Non-Blocking Timeout in
Scalable Queue-Based Spin Locks

*
Michael L. Scott
Department of Computer Science
University of Rochester
Rochester, NY 14627-0226

scott@cs.rochester.edu

ABSTRACT

Queue-based spin locks allow programs with busy-wait syn-
chronization to scale to very large multiprocessors, with-
out fear of starvation or performance-destroying contention.
Timeout-capable spin locks allow a thread to abandon its
attempt to acquire a lock; they are used widely in real-time
systems to avoid overshooting a deadline, and in database
systems to recover from transaction deadlock and to tolerate
preemption of the thread that holds a lock.

In previous work we showed how to incorporate timeout
in scalable queue-based locks. Technological trends suggest
that this combination will be of increasing commercial im-
portance. Our previous solutions, however, require a thread
that is timing out to handshake with its neighbors in the
queue, a requirement that may lead to indefinite delay in a
preemptively multiprogrammed system.

In the current paper we present new queue-based locks in
which the timeout code is non-blocking. These locks sacrifice
the constant worst-case space per thread of our previous
algorithms, but allow us to bound the time that a thread
may be delayed by preemption of its peers. We present
empirical results indicating that space needs are modest in
practice, and that performance scales well to large machines.
We also conjecture that constant per-thread space cannot be
guaranteed together with non-blocking timeout in a queue-
based lock.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming— Parallel Programming

*This work was supported in part by NSF grants num-
bers EIA-0080124, CCR-9988361, and CCR-0204344, and
by DARPA/AFRL contract number F29601-00-K-0182.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or a fee.

PODC 2002, Monterey, CA

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

General Terms

algorithms, performance, experimentation

Keywords

synchronization, scalability, timeout, spin locks

1. INTRODUCTION

Spin locks are widely used for mutual exclusion on shared-
memory multiprocessors. Traditional test_and _set-based
spin locks are vulnerable to memory and interconnect con-
tention, and do not scale well to large machines. Queue-
based spin locks [2, 5, 7, 14, 16] avoid contention by arrang-
ing for every waiting thread to spin on a separate, local flag
in memory. Over the past ten years queue-based locks have
been incorporated into a variety of academic and commer-
cial operating systems, including Compaq’s Tru64, IBM’s
K42 and multiprocessor Linux systems, the Alewife [1] and
Hurricane [20] systems, and parallel real-time software from
Mercury Computer Systems.

Outside the operating system, non-scalable test-and-set
locks have come to be widely used in commercially impor-
tant applications, notably database systems such as Oracle’s
Parallel Server and IBM’s DB2. Many of these applications
depend critically on the ability of a thread that waits “too
long” to time out and abandon its attempt to acquire a lock.
Timeout-capable “try locks” allow a real-time application to
signal an error condition or pursue an alternative code path.
In a database system, they provide a simple means of recov-
ering from transaction deadlock.

Unfortunately, until recently it was not clear how to com-
bine scalability and timeout. The problem is that while
threads competing for a test-and-set lock are mutually anony-
mous, and can abandon their spins without anyone being
the wiser, threads in a queue-based lock are linked into an
explicit data structure. A timed-out thread must somehow
introduce its neighbors in the queue to one another, even in
cases where the neighbors may also be timing out.

In a recent paper [19] we introduced timeout-capable queue-
based try locks based on our MCS lock [16] and on the re-
lated CLH lock, due to Craig [5] and to Landin and Hager-
sten [14]. These locks perform well on large machines, and
require only O(L+T) total space for L locks and T threads.
Unfortunately, they require that a departing thread “hand-
shake” with its neighbors in the queue in order to determine
when all the references to a queue node have been updated,

and the node can be reclaimed. This handshaking is not a
problem in a system with one thread per processor, but it
may indefinitely delay timeout in a multiprogrammed sys-
tem, because a neighbor thread may be preempted, and thus
unable to cooperate. This delay is unacceptable in a real-
time system, where it may lead to deadlines being missed,
and highly undesirable in a database system, where it may
significantly impact performance.

The problem of preemption in critical sections has re-
ceived considerable attention over the years. Alternative
strategies include avoidance [6, 10, 15], recovery [3, 4], and
tolerance [9, 17]. The latter approach is appealing for com-
mercial applications because it does not require modifica-
tion of the kernel interface: if a thread waits “too long”
for a lock, it assumes that the lock holder has been pre-
empted. It abandons its attempt, yields the processor to
another thread (assuming there are plenty) and tries again
at a later time. In database systems timeout serves the dual
purpose of deadlock recovery and preemption tolerance.

In this paper we introduce a pair of queue-based spin
locks—the CLH-NB try lock and the MCS-NB try lock—
in which timeout is non-blocking: a thread that decides to
abandon its attempt to acquire a lock can do so without the
assistance of any other thread, allowing it to strictly bound
the time it spends waiting (successfully or unsuccessfully)
for a lock. In order to minimize space overhead, we attempt
to reclaim queue nodes as soon as possible, but—the price
of preemption safety—there are pathological schedules in
which our algorithms may require unbounded space.

We introduce our algorithms in section 2. We also conjec-
ture that it is impossible in any queue based lock to combine
non-blocking timeout with an O(L + T) space bound. In
section 3 we compare the performance of our new locks to
existing test_and_set and queue-based locks on large-scale
and multiprogrammed multiprocessors. With threads on 64
processors attempting to acquire a lock simultaneously, we
identify cases in which a traditional test-and-set lock (with
backoff) takes more than six times as long as our CLH-NB
try lock per lock acquisition attempt, while failing (timing
out) more than 22 times as often. In experiments with more
threads than processors, we also demonstrate clearly the
performance advantage of non-blocking timeout. We return
in section 4 to a summary of conclusions and directions for
future work.

2. ALGORITHMS

In the subsections below we describe a pair of queue-based
spin locks in which a waiting thread, once it decides to leave
the queue, can do so within a bounded number of its own
time steps. The CLH-NB try lock is the simpler of the two,
but relies on cache coherence. The MCS-NB try lock can
be expected to scale better on non-cache-coherent machines.
Code for the first of these locks can be found in the appendix.
Code for both is also on-line: www.cs.rochester.edu/~scott/

synchronization/pseudocode/nb_timeout.html. Informal cor-

rectness arguments can be found in the technical report ver-
sion of this paper [18]. We are currently working to increase
our confidence in these arguments through use of an exhaus-
tive model-checking tool.

In the original CLH [14] and MCS [16] locks, and in the
CLH try and MCS try locks [19], space management for
queue nodes is delegated to the callers of the acquire and
release operations, and the queue node passed to MCS_re-

lease or returned from CLH_release is guaranteed to be
available for immediate reuse once the release operation
completes. For reasons discussed in section 2.4, no such
guarantee seems possible for locks with non-blocking time-
out. We therefore choose in the CLH-NB try and MCS-NB
try locks to perform dynamic space allocation within the
acquire and release operations. To allow the release op-
eration to find the queue node allocated by the acquire
operation, we arrange for acquire to write a reference to
that node into an extra field (a head pointer) of the lock
variable itself, once the lock is held. A serendipitous side
effect of this strategy is that the CLH-NB try and MCS-NB
try locks can employ a standard API, making them suitable
for linking with binary-only commercial applications.

2.1 CLH-NB try lock

Our first new algorithm is based on the lock of Craig [5]
and of Landin and Hagersten [14]. A lock variable takes the
form of a tail pointer for a singly linked list of queue nodes.
A thread that wishes to acquire the lock allocates a node,
swaps it into the tail pointer, and then spins on a flag in the
node ahead of it in line, which was returned by the swap.

We have modified this lock to allow non-blocking timeout.
In our version individual queue nodes contain only a single
pointer. When nil this pointer indicates that the thread
spinning on the node must wait. When set to AVAILABLE (a
value we assume to be different from any valid reference),
the pointer indicates that the lock is available to the thread
spinning on the node. When neither nil nor AVAILABLE, the
pointer contains a reference to the previous node in the list,
and (in a departure from the original version of the lock)
indicates that the thread that allocated the node containing
the pointer has timed out. Up until its decision to time
out, a thread maintains its reference to the node on which
it is spinning in a local variable, rather than its queue node
(indicated in the figure by starting the tail of an arrow in
the empty space below a queue node).

In the event of timeout two principal cases arise, illus-
trated in figure 1. In the left-hand portion of the figure,
departing thread B is in the middle of the queue, spinning
on the pointer in the node allocated by thread A. When B
times out it indicates its intent to leave by storing into its
own queue node a reference to A’s node. Thread C, which
is spinning on B’s node, notices this change. It updates its
own local pointer to refer to A’s node instead of B’s, and
then reclaims B’s node.

Unfortunately, B cannot be certain that C exists. The
case where it does not is illustrated in the right-hand side
of figure 1. After writing the reference to A’s queue node
into its own queue node, B performs a compare_and_swap
on the queue tail pointer, in an attempt to change it from
a reference to B’s node into a reference to A’s node. In the
middle-of-the-queue case (left) this operation will fail. In
the end-of-the-queue case (right) it succeeds, and B knows
that it can reclaim its own queue node. In either case B
can return as soon as it has attempted the compare_and._
swap; it does not have to wait for C. If the compare_and_
swap failed, B’s queue node will not be available for reuse
until it is reclaimed by C', or by some other, later thread, if
C has also timed out.

In our realization of the CLH-NB try lock (see appendix)
we have made one additional departure from the original
CLH lock. By analogy to the end-of-queue case for time-

aN=N=

[t~ L
[~ L]

O—_ O

B marks its node
and leaves

C dereferences B's
node and reclaims it

|:|<—E|<—E| B marks its node

|:| B updates tail pointer,
reclaims its node, and leaves

Figure 1: Timeout in the CLH-NB try lock, with departing thread B in the middle (left) or at the end (right)

of the queue.

out, we can eliminate the extra, “dummy” node in an un-
contended lock by performing a compare_and_swap in the
release operation. This extra atomic operation increases
the overhead of every critical section, but reduces by one
word the size of an unheld lock. Of course, we added a word
to the lock in order to hold the head pointer that allows us
to use a standard API; in effect, we have chosen to expend
a bit of time in order to “buy back” this extra space.

Because reclaimed queue nodes may be reused, we must
be careful to avoid the so-called ABA problem, in which a
reference to a newly allocated node is mistaken for a ref-
erence to a previously reclaimed node. Specifically, once
thread B writes a reference to X into node Y, B’s successor
may reclaim Y. If Y’s space is recycled quickly and used for
some new queue node Y, which is used in an attempt to
acquire the same lock for which Y was used, B’s compare_
and_swap may succeed when it should not. We can avoid this
possibility, in this particular case, by using a memory allo-
cator in which a given block of storage is always allocated
by the same thread. Then Y’s space, which was allocated
by B, will be reused only by B, and only after B has at-
tempted the compare_and_swap in which the ABA problem
arises. Code for our space management routines appears in
the appendix.

2.2 MCS-NB try lock

Our second new algorithm is based on the earlier lock of
Mellor-Crummey and Scott [16]. As in the CLH lock, an
MCS lock variable takes the form of a tail pointer for a list
of queue nodes, but where the CLH queue is linked from
tail to head, the bulk of the MCS queue is linked from head
to tail. After swapping a reference to its own queue node
into the tail pointer, a thread writes an additional reference
to its node into the next pointer of its predecessor’s node.
It then proceeds to spin on its own node, rather than the
predecessor’s node. This “backward” linking allows a thread
to spin on a location that is guaranteed to be local even on a
non-cache-coherent machine. Unfortunately, as we shall see
below, it also makes timeout significantly more complex.

To release a standard MCS lock, a thread attempts to
follow its next pointer and update the word on which its
successor is spinning. If the pointer is still nil, the thread
performs a compare_and swap on the lock tail pointer, in
an attempt to replace a pointer to its own node with a nil
pointer. If that attempt fails then some other thread must
be in the process of linking itself into the queue. The releas-

ing thread waits for its next pointer to be updated, then fol-
lows it and updates the successor’s status word. Like hand-
shaking in the timeout code of our previous try locks [19],
we must eliminate the spin in release if we are to bound
the time required by lock operations.

In our timeout-capable MCS-NB try lock, illustrated in
figure 2, queue nodes contain a status flag and a pair of
pointers, used to link the queue in both directions. As in the
plain MCS lock, the backward (next) pointer in node Y al-
lows the thread B that allocated Y to find the node on which
a successor thread is spinning. When nil, Y’s next pointer
indicates that no successor node is known. Three additional
values, assumed not to be the same as any valid reference,
correspond to special states. When set to AVAILABLE, Y’s
next pointer indicates that the lock is currently available.
When set to LEAVING, it indicates that B has timed out and,
further, that no next pointer anywhere refers to Y. When
set to TRANSIENT, Y'’s next pointer also indicates that B has
timed out, but that in doing so B was unable to break the
reference to Y from its predecessor node.

The status word of a queue node has five possible val-
ues. Before linking its node into the queue, a thread initial-
izes its status word to waiting. Once the link-in operation
is complete, the thread will spin waiting for the value to
change. Three possible values—available, leaving, and
transient—mirror the special values of node next point-
ers described in the previous paragraph. The final value—
recycled—allows us to address race conditions in which two
threads have references to a node that needs to be reclaimed.
Whichever thread uses its pointer last will find the recycled
flag, and know that it is responsible for reclamation.

When a thread C' performs an initial swap on the tail
pointer of a lock that is not currently available, it receives
back a reference to the queue node Y allocated by C’s pre-
decessor, B. C swaps a reference to its own node, Z, into
Y’s next pointer. By using a swap, rather than an ordinary
write (as in the original MCS lock), C' can recognize the case
in which B decides to release the lock or to leave the queue
when C has already swapped itself into the tail of the queue,
but before C' has updated Y’s next pointer. Among other
things, this mechanism allows B to release the lock without
waiting for C to complete its link-in operation.

If C’s swap on Y’s next pointer returns AVAILABLE, C'
knows that it has the lock. Moreover B’s compare_and_swap
on the lock tail pointer (which it performs in order to cover
the case when it is the last thread in the queue) is guaranteed

A B C

L] s W] 5] W]]
Lw] o [w] I W] |

7 7 N 7
(W[35 W [l
(W[35w [l
[TW[3 WIt] [W]

[W]

A B Q

(W[[W[T
(W[W]

(W[4 T W]
[T W]

(W ¥ (g)

action by B

action by C (left),
B (right)

Figure 2: Timeout in the MCS-NB try lock, with departing thread B in the middle (left) or at the end
(right) of the queue. For clarity, references to predecessor nodes that are held in local variables, rather than

in gnodes, are not shown.

to fail, because C’s original swap on the tail pointer removed
the reference to Y. C therefore knows that B will neither
update Z nor reclaim Y, so C reclaims Y, writes a reference
to Z into the head pointer field of the lock, and returns
successfully.

If the swap on Y’s next pointer returns LEAVING, C' knows
that B has timed out. It also knows, for reasons similar
to those in the preceding paragraph, that B will neither
update Z nor reclaim Y. C updates its local pred pointer
to contain the reference found in Y’s prev pointer, instead
of a reference to Y. C' then reclaims Y and tries again to
link itself into line, using the updated pred.

Finally, if the swap on Y’s next pointer returns TRANSIENT,
C knows that B has timed out, but that B’s predecessor, A,
has a reference to Y, and is planning to use it. Whichever
thread, A or C, accesses Y last will need to reclaim it. C
swaps a recycled flag into Y’s status word. If the return
value of the swap is waiting, C' knows that it has accessed Y
before A, and that A will take responsibility for reclaiming
it. If the return value of the swap is available, leaving, or
transient, however, C' knows that A has already accessed
Y. C therefore reclaims Y. In either case, C' updates its
local pred pointer and tries to link itself into line again, as
in the preceding paragraph. Seen from A’s perspective, any
time we update the status word of a successor queue node
we use a swap operation to do so, and reclaim the node if
the return value is recycled.

Once successfully linked into the queue, thread C spins
on the status word in its own queue node, Z. If that word
changes to available, C writes a reference to Z into the
head pointer field of the lock, and returns successfully. If Z’s
status word changes to leaving or transient, C resets it to
waiting and then behaves as it would have in the preceding
paragraphs, had it found LEAVING or TRANSIENT in the next
pointer of its predecessor’s queue node, Y.

If C' times out in the algorithm’s inner loop, spinning on
Z’s status word, it first stores its local pred pointer into Z’s
prev pointer. It then attempts to erase the reference to Z
found in Y’s next pointer, using compare_and_swap. If that

attempt succeeds, C' swaps LEAVING into Z’s next pointer
and, if necessary, swaps leaving into the status word of Z’s
successor node. As described above, C' reclaims the succes-
sor node if the status word was already set to recycled.
Finally, if Z appears to have no successor, C' attempts to
link it out of the end of the queue with a compare_and_swap
and, if that operation succeeds, reclaims Z.

If C fails to erase the reference to Z found in Y’s next
pointer, then it knows its predecessor B will try to update
Z’s status word. It therefore swaps TRANSIENT into Z’s next
pointer and, if necessary, swaps transient into the status
word of Z’s successor node, reclaiming that node if its sta-
tus word was already recycled. If Z appears to have no
successor, then C' must simply abandon it, to be reclaimed
by some thread that calls the acquire operation at some
point in the future.

If C times out in the algorithm’s outer loop, while at-
tempting to update a predecessor’s next pointer, it mimics
the case of timeout in the inner loop: it restores its predeces-
sor’s next pointer, sets Z’s status to leaving or transient,
as appropriate, and then takes the actions described in one
of the preceding two paragraphs.

2.3 Space requirements

Unfortunately, in order to avoid any spins in time-out
code, we must generally return from an unsuccessful acquire
operation without having reclaimed our queue node (that
task having been left to some successor thread). As a re-
sult, we lose the O(L + T') overall space bound of the CLH
try lock and the MCS try lock, with L locks and T threads.

Perhaps the simplest pathological scenario occurs in ei-
ther lock when the last thread in line is preempted. If the
second-to-last thread then times out, its node may go un-
reclaimed for an arbitrarily long time. If the third-to-last
thread subsequently times out its node may go unreclaimed
as well, and so on.

Victor Luchangco of Sun Labs has observed [13] that worst-
case space needs are in fact unbounded, with as few as three
active threads in the CLH-NB try lock (see figure 4). Sup-

x \\\\ Q
TRk FIi— -+ —F oI F k£]

Figure 3: Impossible scenario for non-blocking timeout and constant space per thread.

pose initially that threads A, B, and C are waiting for the
lock. Suppose then that B and C decide to leave at approxi-
mately the same time, and stop spinning on nodes X and Y.
B then writes a reference to X into Y, but C' is preempted
before it can write a reference to Y into Z. B’s compare_
and_swap on the lock tail pointer will fail, because Z is in
the way, and B will return from acquire without having
reclaimed Y. If B requests the lock again it will get into
line with a new queue node, call it Y’. Suppose that B then
times out again, decides to leave the queue, and stops spin-
ning on Z. Only now, let us suppose, does C wake up again
and write a reference to Y into Z. (C’s compare_and_swap
on the lock tail pointer will fail because Y’ is in the way,
and C will return from acquire without having reclaimed
Z. This scenario can, in principle, repeat indefinitely. A
similar scenario exists for the MCS-NB try lock.

(e]
]
]

e Lk

Figure 4: Worst-case scenario for space in the CLH-
NB try lock.

2.4 Impossibility conjecture

Ideally, one might hope to design a queue-based spin lock
with non-blocking timeout and an O(L + T') space bound.
We conjecture in this section that no such lock is possible.

Imagine a lock on which N threads are waiting (figure 3).
Suppose now that N — 2 of these threads—all but the first
and the last—decide to leave at essentially the same time.
Imagine further that the last thread in line has been pre-
empted, and that the first thread, which has the lock, is in
a very long critical section. The departing threads would
all like to complete their timeout operations in a bounded
number of their own local time steps. In order to reclaim
space while maintaining the integrity of the queue, we must
arrange to introduce the remaining threads (the first and the
last) to each other. But because the queue embodies only
local knowledge, we must perform O(N) work in order to
make this introduction. While a hypothetical highly clever
algorithm might be able to perform this work in O(log N)

time using a parallel prefix-like strategy [8], it seems clear
we cannot do it in constant time.

It would be easy, of course, to obtain an O(L x T') overall
space bound, by remembering the last queue node used by
thread T in its attempt to acquire lock L. The next time T’
tried to acquire L it could check to see if the node were still
in L’s queue, in which case T could resume waiting where
it was when it last timed out. This mechanism would have
significant time cost, however, and seems unwarranted in
practice.

3. PERFORMANCE RESULTS

We have implemented eight different lock algorithms using
the swap and compare_and_swap operations available in the
Sparc V9 instruction set: TAS-B, TAS-B try, CLH, CLH
try, CLH-NB try, MCS, MCS try, and MCS-NB try. Our
tests employ a microbenchmark consisting of a tight loop
containing a single acquire/release pair and optional timed
“busywork” inside and outside the critical section.

Acquire and release operations are implemented as in-
line subroutines wherever feasible. Specifically: for CLH
and MCS we in-line both acquire and release. For TAS-
B, TAS-B try, and CLH try we in-line release and the “fast
path” of acquire (with an embedded call to a true subrou-
tine if the lock is not immediately available). For MCS try
we in-line the fast path of both acquire and release. For
CLH-NB try and MCS-NB try the need for dynamic memory
allocation forces us to implement both acquire and release
as true subroutines.

Performance results were collected on an otherwise un-
loaded 64-processor Sun Enterprise 10000 multiprocessor,
with 466MHz Ultrasparc 2 processors. Assignment of threads
to processors was left to the operating system. Code was
compiled with the —O3 level of optimization in gcc version
2.8.1, but was not otherwise hand-tuned. Architecturally,
the Enterprise 10000 is a cache-coherent non-uniform mem-
ory access (CC-NUMA) machine. It has 16 system boards,
each of which contains 4 processors and a portion of the
global memory. Coherence is implemented via snooping on
4 independent global address buses. Data is transferred over
a separate 16 x 16 crossbar.

3.1 Single-processor results

We can obtain an estimate of lock overhead in the absence
of contention by running the microbenchmark on a single
processor, with no critical or non-critical “busywork”, and
then subtracting out the loop overhead. Results appear in
table 1. The first column gives measured processor cycles on
the Enterprise 10000. In an attempt to avoid perturbation
due to kernel activity, we have reported the minima over a
series of 8 runs. The remaining columns indicate the num-
ber of atomic operations (swaps and compare_and_swaps),
shared-memory reads, and shared-memory writes found in
the fast path of each algorithm. The times for the CLH-

120

psliteration
S
}

percent success

—— TAS-B plain
——TAS-B try
—%—MCS-NB try
—%—CLH-NB try
MCS try
—+— MCS plain
—#-CLH try
—o— CLH plain

0 8 16 24 32 40 48 56 64

threads

T T T T T T T T 0
0 8 16 24 32 40 48 56 64

threads

Figure 5: Microbenchmark net iteration time (left) and success rate (right) with patience of 22545, non-critical
busywork of 440ns and critical section busywork of 229ns. Below 36 processors the TAS locks are acquired
consecutively by the same processor more than half the time.

NB and MCS-NB try locks include dynamic allocation and
deallocation of queue nodes.

As one might expect, none of the queue-based locks is able
to match the time of the TAS-B lock. The closest competi-
tor, the plain CLH lock, takes nearly twice as long. Atomic
operations are the single largest contributor to overhead.
The CLH-NB try and MCS-NB try locks, which are not in-
lined, also pay a significant penalty for subroutine linkage.

The importance of single-processor overhead can be ex-
pected to vary from application to application. It may be
significant in a database system that makes heavy use of
locks, so long as most threads inspect independent data,
keeping lock contention low. For large scientific applications,
on the other hand, Kumar et al. [11] report that single-
processor overhead—Ilock overhead in general—is dwarfed
by waiting time at contended locks, and is therefore not a
significant concern.

cycles atomic ops reads writes

TAS-B 19 1 0 1
TAS-B try 19 1 0 1
CLH 35 1 3 4
CLH try 67 2 3 3
CLH-NB try 75 2 3 4
MCS 59 2 2 1
MCS try 59 2 2 1
MCS-NB try 91 3 3 4

Table 1: Single-processor (no-contention, in-cache)
spin-lock overhead.

3.2 Overhead on multiple processors

We can obtain an estimate of the time required to pass
a lock from one processor to another by running our mi-
crobenchmark on a large collection of processors. This pass-
ing time is not the same as total lock overhead: as discussed
by Magnussen, Landin, and Hagersten [14], queue-based
locks tend toward heavily pipelined execution, in which the
initial cost of entering the queue and the final cost of leaving

it are overlapped with the critical sections of other proces-
sors. In recognition of this difference, we subtract from mi-
crobenchmark iteration times only the critical section “busy-
work”, not the loop overhead or other non-critical work.

Figure 5 shows the behaviors of all eight locks on the En-
terprise 10000, with timeout threshold (patience) of 225us,
non-critical busywork of 440ns (50 iterations of an empty
loop), and critical section busywork of 229ns (25 iterations
of the loop). With a lock-passing time of about 3.4us in
the MCS-NB try lock, there isn’t quite enough time to fin-
ish 63 critical sections before the 64th thread times out
((3400+229) x 63 > 225,000). As a result the success rate of
the MCS-NB try lock drops sharply at the right end of the
graph, and the CLH-NB try lock is just reaching the drop-
off point. The TAS-B try lock, on the other hand, suffers a
severe increase in passing time around 36 processors, with
a corresponding drop-off in success rate. Passing time for
the TAS-B lock without timeout has been omitted beyond
40 processors so as not to distort the scale of the graph. At
64 processors it is 45.0us.

Below about 20 processors the TAS-B locks appear to
outperform all competitors, but this appearance is some-
what misleading. The queued locks are all fair: requests
are granted in the order they were made. The TAS-B lock,
by contrast, is not fair: since the most recent owner of a
lock has the advantage of cache locality, it tends to outrace
its peers and acquire the lock repeatedly. At 20 processors,
in fact, the TAS-B locks are “handed off” from one proces-
sor to another only about 30% of the time, despite the fact
that each thread performs 440ns of busywork between its
critical sections. Not until more than 36 processors are ac-
tive does the handoff rate rise above 50%. System designers
considering the use of a TAS-B lock may need to consider
whether this unfairness is acceptable in the event of severe
contention.

3.3 The impact of preemption

In an attempt to assess the benefits and cost of non-
blocking timeout, we have also collected results on a pre-
emptively scheduled system with more threads than proces-

100

80

~—#-CLH try
MCS try

—%—MCS-NB try x\\
—%—CLH-NB try 40

:X 60

psliteration

threads

percent success

W .

threads

Figure 6: Microbenchmark iteration time (left) and success rate (right) with patience of 15us and critical
section busywork of 305ns (25 iterations of empty loop) on an overburdened 8-processor machine.

sors. Specifically, we ran our microbenchmark with 8-16
threads on an 8-processor Sun Enterprise 4500, a symmetric
multiprocessor with 336 MHz processors and separate split-
transaction buses for addresses (snooping) and data. With
increasing numbers of threads comes an increasing chance of
preemption, not only in the critical section, but also while
waiting in the queue. Under these circumstances we would
expect the CLH-NB and MCS-NB try locks to outperform
the handshake-based CLH and MCS try locks. Our results
confirm this expectation.

Figure 6 plots iteration time and acquire success rate
against number of threads for our preemption sensitivity ex-
periment. Results were averaged over 16 runs, each of which
performed 100,000 acquire/release pairs per thread. The
timeout threshold (patience) was chosen to produce a mod-
estly overloaded system when running with one thread on
each of the machine’s 8 processors. As discussed below, the
meaning of “iteration time” is rather complicated in this ex-
periment. The numbers plotted in the left side of the figure
are T, /ti, where T is total wall clock time, ¢ is the number
of threads, and ¢ is the number of iterations performed by
each thread.

As the number of threads exceeds the number of pro-
cessors, the success rate plummets, due primarily to pre-
emption of threads in their critical sections. The difference
between blocking and non-blocking timeout then becomes
sharply visible in the left-hand graph. The CLH-NB and
MCS-NB try locks are able to bound the amount of time
that a thread spends waiting for an unavailable lock; the
CLH and MCS try locks cannot.

We can model iteration time in this experiment in two re-
lated ways. First, successful acquire operations introduce
critical sections, which exclude one another in time. Total
wall clock time should therefore equal the number of suc-
cessful acquire operations times the average cost (passing
time, critical section busywork, and time spent preempted)
of a single critical section. Let T}, be lock passing time, T, be
critical section busywork, ¢ again be the number of threads,
and 7 again be the number of iterations executed by each
thread. Now measure s, the acquire operation success rate,
and T, the total wall clock time. We can estimate T, the

average time per critical section spent preempted, via the
following equations:

To = sti(To+T.+Ts)
Ts

T. = — —(Ta Te
st1 (Ta +Tc)

Note that T, can be estimated based on experiments with
ample patience and a dedicated thread per processor.

Second, failed acquire operations and the busy-waiting
prior to successful acquire operations occur more-or-less in
parallel. Total wall clock time should therefore equal the
total number of unsuccessful acquire operations times the
average cost (loop overhead, patience, and timeout [hand-
shake] time) of a single failed acquire, plus the total num-
ber of successful acquire operations times the average wait
time, all divided by the number of processors not busy on
the critical path (i.e. one fewer than the total number of
Processors).

Let m be the number of processors in the machine, 7}, be
patience, and 7} be loop overhead. If we let T}, represent the
average lock wait time, then we can estimate T}, the time
required for timeout (including handshaking if necessary)
via the following equations:

y
T, = ——[Ti+ (1 —s)(Tp +Th) + sTu]
m—1
ti
< T+ Ty (1)T
7, s -DT Tt

(1—s)ti 1—s

Here we have exploited the fact that T3, > T,. T; can be
estimated based on single-processor experiments.

Figure 7 plots our estimates of T, and T} for the exper-
iments depicted in figure 6, with ¢ > 8 threads. Values for
T, vary greatly from run to run, reflecting the fact that
preemption in a critical section is relatively rare, but very
expensive. Variations among algorithms in preempted time
per critical section can be attributed to the rate of success
of acquire operations and, to a lesser extent, lock overhead.
Higher rates of success and lower overhead increase the per-

b

10 12 14 16

threads

120

n
o

m X

5 300 100 TI);
a =
© 250 3
g- 80 O
2 200 /' ~= CLH try /./ g
0 N
B MCS try 60 ©
£ />< —%—MCS-NB try S
@ 150 ©
] —%— CLH-NB try L}
o 40 g
Q 100 >
£ °
= b
= o
o

10 12 14 16

threads

Figure 7: Calculated values of T, (left) and 7}, (right), with patience of 16.5us and critical section busywork

of 305ns on the 8-processor Enterprise machine.

centage of time that a thread is in its critical section, and
thus the likelihood that it will be preempted there.

The right-hand side of figure 7 is in some sense the “punch
line” of this paper: with the CLH-NB and MCS-NB try
locks, a thread can leave the queue within a modest constant
amount of time. In the CLH and MCS try locks it can
be arbitrarily delayed by the preemption of a neighboring
thread.

The careful reader will note that the times given in the
right-hand side of figure 7 are significantly larger than the
“times” given in the left-hand size of figure 6. By dividing
wall clock time (7s) by the total number of acquire at-
tempts (ti), figure 6 effectively pretends that all those oper-
ations happen sequentially. The calculations behind figure 7
recognize that much of the work occurs in parallel.

3.4 Space overhead

As part of the experiments reported in the previous sec-
tion, we instrumented our space management routines (see
appendix) to remember the maximum number of queue nodes
ever extant at one time. Across the sixteen measured runs,
encompassing six million acquire/release pairs, the maxi-
mum number of allocated queue nodes was 84, or roughly 5
per thread. The CLH-NB and MCS-NB try locks appear to
be roughly comparable in the number of nodes they require.

Given that our experiment was deliberately designed to
induce an unreasonably high level of lock contention, and
to maximize the chance of inopportune preemption, we find
this relatively modest maximum number of queue nodes re-
assuring. We would not expect space overhead to be an
obstacle to the use of non-blocking timeout in any realistic
setting.

4. CONCLUSIONS

We have shown that it is possible, given standard atomic
operations, to construct queue-based locks in which a thread
can time out and abandon its attempt to acquire the lock.
Our previous algorithms guaranteed immediate reclamation
of abandoned queue nodes, but required that a departing
thread obtain the cooperation of its neighbors. Our new
algorithms incorporate non-blocking timeout code, and can

safely be used in the presence of preemption (assuming, of
course, that the processor can be put to other use while
waiting for the preempted lock holder to be rescheduled).
The price of non-blocking timeout is an unbounded worst-
case requirement for space. We have argued, however, that
large amounts of space are unlikely to be required in prac-
tice, and our experimental results support this argument.
Results obtained on a 64-processor Sun Enterprise 10000
indicate that traditional test-and-set locks, which support
timeout trivially, do not scale to large machines, even when
designed to back off in the presence of contention. Techno-
logical trends would appear to be making queue-based locks
increasingly important, and a timeout mechanism signifi-
cantly increases the scope of their applicability. On a single
processor, without contention, the CLH-NB try lock takes
about twice as long as the plain (no timeout) CLH lock,
which in turn takes about twice as long as a conventional
test-and-set lock (with or without timeout). The signifi-
cance of this single-processor overhead is unclear: unless
threads all access different locks, a lock that sees little con-
tention is probably lightly used, and its overhead is unlikely
to have a significant impact on overall program run time.
With 64 processors attempting to acquire the lock simul-
taneously, however, we were able to identify cases in which
attempts to acquire a test-and-set lock (with backoff) took
more than six times as long as attempts to acquire a CLH-
NB try lock, while failing (timing out) more than 22 times
as often (82% of the time, v. 3.7% for the CLH-NB try
lock). While one of course attempts in any parallel program
to avoid high lock contention, conversations with colleagues
in industry indicate that pathological cases do indeed arise
in practice, particularly in transaction processing systems,
and graceful performance degradation in these cases is of
significant concern to customers.
For small-scale multiprocessors we continue to recommend
a simple test-and-set lock with backoff. Queue-based locks,
however, are attractive for larger machines, or for cases in
which fairness and regularity of timing are particularly im-
portant. The CLH lock, both with and without timeout,
has better overall performance than the MCS lock on cache-
coherent machines. The CLH-NB try lock is also substan-

tially simpler than the MCS-NB try lock. We would expect
the relative performance of the queue-based locks to be re-
versed on a non-cache-coherent machine, even if the CLH-
NB try lock were modified to ensure local-only spinning,
using an extra level of indirection [5].

The provision for timeout in scalable queue-based locks
makes spin locks a viable mechanism for user-level synchro-
nization on large multiprogrammed systems. In future work
we hope to evaluate our algorithms in the context of com-
mercial OLTP codes. We also plan to develop variants that
block in the scheduler on timeout [9, 17], cooperate with the
scheduler to avoid preemption while in a critical section [6,
10], or adapt dynamically between test_and_set and queue-
based locking in response to observed contention [12]. In a
related vein, we are developing a tool to help verify the cor-
rectness of locking algorithms by transforming source code
automatically into input for a model checker.

5. ACKNOWLEDGMENTS

Our thanks to Paul Martin and Mark Moir of Sun Labs,
Boston, for their help in obtaining results on the 64-processor
Enterprise machine.

6. REFERENCES

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson,
D. Kranz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie, ,
and D. Yeung. The MIT Alewife machine:
Architecture and performance. In 22nd Intl. Symp. on
Computer Architecture, pages 2—13, Santa Margherita
Ligure, Italy, Jun. 1995.

[2] T. E. Anderson. The performance of spin lock
alternatives for shared-memory multiprocessors. I[EEE
Transactions on Parallel and Distributed Systems,
1(1):6-16, Jan. 1990.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism.
ACM Transactions on Computer Systems, 10:53-79,
Feb. 1992.

[4] D. L. Black. Scheduling support for concurrency and
parallelism in the Mach operating system. Computer,
23(5):35-43, May 1990.

[5] T. S. Craig. Building FIFO and priority-queueing spin
locks from atomic swap. Technical Report TR
93-02-02, Department of Computer Science, University
of Washington, Feb. 1993.

[6] J. Edler, J. Lipkis, and E. Schonberg. Process
management for highly parallel UNIX systems. In
USENIX Workshop on Unixz and Supercomputers,
pages 1-17, Pittsburgh, PA, Sep. 1988.

[7] G. Graunke and S. Thakkar. Synchronization
algorithms for shared-memory multiprocessors.
Computer, 23(6):60-69, Jun. 1990.

[8] M. Herlihy. Personal communication, Oct. 2001.

[9] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki.
Empirical studies of competitive spinning for a
shared-memory multiprocessor. In 13th ACM Symp.
on Operating Systems Principles, pages 41-55, Pacific
Grove, CA, Oct. 1991.

[10] L. I. Kontothanassis, R. W. Wisniewski, and M. L.
Scott. Scheduler-conscious synchronization. ACM
Transactions on Computer Systems, 15(1):3-40, Feb.
1997.

[11] S. Kumar, D. Jiang, R. Chandra, and J. P. Singh.
Evaluating synchronization on shared address space
multiprocessors: Methodology and performance. In
SIGMETRICS Intl. Conf. on Measurement and
Modeling of Computer Systems, pages 23—34, Atlanta,
GA, May 1999.

[12] B.-H. Lim and A. Agarwal. Reactive synchronization
algorithms for multiprocessors. In 6th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, pages 25—35, San Jose, CA, Oct.
1994.

[13] V. Luchangco. Personal communication, Jan. 2002.

[14] P. Magnussen, A. Landin, and E. Hagersten. Queue
locks on cache coherent multiprocessors. In 8th Intl.
Parallel Processing Symposium, pages 165-171,
Cancun, Mexico, Apr. 1994. Expanded version
available as “Efficient Software Synchronization on
Large Cache Coherent Multiprocessors”, SICS
Research Report T94:07, Swedish Inst. of Computer
Science, Feb. 1994.

[15] B. D. Marsh, M. L. Scott, T. J. LeBlanc, , and E. P.
Markatos. First-class user-level threads. In 13th ACM
Symp. on Operating Systems Principles, pages
110-121, Pacific Grove, CA, Oct. 1991.

[16] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer
Systems, 9(1):21-65, Feb. 1991.

[17] J. K. Ousterhout. Scheduling techniques for
concurrent systems. In 3rd Intl. Conf. on Distributed
Computing Systems, pages 22-30, Miami/Ft.
Lauderdale, FL, Oct. 1982.

[18] M. L. Scott. Non-blocking timeout in scalable
queue-based spin locks. Technical Report TR 773,
Department of Computer Science, University of
Rochester, Feb. 2002. Available at
http://www.cs.rochester.edu/trs/systems-trs.html.

[19] M. L. Scott and W. N. Scherer III. Scalable
queue-based spin locks with timeout. In 8th ACM
Symp. on Principles and Practice of Parallel
Programming, pages 44-52, Snowbird, UT, Jun. 2001.

[20] R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm.
Hierarchical clustering: A structure for scalable
multiprocessor operating system design. The Journal
of Supercomputing, 9(1/2):105-134, 1995.

APPENDIX

A. CODE FOR ALGORITHMS

The following page contains slightly stylized C code for the
queue node space management routines and the CLH-NB
try lock. Code for the MCS-NB try lock (1.5 pages) would
not fit in the conference proceedings. It can be found on-line
at www.cs.rochester.edu/~scott /synchronization/pseudocode/
nb_timeout.html. Compilable source code for Sparc V9/Solaris
can be found at ftp.cs.rochester.edu/pub/packages/scalable_
synch/nb_timeout.tar.gz.

/1 Code to manage a l|ocal but shared pool of gnodes. #define cqgn_swap(p,v) (clh_nb_gnode *) \

/1 Al nodes are allocated by, and used by, a given thread, and nay swap((vol atile unsigned long*) (p), (unsigned long) (v))

/1l reside in local menory on an ncc-numa machine. The nodes bel ongi ng #define conpare_and_store(p,o,n) \

/1 to a given thread forma circular singly linked list. The head (cas((volatile unsigned long *) (p), \

/'l pointer points to the node npbst recently successfully allocated. (unsigned long) (o), (unsigned long) (n)) \

/1 A thread allocates fromits own pool by searching forward fromthe == (unsigned long) (0))

/1 pointer for a node that's marked "unused". A thread (any thread)

/1 deallocates a node by marking it "unused". #define alloc_gnode() (clh_nb_gnode *) alloc_| ocal _gnode(ny_head_node_ptr())

#define free_gnode(p) free_l ocal _gnode((| ocal _gnode *) p)
typedef struct |ocal _gnode {

uni on { bool clh_nb_try_acquire(clh_nb_lock *L, hrtine_t T)
cl h_nb_gnode cnq; /1 menbers of this union are {
nts_nb_gnode mng; /'l never accessed by nanme clh_nb_gnode *I = alloc_qgnode();
} real _gnode;
vol atil e bool allocated; |->prev = 0;
struct |ocal _gnode *next_i n_pool; cl h_nb_gnode pred = cqn_swap(&L->tail, 1);
} local _gnode; if (pred) {
/1l 1ock was free and uncontested; just return
typedef struct { L->l ock_hol der = I;
| ocal _gnode *try_this_one; /1l pointer into circular Iist return true;
| ocal _gnode initial _gnode; }

} local _head_node;
if (pred->prev == AVAI LABLE) {

inline local _gnode *alloc_| ocal _gnode(| ocal _head_node *hp) /Il 1ock was free; just return
{ L->l ock_hol der = I;
| ocal _gnode *p = hp->try_this_one; free_qgnode(pred);
if (!p->allocated) { return true;
p->al | ocated = true; }
return p; hrtime_t start = START_TI ME;
} else {
| ocal _gnode *q = p->next_i n_pool ; while (CURTIME - start < T) {
while (q !'=p) { cl h_nb_gnode *pred_pred = pred->prev;
if (1g->allocated) { if (pred_pred == AVAI LABLE) {
hp->try_this_one = q; L->l ock_hol der = I;
g->al |l ocated = true; free_qgnode(pred);
return g; return true;
} else { } else if (pred_pred) {
q = g->next_in_pool ; free_qgnode(pred);
pred = pred_pred,
}
/1 Al gnodes are in use. Allocate newone and link into list. }
speci al _event s[mal | ocs] ++;
q = (local _gnode *) nalloc(sizeof(local _gnode)); // timed out; reclaimor abandon own node
g- >next _i n_pool = p->next_in_pool;
p->next _i n_pool = q; if (compare_and_store(&L->tail, |, pred)) {
hp->try_this_one = q; /1l last process in line
g->al l ocated = true; free_qgnode(l);
return g; } else {
} |->prev = pred;
}
return fal se;
#define free_|l ocal _gnode(p) ((p)->allocated = fal se) }
typedef struct clh_nb_gnode { void clh_nb_try_rel ease(cl h_nb_l ock *L)
struct cl h_nb_qgnode *vol atile prev; {
} cl h_nb_gnode; cl h_nb_gnode *I = L->l ock_hol der;
typedef struct { if (compare_and_store(&L->tail, |, 0)) {
cl h_nb_qgnode *volatile tail; /1 no conpetition for |ock; reclaimqgnode
cl h_nb_qgnode *| ock_hol der; /1 node allocated by |ock hol der free_gnode(1);
} clh_nb_l ock; } else {
| ->prev = AVAI LABLE;
#define AVAI LABLE ((cl h_nb_gnode *) 1) }

