incorporating this optimization into our system.

3.2 Experiments

To evaluate our prototype implementation of InterWeave, we have collected perfor-
mance measurements on a remote visualization of the Splash-2 Barnes-Hut simulation.
The simulation runs on a 4-node, 16-processor Cashmere system. Each node is an Al-
phaServer 4100 5/600, with four 600 MHz 21164A processors, an 8 MB direct-mapped
board-level cache with a 64-byte line size, and 2 GBytes of memory. The nodes are
connected by a Memory Channel 2 [13] system area network. The simulation repeat-
edly computes new positions for 16,000 bodies. These positions may be shared with a
remote visualization satellite via an InterWeave segment. The simulator uses a writer
lock to update the shared segment, while the satellite uses a relaxed reader lock with
temporal coherence to obtain an effective frame rate of 15 frames per second. Under
human direction, the visualization satellite can also steer the application by acquiring a
writer lock and changing a body’s data.

When we combine the high performance second level shared memory (Cashmere)
with the third level shared memory (InterWeave), it would be ideal if there were no
degradation in the performance of the second level system. To see how closely we
approach this ideal, we linked the application with the InterWeave library, but ran it
without connecting to a visualization satellite. Communication with the server running

on another Alpha node was via TCP/IP over Fast Ethernet. Relatively little communi-
cation occurs in the absence of a satellite, due to a sole-sharer optimization that avoids
the transmission of diffs when there is only a single known copy of the data.

Execution times for the no-satellite experiment appear in Figure 3. Each bar gives
aggregate wall-clock time for ten iteration steps. In each pair of bars, the one on the right
is for the standard Cashmere system; the one on the left is for Cashmere linked with the
InterWeave library and communicating with a server. The left-hand bars are subdivided
to identify the overhead due to running the third-level protocol code. This overhead is
negligible for small configurations, but increases to about 11% for 16 processors on
4 nodes. This non-scalability can be explained by our use of a single manager node
within the Cashmere cluster. As the number of processes increases, the manager has to
spend more time collecting diffs, which makes the system unbalanced. As described in
Section 3.1, we are working to eliminate this bottleneck.

0

5

10

15

20

16
:4

(I
W

)

16
:4

(C
)

4:
4(

IW
)

4:
4(

C
)

2:
2(

IW
)

2:
2(

C
)

1:
1(

IW
)

1:
1(

C
)

Configurations (processors:nodes)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

IW Protocol
Cashmere-2L

Fig. 3. Overhead of InterWeave library without a satellite.

We also measured the simulator’s performance when communicating with a single
satellite. Specifically, we compared execution times using InterWeave to those obtained
by augmenting user-level code with explicit TCP/IP messages to communicate with
the satellite (directly, without a server), and then running the result on the standard
Cashmere system. Preliminary results appear in Figure 4. In all cases the satellite was
running on another Alpha node, communicating with the cluster and server, if any, via
TCP/IP over Fast Ethernet. We have again subdivided execution time, this time to sepa-
rate out both communication and (for the left-hand bars) InterWeave protocol overhead.
The overhead of the InterWeave protocol itself remains relatively small, but communi-
cation overhead is significant, due to InterWeave’s unoptimized and unaggregated com-

0.00

5.00

10.00

15.00

20.00

25.00

16
:4

(I
W

)

16
:4

(C
)

4:
4(

IW
)

4:
4(

C
)

2:
2(

IW
)

2:
2(

C
)

1:
1(

IW
)

1:
1(

C
)

Configurations (Processors:Nodes)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Communication
IW Protocol
Cashmere-2L

Fig. 4. Overhead of InterWeave library and communication during remote visualization.

munication with the server. We believe we can eliminate much of this overhead through
implementation improvements; such improvements will be a major focus of ongoing
work.

A key advantage of the InterWeave version of the visualization program is that the
simulation need not be aware of the number of satellites or the frequency of sharing. In
the version of the application that uses hand-written message passing, this knowledge
is embedded in application source code.

4 Related Work

InterWeave finds context in an enormous body of related work—far too much to docu-
ment thoroughly here.

Most systems for distributed shared state enforce a strongly object-oriented pro-
gramming model. Some, such as Emerald [23], Argus [27], Ada [22], and ORCA [42],
take the form of an explicitly distributed programming language. Some, notably Am-
ber [10] and its successor, VDOM [11], are C++-specific. Many in recent years have
been built on top of Java; examples include Aleph [20], Charlotte [5], Java/DSM [47],
Javelin [7], JavaParty [31], JavaSpaces [41], and ShareHolder [18].

Language-independent distributed object systems include PerDiS [12], Legion [17],
Globe [44], DCOM [35], and various CORBA-compliant systems [29]. Globe replicates
objects for availability and fault tolerance. PerDiS and a few CORBA systems (e.g.
Fresco [25]) cache objects for locality of reference. Thor [28] enforces type-safe object-
oriented access to records in a heterogeneous distributed database.

At least two early software distributed shared memory (S-DSM) systems provided
support for heterogeneous machine types. Toronto’s Mermaid system [48] allowed data

to be shared across more than one type of machine, but only among processes cre-
ated as part of a single run-to-completion parallel program. All data in the same VM
page was required to have the same type, and only one memory model—sequential
consistency—was supported. CMU’s Agora system [6] supported sharing among more
loosely-coupled processes, but in a significantly more restricted fashion than in In-
terWeave. Pointers and recursive types were not supported, all shared data had to be
accessed indirectly through a local mapping table, and only a single memory model
(similar to processor consistency) was supported.

Perhaps the two projects most closely related to InterWeave are Khazana [9] and
Active Harmony [21]. Both are outgrowths of previous work in software distributed
shared memory. Both support distributed sharing without enforcing an object-oriented
programming style. Khazana proposes a global, 128-bit address space for all the world’s
shared data. It does not impose any structure on that data, or attempt to translate it
into locally-appropriate form. Active Harmony is more explicitly oriented toward high-
performance parallel execution. Early work appears to have focussed primarily on load
balancing and process management. Various Linda systems [37, 32] also provide a non-
object-oriented distributed shared store.

Interface description languages date from Xerox Courier [46] and related systems
of the early 1980s. Precedents for the automatic management of pointers include Her-
lihy’s thesis work [19], LOOM [24], and the more recent “pickling” (serialization) of
Java [34]. Friedman [15] and Agrawal et al. [2] have shown how to combine certain
pairs of consistency models in a non-version-based system. Alonso et al. [3] present a
general system for relaxed, user-controlled coherency. We explore a real implementa-
tion of a dynamically adjustable coherence mechanism in an environment that allows
tightly-coupled sharing in addition to the relaxed coherence in a more distributed envi-
ronment. Several projects, including ShareHolder, Globus [14], and WebOS [43], use
URL-like names for distributed objects or files. Khazana proposes the use of multiple
consistency models.

5 Status and Plans

A preliminary version of InterWeave is up and running on Rochester’s AlphaServer
cluster. It provides full support for user-specified coherence predicates, but does not
yet implement inter-segment coherence. The type system is currently based on C++,
rather than XDR, and though we support user-specified data layouts (rearrangement
of blocks in the heap), we have not yet implemented data conversions for heteroge-
neous machine architectures. The current system supports working demonstrations of
remote interactive parallel association mining and visualization of a parallel N-body
simulation, demonstrating the utility of the system in combining distributed sharing
with tightly-coupled coherence.

Once the basic features of InterWeave are in place, we expect to turn to several
additional issues, including security, fault tolerance, and transactions. We hope to lever-
age the protection and security work of others, most likely using a group-based system
reminiscent of AFS [36]. Toleration of client failures is simplified by the version-based
programming model: a segment simply reverts to its previous version if a client dies

in the middle of an update. Server faults might be tolerated by pushing new versions
through to stable storage. Ultimately, a true transactional programming model (as op-
posed to simple reader-writer locks) would allow us to recover from failed operations
that update multiple segments, and to implement two-phase locking to recover from
deadlock or causality violations when using nested locks.

References

[1] S. V. Adve and M. D. Hill. A Unified Formulation of Four Shared-Memory Models. IEEET-
PDS, 4(6):613–624, JUN 1993.

[2] D. Agrawal, M. Choy, H. V. Leong, and A. K. Singh. Mixed Consistency: A Model for
Parallel Programming. In PROC of the 13TH PODC, Los Angeles, CA, AUG 1994.

[3] R. Alonso, D. Barbara, and H. Garcia-Molina. Data Caching Issues in an Information
Retrieval System. TODS, 15(3):359–384, SEP 1990.

[4] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A Language for Parallel Program-
ming of Distributed Systems. In IEEETSE, pages 190–205, JUN 1992.

[5] A. Baratloo, M. Karaul, V. Keden, and P. Wyckoff. Charlotte: Metacomputing on the Web.
IJFGCS, 15(5-6):559–570, 1999.

[6] R. Bisiani and A. Forin. Multilanguage Parallel Programming of Heterogeneous Machines.
IEEETC, 37(8):930–945, AUG 1988.

[7] P. Cappello, B. O. Christiansen, M. F. Ionescu, M. O. Neary, K. E. Schauser, and D. Wu.
Javelin: Internet-Based Parallel Computing Using Java. In 1997 ACM Workshop on Java
for Science and Engineering Computation, Las Vegas, NV, JUN 1997.

[8] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance of Munin.
In PROC of the 13TH SOSP, pages 152–164, Pacific Grove, CA, OCT 1991.

[9] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An Infrastructure for Building Dis-
tributed Services. In ICDCS, pages 562–571, MAY 1998.

[10] J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Littlefield. The Amber
System: Parallel Programming on a Network of Multiprocessors. In PROC of the 12TH
SOSP, pages 147–158, Litchfield Park, AZ, DEC 1989.

[11] M. J. Feeley and H. M. Levy. Distributed Shared Memory with Versioned Objects. In
OOPSLA ’92 CONF PROC, pages 247–262, Vancouver, BC, Canada, OCT 1992.

[12] P. Ferreira, M. Shapiro, X. Blondel, O. Fambon, J. Garcia, S. Kloosterman, N. Richer,
M. Roberts, F. Sandakly, G. Coulouris, J. Dollimore, P. Guedes, D. Hagimont, and S.
Krakowiak. PerDiS: Design, Implementaiton, and Use of a PERsistent DIstributed Store.
Research Report 3525, INRIA, Rocquencourt, France, OCT 1998.

[13] M. Fillo and R. B. Gillett. Architecture and Implementation of Memory Channel 2. Digital
Technical Journal, 9(1):27–41, 1997.

[14] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. IJSA,
11(2):115–128, 1997.

[15] R. Friedman. Implementing Hybrid Consistency with High-Level Synchronization Opera-
tions. In PROC of the 12TH PODC, Ithaca, NY, AUG 1993.

[16] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Hennessy. Mem-
ory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors. In
PROC of the 17TH ISCA, pages 15–26, Seattle, WA, MAY 1990.

[17] A. S. Grimshaw and W. A. Wulf. Legion — A View from 50,000 Feet. In PROC of the 5TH
HPDC, AUG 1996.

[18] J. Harris and V. Sarkar. Lightweight Object-Oriented Shared Variables for Distributed
Applications on the Internet. In OOPSLA ’98 CONF PROC, pages 296–309, Vancouver,
Canada, OCT 1998.

[19] M. Herlihy and B. Liskov. A Value Transmission Method for Abstract Data Types.
TOPLAS, 4(4):527–551, OCT 1982.

[20] M. Herlihy. The Aleph Toolkit: Support for Scalable Distributed Shared Objects. In
CANPC, Orlando, FL, JAN 1999.

[21] J. K. Hollingsworth and P. J. Keleher. Prediction and Adaptation in Active Harmony. In
PROC of the 7TH HPDC, Chicago, IL, APR 1998.

[22] International Organization for Standardization. Information Technology — Programming
Languages — Ada. Geneva, Switzerland, 1995. ISO/IEC 8652:1995 (E). Available in hy-
pertext at http://www.adahome.com/rm95/.

[23] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained Mobility in the Emerald Sys-
tem. TOCS, 6(1):109–133, FEB 1988. Originally presented at the 11TH SOSP, NOV 1987.

[24] T. Kaehler. Virtual Memory on a Narrow Machine for an Object-Oriented Language. In
OOPSLA ’86 CONF PROC, pages 87–106, Portland, OR, SEP – OCT 1986.

[25] R. Kordale, M. Ahamad, and M. Devarakonda. Object Caching in a CORBA Compliant
System. COMPSYS, 9(4):377–404, Fall 1996.

[26] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. CACM,
21(7):558–565, JUL 1978.

[27] B. Liskov. Distributed Programming in Argus. CACM, 31(3):300–312, MAR 1988.
[28] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari, A. C.

Myers, and L. Shrira. Safe and Efficient Sharing of Persistent Objects in Thor. In PROC of
the 1996 ICMOD, Montreal, Canada, JUN 1996.

[29] Object Management Group, Inc. The Common Object Request Broker: Architecture and
Specification, Revision 2.0. Framingham, MA, JUL 1996.

[30] S. Parthasarathy and S. Dwarkadas. InterAct: Virtual Sharing for Interactive Client-Server
Applications. In 4TH LCR, MAY 1998.

[31] M. Philippsen and M. Zenger. JavaParty — Transparent Remote Objects in Java. CPE,
9(11):1125–1242, NOV 1997.

[32] G. P. Picco, A. L. Murphy, and G. Roman. Lime: Linda meets mobility. In PROC of the
21TH ICSE, pages 368–377, Los Angeles, CA, MAY 1999.

[33] E. Pinheiro, D. Chen, S. Dwarkadas, S. Parthasarathy, and M. L. Scott. S-DSM for Hetero-
geneous Machine Architectures. In PROC of the 2TH Workshop on Software Distributed
Shared Memory, Santa Fe, NM, May 2000. In conjunction with the 14TH INTL CONF on
Supercomputing.

[34] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat. Pickling State in the Java System. COMP-
SYS, 9(4):291–312, Fall 1996.

[35] D. Rogerson. Inside COM. Microsoft Press, Redmond, Washington, JAN 1997.
[36] M. Satyanarayanan. Integrating Security in a Large Distributed System. TOCS, 7(3):247–

280, AUG 1989.
[37] Scientific Computing Associates Inc. Virtual Shared Memory and the Paradise System for

Distributed Computing. Technical Report, New Haven, CT, April 1999.
[38] A. Singla, U. Ramachandran, and J. Hodgins. Temporal Notions of Synchronization and

Consistency in Beehive. In PROC of the 9TH SPAA, Newport, RI, JUN 1997.
[39] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and

M. Scott. Cashmere-2L: Software Coherent Shared Memory on a Clustered Remote-Write
Network. In PROC of the 16TH SOSP, St. Malo, France, OCT 1997.

[40] Network Programming Guide — External Data Representation Standard: Protocol Specifi-
cation. Sun Microsystems, Inc., 1990.

[41] Sun Microsystems. JavaSpaces Specification. Palo Alto, CA, JAN 1999.
[42] A. S. Tanenbaum, M. F. Kaashoek, and H. E. Bal. Parallel Programming Using Shared

Objects and Broadcasting. IEEEC, 25(8):10–19, AUG 1992.
[43] A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani, P. Eastham, and C. Yoshikawa.

WebOS: Operating System Services for Wide Area Applications. In PROC of the 7TH
HPDC, Chicago, IL, JUL 1998.

[44] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A Wide-Area Distributed System.
In IEEECY, pages 70–78, JAN-MAR 1999.

[45] P. R. Wilson. Pointer Swizzling at Page Fault Time: Efficiently and Compatibly Support-
ing Huge Address Spaces on Standard Hardware. In International Workshop on Object
Orientation in Operating Systems, page 244ff, Paris, France, SEP 1992.

[46] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Technical Report XSIS
038112, DEC 1981.

[47] W. Yu and A. Cox. Java/DSM: A Platform for Heterogeneous Computing. CPE, 9(11),
NOV 1997.

[48] S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous Distributed Shared Memory.
In IEEETPDS, pages 540–554, 1992.

