
URCS 3/12/02 1

Is S-DSM Dead?

Michael L. Scott

Department of Computer Science
University of Rochester

Keynote Address
2nd Workshop on

Software-Distributed Shared Memory

In conjunction with ICS 2000
Santa Fe, NM, May 2000

URCS 3/12/02 2

The Company We Keep?

� David Cheriton, SOSP 1999:
» Capabilities are dead; no

» S-DSM is dead; no

» Active networks are dead; no

» IPv6 is dead

� MLS:
» Interconnection network topology

» Byzantine agreement

» Load balancing and scheduling

URCS 3/12/02 3

Why Are We Doing This?

� Shared memory an attractive programming model
» Familiar

» Arguably simpler, esp. for non-performance-critical code

� Hardware coherence is faster, but software
» Is cheaper
» Can be built faster (sooner to market, faster processors)

» Can use more complex protocols

» Is easier to tune/enhance/customize

» Is the only option on distributed machines

URCS 3/12/02 4

The Price-Performance Curve

 S-DSM may
maximize “bang for
the buck” for
shared-memory
parallel computing

S-DSM CC-NUMA
Memory Channel / VIA,

Shrimp, S-COMA, Typhoon,
Hamlyn / Scheduled Transfer,
PCI-SCI, T3E, Mercury, etc.

$

URCS 3/12/02 5

Is S-DSM Dead?

� Yes
» The key ideas seem to have been discovered; the rate of

innovation is way down

» Application writers are still choosing MPI

» Program committees aren’t looking for papers

� No
» Speedups for well-written apps are very good

» Wide-spread use awaits production-quality systems

» The ideas are valuable in a wider domain; hence InterWeave
(more later)

URCS 3/12/02 6

Outline

� Historical perspective
� Some thoughts about current status
� What we don’t need
� What we do need
� A project that’s doing some of it (joint work with

Sandhya Dwarkadas and students)

Caveat: I’m trying to stir things up a bit; please don’t
take offense if I oversimplify, overstate things, or
ignore your favorite project!

URCS 3/12/02 7

A Brief History of the Field

» 1986 Ivy
» 1989 Shiva

» 1990 Munin

» 1992 LRC (TreadMarks)

» 1993 Sh. Regions, Midway

» 1994 AURC (Shrimp)
» 1995 CRL

» 1996 Shasta

» 1997 Cashmere

» 1998 HLRC

The original idea (Kai Li)

Relaxed memory model,
optimized protocols

Software-only protocols

Leverage special HW
(User-level messages,
multiprocessor nodes)

URCS 3/12/02 8

Papers at Leading Conferences

Anybody see a trend?

0

2

4

6

8

10

12

1987 1989 1991 1993 1995 1997 1999

SOSP
ASPLOS
ISCA
OSDI

URCS 3/12/02 9

Why Haven’t We
Conquered the World?

Been at this for 14 years, but:

� No major OS vendor packages S-DSM

� TreadMarks the only commercially-available system
» Rice Spin-off

» Kuck and Associates OpenMP implementation
» Some noteworthy successes (e.g. NIH/FastLink)

� High-end users (who might tolerate research code)
still stick to MPI

Where are the other success stories?

URCS 3/12/02 10

So Where Do We Stand Today?

� Converging on the “right” implementation
» Relaxed memory model

» VM-based protocols (false sharing not a major issue)

» Multiprocessor nodes

» User-level network interface

� So-so performance
» OK for well-written apps on modest numbers of nodes, but

» Nobody has demonstrated real scalability

URCS 3/12/02 11

Cashmere Speedups

32 processors

0

5

10

15

20

25

30

35

Barnes LU CLU WaterSp WaterNSq EM3D Ilink Gauss SOR TSP

URCS 3/12/02 12

Cashmere and MPI

0

5

10

15

20

25

30

EP IS SOR

MPI
CSM

URCS 3/12/02 13

HPC Is Not Our Niche

� We’re not going to run S-DSM on 4000 nodes
� We’re not going to match the performance of hand-

tuned MPI code
� We’re not going to convert the national labs

What is our niche?
Modest-sized clusters
and the applications they run

URCS 3/12/02 14

What We Don’t Need

� More protocol tweaks
� New APIs
� More isomorphic implementations
� More SPLASH benchmarks
� More “scalable” systems tested on 16 nodes

Are there only four big ideas?

URCS 3/12/02 15

What We Need

� Single system image
» good debuggers

» process and memory management

� Compiler integration
� Non-scientific apps

» CSCW, OLTP, e-commerce, games

� Wide-area distribution
(for functionality, not performance)
» Heterogeneity
» Application-specific memory models

» Fault tolerance

URCS 3/12/02 16

Cashmere Plans

� Protocol tweaks; VIA, Linux, Myrinet ports
� Compiler integration (ARCH)
� Global memory management
� Applications

» CFD in Astrophysics
» Protein folding

» Laser fusion

� MPI comparison

� InterWeave

» Object recognition
» Volumetric reconstruction

» Neural simulation

URCS 3/12/02 17

InterWeave Motivation

� Convenient support for “satellite” nodes
» remote visualization and steering (Astrophysics)

» client-server division of labor (datamining)

� True distributed apps
» intelligent environments (AI group)

� Speedup probably not feasible; convenience the
principal goal

URCS 3/12/02 18

InterWeave Overview

� Sharing of persistent versioned segments, named by
URLs

� User-specified relaxed coherence; reader-writer locks
� Hash-based consistency
� Full support for heterogeneity, using XDR and pointer

swizzling (Eduardo’s talk this afternoon)
� Cashmere functions as a single InterWeave node

URCS 3/12/02 19

Segment Creation

� Communicates with server to create segment
(checking access rights)

� Allocates local cached copy (not necessarily
contiguous)

� Can follow pointers to other segments

IW_handle_t h = IW_create_segment (URL);
IW_wl_acquire (h);
my_type* p = (my_type *) IW_malloc (h, my_type_desc);
*p = ...
IW_wl_release (h);

URCS 3/12/02 20

Coherence

� Relaxed reader-writer locks
» Writer grabs current version (does not exclude readers)

» Reader checks to see if current cached copy (if any) is
“recent enough”

� Multiple notions of “recent enough”
» e.g. immediate, polled, temporal, delta, diff-based
» from Beehive [Singla97], InterAct [LCR ’98]

� Cache whole segments; server need only keep most
recent version, in machine-independent form

� Diff-based updates (both ways) based on block time
stamps

URCS 3/12/02 21

Consistency

� Need to respect happens-before
� Invalidate cached version of A that is older than

version on which newly-obtained version of B
depends

� Ideally want to know entire object history
� Can approximate using hashing

» slot i of vector contains timestamp of most recent antecedent
hashing to i

» invalidate A if B.vec[hash(A)] is newer

URCS 3/12/02 22

InterWeave Related Work

� Distributed objects
» Language-specific (Emerald/Amber/VDOM, Argus, Ada,

ORCA, numerous Java systems)

» Language-neutral (PerDiS, Legion, Globe, DCOM, CORBA,
Fresco)

� Distributed state (Khazana, Active Harmony, Linda)

� Metacomputing (GLOBUS/GRID, Legion, WebOS)

� Heterogeneity, swizzling (RPC, LOOM, Java pickling)

� Multiple consistency models (Friedman et al., Agrawal et
al., Alonso et al., Ramachandran et al., web caching work)

� Transactions, persistence (Feeley et al., Thor)

URCS 3/12/02 23

Status

� Prototype running on Alpha cluster
� Barnes-Hut demo running: Cashmere plus remote

front end
� Distributed game in the works (MazeWars)
� Coherence models in; consistency in the works
� XDR compiler finished; heterogeneity in the works
� Extended abstracts at WSDSM and LCR

see http://www.cs.rochester.edu/research/interweave

URCS 3/12/02 24

What We Need (Reprise)

� Single system image
» good debuggers
» process and memory

management

� Compiler integration

� Non-scientific apps
» CSCW, OLTP, games,

e-commerce

� Wide-area distribution
» Heterogeneity
» Application-specific memory

models
» Fault tolerance

� Protocol tweaks
� New APIs

� Re-implementations

� SPLASH benchmarks

� 16-node “scalable”
systems

URCS 3/12/02 25

A Plug for LCR

Languages, Compilers, and Run-Time
Systems for Scalable Computers

May 25-27, 2000

Rochester, NY

Program and registration information available at

http://www.cs.rochester.edu/~LCR2k

