Scalable Queue-Based Spin Locks with Timeout

Michael L. Scott and William N. Scherer llI

Department of Computer Science
University of Rochester
Rochester, NY 14627-0226

{scott,scherer}@cs.rochester.edu”

ABSTRACT

Queue-based spin locks allow programs with busy-wait syn-
chronization to scale to very large multiprocessors, without
fear of starvation or performance-destroying contention. So-
called try locks, traditionally based on non-scalable test-and-
set locks, allow a process to abandon its attempt to acquire
a lock after a given amount of time. The process can then
pursue an alternative code path, or yield the processor to
some other process.

We demonstrate that it is possible to obtain both scal-
ability and bounded waiting, using variants of the queue-
based locks of Craig, Landin, and Hagersten, and of Mellor-
Crummey and Scott. A process that decides to stop waiting
for one of these new locks can “link itself out of line” atomi-
cally. Single-processor experiments reveal performance penal
ties of 50-100% for the CLH and MCS try locks in compar-
ison to their standard versions; this marginal cost decreases
with larger numbers of processors.

We have also compared our queue-based locks to a tradi-
tional test-and-test_and_set lock with exponential backoff
and timeout. At modest (non-zero) levels of contention,
the queued locks sacrifice cache locality for fairness, result-
ing in a worst-case 3X performance penalty. At high levels
of contention, however, they display a 1.5-2X performance
advantage, with significantly more regular timings and sig-
nificantly higher rates of acquisition prior to timeout.

1. INTRODUCTION

Spin locks are widely used for mutual exclusion on shared-
memory multiprocessors. Traditional test_and_set-based
spin locks are vulnerable to memory and interconnect con-
tention, and do not scale well to large machines. Queue-
based spin locks avoid contention by arranging for every
waiting process to spin on a separate, local flag in memory.

*This work was supported in part by NSF grants num-
bers ETA-9972881, EIA-0080124, CCR~9705594, and CCR-
9988361, and by DARPA/AFRL contract number F29601-
00-K-0182.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or afee.

PPOPP’ 01, June 18-20, 2001, Snowbird, Utah, USA.

Copyright 2001 ACM 1-58113-346-4/01/0006 ...$5.00.

Several researchers (ourselves among them) have conjec-
tured that any program that routinely encounters high levels
of lock contention is unlikely to scale well to large machines.
Conversely, in any program that scales well, the overhead of
spin locks may not be a serious concern. The problem with
this argument is that infrequent pathological events can be
a serious problem to users. An improvement in worst case
performance from, say, 2 to 10% efficiency may be enor-
mously valuable, even if typical efficiency is more like 80%.
With the increasing popularity of medium-scale (20-100 pro-
cessor) server-class machines, we believe that scalable spin
locks will prove increasingly important.

In a traditional test_and_set spin lock, processes are mu-
tually anonymous. In a queue-based lock, they are not: each
waiting process is linked to its predecessor and successor
in the queue. In previous work [6], members of our group
considered the possibility that a spinning process might be
preempted, thereby unnecessarily delaying processes farther
down the queue. In the current paper we consider the possi-
bility that a spinning process may “become impatient” and
wish to leave the queue before acquiring the lock.

Timeout-capable spin locks, sometimes referred to as “try-
locks”, are important for several reasons:

1. A process in a soft real-time application may need to
bound the time it spends waiting for a lock. If the
timeout expires, the process can choose to announce
an error or to pursue an alternative code path that
does not require the lock.

2. Absent special OS support, a user-level process in a
multiprogrammed environment may be preempted while
holding a lock. Timeout allows other processes wait-
ing for the lock to give up, yield the processor, and try
again when rescheduled.

3. In a parallel database system, timeout provides a vi-
able strategy for deadlock recovery. A process that
waits “too long” for a lock can assume that deadlock
has occurred, abort the current transaction, and retry.

We are aware of commercially significant signal processing
applications that use timeout for reason (1), and parallel
database servers that use timeout for reasons (2) and (3).
In the latter case, timeout may be the deciding factor in
making spin locks usable in user-level code.

In contrast to the problem of preemption among spinning
processes, timeout does not require interaction between the
scheduler and the synchronization algorithm. It is compli-
cated, however, by the fact that a timed-out process may

attempt to acquire the lock again, possibly many times, be-
fore the point at which it would have acquired the lock if it
had stayed in line. The possibility of multiple aborted ac-
quisition attempts suggests that a timed-out process must
remove itself from the queue entirely, leaving nothing be-
hind; otherwise we would be unable to bound the space or
time requirements of the algorithm.

We have developed so-called “try lock” (timeout capable)
versions of our MCS queue-based lock [8] and of the CLH
queue-based lock of Craig [2] and Landin and Hagersten [7].
After presenting additional background information in sec-
tion 2, we describe our new locks in section 3. Both new
locks employ swap and compare_and_swap instructions, and
can be implemented on any shared-memory machine, with
or without cache coherence, that provides these operations
or their equivalent. In section 4 we present performance re-
sults obtained on a 56-processor Sun Wildfire machine. We
conclude with a summary of recommendations in section 5.

2. BACKGROUND

Programmers face several choices when synchronizing pro-
cesses on a shared-memory multiprocessor. The most basic
choice is between spinning (busy-waiting), in which pro-
cesses actively poll for a desired condition, and blocking,
in which processes yield the processor in expectation that
they will be made runnable again when the desired condition
holds. Spinning is the method of choice when the expected
wait time is small, or when there is no other productive use
for the processor.

The most basic busy-wait mechanism is a test-and-set
lock, in which a process desiring entry to a critical section
repeatedly attempts to change a “locked” flag from false to
true, using an atomic hardware primitive. Unfortunately,
test-and-set locks lead to increasing amounts of contention
for memory and bus or interconnect bandwidth as the num-
ber of competing processors grows. This contention can be
reduced somewhat by polling with ordinary read operations,
rather than atomic test_and_set operations; polls are then
satisfied from local caches during critical sections, with a
burst of refill traffic whenever the lock is released. The cost
of the burst can be further reduced using Ethernet-style ex-
ponential backoff [8]. Figure 1 shows code for a test-and-
test_and_set (TATAS) lock with exponential backoff.

2.1 Queue-based locks

Even with exponential backoff, test-and-test_and set
locks still induce significant contention, leading to irregu-
lar timings and compromised memory performance on large
machines. Queue-based spin locks eliminate these problems
by arranging for every competing process to spin on a dif-
ferent memory location. To ensure scalability, each location
must be local to the spinning process, either by virtue of
hardware cache coherence or as a result of explicit local al-
location on a non-cache-coherent machine.

Several researchers, working independently and roughly
concurrently, developed queue-based spin locks in the late
1980s. Anderson [1] and Graunke and Thakkar [3] embed
their queues in per-lock arrays, requiring space per lock pro-
portional to the maximum number of processes that may
compete for access concurrently. Anderson’s lock uses atomic
fetch and_increment instructions to assign slots in the ar-
ray to waiting processes; Graunke and Thakkar’s lock uses
swap instead. Our MCS lock, co-designed with John Mellor-

typedef unsigned long bool;
typedef volatile bool tatas_lock;

void tatas_acquire(tatas_lock *L) {
if (tas(L)) {

int b = BACKOFF_BASE;

do {
for (i = b; i; i--); // delay
b = min(b * BACKOFF_FACTOR, BACKOFF_CAP);
if (*L) continue; // spin with reads

} while (tas(L));

}
}
void tatas_release(tatas_lock *L) {
*xL, = 0;
}
Figure 1: Test-and-test_andset (TATAS) lock

with exponential backoff. Parameters BACKOFF_BASE,
BACKOFF FACTOR, and BACKOFF_CAP must be tuned by
trial and error for each individual machine archi-
tecture.

Crummey [8], employs a linked list with pointers from each
process to its successor; it relies on swap and compare_and._
swap, and has the advantage of requiring total space lin-
ear in the number of locks and the number of competing
processes. (The lock can be re-written to use only swap,
but at the expense of FIFO ordering: in the swap-only ver-
sion of mcs_release there is a timing window that may al-
low newly arriving processes to jump ahead of processes al-
ready in the queue.) The MCS lock is naturally suited to
local-only spinning on both cache-coherent and non-cache-
coherent machines. The Anderson and Graunke/Thakkar
locks must be modified to employ an extra level of indirec-
tion on non-cache-coherent machines.

typedef struct mcs_gnode {

volatile bool waiting;

volatile struct mcs_qgnode *volatile next;
} mcs_gnode;

typedef volatile mcs_gnode *mcs_qgnode_ptr;
typedef mcs_gnode_ptr mcs_lock; // initialized to nil

void mcs_acquire(mes_lock *L, mcs_gnode_ptr I) {
I->next = nil;
mcs_gnode_ptr pred = swap(L, I);
if (pred == nil) return; // lock was free
I->waiting = true; // word on which to spin
pred->next = I; // make pred point to me
while (I->waiting); // spin

}

void mcs_release(mcs_lock *L, mcs_gnode_ptr I) {
mcs_gnode_ptr succ;
if (!(succ = I->next)) { // 1 seem to have no succ.
// try to fix global pointer
if (compare_and_store(L, I, nil)) return;
do {
succ = I->next;
} while (!succ); // wait for successor
}
succ->waiting = false;

}

Figure 2: The MCS queue-based spin lock. Param-
eter I points to a gnode record allocated (in an en-
closing scope) in shared memory locally-accessible
to the invoking processor.

typedef struct clh_gnode {

volatile bool waiting;

volatile struct clh_gnode *volatile prev;
} clh_gnode;

typedef volatile clh_gnode *clh_gnode_ptr;
typedef clh_gnode_ptr clh_lock;
// initialized to point to an unowned gnode

void clh_acquire(clh_lock *L, clh_gnode_ptr I) {
I->waiting = true;
clh_gnode_ptr pred = I->prev = swap(L, I);
while (pred->waiting); // spin

}

void clh_release(clh_gnode_ptr *I) {
clh_gnode_ptr pred = (*I)->prev;
(*I)->waiting = false;

*I = pred; // take pred’s gnode

Figure 3: The CLH queue-based spin lock. Param-
eter I points to qnode record or, in clh release, to
a pointer to a qnode record. The gnode “belongs”
to the calling process, but may be in main memory
anywhere in the system, and will generally change
identity as a result of releasing the lock.

The CLH lock, developed about three years later by Craig
[2] and, independently, Landin and Hagersten [7], also em-
ploys a linked list, but with pointers from each process to
its predecessor. The CLH lock relies on atomic swap, and
may outperform the MCS lock on cache-coherent machines.
Like the Anderson and Graunke/Thakkar locks, it requires
an extra level of indirection to avoid spinning on remote lo-
cations on a non-cache-coherent machine [2]. Code for the
MCS and CLH locks appears in Figures 2, 3, and 4.

typedef struct clh_numa_gnode {

volatile bool *w_ptr;

volatile struct clh_gnode *volatile prev;
} clh_numa_gnode;

typedef volatile clh_numa_gnode *clh_numa_gnode_ptr;
typedef clh_numa_gnode_ptr clh_numa_lock;
// initialized to point to an unowned gnode

const bool *granted = 0x1;

void clh_numa_acquire(clh_numa_lock *L,
clh_numa_gnode_ptr I) {

volatile bool waiting = true;
I->w_ptr = nil;
clh_numa_gnode_ptr pred = I->prev = swap(L, I);
volatile bool *p = swap(&pred->w_ptr, &waiting);
if (p == granted) return;
while (waiting); // spin

}

void clh_numa_release(clh_numa_gnode_ptr *I) {
clh_numa_gnode_ptr pred = (*I)->prev;
volatile bool *p = swap(&((*I)->w_ptr), granted);
if (p) *p = false;

*I = pred; // take pred’s gnode

Figure 4: Alternative version of the CLH lock, with
an extra level of indirection to avoid remote spinning
on a non-cache-coherent machine.

// return value indicates whether lock was acquired
bool tatas_try_acquire(tatas_lock *L, hrtime_r T) {
if (tas(L)) {
hrtime_t start = gethrtime();
int b = BACKOFF_BASE;
do {
if (gethrtime() - start > T) return false;
for (i = b; i; i--); // delay
b = min(b * BACKOFF_FACTOR, BACKOFF_CAP);
if (*L) continue; // spin with reads
} while (tas(L));

}

Figure 5: The standard TATAS-try lock. Type defi-
nitions and release code are the same as in Figure 1.

2.2 Atomic primitives

In this paper we make reference to several atomic oper-
ations. Swap(address, value) atomically writes a memory
location and returns its original contents. Compare_and._
swap(address, expected_value, new_value) atomically checks
the contents of a memory location to see if it matches an
expected value and, if so, replaces it with a new value. In
either event it returns the original contents. We also use
an alternative form, compare_and_store, that instead re-
turns a Boolean value indicating whether the comparison
succeeded. Fetch_and_increment(address) atomically incre-
ments the contents of a memory location and returns the
original contents.

Compare_and_swap first appeared in the IBM 370 instruc-
tion set. Swap and compare_and_swap are provided by Sparc
V9. Several recent processors, including the Alpha, MIPS,
and PowerPC, provide a pair of instructions, load linked
and store_conditional, that can be implemented natu-
rally and efficiently as part of an invalidation-based cache-
coherence protocol, and which together provide the rough
equivalent of compare_and_swap. Both compare_and_swap
and load-linked/store_conditional are universal atomic
operations, in the sense that they can be used without lock-
ing (but at the cost of some global spinning) to implement
any other atomic operation [5]. Fetch_and_increment, to-
gether with a host of other atomic operations, is supported
directly but comparatively inefficiently on the x86.

3. TRY LOCKS

As noted in section 1, a process may wish to bound the
time it may wait for a lock, in order to accommodate soft
real-time constraints, to avoid waiting for a preempted peer,
or to recover from transaction deadlock. Such a bound is
easy to achieve with a test_and_set lock (see Figure 5): pro-
cesses are anonymous and compete with one another chaot-
ically. Things are not so simple, however, in a queue-based
lock: a waiting process is linked into a data structure on
which other processes depend; it cannot simply leave.

A similar problem occurs in multiprogrammed systems
when a process stops spinning because it has been pre-
empted. Our previous work in scheduler-conscious synchro-
nization [6] arranged to mark the queue node of a preempted
process so that the process releasing the lock would simply
pass it over. Upon being rescheduled, a skipped-over pro-
cess would have to reenter the queue. A process that had
yet to reach the head of the queue when rescheduled would
retain its original position.

Craig [2] proposes (in narrative form) a similar “mark the
node” strategy for queue-based try locks. Specifically, he
suggests that a timed-out process leave its queue node be-
hind, where it will be reclaimed by another process when
it reaches the head of the queue. Unfortunately, this strat-
egy does not work nearly as well for timeout as it does for
preemption. The problem is that a timed-out process is not
idle: it may want to acquire other locks. Because we have
no bound on how long it may take for a marked queue node
to reach the head of the queue, we cannot guarantee that
the same queue node will be available the next time the pro-
cess tries to acquire a lock. As Craig notes, the total space
required for P processes and L locks rises from O(P + L)
with the original CLH lock to O(P x L) in a mark-the-node
try lock. We also note that the need to skip over abandoned
queue nodes increases the worst case lock release time from
O(1) to O(P).

We have addressed these space and time problems in new
try-lock versions of both the CLH and MCS locks. In fair-
ness to Craig, the code presented here requires a compare_
and_swap operation; his work was predicated on the assump-
tion that only swap was available. A different version of the
MCS-try lock, also using only swap, has been developed by
Vitaly Oratovsky and Michael O’Donnell of Mercury Com-
puter Corp. [9]. Their lock has the disadvantage that newly
arriving processes that have not specified a timeout inter-
val (i.e. that are willing to wait indefinitely) will bypass any
already-waiting processes whose patience is more limited. A
process that specifies a timeout may thus fail to acquire a
lock—may in fact never acquire a lock, even if it repeat-
edly becomes available before the expiration of the timeout
interval—so long as processes that have not specified a time-
out continue to arrive.

3.1 TheCLH-trylock

In the standard CLH lock, a process leaves its queue node
behind when releasing the lock. In its place it takes the node
abandoned by its predecessor. For a try lock, we must ar-
range for a process that times out to leave with its own queue
node. Otherwise, as noted above, we might need O(P x L)
queue nodes in the system as a whole.

It is relatively easy for a process B to leave the middle
of the queue. Since B’s intended successor C' (the process
behind it in the queue) is already spinning on B’s queue
node, B can simply mark the node as “leaving”. C can
then dereference the node to find B’s predecessor A, and
mark B’s node as “recycled”, whereupon B can safely leave.
There is no race between A and B because A never inspects
B’s queue node.

Complications arise when the departing process B is the
last process in the queue. In this case B must attempt to
modify the queue’s tail pointer to refer to A’s queue node
instead of its own. We can naturally express the attempt
with a compare_and_swap operation. If the compare.and.-
swap fails we know that another process C' has arrived. At
this point we might hope to revert to the previous (middle-
of-the-queue) case. Unfortunately, it is possible that C' may
successfully leave the queue after B’s compare_and_swap, at
which point B may wait indefinitely for a handshake that
never occurs. We could protect against the indefinite wait
by repeatedly re-checking the queue’s tail pointer, but that
would constitute spinning on a non-local location, something
we want to avoid.

Our solution is to require C' to handshake with B in a way
that prevents B from trying to leave the queue while C is
in the middle of leaving. Code for this solution can be found

on-line at www.cs.rochester.edu/u/scott/synchronization/

pseudocode/timeout .html#clh-try. It comprises about 95
lines of C. The two principal cases (B in the middle of the
queue and at the end) are illustrated in Figure 6.

Like the standard CLH lock, the CLH-try lock depends
on cache coherence to avoid remote spinning. In the CLH-
try lock it is actually possible for two processes to end up
spinning on the same location. In the fourth line of the right-
hand side of Figure 6, if process A calls clh_release, it will
spin until the transient flag reverts to waiting. If a new
process C' arrives at about this time, it, too, will begin to
spin on the flag in A’s queue node. When B finally updates
the flag, its write will terminate both spins.

3.2 TheMCStry lock

A feature of the standard MCS lock is that each process
spins on its own queue node, which may be allocated in
local memory even on a non-cache-coherent machine. To
leave the queue, therefore, a process B must update the
successor pointer in the queue node of its predecessor A so
that it points to B’s successor C, if any, rather than to B.
If C later chooses to leave the queue as well, it will again
need to update A’s queue node, implying that B must tell it
where A’s queue node resides. Pointers to both predecessors
and successors must therefore reside in the queue nodes in
memory, where they can be read and written by neighbor-
ing processes. These observations imply that an MCS-try
lock must employ a doubly linked queue, making it substan-
tially more complex than the CLH-try lock. The benefit of
the complexity is better memory locality on a non-cache-
coherent machine. (We believe we could construct a version
of the CLH-try lock, starting from the code in Figure 4,
that would avoid remote spins on a non-cache-coherent ma-
chine, but it would require more atomic operations on its
critical path, and would be unlikely to be competitive with
the MCS-try lock.)

As in the CLH-try lock there are two principal cases to
consider for the MCS-try lock, depending on whether the
departing process B is currently in the middle or at the
end of the queue. These cases are illustrated in Figure 7.
While waiting to be granted the lock, a process ordinarily
spins on its predecessor pointer. In the middle-of-the-queue
case, departing process B first replaces the four pointers into
and out of its queue node, respectively, with leaving other
and leaving self flags (shown as LO and LS in the figure).
It then updates C’s predecessor pointer, and relies on C'
to update A’s successor pointer. In the end-of-the-queue
case, B “tags” A’s nil successor pointer to indicate that
additional changes are pending. Absent any race conditions,
B eventually clears the tag using compare_and_swap.

Unfortunately, there are many potential races that have
to be resolved. The process at the head of the queue may
choose to grant the lock to its successor while the successor
is attempting to leave the queue. Two neighboring processes
may decide to leave the queue at approximately the same
time. A process that is at the end of the queue in step 2 may
discover in step 5 that it now has a successor. A complete
discussion of these races and how we resolve them is too
lengthy to include here. In general, the order of updates to
pointers is chosen to ensure that (1) no process ever returns

A B C

[Whe—F [wh—F [w]

[T [wh—F [w]

[T [[w]

B marks A's
node transient

B marks its own
node leaving

C dereferences

A

B

B marks A's
node transient

B marks its own
node leaving

B updates lock

IR N T o] It eewn Bl gln til pomter
L[l LIR] A W] e W — | node waitng
| |W | |R| = Eorg:rv'\(/zifi‘lnsg DE< D B leaves queue

DE{ B leaves queue

Figure 6: The two principal cases in the CLH-try lock. In the figure at left process B can leave the middle
of the queue as soon as it receives confirmation from its successor, C, that no pointer to its queue node
remains. In the figure at right, B can leave the end of the queue once it has updated the tail pointer, Q,
using compare_and_swap. The transitions from waiting to leaving and from waiting to available (not shown)
must also be made with compare_and_swap, to avoid overwriting a transient flag.

A B C A B Q

(et et EE=acal

[T isf—T [] steps

[[T [is] [o] step2

[T1—fsls] [| steps by,
[sjts] [Lo] | steps
(o [shs 1] seps [T]

T T ses [T s ens e

B (right)

Figure 7: The two principal cases in the MCS-try lock. In the figure at left process B uses atomic swap
operations to replace the pointers into and out of its queue node, in a carefully chosen order, with leaving other
and leaving self flags. It then updates the pointer from C to A, and relies on C to update the pointer from
A to C. In the figure at right, B has no successor at step 2, so it must perform the final update itself. In the
meantime it leaves a “tag” on A’s (otherwise nil) successor pointer to ensure that a newly arriving process
will wait for B’s departure to be finalized.

from mcs_try_acquire until we are certain that no pointers
to its queue node remain, and (2) if two adjacent processes
decide to leave concurrently, the one closer to the front of the
queue leaves first. Code for the MCS-try lock is available on-
line at www.cs.rochester.edu/u/scott/synchronization/
pseudocode/timeout.html#mcs-try.

3.3 Correctness

Synchronization algorithms are notoriously subtle. Cor-
rectness proofs for such algorithms tend to be less subtle,
but more tedious and significantly longer than the original
code. We have not attempted to construct such a proof for
either of our algorithms; for the MCS-try lock in particular,
which runs to more than 360 lines of C code, it appears a
daunting exercise.

Testing, of course, cannot demonstrate the absence of
bugs, but it can significantly decrease their likelihood. We
have tested both our algorithms extensively, under a variety
of loads and schedules, and did indeed find and fix several
bugs. We are reasonably confident of our code, but acknowl-
edge the possibility that bugs remain.

There is a third possible approach to verification. We are
in the process of constructing a simulation testbed that will
allow us, for a given set of processes, to exhaustively ex-
plore all possible interleavings of execution paths. We plan
to verify that these interleavings preserve all necessary cor-
rectness invariants for the operation of a queue-based lock,
and to argue that they cover all the “interesting” states that
could arise with any larger set of processes.

4. PERFORMANCE RESULTS

We have implemented the TATAS, CLH, and MCS locks,
with and without timeout, using the swap and compare_and_
swap operations available in the Sparc V9 instruction set.
Initial testing and single-processor results employed a 336
MHz Sun Ultra 4500. Scalability tests were conducted on a
56-processor Sun Wildfire machine [4] (not to be confused
with the Compaq product of the same name) with 250 MHz
processors. Architecturally, the Wildfire machine consists
of four banks of up to 16 processors each, connected by a
central crossbar. Backoff constants for the TATAS lock were
tuned separately for each machine.

Our tests employ a microbenchmark consisting of a tight
loop containing a single acquire/release pair. Aside from
counting the number of iterations and the number of suc-
cessful acquires (these may be different in the case of a try
lock), the loop does no useful work. Machines used for tests
were otherwise unloaded.

4.1 Single-processor results

We can obtain an estimate of lock overhead in the absence
of contention by running the microbenchmark on a single
processor, and then subtracting the loop overhead. Results
on on our Ultra 4500 are as follows:

TATAS 137ns
MCS 172ns
CLH 137ns
CLH-NUMA 262ns
MCS-try 256ns
CLH-try 274ns

In an attempt to avoid perturbation due to other activity
on the machine, we have reported the minima over a series of

3.5+

. A+
25 = e

——NUMA

—+—CLH
MCS

& TATAS

1.5 4

Microseconds

054 |

(S

T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Processors

Figure 8: Microbenchmark iteration time for non-
try locks. The very low overhead of the TATAS
lock is an artifact of repeated acquisition by a single
processor.

4.5 4
4 4
3.5
3
12
2
2 2.5 A = MCS_try
o —CLH_try
3 2l s TATAS
L
=
15
1,
0.5
O+—T—T———7—"——— T T T T T

—T—T—
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Processors

Figure 9: Microbenchmark iteration time for try
locks, with patience (timeout interval) of 150us.

several runs. As one might expect, none of the more complex
locks is able to improve upon the time of the TATAS lock,
though the CLH locks does tie it. The extra 35ns overhead
in the MCS lock is primarily due to the compare_and_swap
in mcs_release. The CLH-try and MCS-try locks pay an
additional penalty for the extra argument to their acquire
operations and, in the case of CLH-try, the compare_and-
swap in clh-release. Neither of the try locks calls the Sun
high-resolution timer if it is able to acquire the lock immedi-
ately. Each call to the timer consumes an additional 250ns,
which we would like to hide in wait time.

4.2 Lock passingtime

We can obtain an estimate of the time required to pass
a lock from one processor to another by running our mi-
crobenchmark on a large collection of processors. This pass-
ing time is not the same as total lock overhead: as discussed
by Magnussen, Landin, and Hagersten [7], queue-based locks
tend toward heavily pipelined execution, in which the initial
cost of entering the queue and the final cost of leaving it are
overlapped with the critical sections of other processors.

Figures 8 and 9 show the behaviors of all five queue-based
locks on one bank of the Wildfire machine, with timeout
values (“patience”) set high enough that timeout never oc-
curs in the queue-based try locks. All tests were run with a
single process (pthread) on every processor. With only one
active processor, the plotted value represents the sum of lock
and loop overhead with perfect cache locality. The value for
the queue-based locks jumps dramatically with two active
processors, as a result of coherence misses. With three or
more active processors, lock passing is fully pipelined, and
the plotted value represents the time to pass the lock from
one processor to the next.

Among the non-try locks (Figure 8), CLH-NUMA has a
noticeably greater passing time (3.1us) than either MCS or
CLH. The passing times for MCS and CLH are just about
the same, at 2.4us and 2.5us respectively. Both MCS and
CLH are faster than either of their try lock counterparts,
though at 2.7us, CLH-try beats out the CLH-NUMA lock.
At 3.2us, MCS-try has the slowest passing time.

While the TATAS lock appears to be passing much faster
than any of the other locks, this result is somewhat mislead-
ing. The queued locks are all fair: requests are granted in
the order they were made. The TATAS lock, by contrast,
is not fair: since the most recent owner of a lock has the
advantage of cache locality, it tends to outrace its peers and
acquire the lock repeatedly. (This effect would be reduced
in a more realistic benchmark, with work outside the crit-
ical section.) In our experiments successive acquisitions of
a queued lock with high patience occurred on different pro-
cessors more than 99% of the time; successive acquisitions
of a TATAS lock occurred on the same processor about 99%
of the time. This unfairness has ramifications for timeout:
even with 150us patience (long enough for every processor,
on average, to acquire and release the lock 10 times), TATAS
still fails to acquire the lock some 4% of the time.

4.3 Bimodal behavior of try locks

Figure 10 plots the percentage of time that a processor
in the microbenchmark succeed in acquiring a try lock. For
this test the timeout interval (patience) has been set at only
25us. Figure 11 plots iteration time for the same experi-
ment. With this lower patence level the the MCS-try and
CLH-try locks exhibit distinctly bimodal behavior. With
nine or fewer active processors, timeout almost never oc-
curs, and behavior mimics that of the non-try locks. With
ten or more active processors, timeouts begin to occur.

For higher processor counts, or for lower patience levels,
the chance of a processor getting a lock is primarily a func-
tion of the number of processors that are in the queue ahead
of it minus the number of those that time out and leave
the queue before obtaining the lock. As is evident in these
graphs, this chance drops off sharply with insufficient pa-
tience. The average time per iteration also drops, because
giving up an attempt to acquire a lock is cheaper than wait-
ing to acquire it.

4.4 Comparison of regular and try lockswith
TATAS

The tradeoff between MCS-try and plain MCS is as ex-
pected: at the cost of a higher average iteration time (per
attempt), the plain MCS lock always manages to success-
fully acquire the lock. At the cost of greater complexity, the
MCS-try lock provides the option of timing out. The same

120% A

100% | s
A 7 »
a N a
80% - a
a ~ N .
° o TATAS

60% _\.\ =~ MCS_try

.- — CLH_try

40% -

20% 1

0% T T T T T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Processors

Figure 10: %Acquisition at 25us patience.

4.5
4
354
» 31 ~e— NUMA
'g s ——CLH
g 25 Mcs
g 2 ~=-MCS_try
I ——CLH_try
=15 a TATAS
1
0.5
0 — —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Processors

Figure 11: Iteration time at 25us patience.

tradeoff holds between the CLH and CLH-try locks.

The tradeoffs between MCS-try or CLH-try and TATAS
are more interesting. While the iteration time is consistently
higher for the queue-based locks (Figure 11), the acquisi-
tion (success) rate depends critically on the ratio between
patience and the level of competition for the lock. When
patience is high, relative to competition, the queue-based
locks are successful all the time. Once the expected wait
time exceeds the timeout interval in the queue-based locks,
however, the TATAS lock displays a higher acquisition rate.
As we will see in Figures 14 and 15, TATAS is not able
to maintain this advantage once we exceed the number of
processors in a single bank of the Wildfire machine.

45 Resultsfor high processor counts

Generally speaking, the results for larger numbers of pro-
cessors are comparable to those seen within a single bank of
the machine. Although crossing the interconnect between
banks introduces a fair amount of noise into the timing re-
sults (see Figures 12 and 13), the MCS-try and CLH-try
locks continue to have very similar iteration times, with
MCS-try coming out somewhat slower than CLH-try.

The influence of the interconnect is particularly evident
in the MCS-try iteration time in Figure 13: an additional
bank of processors, requiring additional traversals of the in-

12 4

n -~ NUMA
'é MCS

3 ~CLH

3 ——CLH_try
S s TATAS
= —= MCS_try

0 T T T T T T T T T T T T 1
4 8 12 16 20 24 28 32 36 40 44 48 50

Processors

Figure 12: Iteration time at 200us patience.

120% A

100% -

80% 1 A

A = MCS_try
a TATAS
——CLH_try

60%

40% -

20% 1

0% T T T T T T T T T T T T 1
4 8 12 16 20 24 28 32 36 40 44 48 50
Processors

Figure 14: %Acquisition at 200us patience.

14

12 A

10 A

-~ NUMA
—=MCS_try
McCs
a TATAS
——CLH_try

—+—CLH

Microseconds

0 T T T T T T T T T T T T 1
4 8 12 16 20 24 28 32 36 40 44 48 50
Processors

Figure 13: Iteration time at 500us patience.

terconnect, comes into play between 16 and 20 processors,
and again between 28 and 32 processors. (A third transi-
tion point, between 40 and 44 processors, is not visible in
the graph.)

Figures 14 and 15 show the establishment of a very long
pipeline for lock acquisition. While the CLH-try lock sees a
lower acquisition rate than the MCS-try lock at very high
levels of competition relative to patience (Figure 14), there
is a significant intermediate range where its acquisition rate
is higher (Figure 15 and the center of Figure 14).

5. CONCLUSIONS

We have shown that it is possible, given standard atomic
operations, to construct queue-based locks in which a pro-
cess can time out and abandon its attempt to acquire the
lock. Our algorithms provide reasonable performance on
both small and large cache-coherent multiprocessors. Our
future plans include tests on the non-cache-coherent Cray
T3E; here we expect the MCS-try lock to perform particu-
larly well.

In the decade since our original comparison of spin lock al-
gorithms, ratios of single-processor latencies have remained
remarkably stable. On a 16MHz Sequent Symmetry multi-
processor, a TATAS lock without contention consumed 7us

120% A

100% 4 o =
ﬂ—x_:—'*‘\m/
a —
80% ‘.\-\-\.
s

— CLH_try
60% & -=-MCS_try
s B a TATAS
a
40% - a

20% 1

0% T T T T T T T T T T T T 1
4 8 12 16 20 24 28 32 36 40 44 48 50
Processors

Figure 15: %Acquisition at 500us patience.

in 1991. The MCS lock consumed 9us, a difference of 28%.
On a 336 MHz Sun Enterprise machine, a TATAS lock with-
out contention takes 137ns today. The MCS lock takes
172ns, a difference of 25%. The CLH lock, which we did
not test in 1991, is tied with TATAS on a single processor.

With two or more processes competing for access to a
lock, the numbers have changed more significantly over the
years. In 1991 the TATAS lock (with backoff) ran slightly
slower than the MCS lock at modest levels of contention.
Today it appears to run in less than a third of the time of
all the queue-based locks. Why then would one consider a
queue-based lock?

The answer is three-fold. First, the performance advan-
tage of the TATAS lock is exaggerated in our experiments
by the use of back-to-back critical sections, allowing a sin-
gle processor to leverage cache locality and acquire the lock
repeatedly. Second, TATAS does not scale well. Once pro-
cesses on the Wildfire machine are scattered across multiple
banks, and must communicate through the central crossbar,
iteration time for TATAS rises to 50-100% above that of
the queue-based locks. Third, even with patience as high as
2ms—200 times the average lock-passing time—the TATAS
algorithm with timeout fails to acquire the lock about 20%
of the time. This failure rate suggests that a regular TATAS
lock (no timeout) will see significant variance in acquisition

times—in other words, significant unfairness. The queue
based locks, by contrast, guarantee that processes acquire
the lock in order of their requests.

For small-scale multiprocessors the TATAS lock remains
the most attractive overall performer, provided that its back-
off parameters have been tuned to the underlying hardware.
Queue-based locks are attractive for larger machines, or for
cases in which fairness and regularity of timing are partic-
ularly important. The CLH lock, both with and without
timeout, has better overall performance on cache-coherent
machines. The version with timeout is also substantially
simpler than the MCS-try lock. One disadvantage of the
CLH lock is its need for an initial queue node in each cur-
rently unheld lock. In a system with a very large number
of locks this overhead might be an important consideration.
Because the queue nodes of the MCS lock can be allocated
statically in the local memory of the processors that spin on
them, the MCS-try lock is likely to outperform the CLH-try
lock on a non-cache-coherent machine. It is also likely, we
believe, to be faster than a hypothetical try lock based on
the CLH-NUMA lock.

6. ACKNOWLEDGMENTS

We are indebted to Vitaly Oratovsky and Michael O’Donnell

of Mercury Computer Corp. for drawing our attention to
the subject of queue-based try locks, and to Mark Hill, Alaa
Alameldeen, and the Computer Sciences Department at the
University of Wisconsin—-Madison for the use of their Sun
Wildfire machine.

7. REFERENCES

[1] T. E. Anderson. The performance of spin lock
alternatives for shared-memory multiprocessors. IEEE
TPDS, 1(1):6-16, Jan. 1990

[2] T. S. Craig. Building FIFO and priority-queueing spin
locks from atomic swap. Technical Report TR 93-02-02,
Dept. of Computer Science, Univ. of Washington, Feb.
1993.

[3] G. Graunke and S. Thakkar. Synchronization
algorithms for shared-memory multiprocessors.
Computer, 23(6):60-69, June 1990.

[4] E. Hagersten and M. Koster. Wildfire: A scalable path
for SMPs. In 5th HPCA, pages 172-181, Orlando, FL,
Jan. 1999.

[5] M. Herlihy. Wait-free synchronization. ACM TOPLAS,
13(1):124-149, Jan. 1991.

[6] L. I. Kontothanassis, R. W. Wisniewski, and M. L.
Scott. Scheduler-conscious synchronization. A CM
TOCS, 15(1):3-40, Feb. 1997.

[7] P. Magnussen, A. Landin, and E. Hagersten. Queue
locks on cache coherent multiprocessors. In 8th IPPS,
pages 165—171, Cancun, Mexico, Apr. 1994. Expanded
version available as “Efficient Software Synchronization
on Large Cache Coherent Multiprocessors”, SICS
Research Report T94:07, Swedish Institute of
Computer Science, Feb. 1994.

[8] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory
multiprocessors. ACM TOCS, 9(1):21-65, Feb. 1991.

[9] V. Oratovsky and M. O’Donnell. Personal
communication, Feb. 2000. Mercury Computer Corp.

