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Abstract

Loop fusion combines corresponding iterations of differ-
ent loops. As shown in previous work, it can often decrease
program run time by reducing the overhead of loop control
and effective address calculations, and in important cases
by dramatically increasing cache or register reuse. In this
paper we consider corresponding changes in program en-
ergy.

By merging program phases, fusion tends to increase
the uniformity, or balance of demand for system resources.
On a conventional superscalar processor, increased bal-
ance tends to increase IPC, and thus dynamic power, so
that fusion-induced improvements in program energy are
slightly smaller than improvements in program run time. If
IPC is held constant, however, by reducing frequency and
voltage—particularly on a processor with multiple clock
domains—then energy improvements may significantly ex-
ceed run time improvements.

We demonstrate the benefits of increased program bal-
ance under a theoretical model of processor energy con-
sumption. We then evaluate the benefits of fusion empiri-
cally on synthetic and real-world benchmarks, using our ex-
isting loop-fusing compiler, and running on a heavily mod-
ified version of the SimpleScalar/Wattch simulator. In ad-
dition to validating our theoretical model, the simulation
results allow us to “tease apart” the various factors that
contribute to fusion-induced time and energy savings.
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9988361, and EIA-0080124; by DoE under grant DE-FG02-02ER25525;
by DARPA/ITO under AFRL contract F29601-00-K-0182; by an IBM Fac-
ulty Partnership Award; and by equipment grants from IBM, Intel and
Compagq.

1. Introduction

With increasing concern over energy consumption and
heat dissipation in densely-packed desktop and server sys-
tems, compiler optimizations that increase the energy ef-
ficiency of programs are becoming increasingly attractive.
This paper studies the energy impact of loop fusion, a pro-
gram transformation that brings together multiple loops and
interleaves their iterations.

Loop fusion has two main effects on a program’s demand
for processor and memory resources. The first effect is to
reduce that demand, by reducing loop overhead and by in-
creasing data reuse in registers and cache, which in turn re-
duces the number of memory operations and address calcu-
lations. The second effect is to balance demand, by combin-
ing loops with different instruction mixes, cache miss rates,
branch misprediction rates, etc. Reduced demand naturally
tends to save both time and energy. Increased balance also
tends to save time and, to a lesser extent, energy, by increas-
ing instruction-level parallelism (ILP): even with aggressive
clock gating in inactive functional units, packing an opera-
tion into an unused slot in a superscalar schedule tends to
save energy compared to extending program run time in or-
der to execute the operation later. Beyond this more obvi-
ous effect, however, we argue that increased balance has a
special benefit for processors with dynamic voltage scaling
(DVS).

DVS allows CPU frequency and voltage to change dy-
namically at run time, in order to match demand. The Trans-
meta Crusoe TMS5800 processor can scale its frequency
from 800MHz down to 367MHz and its voltage from 1.3V
down to 0.9V, thereby reducing power [14]. DVS is also
employed on Intel XScale processors [11]. Because re-
quired voltage scales roughly linearly with frequency within
typical operating ranges, and energy is proportional to the



square of the voltage, a modest reduction in frequency can
yield significant energy savings.

For rate-based (soft real-time) applications, and for ap-
plications that are I/O or memory bound, DVS allows the
processor to slow down to match the speed of the real world
or external bottleneck. Recently, researchers have proposed
globally asynchronous, locally synchronous DVS proces-
sors in which the frequency and voltage of various processor
components (“domains”) can be changed independently at
run time [20, 24, 25]. Such multiple clock domain (MCD)
processors allow domains that are not on the processor’s
critical path to slow down to match the speed of an internal
bottleneck.

On DVS processors, loop fusion can save energy even
when it does not reduce demand or improve performance,
as shown by the following example. The program in Fig-
ure 1(a) has two loops. Assume that memory is the per-
formance bottleneck. Having the same memory demand,
both loops take the same time ¢ for each iteration. With
perfect frequency scaling, the two loops have CPU frequen-
cies 10/t and 20/t respectively. Using a simplified energy
model where power is a cubic function of frequency, the av-
erage CPU poweris ((10/t)3 + (20/t)®) /2 = 4500/t>. Let
us assume that the loops can be fused and, for illustration
purposes, that loop fusion does not change the number of
operations. In the fused loop, the ratio of CPU to memory
operations is constant, as shown in Figure 1(b). The CPU
frequency is now 30/2¢ or 15/¢, and the average power is
3375/ t3, a 25% reduction, even though the reordered pro-
gram executes the same operations in the same amount of
time.

Loop 1:
10 cpu op
5 mem op
Fused loop:
Loop 2: 30 cpu op
20 cpu op 10 mem op
5 mem op

(a) Two loops with (b) Fused loop
different CPU and Wwith a single
memory demand ratios demand ratio

Figure 1. Example of program reordering

While it ignores a host of issues (cache behavior, com-
mon subexpressions, ILP, etc.—all of which we address
in section 4), this example suggests the opportunities for
energy optimization available on DVS processors. While
slowing down the processor to match external constraints
(e.g. memory bandwidth or real-time deadlines) will almost
always save energy, slowing the processor down evenly over
a long period of time will save more energy than slowing it
down a lot at some times and only a little at other times. En-

ergy savings are maximized by good instruction balance—
by even demand over time for each scalable processor com-
ponent.

In the following section we present a mathematical
model that captures the intuition of Figure 1, and describes
the relationships among program balance, performance, and
energy consumption in a perfect DVS processor. We prove
that energy efficiency is maximized in a program with a
constant ratio of demands for scalable processor compo-
nents. In Section 3 we briefly review our loop-fusing com-
piler and multiple clock domain (MCD) processor (both
of which are discussed in other papers), describe our ap-
plication suite, and present the methodology we use to
“tease apart” the various factors that lead to fusion-induced
changes in program time and energy.

Our experimental evaluation appears in Section 4. We
present run time and energy consumption, with and without
loop fusion, on conventional and MCD processors. For the
programs with fused loops, we also present a detailed break-
down of time and energy savings, attributing these savings
to changes in the number of instructions executed, the num-
ber of cache misses, the number of mispredicted branches,
the effectiveness of pipeline utilization, and the effective-
ness of dynamic voltage scaling. We consider related work
in more detail in Section 5, and conclude in Section 6.

2. Theory of Program Balance

This section presents a simple theoretical model of pro-
cessor energy consumption, proves the basic theorem of
program balance, and discusses its implications.

2.1. Program and Machine Model

We assume a processor/memory system consisting of g
components, each of which serves a different aspect of the
program’s resource needs (demand). We further assume that
each component supports dynamic frequency and voltage
scaling independent of other components. We divide the
program’s execution into a sequence of brief time intervals,
each of duration £. We assume that during each interval ¢ the
processor somehow chooses for each component p an oper-
ating frequency f,; equal to wp;/t, where wy; is the pro-
gram’s demand for p—the number of cycles of service on p
required in interval ¢. As an example, consider a pipelined
integer unit p that can finish one integer operation every cy-
cle. If a program executes 100 integer operations in a one-
microsecond interval 4, then f,; = 100/10~¢ = 100MHz.

Finally, we assume that the power consumption of a
component p running at frequency fp; during interval 7 is
( fpi)k, where c is positive and k is greater than 1. The en-
ergy used in ¢ is therefore E; = ct( fpi)k. Dynamic power
is proportional to V2- f - C where V is the supply voltage, f
is the frequency of the clock, and C is the effective switch-
ing capacitance [5]. We assume that voltage is scaled with



frequency. Therefore, the constant k can be as high as three.
Different components may have a different constant c.

We do not consider any overhead incurred by dynamic
scaling. Such overhead would not change our results: be-
cause demand is spread uniformly over time in the opti-
mal case, overhead would be zero. We also choose not to
consider dependences among components, or the fact that
an individual instruction may require service from multiple
components. We assume, rather, that components are com-
pletely independent, and that we can slide demand forward
and backward in time, to redistribute it among intervals. De-
pendences prevent loop fusion and similar techniques from
redistributing demand arbitrarily in real programs. Leaving
dependences out of the formal model allows us to evalu-
ate program balance as a goal toward which practical tech-
niques should aspire.

We define program balance in interval ¢ on a ma-
chine with g components to be the vector v; =
< W14, W25, ..., Wq; >. We say that a program has con-
stant balance if all the balance vectors are the same: i.e.
(¥4, j)[vi = v;]. A program has bounded balance if there
is a critical component p whose demand is always constant,
and at least as high as the demand for every other compo-
nent: ie. (Ip,d)(Vi,m)[(wp; = d) A (wmi < d)]. Con-
stant balance implies a constant utilization of all compo-
nents. Bounded balance guarantees only the full utilization
of the critical component. The utilization of other com-
ponents may vary. The difference will become significant
when we compare the use of reordering for performance
and for energy.

2.2. The Basic Theorem of Program Balance

Assuming that time is held constant, we argue that a pro-
gram execution consumes minimal energy if it has constant
balance. Put another way, a program with varied balance
can be made more energy efficient by smoothing out the
variations. Since we are assuming that components are in-
dependent, we simply need to prove this statement for a sin-
gle component. We therefore drop the p subscripts on the
variables in the following discussion.

An execution comprising M intervals clearly uses time
T = Mt. Tt has a total demand W = Ef‘il w; =
Eﬁ\il fit = tzgl fi» and consumes energy E,riginas =
M e(fi)¥t = et M, (f:)*. The balanced execution has
the same running time 7" and total demand W. It uses a con-

stant frequency f = W/T, however, and consumes energy
Ehalanced = CTfk

Theorem 1. The following inequality holds.

M
Eoriginal =ct Z(fz)k Z CTfk = Ebalanced
i=1

where c, t, and f; are non-negative real numbers, and k and
M are greater than 1.

Proof. According to Jensen’s theorem [10], (Ziﬂil(fi)””)l/“"”
is a non-increasing function of z. Since k£ > 1, we have
(M (f)F)VE > M fi Tt follows that

3 - >, g
ct Y (f)k > ct(D fi)k = ctM’“(%)’c > T fk

i=1 i=1
(|

The theorem assumes that the operating frequency of a
machine can be any real number. If a machine can choose
only from a set of predefined integral operating frequen-
cies, Jensen’s theorem is not directly applicable. Li and
Ding [22] used another calculus method and proved that
in the case of discrete operating frequencies, the optimal
program balance is achieved by a strategy that alternates
between the two closest valid frequencies above and below
W/T, where T is the running time and W is the total de-
mand.

Reordering for Energy vs. Performance In terms of
program balance, reordering for energy is not the same as
reordering for performance. For performance, the goal is to
fully utilize the critical resource, thereby requiring bounded
balance. For example, if memory is the critical resource, we
can maximize performance by keeping the memory busy at
all times. The utilization of the CPU does not matter as long
as it does not delay the demand to memory. For energy,
however, we want not only full utilization of the critical re-
source but also a constant utilization of all other resources.
According to the theorem of program balance, a program
with varied CPU utilization consumes more energy than its
balanced counterpart that has a constant CPU utilization.
This is the reason for the energy improvement in the ex-
ample given in the introduction: execution time cannot be
reduced but energy can.

3. Experimental Methodology
3.1. Loop Fusion

We use the source-to-source locality-based fusion algo-
rithm devised by Ding and Kennedy to improve the effec-
tiveness of caching [13]. We chose this algorithm because
it is familiar to us, its implementation is available, and it
outperforms the best industry compilers.

In contrast to most previous work, locality-based fusion
is able to fuse loops of differing shape, including single
statements (loops with zero dimension), loops with a dif-
ferent number of dimensions, and imperfectly nested loops.
The key is to consider data access patterns in conjunction
with the structure of loops. The algorithm employs three



different transformations, corresponding to three different
classes of data sharing:

o Loop fusion and alignment, used when data are shared
between iterations of the loops. When aligning the
loops (choosing corresponding iterations to fuse), the
algorithm may shift the second loop down to preserve
data dependences, or it may shift the second loop up to
bring uses of the same data together.

e Loop embedding, used when data are shared between
all iterations of one loop and one or more iterations of
another loop. The algorithm embeds the first loop into
the second at the earliest data-sharing iteration.

e [teration reordering, used when two loops cannot be
fused entirely. The algorithm breaks up the loops and
then fuses iterations where possible. Special cases of
iteration reordering include loop splitting and loop re-
versal.

Unlike Ding and Kennedy, we fuse loops for the sake of
program balance even when doing so does not improve data
reuse—e.g. even when the loops share no data. Sharing pat-
terns are identified using array section analysis [16]. Func-
tion in-lining is used where possible to fuse loops across
function boundaries.

For multiple loops, locality-based fusion uses a heuris-
tic called sequential greedy fusion: working from the be-
ginning of the program toward the end, the algorithm fuses
each statement or loop into the earliest possible data-sharing
statement or loop. For multi-level loops, the algorithm first
decides the order of loop levels and then applies single-level
fusion from the inside out. This heuristic serves to minimize
the number of fused loops at outer levels.

Aggressive fusion may cause excessive register spilling
and increased cache interference. The register problem can
be solved by constrained fusion for innermost loops [12,
28]. Ding and Kennedy alleviated the problem of cache in-
terference by data regrouping, which places simultaneously
accessed data into the same cache block to avoid cache con-
flicts [13]. Locality-based fusion follows the early work of
vectorizing compilers [3], which applies maximal loop dis-
tribution before fusion. It subsumes a transformation known
as loop fission, which splits a loop into smaller pieces to im-
prove register allocation.

3.2. MCD Architecture and Control

We use the multiple clock domain (MCD) processor de-
scribed by Semeraro et al. [25]. MCD divides the chip into
four domains: the fetch domain (front end), which fetches
instructions from the L1 I-cache, predicts branches, and
then dispatches instructions to the different issue queues;
the integer domain, which comprises the issue queue, reg-
ister file, and functional units for integer instructions; the

floating-point domain, which comprises the same compo-
nents for floating-point instructions; and the memory do-
main, which comprises the load-store queue, L1 D-cache,
and unified L2 cache. Each domain has its own clock and
voltage generators, and can tune its frequency and voltage
independent of the other domains. Architectural queues
serve as the interfaces between domains, and are augmented
with synchronization circuitry to ensure that signals on dif-
ferent time bases transfer correctly. This synchronization
circuitry imposes a baseline performance penalty of approx-
imately 1.3% on average.

Previous papers describe three control mechanisms to
choose when, and to what values, to change domain fre-
quencies and voltages. The off-line algorithm [25] post-
processes an application trace to find, for each interval, the
configuration parameters that would have minimized en-
ergy, subject to a user-selected acceptable slowdown thresh-
old. Though impractical, it provides a target against which
to compare more realistic alternatives. The on-line algo-
rithm [24] makes decisions by monitoring the utilization of
the issue queues, which also serve to communicate among
domains. During each time interval, if the cumulative uti-
lization is far different from that of the previous interval,
then the frequency will change abruptly; if it is similar, then
the frequency will be decreased a little bit in hopes of poten-
tial energy savings. The profile-based algorithm [23] uses
statistics gathered from one or more profiling runs to iden-
tify functions or loop nests that should execute at particular
frequencies and voltages. The results in this paper were ob-
tained with the off-line algorithm, with a slowdown target
of 2%. The profile-based algorithm achieves equally good
energy savings, but would have made it significantly more
cumbersome to conduct our experiments.

Our simulation results were obtained with a heavily
modified version of the SimpleScalar/Wattch toolkit [4, 6].
Details can be found in other papers [23, 24, 25]. Archi-
tectural parameters were chosen, to the extent possible, to
match those of the Alpha 21264 processor. Main memory
was always run at full speed, and its energy was not in-
cluded in our results.

3.3. Application Suite

We applied loop fusion to seven applications: a contrived
example (7est) and six real benchmarks. ADI, a kernel
for alternating-direction integration, is a common bench-
mark in the locality optimization literature. LK14 and LK18
are a pair of kernels from the Livermore suite. Swim and
Tomcatv are from SPEC95. SP is from the NAS suite.
These are all the applications from these three suites for
which our compiler is able to fuse core computational loops
and significantly improve program performance. Previous
compilers see little or no benefit from loop fusion, primar-
ily because they do not fuse loops of different shape [9]).



We believe that additional benchmarks (including several
from SPEC2000) could be fused if we were to extend our
compiler with more extensive interprocedural analysis (cur-
rently it is able to fuse loops from different subroutines only
if one can be inlined in the other); this is a subject of future
research.

All programs are fused into one loop nest except SP,
which has over 100 original loop nests fused into a dozen
new loops, and Tomcatv, where data dependences allowed
only the outer loops to be fused. We used Ding and
Kennedy’s data regrouping mechanism to improve the spa-
tial locality after loop fusion [13]. In Swim, fusion alone
reduced performance because of increased cache conflicts
in the fused loop, but data regrouping alleviated the prob-
lem and reduced execution time to 15% below that of the
original program.

We compiled all benchmark programs (with or with-
out prior source-to-source loop fusion) using the Digital
f77 compiler with the —O5 flag. The machine compiler
performed loop transformations and software pipelining.
We chose input sizes for our experiments so that the total
number of instructions simulated for each benchmark was
around 100 million.

3.4. Time and Energy Breakdown

Given differences in run time and energy consumption
between the original and fused versions of an application,
we would like to determine the extent to which these differ-
ences are the simple result of changes in instruction demand
(number of instructions executed) and, conversely, the ex-
tent to which they stem from differences in the effectiveness
of such architectural features as caching, branch prediction,
pipeline utilization, and voltage scaling.

Architectural effects, of course, may not be entirely in-
dependent. Memory accesses on mispredicted paths, for ex-
ample, may change the cache hit rate, while timing changes
due to hits and misses in the cache may change the distance
that the processor travels down mispredicted paths. Still,
we can gain a sense of the relative significance of different
factors by considering them in order, and can quantify their
contributions to run time and energy by running our appli-
cations on various idealized machines.

Suppose the original program runs in time 77 and con-
sumes energy E?, where the superscript “o” stands for
“original” and the subscript “c” stands for a conventional
simulated machine—not idealized in any way. Similarly,
suppose the fused program runs in time 7Y and consumes
energy E/. We would like to attribute the difference in run
time AT, = T? — T/ and energy AE, = E° — E/ to dif-
ferences in (a) instruction demand, (b) the effectiveness of
caching, (c) the effectiveness of branch prediction, (d) the
effectiveness of pipeline utilization, and (e) the effective-
ness of DVS.

3.4.1. Synchronous Case

We first consider reduction in instruction demand, and
assume, for the moment, a synchronous processor. Sup-
pose the original program commits N instructions and that
the fused program commits N/. Ideally, if its ILP were un-
changed, we might expect the fused program to run in time
T = T° x N//N°, where the superscript “s” stands for
“scaled”. We then define AT gem = T2 — T?. Simi-
larly, we might expect the fused program to consume en-
ergy B & E° x N//N°.! Then AE; 5 gem = E? — ES. In
the following paragraphs, we use 7%, for any z, to stand for
T? x N//N°, and E* to stand for the similarly scaled value
of Y.

Now consider caching and branch prediction. We can
simulate the original and fused programs on a machine with
perfect branch prediction and, optionally, perfect caching.
LetT¢,, and E;_,;, be the scaled time and energy of the orig-
inal program on a simulated machine with perfect branch
prediction, and Tt , ,. and E7, . be the corresponding
values on a machine with perfect branch prediction and
perfect cache (all data accesses hit in the L1 D-cache).
T, — T pppe and E¢, — EC, . represent the amount of
time and energy in the (scaled) original program devoted to
servicing true misses (those that do not occur on mispre-
dicted paths). Similarly, 7/ pb — T/ b, pe and Ef,pb —Eppe
represent the time and energy devoted to true misses in the
fused program. We thus define

AI‘L‘aching = (Tcs—pb - cs—pb,pc) - (Tf—ph - ch—pb,pc)
AEL'aching = ( g—pb - Eg—pb,pc) - (Ez—pb - Ez—ph,pc)

These are the differences between the time and energy cost
of true misses in the (scaled) original program and the corre-
sponding values in the fused program. Put another way, they
represent the difference in the effectiveness of caching in
the original and fused programs, after previously account-
ing for the difference in instruction demand.

Continuing the logic of the previous paragraph, (T —
T: pc) and (E! — E7 ;) represent the time and energy
devoted to misses and mispredictions in the scaled original
program, and (T/ =T/ ,, ) and (E/—E/_,, ) represent the
corresponding values in the fused program. We thus define

ATprediction = (TLY_ L"Y—pb,pc) - (TLf—Tf

c-pb,pc

) - ATwching

IWe can (and, in our reported results, do) obtain a better estimate of
E¥ by taking instruction mix into account in calculating the ratio by which
to scale E2. By adding up all the energy consumed by the original pro-
gram in the front end (used by all instructions), the integer unit (used by
all non-floating point instructions), the branch predictor, the floating point
unit, and the memory unit, we can calculate separate energy per instruction
(EPI) values for branch, integer, floating point, and memory instructions.
Given the instruction mixes of the original and fused programs, we can
then determine what the energy of the fused program would be if the EPI
of each instruction category were the same as in the original program. This
refinement, of course, is not possible for time.



= (1—13 - Tg—ph) - (ch_ be—ph)

c

AE/‘prediclion = (Ez_ g.pb,pc) - (Ef_Ef.pb,pc) - AEwching
= (Ef_ g—ph) - (EZ_EZ—[)/J)

These represent the difference in the effectiveness of branch
prediction in the original and fused programs, after previ-
ously accounting for both the difference in instruction de-
mand and the difference in the effectiveness of caching.

Any remaining differences in time and energy between
the original and fused programs we attribute to differences
in the effectiveness of pipeline utilization (i.e. ILP):

ATpipeline = Aﬂ - Afz—‘inst_dem - Aﬂ'aching - AT‘praliclion
AEf‘pipeline = AEL - AEinsl_dem - AEL‘aching - AE/‘prediclion
3.4.2. MCD Case

Now consider the case of an MCD processor with dy-
namic frequency and voltage scaling. Because DVS is an
energy saving technique, not a performance enhancing tech-
nique, and because the off-line control algorithm chooses
frequencies with a deliberate eye toward bounding execu-
tion slowdown, it makes no sense to attribute differences in
run time to differences in the “effectiveness” of DVS. We
therefore focus here on energy alone.

By analogy to the synchronous case, let E¢ and E/, be
the energy consumed by the original and fused programs
running on an MCD processor with frequencies and volt-
ages chosen by the off-line algorithm. For the original pro-
gram, DVS reduces energy by the factor r = E%/E°. If
the various other executions measured in the synchronous
case made equally good use of DVS, we would expect their
energies to scale down by this same factor . We therefore
define

AE, = E° - F,
= r X (AEisdem + AEcaching
+ AE,ediction + A Epipeiine) + AFE s
where A Eig_dem, AEcachings A Eprediciion, and A Epipeiine are
all calculated as in section 3.4.1. Equivalently:

AE;, = AE, —rAE, = (E°—FE.) —r (E°-F)

m m

Under this definition, AE,,; is likely to be negative, be-
cause loop fusion tends to reduce cache misses and CPI,
thereby reducing opportunities to save energy by lowering
frequency and voltage. The balance theorem of section 2.2,
however, suggests that fusion should increase the effective-
ness of DVS when overall time is kept constant. To evaluate
this hypothesis, we will in Section 4.3 consider executions
in which we permit the off-line algorithm to slow down the
fused program so that it has the same run time it would have
had without fusion-induced improvements in pipeline uti-
lization and, optionally, caching.

4. Evaluation

In this section we first consider a contrived test program
in which improved instruction balance allows an MCD pro-
cessor to save energy even when it does not save time.
We then consider the impact of loop fusion on execution
time and energy for the benchmark applications described
in Section 3.3. For each of these benchmarks, we use the
methodology of Section 3.4 to attribute time and energy
savings to changes in instruction demand and in the effec-
tiveness of caching, branch prediction, pipeline utilization,
and DVS.

4.1. Saving Energy without Saving Time

Figure 2 shows a simple kernel program with two loops.
To balance this program, we can move the statement labeled
S from the second loop to the end of the first, thus giving
both loops the same mix of integer and floating-point op-
erations. The program is written in an assembly-like style
and compiled with minimal optimization (-O1) to make the
object code as straightforward and predictable as possible.

/* N, U, V, and W are constants */
unsigned long long P[N], Q[N];

double ¢, d, e, f;

unsigned long long *base_p, *org_p, *end_p;
unsigned long long *base_qg, *org_g, *end_g;

base_p = org_p = (unsigned long long *)P + 2;
base_g = org_g = (unsigned long long *)Q + 2;
for( i = 0; i < 3; i++ )

{
/* the first loop */

Ll: *base_p = *(base_p-1) * Y - *(base_p-2);
base_p++;
c =c + W;
if( base_p < end_p
goto L1;

/* the second loop */

L2: *base_q = *(base_g-1) * Z - *(base_g-2);
base_qg++;
d=4d4d+ W;
e = e + U;

S: f=f+V; /* to be moved

to the end of the first loop */
if( base_g < end_g
goto L2;

base_p = org_p;
base_g = org_g;
}

Figure 2. A contrived 7est program. As written, the
two loops have the same number of multiplications
and memory operations per iteration, but different
numbers of additions.
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Test baseline machine | MCD
fetch domain 0.00% —0.73%
integer domain 0.13% 5.80%
floating point domain 0.16% 28.90%
memory domain 0.02% 8.26%
total energy reduction 0.08% 9.23%

Table 1. Energy benefit of balancing in 7est, on the
baseline and MCD processors.

Since the two loops operate on different arrays, moving
statement S from the second loop to the first has little im-
pact on instruction count or cache performance. Indeed, as
shown in the 7est column of Table 2 (page 8), the original
and modified versions of the program have nearly identical
counts for all types of instructions, and the same number
of cache misses. Execution time on the MCD machine is
also essentially the same. Energy consumption, however,
is reduced by almost 10%. Figure 3 shows the frequencies
selected over time by the off-line algorithm for the original
and balanced versions of Test on the MCD processor. In the
integer, floating-point, and memory domains, frequency is
much more stable and smooth after balancing. Frequency
in the fetch domain remains essentially constant.
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Table 1 shows the impact of moving statement S on the
energy consumption of the baseline (globally synchronous)
and MCD processors. Without DVS, the overall change in
energy is below one tenth of a percent, and no individual do-
main sees a change of more than 0.16%. On the MCD pro-
cessor, however, where DVS allows us to adjust frequency
and voltage to match the demands of the program, the more
balanced version of the program admits overall energy sav-
ings of over 9%, mostly by allowing the floating-point unit
to run more slowly in loop L2. This example demonstrates
clearly that with DVS, program balancing can save energy
even when it doesn’t change workload or execution time.

4.2. Program Balance in Realistic Benchmarks

Table 2 shows statistics not only for the 7est program, but
for the six real benchmarks as well. Reductions in energy
due to loop fusion range from 2% to 29%, roughly track-
ing reductions in run time, which range from 7% to 40%.
The reductions in run time are in turn a combination of re-
ductions in the total number of instructions (four of the six
real benchmarks) and reductions in cycles per instruction
(CPI—five of the six real benchmarks).

Energy per cycle (average power) increases by amounts
ranging from 4-18% in five of the six real benchmarks.
LK14 shows a 1% decrease in average power, consistent



Test ADI LK14 LK18 SP Swim Tomcatv
exe time® —1% 40% 28% 7% 27% 15% 9%
energy’ 9% 29% 29% 2% 16% 12% 3%
total inst! 0% 20% 30% 0% 18% 6% 2%
CPI? 2.05 (-1%) 1.12 (24%) 0.80 (=3%) 1.28 (7%) 0.50 (10%) | 0.92 (10%) 1.08 (11%)
EPI* 9% 11% 2% 3% 3% 6% 4%
ave power’ 10% —~18% 1% 4% —15% 4% 8%
inst mix orig® 50/8/37/4 7/34/57/2 27/17/55/1 7/46/46/1 15/33/50/2 12/40/48/1 8/43/46/3
inst mix fused® 50/8/37/4 8/42/50/1 18/25/56/1 10/46/43/0 9/40/51/1 2/42/56/0 7/42/49/3
L1D misses” 3% (0%) 9% (32%) 5% (45%) 6% (25%) 7% (22%) 4% (15%) 7% (—1%)
L2 misses? 50% (0%) 43% (58%) 59% (45%) 57% (32%) 1% (65%) 63% (29%) 80% (-6%)
num reconfig? | 15847 (86%) | 21714 (40%) | 13560 (70%) | 24066 (14%) | 7450 (37%) | 11969 (19%) | 21924 (-8%)
freg-stdev® 5.81/0.00 6.60/22.11 4.96/4.20 37.56/0.21 10.38/3.89 | 31.17/19.82 18.61/1.93

: percentage reduction after fusion/balancing
: value after fusion/balancing (and percentage reduction)

[ o

: percentage of integer/floating-point/memory-reference/branch instructions
: local miss rate after fusion/balancing (and percentage reduction in total number of misses)
: standard deviation of floating point frequency (MHz) before/after fusion/balancing

Table 2. Simulation results on MCD processor (with off-line frequency selection) before and after loop fusion

(six real benchmarks) or balancing (Test).

with its small increase in CPI. Test show a more significant
10% decrease in power, due to better balance over constant
time. Energy per instruction (EPI) shows somewhat smaller
changes, increasing slightly in LK/4 and SP, and decreas-
ing by modest amounts in the other real benchmarks and in
Test.

Interestingly, while Tomcatv executes 2% more dynamic
instructions after fusion, and suffers both a larger number
of memory operations and a larger number of misses, it still
runs 9% faster, mainly due, we believe, to the elimination
of misses on the critical path. These eliminated misses are
reflected in a dramatic reduction in the standard deviation
of the frequency chosen by the off-line algorithm for the
floating-point domain. As noted in Section 3.3, Tomcatv is
the only benchmark for which our compiler was able to fuse
outer but not inner loops.

In all benchmarks other than Tomcatv, fusion leads to
significant improvements in both L1D and L2 cache miss
rates. It also tends to reduce the fraction of integer and/or
memory instructions, leading to significant increases in
ADI, LKI14, and SP in the fraction of the remaining instruc-
tions executed by the floating-point unit. In all benchmarks
other than ADI, fusion also leads to significant reductions in
the standard deviation of the frequency chosen by the off-
line algorithm for the floating-point domain. We believe the
difference in ADI stems from a mismatch between the size
of program loops and the 10,000 cycle window size used
by the off-line control algorithm. In separate experiments
(not reported here), the on-line control algorithm of Semer-
aro et al. [24] enabled fusion in ADI to reduce the standard
deviation of the floating-point domain by a factor of 2.4. In
all benchmarks other than Tomcatv, fusion leads to a sig-

nificant reduction in the total number of frequency changes
(reconfigurations) requested by the off-line algorithm.
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Figure 4. Effects on energy and performance from
fusion alone, from dynamic voltage scaling alone,
and from both together. The baseline for compar-
ison is the globally synchronous processor, with-
out inter-domain synchronization penalties.

Figure 4 illustrates the synergy between loop fusion and
DVS. Without MCD scaling, loop fusion reduces program
energy by 6-33%, due entirely to reductions in run time of
7-38%. Without loop fusion, MCD scaling reduces pro-
gram energy by 19-35%, but increases program run time
by 2-11%. Together, MCD scaling and loop fusion achieve
energy savings of 22—-54%, while simultaneously improving



run time by 2-37%. While it is certainly true that reductions
in frequency and voltage will save energy in almost any pro-
gram, the “bang for the buck” tends to be higher in a fused
program than it was in the original, because (as shown in
Table 2) the fused program’s power is higher. (NB: the bars
in Figure 4 are not directly comparable to the top two rows
of Table 2: improvements in Figure 4 are measured with re-
spect to the globally synchronous processor, while those in
Table 2 are measured with respect to the MCD processor.)

4.3. Breakdown of Time and Energy Improve-
ments

Using the methodology of Section 3.4, we can estimate
the extent to which fusion-induced reductions in run time
and energy can be attributed to reductions in instruction
count and to improvements in the effectiveness of caching,
branch prediction, pipeline utilization, and DVS. (In some
cases, of course, the “reductions” or “improvements” may
be negative. In Tomcatv, for example, the fused program
executes more instructions than the original.)
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Figure 5. Breakdown of reduction in run time
(top) and energy (bottom) between original and
fused/balanced programs on synchronous proces-
sor.

Figure 5 illustrates the breakdown of run time and energy
improvements on a synchronous (non-DVS) processor. To-

tal improvements are the same as the leftmost bars in each
group in Figure 4. We found AT} cqiciion and AEp,egiciion t0
be essentially zero in all cases, so we have left them out
of the graphs. Reduction in instruction demand accounts
for all the run time savings in LK/74, and is the dominant
factor in ADI and SP as well. It is slightly negative in
LK18 and Tomcatv. The Test program sees no change in
run time due to fusion. Energy numbers are similar though
not identical. In particular, LK14 reaps small improvements
in caching and pipeline effectiveness, Swim sees no energy
benefit from its reduction in instruction demand, and the
relative importance of caching and pipeline effectiveness
changes for several applications.
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Figure 6. Breakdown of reduction in energy be-
tween original and fused/balanced programs with
MCD frequency/voltage scaling. DVS is less effec-
tive in the fused version of four out of six real
benchmarks.

Figure 6 illustrates the breakdown of energy improve-
ments on the MCD processor, where we have added a bar
to each application for A E . In four of the six real bench-
marks, fusion reduces the effectiveness of DVS by elimi-
nating opportunities to slow down clock domains that are
off the critical path. As noted in Section 3.4.2, however, we
have the opportunity on a machine with DVS to save energy
by slowing execution, and loop fusion enhances this oppor-
tunity by eliminating many of the cache misses and pipeline
stalls of the original program.

Figure 7 presents values of A Ey, for three different ex-
ecution models. The first bar in each group is the same as
in Figure 6: it represents the fused program running on an
MCD processor at frequencies and voltages chosen by the
off-line algorithm with a target slowdown of 2%. The sec-
ond bar represents the energy savings due to MCD scaling
when we slow execution just enough to “use up” the fusion-
induced savings in run time due to better pipeline packing.
The last bar shows the corresponding savings when we slow
execution enough to use up the benefits due both to better
pipeline packing and to better caching. More specifically,



for “dilated” and “double dilated” executions, we let
T, = TS =T° x N//N°
le; = Trfq - AT‘L‘aching

The definition of T/ is based on the assumption that the time
spent waiting for cache misses is essentially unaffected by
MCD scaling.
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Energy Reduction
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[mMCD DDilated m Double dilated |
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Figure 7. Increase in energy savings in loop-
fused application attributable to increase effective-
ness of DVS, with standard 2% MCD target slow-
down (left), and with additional slowdown suffi-
cient to consume ATpipeline (middle) and, option-
ally, AT, cning as well (right).

When running in time 7%, on the MCD processor, an ap-
plication has the same CPI it did before fusion. When run-
ning in time 7Y it has the same CPI it would have had before
fusion if it hadn’t been suffering more cache misses. If we
were to duplicate all of Figure 6 for each of the time-dilated
cases, the values of AE;,g dgem, AEcachings AEprediciion, and
AE,ipeiine would remain unchanged; total energy savings
would increase by the same amount as AFE,,. We do
not show time-dilated results for LK14 because its fusion-
induced time savings come entirely from reduction in in-
struction demand; it has no caching or pipeline packing sav-
ings to recoup. For the remaining five real benchmarks,
AE4, ranges from 7-42% when we scale down proces-
sor frequency to recoup the time saved by better pipeline
packing. It ranges from 12-54% when we also recoup the
time saved by better caching. Even in this extreme case, the
fused versions of LKI8 and Tomcatv run within 2% of the
time of the original program, and ADI, SP, and Swim run
from 6-20% faster.

5. Related Work

Loop fusion. Many researchers have studied loop fusion.
Early work includes that of Wolfe [29] and of Allen and
Kennedy [2]. Combining loop fusion with distribution was

10

originally discussed by Allen et al [1]. Global loop fusion
was formulated as a graph problem by Allen et al. [1] for
parallelization, by Gao et al. [15] for register reuse, and by
Kennedy and McKinley [21] for locality and parallelization.
Where these fusion studies were aimed at improving perfor-
mance on conventional machines, our work is aimed at sav-
ing energy on DVS processors. As a result, we fuse loops
even when their data are disjoint.

Program balancing. Callahan et al. defined the concepts
of program and machine balance [7]. For single loop nests,
Carr and Kennedy used program transformations such as
scalar replacement and unroll-and-jam to change the pro-
gram balance to match the balance of resources available on
the machine [8]. So et al. used balance information to re-
strict the search to appropriate matches between hardware
design and loop optimization, consequently making hard-
ware and software co-design much faster [26]. Similar to
the work of So et al., we target adaptive hardware that has
no fixed machine balance. But unlike the work of So et
al. and all other previous work, we do not require separate
loop nests to have a particular balance; we only want them
to have the same balance. As a result, we avoid the need to
measure program balance at the source level.

Dynamic voltage and frequency scaling Dynamic volt-
age and frequency scaling was studied by Burd and Broder-
sen [5]. Semeraro et al. designed a multiple-clock-domain
(MCD) system to support fine-grained dynamic voltage
scaling within a processor [25]. A similar design was pro-
posed by Iyer and Marculescu [20]. Various schemes have
been developed to control adaptive processors, including
compiler assisted methods by Hsu et al. [18], an on-line
method by Semeraro et al. [24], and methods using both
compiler and profiling analysis by Magklis et al. [23] and
by Hsu and Kremer [17].

Yao et al. [32] and Ishihara and Yasuura [19] studied
the optimal schedule for DVS processors in the context of
energy-efficient task scheduling. Both showed that it is
most energy efficient to use the lowest frequency that allows
an execution to finish before a given deadline. Ishihara also
showed that when only discrete frequencies are allowed, the
best schedule is to alternate between at most two frequen-
cies.

On a multi-domain DVS processor, optimal scheduling
is not possible if a program has varying demands for differ-
ent domains at different times. The theorem in our paper
shows that in this case, one needs to fully balance a pro-
gram to minimize its energy consumption. Li and Ding first
proved this theorem for DVS systems with continuous and
discrete operating frequencies [22]. This paper generalizes
the basic theorem for any power function P oc f*, where
f is frequency and k£ > 1. Ishihara and Yasuura assumed a
power function P oc v2, where v is the voltage. They con-
sidred the circuit delay in their model. They demonstrated



the theorem with an example plot but did not show the com-
plete proof.

Energy-based compiler optimization High-level pro-
gram transformations have been studied for improving lo-
cality and parallelism. Both benefit energy because they
reduce program demand and improve resource utilization.
Vijaykrishnan et al. used loop fusion but did not report any
significant effect from the transformation on performance
or energy [27]. Yang et al. [31] found loop fusion and loop
permutation reduced the L1 miss rate from 13% to 10% in
one test programs. These and other studies did not measure
the effect of aggressive loop fusion, nor did they consider
its balancing effect on DVS processors.

Compiler techniques have been studied for energy-
based code generation, instruction scheduling, and software
pipelining. In software pipelining, Yang et al. recently de-
fined balance to be the pair-wise power variation between
instructions [30], which is different from our concept of
overall variation. Most energy-specific transformations, in-
cluding that of Yang et al., are applied at the instruction
level for a single basic block or the innermost loop body and
are targeted toward a conventional processor. Our technique
transforms multiple loops at the source level and exploits a
unique opportunity made possible by DVS machines.

6. Summary

Loop fusion is an important optimization for scientific
applications. It has previously been studied as a means of
improving performance via reductions in dynamic instruc-
tion count and cache miss rate. In this paper we have recon-
sidered fusion from an energy point of view, and have ex-
plored its connection to the concept of program balance—
of smoothness in demand for processor and memory re-
sources.

By merging program phases, loop fusion tends to even
out fluctuations in the instruction mix, allowing the com-
piler and processor to do a better job of pipeline packing.
By moving uses of the same data closer together in time,
fusion also tends to reduce the total number of cache misses
and the cache miss rate. Improvements in pipeline pack-
ing and caching, in turn, tend to increase average processor
power, with the result that fusion tends to save more time
than it does energy on a conventional superscalar processor.
On a processor with dynamic voltage scaling (DVS), how-
ever, fusion increases opportunities to slow down the pro-
cessor in rate-based, soft real-time, memory-bound, or I/O-
bound computations, thereby saving extra energy. More-
over the energy savings per percentage of execution slow-
down is generally greater in the fused program than it would
be in the original, because the fused program’s power is
higher. As shown in theory in Section 2 and in practice
in Section 4.1, fusion can save energy even when it does
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not same time: increases in program balance always save
energy on a DVS processor when time is held constant.

In a related contribution, we presented a methodology
in Section 3.4 that enables us to “tease apart” the various
factors that contribute to fusion-induced time and energy
savings, attributing them to changes in dynamic instruction
count and in the effectiveness of caching, branch prediction,
pipeline utilization, and DVS. We applied this methodology
to six real benchmarks in Section 4.3. Our results confirm
that fusion tends to reduce the effectiveness of DVS when
run time is reduced to the maximum possible extent, but
that it introduces opportunities to save dramatic amounts of
energy when some of the potential savings in run time is
devoted to frequency reduction instead.
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