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Abstract

InterWeave is a distributed middleware system that supports the sharing of strongly typed,
pointer-rich data structures across heterogeneous platforms. Unlike RPC-style systems (includ-
ing DCOM, CORBA, Java RMI), InterWeave does not require processes to employ a proce-
dural interface: it allows them to access shared data using ordinary reads and writes. To save
bandwidth in wide area networks, InterWeave caches data locally, and employs two-way diff-
ing to maintain coherence and consistency, transmitting only the portions of the data that have
changed.

In this paper, we focus on the aspects of InterWeave specifically designed to accommo-
date heterogeneous machine architectures and languages. Central to our approach is a strongly
typed, platform-independent wire format for diffs, and a set of algorithms and metadata struc-
tures that support translation between local and wire formats. Using a combination of mi-
crobenchmarks and real applications, we evaluate the performance of our heterogeneity mecha-
nisms, and compare them to comparable mechanisms in RPC-style systems. When transmitting
entire segments, InterWeave achieves performance comparable to that of RPC, while providing
a more flexible programming model. When only a portion of a segment has changed, Inter-
Weave’s use of diffs allows it to scale its overhead down, significantly outperforming straight-
forward use of RPC.

1 Introduction

With the rapid growth of the Internet, more and more applications are being developed for (or ported
to) wide area networks (WANs), in order to take advantage of resources available at distributed
sites. One inherent property of the Internet is its heterogeneity in terms of architectures, operating
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systems, programming languages, computational power, and network bandwidth. Conventionally,
programming in the face of such heterogeneity has depended either on application-specific mes-
saging protocols or on higher-level remote procedure call systems such as RPC [4], DCOM [6],
CORBA [28], or Java RMI [33].

RPC-style systems have proven successful in a wide variety of programs and problem domains.
They have some important limitations, however, and their wide acceptance does not necessarily
imply that there is no alternative approach to addressing heterogeneity. In this paper we consider
the possibility of constructing distributed applications—even wide-area distributed applications—
using a shared-memory programming model rather than messages or remote invocation. We focus
in particular on how such a programming model can accommodate heterogeneity.

For many distributed applications, especially those constructed from large amounts of (sequen-
tial) legacy code, or from parallel code originally developed for small to mid-size multiprocessors,
we believe that shared memory constitutes the most natural communication model. Similar beliefs
have spurred the development, over the past fifteen years, of a large number of systems for software
distributed shared memory (S-DSM) on local-area clusters [2, 22]. While these systems have almost
invariably assumed a homogeneous collection of machines, and while they have been motivated by
a desire for parallel speedup rather than distribution, we nonetheless draw inspiration from them,
and adopt several of their key techniques.

A common concern with S-DSM is its performance relative to explicit messaging [24]: S-DSM
systems tend to induce more underlying traffic than does hand-written message-passing code. At
first glance one might expect the higher message latencies of a WAN to increase the performance
gap, making shared memory comparatively less attractive. We argue, however, that the opposite
may actually occur. Communication in a distributed system is typically more coarse-grained than
it is in a tightly coupled local-area cluster, enabling us to exploit optimizations that have a more
limited effect in the tightly coupled world, and that are difficult or cumbersome to apply by hand.
These optimizations include the use of variable-grain size coherence blocks [30]; bandwidth reduc-
tion through communication of diffs [8] instead of whole objects; and the exploitation of relaxed
coherence models to reduce the frequency of updates [11, 38].

In comparison to S-DSM, RPC systems do not always provide the semantics or even the per-
formance that programmers want, particularly for applications involving references. RPC and RMI
transmit pointer-rich data structures using deep copy [17] semantics: they recursively expand all
data referenced by pointers, and bundle the expansion into messages. CORBA allows real object
references to be passed as arguments, but then every access through such a reference becomes an ex-
pensive cross-domain (potentially cross-WAN) call. The following example illustrates the dilemma
faced by the user of a typical RPC system.

Suppose a linked list is shared among a collection of clients. If searches are frequent, encapsu-
lating the list in an object at a central server is likely to result in poor performance [12, 20]. The
alternative is to cache the list at every client and to maintain coherence among the copies, either
manually in the application or with the help of object caching middleware [20]. But then when one
client updates the list, e.g. by inserting an item at the head, the entire list will typically be propagated
to every client due to deep copy message semantics. In addition to inducing significant performance
overhead, the copy operation poses semantic problems: clients receiving an update now have two
copies of the list. If they are to discard the old copy, what should become of local references that
point to discarded but semantically unmodified items?
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Pointers are not the only problem with existing RPC systems. Object granularity is another.
Suppose the above example is carefully (if inconveniently) rewritten to avoid the use of pointers.
When one field of an item in the list is modified by a client, the entire item will typically need to
be propagated to all other clients, even if other items do not. If items are large, the update may still
waste significant network bandwidth and message-processing time.

An attractive alternative, we believe, is to provide a common infrastructure for distributed
shared state across heterogeneous distributed machines. This infrastructure can be made entirely
compatible with RPC/RMI systems, supporting genuine reference parameters as an efficient alter-
native to deep-copy value parameters. Programmers who prefer a shared memory programming
model can access shared variables directly. Programmers who prefer an object-oriented program-
ming model can use shared memory inside a class implementation to obtain the performance ben-
efits of diffing and relaxed coherence without the need to reimplement these mechanisms in every
application. Programmers who prefer the implicit synchronization of traditional message passing
can migrate, when appropriate, to a hybrid programming model in which messages can contain
references to automatically managed shared variables.

In order to simplify the construction of heterogeneous distributed systems, while providing
equal or improved performance, we have developed a system known as InterWeave [11]. Inter-
Weave allows programs written in multiple languages to map shared segments into their address
space, regardless of location or machine type, and to access the data in those segments transparently
once mapped. In C, operations on shared data, including pointers, take precisely the same form as
operations on non-shared data.

To support heterogeneous architectures and languages, InterWeave employs a type system based
on a machine- and language-independent interface description language (IDL).1 When communi-
cating between machines, InterWeave converts data to and from a common wire format, assisted by
type descriptors generated by our IDL compiler. The wire format is rich enough to capture diffs for
complex data structures, including pointers and recursive types, in a platform-independent manner.
The translation mechanism also provides a hook for spatial locality: when creating the initial copy
of a segment on a client machine, InterWeave uses diffing history to choose a layout that maximizes
locality of reference.

When translating and transmitting equal amounts of data, InterWeave achieves throughput com-
parable to that of standard RPC packages, and 20 times faster than Java RMI. When only a fraction
of the data have been changed, the use of diffs allows InterWeave’s translation cost and bandwidth
requirements to scale down proportionally, while those of RPC-style systems remain unchanged.

We describe the design of InterWeave in more detail in Section 2. We provide implementation
details in Section 3, and performance results in Section 4. We compare our design to related work
in Section 5, and conclude with a discussion of status and plans in Section 6.

2 InterWeave Design

The InterWeave programming model assumes a distributed collection of servers and clients. Servers
maintain persistent copies of shared data, and coordinate sharing among clients. Clients in turn must

1InterWeave’s IDL is currently based on Sun XDR, but this is not an essential design choice. InterWeave could be
easily modified to work with other IDLs.
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node_t *head;
IW_handle_t h;
void list_init(void) {

h = IW_open_segment("host/list");
head = IW_mip_to_ptr("host/list#head");

}

node_t *list_search(int key) {
node_t *p;
IW_rl_acquire(h); // read lock
for (p = head->next; p; p = p->next) {

if(p->key == key) {
IW_rl_relese(h); // read unlock
return p;

}
}
IW_rl_release(h); // read unlock
return NULL;

}

void list_insert(int key) {
node_t *p;
IW_wl_acquire(h); // write lock
p = (node_t*) IW_malloc(h, IW_node_t);
p->key = key;
p->next = head->next;
head->next = p;
IW_wl_release(h); // write unlock

}

Figure 1: Shared linked list in InterWeave. Variable head points to an unused header node; the first
real item is in head->next.

be linked with a special InterWeave library, which arranges to map a cached copy of needed data
into local memory. InterWeave servers are oblivious to the programming languages used by clients,
but the client libraries may be different for different programming languages. The client library for
Fortran, for example, cooperates with the linker to bind InterWeave data to variables in common
blocks (Fortran 90 programs may also make use of pointers).

Figure 1 presents a simple realization of the linked list example of Section 1. The InterWeave
API used in the example is explained in more detail in the following sections. For consistency with
the example we present the C version of the API. Similar versions exist for C++, Java, and Fortran.

InterWeave is designed to interoperate with our Cashmere S-DSM system [32]. Together, these
systems integrate hardware coherence and consistency within multiprocessors (level-1 sharing),
S-DSM within tightly coupled clusters (level-2 sharing), and version-based coherence and consis-
tency across the Internet (level-3 sharing). At level 3, InterWeave uses application-specific knowl-
edge of minimal coherence requirements to reduce communication, and maintains consistency in-
formation in a manner that scales to large amounts of shared data. Further detail on InterWeave’s
coherence and consistency mechanisms can be found in other papers [11].
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2.1 Data Allocation

The unit of sharing in InterWeave is a self-descriptive segment (a heap) within which programs
allocate strongly typed blocks of memory.2 Every segment is specified by an Internet URL. The
blocks within a segment are numbered and optionally named. By concatenating the segment URL
with a block name or number and optional offset (delimited by pound signs), we obtain a machine-
independent pointer (MIP): “foo.org/path#block#offset”. To accommodate heteroge-
neous data formats, offsets are measured in primitive data units—characters, integers, floats, etc.—
rather than in bytes.

Every segment is managed by an InterWeave server at the IP address corresponding to the
segment’s URL. Different segments may be managed by different servers. Assuming appropriate
access rights, IW open segment() communicates with the appropriate server to open an existing
segment or to create a new one if the segment does not yet exist. The call returns an opaque handle
that can be passed as the initial argument in calls to IW malloc(). InterWeave currently employs
public key based authentication and access control. If requested by the client, communication with
a server can optionally be encrypted with DES.

As in multi-language RPC systems, the types of shared data in InterWeave must be declared in
an IDL. The InterWeave IDL compiler translates these declarations into the appropriate program-
ming language(s) (C, C++, Java, Fortran). It also creates initialized type descriptors that specify the
layout of the types on the specified machine. The descriptors must be registered with the InterWeave
library prior to being used, and are passed as the second argument in calls to IW malloc(). These
conventions allow the library to translate to and from wire format, ensuring that each type will have
the appropriate machine-specific byte order, alignment, etc. in locally cached copies of segments.

Synchronization (to be discussed further in Section 2.2) takes the form of reader-writer locks. A
process must hold a writer lock on a segment in order to allocate, free, or modify blocks. The lock
routines take a segment handle as parameter.

Given a pointer to a block in an InterWeave segment, or to data within such a block, a process
can create a corresponding MIP:

IW_mip_t m = IW_ptr_to_mip(p);

This MIP can then be passed to another process through a message, a file, or an argument of
a remote procedure in RPC-style systems. Given appropriate access rights, the other process can
convert back to a machine-specific pointer:

my_type *p = (my_type*)IW_mip_to_ptr(m);

The IW mip to ptr() call reserves space for the specified segment if it is not already locally
cached (communicating with the server if necessary to obtain layout information for the specified
block), and returns a local machine address. Actual data for the segment will not be copied into the
local machine unless and until the segment is locked.

2Like distributed file systems and databases, and unlike systems such as PerDiS [14], InterWeave requires manual
deletion of data; there is no automatic garbage collection.
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It should be emphasized that IW mip to ptr() is primarily a bootstrapping mechanism.
Once a process has one pointer into a data structure (e.g. the head pointer in our linked list exam-
ple), any data reachable from that pointer can be directly accessed in the same way as local data,
even if embedded pointers refer to data in other segments. InterWeave’s pointer-swizzling and data-
conversion mechanisms ensure that such pointers will be valid local machine addresses. It remains
the programmer’s responsibility to ensure that segments are accessed only under the protection of
reader-writer locks. To assist in this task, InterWeave allows the programmer to identify the seg-
ment in which the datum referenced by a pointer resides, and to determine whether that segment is
already locked:

IW_handle_t h = IW_get_handle(p);
IW_lock_status s = IW_get_lock_status(h);

Much of the time we expect that programmers will know, because of application semantics, that
pointers about to be dereferenced refer to data in segments that are already locked.

2.2 Coherence

When modified by clients, InterWeave segments move over time through a series of internally con-
sistent states. When writing a segment, a process must have exclusive write access to the most
recent version. When reading a segment, however, the most recent version may not be required
because processes in distributed applications can often accept a significantly more relaxed—and
hence less communication-intensive—notion of coherence. InterWeave supports several relaxed
coherence models. It also supports the maintenance of causality among segments using a scalable
hash-based scheme for conflict detection.

When a process first locks a shared segment (for either read or write access), the InterWeave
library obtains a copy from the segment’s server. At each subsequent read-lock acquisition, the
library checks to see whether the local copy of the segment is “recent enough” to use. If not, it
obtains an update from the server. An adaptive polling/notification protocol [11] often allows the
client library to avoid communication with the server when updates are not required. Twin and diff
operations [8], extended to accommodate heterogeneous data formats, allow the implementation to
perform an update in time proportional to the fraction of the data that has changed.

The server for a segment need only maintain a copy of the segment’s most recent version.
The API specifies that the current version of a segment is always acceptable, and since processes
cache whole segments, they never need an “extra piece” of an old version. To minimize the cost of
segment updates, the server remembers, for each block, the version number of the segment in which
that block was last modified. This information allows the server to avoid transmitting copies of
blocks that have not changed. As partial protection against server failure, InterWeave periodically
checkpoints segments and their metadata to persistent storage. The implementation of real fault
tolerance is a subject of future work.

As noted at the beginning of Section 2, an S-DSM-style system such as Cashmere can play the
role of a single InterWeave node. Within an S-DSM cluster, or within a hardware-coherent node,
data can be shared using data-race-free [1] shared memory semantics, so long as the cluster or node
holds the appropriate InterWeave lock.
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Figure 2: Simplified view of InterWeave client-side data structures: the segment table, subseg-
ments, and blocks within segments. Type descriptors, pointers from balanced trees to blocks and
subsegments, and footers of blocks and free space are not shown.

3 Implementation

3.1 Memory Management and Segment Metadata

Client Side. As described in Section 2, InterWeave presents the programmer with two granular-
ities of shared data: segments and blocks. Each block must have a well-defined type, but this type
can be a recursively defined structure of arbitrary complexity, so blocks can be of arbitrary size.
Every block has a serial number within its segment, assigned by IW malloc(). It may also have
an optional symbolic name, specified as an additional parameter. A segment is a named collection
of blocks. There is no a priori limit on the number of blocks in a segment, and blocks within the
same segment can be of different types and sizes.

The copy of a segment cached by a given process need not necessarily be contiguous in the
application’s virtual address space, so long as individually malloced blocks are contiguous. The
InterWeave library can therefore implement a segment as a collection of subsegments, invisible to
the user. Each subsegment is contiguous, and can be any integral number of pages in length. These
conventions support blocks of arbitrary size, and ensure that any given page contains data from only
one segment. New subsegments can be allocated by the library dynamically, allowing a segment to
expand over time.
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An InterWeave client manages its own heap area, rather than relying on the standard C library
malloc(). The InterWeave heap routines manage subsegments, and maintain a variety of book-
keeping information. Among other things, this information includes a collection of balanced search
trees that allow InterWeave to quickly locate blocks by name, serial number, or address.

Figure 2 illustrates the organization of memory into subsegments, blocks, and free space. The
segment table has exactly one entry for each segment being cached by the client in local memory. It
is organized as a hash table, keyed by segment name. In addition to the segment name, each entry
in the table includes four pointers: one for the first subsegment that belongs to that segment, one
for the first free space in the segment, and two for a pair of balanced trees containing the segment’s
blocks. One tree is sorted by block serial number (blk number tree), the other by block symbolic
name (blk name tree); together they support translation from MIPs to local pointers. An additional
global tree contains the subsegments of all segments, sorted by address (subseg addr tree); this tree
supports modification detection and translation from local pointers to MIPs. Each subsegment has
a balanced tree of blocks sorted by address (blk addr tree). Segment table entries may also include
a cached TCP connection over which to reach the server. Each block in a subsegment begins with a
header containing the size of the block, a pointer to a type descriptor, a serial number, an optional
symbolic block name and several flags for optimizations to be described in Section 3.5. Free space
within a segment is kept on a linked list, with a head pointer in the segment table. Allocation is
currently first-fit. To allow a deallocated block to be coalesced with its neighbor(s), if free, all
blocks have a footer (not shown in Figure 2) that indicates whether that block is free and, if it is,
where it starts.

Server Side. To avoid an extra level of translation, an InterWeave server stores both data and type
descriptors in wire format. The server keeps track of segments, blocks, and subblocks. The latter
are invisible to clients.

Each segment maintained by a server has an entry in a segment hash table keyed by segment
name. Each block within the segment consists of a version number (the version of the segment in
which the block was most recently modified), a serial number, a pointer to a type descriptor, pointers
to link the block into data structures described in the following paragraph, a pointer to a wire-format
block header, and a pointer to the data of the block, again in wire format.

The blocks of a given segment are organized into a balanced tree sorted by serial number
(svr blk number tree) and a linked list sorted by version number (blk version list). The linked list
is separated by markers into sublists, each of which contains blocks with the same version number.
Markers are also organized into a balanced tree sorted by version number (marker version tree).
Pointers to all these data structures are kept in the segment table, along with the segment name.

Each block is potentially divided into subblocks, comprising a contiguous group of primitive
data elements (fixed at 16 for our experiments, but which can also vary in number based on ac-
cess patterns) from the same block. Subblocks also have version numbers, maintained in an array.
Subblocks and pointers to the various data structures in the segment table are used in collecting
and applying diffs (to be described in Section 3.2). In order to avoid unnecessary data relocation,
machine-independent pointers and strings are stored separately from their blocks, since they can be
of variable size.
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blk_diff -> blk_serial_number
blk_diff_len
prim_RLEs

prim_RLEs -> prim_RLE prim_RLEs
->

prim_RLE -> prim_start
num_prims
prims

prims -> prim prims
->

prim -> primitive data
-> MIP

MIP -> string
-> string

desc_serial_number

Figure 3: Grammar for wire-format block diffs.

blk# 0 1 i0 3 3 i2 d1 "blk#1"
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ptr
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byte offset
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24

32

0

primitive offset
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5

local format

wire format

unchanged data

changed data

translation type descriptors
lookup

52

block serial number
block diff length

the starting point of changes, counted in primitive data units

the length of changes, counted in primitive data units

alignment padding

Figure 4: Wire format translation of a structure consisting of three integers (i0–i2), two doubles
(d0–d1), and a pointer (ptr). All fields except d0 and i1 are changed.

3.2 Diff Creation and Translation

Client Side. When a process acquires a write lock on a given segment, the InterWeave library
asks the operating system to write protect the pages that comprise the various subsegments of the
local copy of the segment. When a page fault occurs, the SIGSEGV signal handler, installed by the
library at program startup time, creates a pristine copy, or twin [8], of the page in which the write
fault occurred. It saves a pointer to that twin in the faulting segment’s wordmap for future reference,
and then asks the operating system to re-enable write access to the page.
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When a process releases a write lock, the library uses diffing to gather changes made locally and
convert them into machine-independent wire format in a process called collecting a diff. Figure 4
shows an example of wire format translation. The changes are expressed in terms of segments,
blocks, and primitive data unit offsets, rather than pages and bytes. A wire-format block diff (Fig-
ure 3) consists of a block serial number, the length of the diff, and a series of run length encoded data
changes, each of which consists of the starting point of the change, the length of the change, and
the updated content. Both the starting point and length are measured in primitive data units rather
than in bytes. The MIP in the wire format is either a string (for an intra-segment pointer) or a string
accompanied by the serial number of the pointed-to block’s type descriptor (for a cross-segment
pointer).

The diffing routine must have access to type descriptors in order to compensate for local byte
order and alignment, and in order to swizzle pointers. The content of each descriptor specifies the
substructure and layout of its type. For primitive types (integers, doubles, etc.) there is a single
pre-defined code. For other types there is a code indicating either an array, a record, or a pointer,
together with pointer(s) that recursively identify the descriptor(s) for the array element type, record
field type(s), or pointed-at type. The type descriptors also contain information about the size of
blocks and the number of primitive data units in blocks. For structures, the descriptor records both
the byte offset of each field from the beginning of the structure in local format, and the machine-
independent primitive offset of each field, measured in primitive data units. Like blocks, type
descriptors have segment-specific serial numbers, which the server and client use in wire-format
messages. A given type descriptor may have different serial numbers in different segments. Per-
segment arrays and hash tables maintained by the client library map back and forth between serial
numbers and pointers to local, machine-specific descriptors. An additional, global, hash table maps
wire format descriptors to addresses of local descriptors, if any. When an update message from the
server announces the creation of a block with a type that has not appeared in the segment before, the
global hash table allows InterWeave to tell whether the type is one for which the client has a local
descriptor. If there is no such descriptor, then the new block can never be referenced by the client’s
code, and can therefore be ignored.

When translating local modifications into wire format, the diffing routine takes a series of ac-
tions at three different levels: subsegments, blocks, and words. At the subsegment level, it scans the
list of subsegments of the segment and the wordmap within each subsegment. When it identifies a
modified page, it searches the blk addr tree within the subsegment to identify the block containing
the beginning of the modified page. It then scans blocks linearly, converting each to wire format by
using block-level diffing. When it runs off the end of the last contiguous modified page, the diffing
routine returns to the wordmap and subsegment list to find the next modified page.

At the block level, the library uses word-level diffing (word-by-word comparison of modified
pages and their twins) to identify a run of continuous modified words. Call the bounds of the
run, in words, change begin and change end. Using the pointer to the type descriptor stored in
the block header, the library searches for the primitive subcomponent spanning change begin, and
computes the primitive offset of this subcomponent from the beginning of the block. Consecutive
type descriptors, from change begin to change end, are then retrieved sequentially to convert the
run into wire format. At the end, word-level diffing is called again to find the next run to translate.

To ensure that translation cost is proportional to the size of the modified data, rather than the
size of the entire block, we must avoid walking sequentially through subcomponent type descriptors
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while searching for the primitive subcomponent spanning change begin. First, the library subtracts
the starting address of the block from change begin to get the byte offset of the target subcomponent.
Then it searches recursively for the target subcomponent. For structures, a binary search is applied
to byte offsets of the fields. For an array, the library simply divides the given byte offset by the size
of an individual element (stored in the array element’s type descriptor).

To accommodate reference types, InterWeave relies on pointer swizzling [36]. There are two
kinds of pointers, intra-segment pointers and cross-segment pointers. For a cross-segment pointer,
it is possible that the pointer points to a not (yet) cached segment or that the pointed-to segment is
cached but the version is outdated, and does not yet contain the pointed-to block. In both cases, the
pointer is set to refer to reserved space in unmapped pages where data will lie once properly locked.
The set of segments currently cached on a given machine thus displays an “expanding frontier”
reminiscent of lazy dynamic linking: a core of currently accessible pages surrounded by a “fringe”
of reserved but not-yet accessible pages. In wire format, a cross-segment pointer is accompanied
by the serial number of the pointed-to block’s type descriptor, from which the size of the reserved
space can potentially be derived without contacting the server.

To swizzle a local pointer to a MIP, the library first searches the subseg addr tree for the sub-
segment spanning the pointed-to address. It then searches the blk addr tree within the subsegment
for the pointed-to block. It subtracts the starting address of the block from the pointed-to address to
obtain the byte offset, which is then mapped to a corresponding primitive offset with the help of the
type descriptor stored in the block header. Finally, the library converts the block serial number and
primitive offset into strings, which it concatenates with the segment name to form a MIP.

When a client acquires a read lock and determines that its local cached copy of the segment is
not recent enough, it asks the server to build a diff that describes the data that have changed between
the client’s outdated copy and the master copy at the server. When the diff arrives the library uses
its contents to update the local copy in a process called applying a diff. Diff application is similar to
diff collection, except that searches now are based on primitive offsets rather than byte offsets. To
convert the serial numbers employed in wire format to local machine addresses, the client traverses
the balanced tree of blocks, sorted by serial number, that is maintained for every segment.

To swizzle a MIP into a local pointer, the library parses the MIP and extracts the segment name,
block serial number or name, and the primitive offset, if any. The segment name is used as an index
into the segment hash table to obtain a pointer to the segment’s blk number tree, which is in turn
searched to identify the pointed-to block. The byte offset of the pointed-to address is computed
from the primitive offset with the help of the type descriptor stored in the block header. Finally, the
byte offset is added to the starting address of the block to get the pointed-to address.

Server Side. Each server maintains an up-to-date copy of each segment it serves, and controls
access to the segments.

For each modest-sized block in each segment, and for each subblock of a larger block, the server
remembers the version number of the segment in which (some portion of) the content of the block or
subblock was most recently modified. This convention strikes a balance between the size of server-
to-client diffs and the size of server-maintained metadata. The server also remembers, for each
block, the version number in which the block was created. Finally, the server maintains a list of the
serial numbers of deleted blocks along with the versions in which they were deleted. The creation
version number allows the server to tell, when sending a segment update to a client, whether the
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metadata for a given block need to be sent in addition to the data. When mallocing a new block, a
client can use any available serial number. Any client with an old copy of the segment in which the
number was used for a different block will receive new metadata from the server the next time it
obtains an update.

Upon receiving a diff, the server first appends a new marker to the end of the blk version list
and inserts it in the marker version tree. Newly created blocks are then appended to the end of the
list. Modified blocks are first identified by search in the svr blk number tree, and then moved to
the end of the list. If several blocks are modified together in both the previous diff and the current
diff, their positions in the linked list will be adjacent, and moving them together to the end of the
list only involves a constant-cost operation to reset pointers into and out of the first and last blocks,
respectively.

At the time of a lock acquire, a client must decide whether its local copy of the segment needs
to be updated. (This decision may or may not require communication with the server; see below.) If
an update is required, the server traverses the marker version tree to locate the first marker whose
version is newer than the client’s version. All blocks in the blk version list after that marker have
some subblocks that need to be sent to the client. The server constructs a wire-format diff and
returns it to the client. Because version numbers are remembered at the granularity of blocks and
(when blocks are too large) subblocks, all of the data in each modified block or subblock will appear
in the diff. To avoid extra copying, the modified subblocks are sent to the client using writev(),
without being compacted together.

The client’s type descriptors, generated by our IDL compiler, describe machine-specific data
layout. At the server, however, we store data in wire format. When it receives a new type descriptor
from a client, the server converts it to a machine-independent form that describes the layout of fields
in wire format. Diff collection and application are then similar to the analogous processes on the
client, except that searches are guided by the server’s machine-independent type descriptors.

3.3 Support for Heterogeneous Languages

Independent of its current implementation, InterWeave establishes a universal data sharing frame-
work by defining a protocol for communication, coherence, and consistency between clients and
servers, along with a machine- and language-independent wire format. Any language implemented
on any platform can join the sharing as long as it can provide a client library that conforms to the
protocol and the wire format. Library implementations may differ from one another in order to take
advantage of features within a specific language or platform. Our current implementation employs
a common back-end library with front ends tailored to each language. Our current set of front ends
supports C, C++, Fortran, and Java; support for additional languages is planned.

For Fortran 77 the lack of dynamic memory allocation poses a special problem. InterWeave
addresses this problem by allowing processes to share static variables (this mechanism also works in
C). Given an IDL file, the InterWeave IDL/Fortran compiler generates a .f file containing common
block declarations (structures in IDL are mapped to common blocks in Fortran), a .c file containing
initialized type descriptors (similar to its C counterpart), and a .s file telling the linker to reserve
space for subsegments surrounding these variables. At run time, extensions to the InterWeave API
allow a process to attach variables to segments, optionally supplying the variables with block
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names. Once shared variables are attached, a Fortran program can access them in exactly the same
way as local variables, given proper lock protections.

Java introduces additional challenges for InterWeave, including dynamic allocation, garbage
collection, constructors, and reflection. Our J-InterWeave system is described in a companion pa-
per [10].

While providing a shared memory programming model, InterWeave focuses on pure data shar-
ing. Methods in object-oriented languages are currently not supported. When sharing with a lan-
guage with significant semantic limitations, the programmer may need to avoid certain features.
For example, pointers are allowed in segments shared by a Fortran 77 client and a C client, but the
Fortran 77 client has no way to use them.

3.4 Portability

InterWeave currently consists of approximately 31,000 lines of heavily commented C++ code:
14,000 lines for the client library, 9,000 lines for the server, an additional 5,000 lines shared by
the client library and the server, and 2,700 lines for the IDL compiler. This total does not include
the J-InterWeave Java support, or the (relatively minor) modifications required to the Cashmere S-
DSM system to make it work with InterWeave. Both the client library and server have been ported
to a variety of architectures (Alpha, Sparc, x86, and MIPS) and operating systems (Windows NT,
Linux, Solaris, Tru64 Unix, and IRIX). Applications can be developed and run on arbitrary combi-
nations of these. The Windows NT port is perhaps the best indication of InterWeave’s portability:
only about 100 lines of code needed to be changed.

3.5 Optimizations

Several optimizations improve the performance of InterWeave in important common cases. We
describe here those related to memory management and heterogeneity. Others are described in
other papers [11, 9].

Data layout for cache locality. InterWeave’s knowledge of data types and formats allows it to
organize blocks in memory for the sake of spatial locality. When a segment is cached at a client for
the first time, blocks that have the same version number, meaning they were modified by another
client in a single write critical section, are placed in contiguous locations, in the hope that they
may be accessed or modified together by this client as well. We do not currently relocate blocks
in an already cached copy of a segment. InterWeave has sufficient information to find and fix
all pointers within segments, but references held in local variables would have to be discarded or
updated manually.

Diff caching. The server maintains a cache of diffs that it has received recently from clients,
or collected recently itself, in response to client requests. These cached diffs can often be used to
respond to future requests, avoiding redundant collection overhead. In most cases, a client sends the
server a diff, and the server caches and forwards it in response to subsequent requests. The server
updates its own master copy of the data asynchronously when it is not otherwise busy (or when it
needs a diff it does not have). This optimization takes server diff collection off the critical path of
the application in common cases.
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No-diff mode. As in the TreadMarks S-DSM system [3], a client that repeatedly modifies most
of the data in a segment will switch to a mode in which it simply transmits the whole segment to the
server at every write lock release. This no-diff mode eliminates the overhead of mprotects, page
faults, and the creation of twins and diffs. Moreover, translating an entire block is more efficient
than translating diffs. The library can simply walk linearly through the type descriptors of primitive
subcomponents and put each of them in wire format, avoiding searches for change begin and
checks for change end. The switch occurs when the client finds that the size of a newly created
diff is at least 75% of the size of the segment itself; this value strikes a balance between commu-
nication cost and the other overheads of twinning and diffing. Periodically afterwards (at linearly
increasing random intervals), the client will switch back to diffing mode to verify the size of current
modifications. When mallocs and frees force us to diff a mostly modified segment, we still try
to put individual blocks into no-diff mode.

Isomorphic type descriptors. For a given data structure declaration in IDL, our compiler
outputs a type descriptor most efficient for run-time translation rather than strictly following the
original type declaration. For example, if a struct contains 10 consecutive integer fields, the compiler
generates a descriptor containing a 10-element integer array instead. This altered type descriptor is
used only by the InterWeave library, and is invisible to the programmer; the language-specific type
declaration always follows the structure of the IDL declaration.

Cache-aware diffing. A blocking technique is used during word-level diffing to improve the
temporal locality of data accesses. Specifically, instead of diffing a large block in its entirety and
then translating the diff into wire format, we diff at most 1/4 of the size of the hardware cache, and
then translate this portion of the diff while it is still in the cache. The ratio 1/4 accommodates the
actual data, the twin, and the wire-format diff (all of which are about the same size), and additional
space for type descriptors and other meta-data.

Diff run splicing. In word-level diffing, if one or two adjacent words are unchanged while both
of their neighboring words are changed, we treat the entire sequence as changed in order to avoid
starting a new run length encoding section in the diff. It already costs two words to specify a head
and a length in the diff, and the spliced run is faster to apply.

Last-block searches. On both the client and the server, block predictions are used to avoid
searching the balanced tree of blocks sorted by serial number when mapping serial numbers in wire
format to blocks. After handling a changed block, we predict that the next changed block in the
diff will be the block following the current block in the previous diff. Due to repetitive program
patterns, blocks modified together in the past tend to be modified together in the future.

4 Performance Results

The results presented here were collected on a 500MHz Pentium III machine, with 256MB of mem-
ory, a 16KB L1 cache, and a 512KB L2 cache, running Linux 2.4.18. Earlier results for other
machines can be found in a technical report [9].
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Figure 5: Client’s cost to translate 1MB of data.

4.1 Microbenchmarks

Basic Translation Costs

Figure 5 shows the overhead required to translate various data structures from local to wire format
and vice versa. In each case we arrange for the total amount of data to equal 1MB; what differs is
data formats and types. The int array and double array cases comprise a large array of inte-
gers or doubles, respectively. The int struct and double struct cases comprise an array of
structures, each with 32 integer or double fields, respectively. The string and small string
cases comprise an array of strings, each of length 256 or 4 bytes, respectively. The pointer case
comprises an array of pointers to integers. The int double case comprises an array of struc-
tures containing integer and double fields, intended to mimic typical data in scientific programs.
The mix case comprises an array of structures containing integer, double, string, small string, and
pointer fields, intended to mimic typical data in non-scientific programs such as calendars, CSCW,
and games.

All optimizations described in Section 3.5 are enabled in our experiments. All provide measur-
able improvements in performance, bandwidth, or both. Data layout for cache locality, isomorphic
type descriptors, cache-aware diffing, diff run splicing, and last block searches are evaluated sepa-
rately in Section 4.2.

Depending on the history of a given segment, the no-diff optimization may choose to translate
a segment in its entirety or to compute diffs on a block-by-block basis. The collect diff and apply
diff bars in Figure 5 show the overhead of translation to and from wire format, respectively, in the
block-by-block diff case; the collect block and apply block bars show the corresponding overheads
when diffing has been disabled.

For comparison purposes we also show the overhead of translating the same data via RPC pa-
rameter marshaling, in stubs generated with the standard Linux rpcgen tool. Unmarshaling costs
(not shown) are nearly identical.
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Figure 6: Server’s cost to translate 1MB of data.

Generally speaking, InterWeave overhead is comparable to that of RPC. Collect block
and apply block are 25% faster than RPC on average; collect diff and apply diff
are 8% faster. It is clear that RPC is not good at marshaling pointers and small strings. Excluding
these two cases, InterWeave in no diff (collect/apply block) mode is still 18% faster than RPC; when
diffing has to be performed, InterWeave is 0.5% slower than RPC. Collect block is 39% faster
than collect diff on average, and apply block is 4% faster than apply diff, justifying
the use of the no diff mode.

When RPC marshals a pointer, deep copy semantics require that the pointed-to data, an
integer in this experiment, be marshaled along with the pointer. The size of the resulting RPC wire
format is the same as that of InterWeave, because MIPs in InterWeave are strings, longer than 4
bytes. The RPC overhead for structures containing doubles is high in part because rpcgen does
not inline the marshaling routine for doubles.

Figure 6 shows translation overhead for the InterWeave server in the same experiment as above.
Because the server maintains data in wire format, costs are negligible in all cases other than pointer
and small string. In these cases the high cost stems from the fact that strings and MIPs are of
variable length, and are stored separately from their wire format blocks. However, for data struc-
tures such as mix, with a more reasonable number of pointers and small strings, the server cost is
still low. As noted in Section 3.5, the server’s diff management cost is not on the critical path in
most cases.

Comparisons between InterWeave and Java RMI appear in a companion paper [10]. The short
story: translation overhead under the Sun JDK1.3.2 JVM is 20X that of J-InterWeave.
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Figure 7: Pointer swizzling cost as a function of pointed-to object type.

Pointer Swizzling

Figure 7 shows the cost of swizzling (“collect pointer”) and unswizzling (“apply pointer”) a pointer.
This cost varies with the nature of the pointed-to data. The int 1 case represents an intra-segment
pointer to the start of an integer block. struct 1 is an intra-segment pointer to the middle of a
structure with 32 fields. The cross #n cases are cross-segment pointers to blocks in a segment
with n total blocks. The modest rise in overhead with n reflects the cost of search in various
metadata trees. Performance is best in the int 1 case, which we expect to be representative of
the most common sorts of pointers. However, even for moderately complex cross-segment pointers,
InterWeave can swizzle about one million of them per second.

Figure 8 shows the breakdown for swizzling a cross 1024 local pointer into a MIP, where
searching block is the cost of searching the pointed-to block by first traversing the subseg

addr tree and then traversing the blk addr tree; computing offset is the cost of converting
the byte offset between the pointed-to address and the start of the pointed-to block into a corre-
sponding primitive offset; string conversion is the cost of converting the block serial number
and primitive offset into strings and concatenating them with the segment name; and searching
desc srlnum is the cost of retrieving the serial number of the pointed-to block’s type descriptor
from the type descriptor hash table.

Similarly, Figure 9 shows the breakdown for swizzling a cross 1024 MIP into a local pointer,
where read MIP is cost of reading the MIP from wire format; parse MIP is the cost of extract-
ing the segment name, block serial number, and primitive offset from the MIP; search segment
is the cost of locating the pointed-to segment by using the hash table keyed by segment name;
search block is the cost of finding the block in the blk number tree of the pointed-to seg-
ment; and offset to pointer is the cost of mapping the primitive offset into a byte offset
between the pointed-to address and the start of the pointed-to block. As seen in Figures 8 and 9,
pointer swizzling is a complex process where no single factor is the main source of overhead.
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Figure 9: Breakdown of swizzling MIPs into local pointers (using cross 1024).

Modifications at Different Granularities

Figure 10 shows the client and the server diffing cost as a function of the fraction of a segment
that has changed. In all cases the segment in question consists of a 1MB array of integers. The x

axis indicates the distance in words between consecutive modified words. Ratio 1 indicates that the
entire block has been changed. Ratio 4 indicates that every 4th word has been changed.

The client collect diff cost has been broken down into client word diffing—
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Figure 11: The effect of varying block size.

word-by-word comparison of a page and its twin—and client translation—converting the
diff to wire format. (Values on these two curves add together to give the values on the client
collect diff curve.) There is a sharp knee for word diffing at ratio 1024. Before that point, ev-
ery page in the segment has been modified; after that point, the number of modified pages decreases
linearly. Due to the artifact of subblocks (16 primitive data units in our current implementation),
the server collect diff and client apply diff costs are constant for ratios between
1 and 16, because in those cases the server loses track of fine grain modifications and treats the
entire block as changed. The jump in client collect diff, server apply diff, and
client translation between ratios of 2 and 4 is due to the loss of the diff run splicing opti-
mization described in Section 3.5. At a ratio of 2 the entire block is treated as changed, while at a
ratio of 4 the block is partitioned into many small isolated changes. The cost for word diffing
increases between ratios of 1 and 2 because the diffing is more efficient when there is only one
continuous changed section.

Figures 5 and 6 show that InterWeave is efficient at translating entirely changed blocks. Fig-
ure 10 shows that InterWeave is also efficient at translating scattered modifications. When only a
fraction of a block has changed, InterWeave is able to reduce both translation cost and required band-
width by transmitting only the diffs. With straightforward use of an RPC-style system, both trans-
lation cost and bandwidth remain constant regardless of the fraction of the data that has changed.

Varying Block Size and Number of Blocks

Figure 11 shows the overhead introduced on the client and the server while varying the size of
blocks and the number of blocks in a segment. Each point on the x axis represents a different
segment configuration, denoted by the size of a single block in the segment. For all configurations,
the total size of all blocks in the segment is 1MBytes. In the 4K configuration, for example, there
are 256 blocks in the segment, each of size 4K. On both the client and the server, the curves flatten
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Figure 12: Performance impact of version based block layout, with 1MB total data.

out between 64 and 256. Blocks of size 4 bytes are primitive blocks, a special case InterWeave can
recognize and optimize accordingly.

4.2 Optimizations

Data Layout for Cache Locality

Figure 12 demonstrates the effectiveness of version-based block layout. As in Figure 11, several
configurations are evaluated here, each with 1MB total data, but with different sizes of blocks. There
are two versions for each configuration: orig and remapped. For the orig version, every other
block in the segment is changed; for the remapped version, those changed blocks, exactly half of
the segment, are grouped together. As before, the cost for word diffing is part of the cost in collect
diff. Because fewer pages and blocks need to be traversed, the saving in the remapped version
is significant. App comp. is simply the time to write all words in the modified blocks, and is
presented to evaluate the locality effects of the layout on a potential computation. The savings in
app comp. is due to fewer page faults, fewer TLB misses, and better spatial locality of blocks in
the cache.

Cache-Aware Diffing and Diff Run Splicing

Figure 13 shows the effectiveness of cache-aware diffing and diff run splicing, where none means
neither of the two techniques is applied; cache means only cache-aware diffing is applied; merge
means only diff run splicing is applied; and cache-merge means both are applied. On average,
diff run splicing itself degrades performance by 1%, but it is effective for double array and
double struct as noted in Section 3.5. Cache-aware diffing itself improves performance by
only 12%. The two techniques are most effective when combined, improving performance by 20%
on average.
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Figure 13: Cache-aware diffing and diff run splicing.

Isomorphic Type Descriptors

Figure 14 shows the potential performance improvement obtained by our IDL compiler when several
adjacent fields of the same size in a structure can be merged into a single field as an array of
elements. Int struct from Figure 5 is used in this experiment. The x axis shows the number
of adjacent fields merged by our IDL compiler. For instance, the data point for 2 on the x axis
means the 32 fields of the structure are merged into 16 fields, each of which is a two element array.
For apply diff, the small increase from no merging to merging two adjacent fields is due to
the overhead in handling small, 2-element, arrays. This overhead also exists for collect diff,
but the saving due to the simplification in finding change begin is more significant, so the total
cost still goes down. The savings in collect diff and collect block are more substantial
than those in apply diff and apply block. On average, merging 32 fields into a single field
improves performance by 51%.

Last Block Searches

Figure 15 demonstrates the effectiveness of block prediction. The setting for this experiment is the
same as that in Figure 11, but we show the number of blocks on the x axis here rather than the
size of blocks. Predict 100 indicates the apply diff costs at the client or the server when
block prediction is 100% correct; predict 50 indicates the costs when prediction is 50% correct;
no predict indicates the costs when no prediction is implemented. As shown in the figure, the
reduction in block searching costs is significant even at just 50% accuracy, when there is a large
number of blocks. When the number of blocks is medium, say less than or equal to 4K, other costs
dominate, and the saving due to block prediction is not significant.

4.3 Translation Costs for a Datamining Application

In an attempt to validate the microbenchmark results presented in the Section 4.1, we have measured
translation costs in a locally developed datamining application. The application performs incremen-
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Figure 16: Wire format length of datamining segment under InterWeave and RPC.

tal sequence mining on a remotely located database of transactions (e.g., retail purchases). Details
of the application are described elsewhere [11].

Our sample database is generated by tools from IBM research [31]. It includes 100,000 cus-
tomers and 1000 different items, with an average of 1.25 transactions per customer and a total of
5000 item sequence patterns of average length 4. The total database size is 20MB.

In our experiments, we have a database server and a datamining client. Both are InterWeave
clients. The database server reads from an active, growing database and builds a summary data
structure (a lattice of item sequences) to be used by mining queries. Each node in the lattice repre-
sents a potentially meaningful sequence of transactions, and contains pointers to other sequences of
which it is a prefix. This summary structure is shared between the database server and mining client
in a single InterWeave segment. Approximately 1/3 of the space in the local-format version of the
segment is consumed by pointers.

The summary structure is initially generated using half the database. The server then repeatedly
updates the structure using an additional 1% of the database each time. As a result the summary
structure changes slowly over time.

To compare InterWeave translation costs to those of RPC, we also implemented an RPC version
of the application. The IDL definitions for the two versions (InterWeave and RPC) are identical.

Figure 16 compares the translated wire format length between InterWeave and RPC. Points on
the x axis indicate the percentage of the entire database that has been constructed at the time the
summary data structure is transmitted between machines. The middle curve represents the RPC
version of the application. The other curves represent InterWeave when sending the entire data
structure (upper) or a diff from the previous version (lower). The roughly 2X increase in space
required to represent the entire segment in InterWeave stems from the use of character-string MIPS
and the wire-format meta-data for blocks such as block serial numbers. The blocks in the segment
are quite small, ranging from 8 bytes to 28 bytes. When transferring only diffs, however, InterWeave
enjoys a roughly 2X space advantage in this application.

Figure 17 presents corresponding data for the time overhead of translation. When the whole
segment needs to be translated, InterWeave takes roughly twice as long as RPC, due to the high cost
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Figure 17: Translation time for datamining segment under InterWeave and RPC.

of pointers. When transferring only diffs, however, the costs of the two versions are comparable.

The high cost of pointer translation here does not contradict the data presented in the previous
subsections. There the pointer translation cost for RPC included the cost of translating pointed-to
data, while for InterWeave we measured only the cost of translating the pointers themselves. Here
all pointers refer to data that are internal to the summary data structure, and are translated by both
versions of the application. This data structure represents the potential worst case for InterWeave.

Though it is beyond the scope of this paper, we should also note that substantial additional
savings are possible in InterWeave by exploiting relaxed coherence [11]. Because the summary
data structure is statistical in nature, it does not have to keep completely consistent with the mas-
ter database at every point in time. By sending updates only when the divergence exceeds a
programmer-specified bound, we can decrease overhead dramatically. Comparable savings in the
RPC version of the application would require new hand-written code.

4.4 Ease of Use

We have implemented several applications on top of InterWeave, in addition to the datamining ap-
plication mentioned in Section 4.3. One particularly interesting example is a stellar dynamics code
called Astroflow [16], developed by colleagues in the department of Physics and Astronomy, and
modified by our group to take advantage of InterWeave’s ability to share data across heterogeneous
platforms.

Astroflow is a computational fluid dynamics system used to study the birth and death of stars.
The simulation engine is written in Fortran, and runs on a cluster of four AlphaServer 4100 5/600
nodes under the Cashmere [32] S-DSM system. As originally implemented it dumps its results to
a file, which is subsequently read by a visualization tool written in Java and running on a Pentium
desktop. We used InterWeave to connect the simulator and visualization tool directly, to support
on-line visualization and steering. The changes required to the two existing programs were small
and isolated. We wrote an IDL specification to describe the shared data structures and replaced
the original file operations with access to shared segments. No special care is required to support
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multiple visualization clients. Moreover the visualization front end can control the frequency of
updates from the simulator simply by specifying a temporal bound on relaxed coherence [11].

Performance experiments [11] indicate that InterWeave imposes negligible overhead on the ex-
isting simulator. More significantly, we find the qualitative difference between file I/O and Inter-
Weave segments to be compelling in this application. We also believe the InterWeave version to
be dramatically simpler, easier to understand, and faster to write than a hypothetical version based
on application-specific messaging. Our experience changing Astroflow from an off-line to an on-
line client highlighted the value of middleware that hides the details of network communication,
multiple clients, and the coherence of transmitted data.

5 Related Work

InterWeave finds context in an enormous body of related work—far too much to document thor-
oughly in this paper. We attempt to focus here on the most relevant systems in the literature.

Toronto’s Mermaid system [39] allowed objects to be shared across more than one type of
machine, but required that all data in the same VM page be of the same type and that objects be of
the same size on all machines, with the same byte offset for every subcomponent.

CMU’s Agora system [5] supported sharing among more loosely-coupled processes, but in a
significantly more restricted fashion than in InterWeave. Pointers and recursive types were not
supported, and all shared data had to be accessed indirectly through a local mapping table.

Stardust [7] supports both message passing and a shared memory programming model on het-
erogeneous machines, but users must manually supply type descriptors. Recursive data structures
and pointers are not supported.

Mneme [26] combines programming language and database features in a persistent program-
ming language. As in InterWeave, persistent data are stored at the server and could be cached at
clients. However, objects in Mneme are untyped byte streams, and references inside an object are
identified by user supplied routines rather than the runtime system.

Rthread [13] is a system capable of executing pthread programs on a cluster of heterogeneous
machines. It enforces a shared object model, in which remote data can only be accessed through
read/write primitives. Pointers are not supported in shared global variables.

Weems et al. [35] provided a survey of languages supporting heterogeneous parallel processing.
Among them, Delirium [25] is the only one adopting a shared memory programming model and it
requires that users list explicitly all variables that each routine might destructively modify.

Many S-DSM systems, including Munin [8], TreadMarks [2], and Cashmere [32], have used
(machine-specific) diffs to propagate updates, but only on homogeneous platforms. Several projects,
including ShareHolder /citeshareholder, Globus [15], and WebOS [34], use URL-like names for
distributed objects or files.

Interface description languages date from Xerox Courier [37] and related systems of the early
1980s. Precedents for the automatic management of pointers include Herlihy’s thesis work [17],
LOOM [18], and the more recent “pickling” (serialization) of Java [29].

Smart RPC [19] is an extension to conventional RPC that allows argument passing using call-
by-reference rather than deep copy call-by-value. Smart RPC lacks a shared global name space,
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however, with a well-defined cache coherence model. Where InterWeave supports extensive cache
reuse, Smart RPC invalidates the cache after each RPC session. Krishnaswamy and Haumacher [21]
describe a fast implementation of Java RMI capable of caching objects to avoid serialization and
retransmission.

Object oriented databases (OODBs) such as Thor [23] allow objects to be cached at client front
ends, but they usually neither address heterogeneity problems nor attempt to provide a shared mem-
ory programming model.

PerDiS [14] is a persistent distributed object system featuring object caching, transactions, se-
curity, and distributed garbage collection. It does not support heterogeneous languages, however,
and has only a single coherence model. ScaFDOCS [20] is an object caching framework built on top
of CORBA. As in Java RMI, shared objects are derived from a base class and their writeToString
and readFromString methods are used to serialize and deserialize internal state. CASCADE [12] is
a distributed caching service, structured as a CORBA object. The designers of both [20] and [12]
report the problem with CORBA’s reference model described in Section 1: every access through the
CORBA reference is an expensive cross-domain call.

LBFS [27] is a low bandwidth network file system that saves bandwidth by taking advantage
of commonality between files; InterWeave saves bandwidth by taking advantage of commonality
among versions of a segment.

6 Conclusions and Future Work

We have described the design and implementation of a middleware system, InterWeave, that allows
processes to access shared data transparently using ordinary reads and writes. InterWeave is, to
the best of our knowledge, the first system to fully support shared memory across heterogeneous
machine types and languages. Key to our work is a wire format, and accompanying algorithms
and metadata, rich enough to capture machine- and language-independent diffs of complex data
structures, including pointers or recursive data types. In a challenge to conventional wisdom, we
argued that S-DSM techniques may actually improve the performance of distributed applications,
while simultaneously simplifying the programming process. InterWeave is compatible with existing
RPC and RMI systems, for which it provides a global name space in which data structures can be
passed by reference.

We are actively collaborating with colleagues in our own and other departments to employ
InterWeave in three principal application domains: remote visualization and steering of high-end
simulations, incremental interactive data mining, and human-computer collaboration in richly in-
strumented physical environments. We are also using InterWeave as an infrastructure for research
in efficient data dissemination across the Internet, and in the partitioning of applications across
mobile and wired platforms.

26



References

[1] S. V. Adve and M. D. Hill. A Unified Formulation of Four Shared-Memory Models. IEEE Trans. on
Parallel and Distributed Systems, 4(6):613–624, June 1993.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared Memory Computing on Networks of Workstations. Computer, 29(2):18–28, Feb.
1996.

[3] C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Software DSM Protocols that Adapt between
Single Writer and Multiple Writer. In Proc. of the 3rd Intl. Symp. on High Performance Computer
Architecture, San Antonio, TX, Feb. 1997.

[4] A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM Trans. on Computer
Systems, 2(1):39–59, Feb. 1984.

[5] R. Bisiani and A. Forin. Multilanguage Parallel Programming of Heterogeneous Machines. IEEE Trans.
on Computers, 37(8):930–945, Aug. 1988.

[6] N. Brown and C. Kindel. Distributed Component Object Model Protocol — DCOM/1.0. Microsoft
Corporation, Redmond, WA, Nov. 1996.

[7] G. Cabillic and I. Puaut. Stardust: An Environment for Parallel Programming on Networks of Hetero-
geneous Workstations. Journal of Parallel and Distributed Computing, 40(1):65–80 1997.

[8] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance of Munin. In Proc. of
the 13th ACM Symp. on Operating Systems Principles, pages 152–164, Pacific Grove, CA, Oct. 1991.

[9] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L. Scott. Beyond S-DSM: Shared State for Dis-
tributed Systems. TR 744, Computer Science Dept., Univ. of Rochester, Mar. 2001.

[10] D. Chen, C. Tang, S. Dwarkadas, and M. L. Scott. JVM for a Heterogeneous Shared Memory System.
In Proc. of the Workshop on Caching, Coherence, and Consistency (WC3 ’02), New York, NY, June
2002. Held in conjunction with the 16th ACM Intl. Conf. on Supercomputing.

[11] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L. Scott. Multi-level Shared State for Distributed
Systems. In Proc. of the 2002 Intl. Conf. on Parallel Processing, Vancouver, BC, Canada, Aug. 2002.

[12] G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Implementing a Caching Service for Distributed
CORBA Objects. In Proc., Middleware 2000, pages 1–23, New York, NY, Apr. 2000.

[13] B. Dreier, M. Zahn, and T. Ungerer. Parallel and Distributed Programming with Pthreads and Rthreads.
In Proc. of the 3rd Intl. Workshop on High-Level Parallel Programming Models and Supportive Envi-
ronments (HIPS ’98), pages 34–40, 1998.

[14] P. Ferreira, M. Shapiro, X. Blondel, O. Fambon, J. Garcia, S. Kloosterman, N. Richer, M. Roberts, F.
Sandakly, G. Coulouris, J. Dollimore, P. Guedes, D. Hagimont, and S. Krakowiak. PerDiS: Design, Im-
plementaiton, and Use of a PERsistent DIstributed Store. Research Report 3525, INRIA, Rocquencourt,
France, Oct. 1998.

[15] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl. Journal of Super-
computer Applications, 11(2):115–128, 1997.

[16] A. Frank, G. Delamarter, R. Bent, and B. Hill. AstroFlow Simulator. Available at http://
astro.pas.rochester.edu/˜delamart/Research/Astroflow/Astroflow.html.

[17] M. Herlihy and B. Liskov. A Value Transmission Method for Abstract Data Types. ACM Trans. on
Programming Languages and Systems, 4(4):527–551, Oct. 1982.

27



[18] T. Kaehler. Virtual Memory on a Narrow Machine for an Object-Oriented Language. In OOPSLA ’86
Conf. Proc., pages 87–106, Portland, OR, Sept. – Oct. 1986.

[19] K. Kono, K. Kato, and T. Masuda. Smart Remote Procedure Calls: Transparent Treatment of Remote
Pointers. In Proc. of the 14th Intl. Conf. on Distributed Computing Systems, pages 142–151, Poznan,
Poland, June 1994.

[20] R. Kordale, M. Ahamad, and M. Devarakonda. Object Caching in a CORBA Compliant System. Com-
puting Systems, 9(4):377–404, Fall 1996.

[21] V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, G. Riley, B. Topol, and M. Ahamad. Effi-
cient Implementations of Java Remote Method Invocation (RMI). In Proc. of the 4th Conf. on Object-
Oriented Techniques and Systems, pages 19–36, 1998.

[22] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM Trans. on Computer
Systems, 7(4):321–359, Nov. 1989.

[23] B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing Persistent Objects in Distributed Systems. In
Proc. of the 13th European Conf. on Object-Oriented Programming, pages 230–257, Lisbon, Portugal,
June 1999.

[24] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Message Passing Versus Distributed Shared
Memory on Networks of Workstations. In Proc. SuperComputing ’95, Dec. 1995.

[25] S. Lucco and O. Sharp. Delirium: An Embedding Coordination Language. In Proc., Supercomputing
’90, pages 515–524, New York, New York, Nov. 1990. IEEE.

[26] J. E. B. Moss. Design of the Mneme Persistent Object Store. ACM Trans. on Information Systems,
8(2):103–139, 1990.

[27] A. Muthitacharoen, B. Chen, and D. Mazières. A Low-Bandwidth Network File System. In Proc. of
the 18th ACM Symp. on Operating Systems Principles, Banff, Canada, Oct. 2001.

[28] Object Management Group, Inc. The Common Object Request Broker: Architecture and Specification,
Revision 2.0. Framingham, MA, July 1996.

[29] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat. Pickling State in the Java System. Computing Systems,
9(4):291–312, Fall 1996.

[30] D. J. Scales and K. Gharachorloo. Towards Transparent and Efficient Software Distributed Shared
Memory. In Proc. of the 16th ACM Symp. on Operating Systems Principles, St. Malo, France, Oct.
1997.

[31] R. Srikant and R. Agrawal. Mining Sequential Patterns. IBM Research Report RJ9910, IBM Almaden
Research Center, Oct. 1994. Expanded version of paper presented at the Intl. Conf. on Data Engineering,
Taipei, Taiwan, Mar. 1995.

[32] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and M. Scott.
Cashmere-2L: Software Coherent Shared Memory on a Clustered Remote-Write Network. In Proc. of
the 16th ACM Symp. on Operating Systems Principles, St. Malo, France, Oct. 1997.

[33] Sun Microsystems Inc. Java Remote Method Invocation Specification. Mountain View, CA, 2001.
Avaialble at http://java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmiTOC.html.

[34] A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani, P. Eastham, and C. Yoshikawa. WebOS: Oper-
ating System Services for Wide Area Applications. In Proc. of the 7th Intl. Symp. on High Performance
Distributed Computing, Chicago, IL, July 1998.

[35] C. Weems, G. Weaver, and S. Dropsho. Linguistic Support for Heterogeneous Parallel Processing: A
Survey and an Approach. In 3rd Heterogeneous Computing Workshop, pages 81–88, Cancun, Mexico,
Apr. 1994.

28



[36] P. R. Wilson. Pointer Swizzling at Page Fault Time: Efficiently and Compatibly Supporting Huge
Address Spaces on Standard Hardware. In International Workshop on Object Orientation in Operating
Systems, page 244ff, Paris, France, Sept. 1992.

[37] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Technical Report XSIS 038112,
Dec. 1981.

[38] H. Yu and A. Vahdat. The Costs and Limits of Availability for Replicated Services. In Proc. of the 18th
ACM Symp. on Operating Systems Principles, Banff, Canada, Oct. 2001.

[39] S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous Distributed Shared Memory. In IEEE
Trans. on Parallel and Distributed Systems, pages 540–554, 1992.

29


