
Contention Management in Dynamic Software
Transactional Memory∗

William N. Scherer III and Michael L. Scott
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226

{scherer,scott }@cs.rochester.edu

April 2004

Abstract
Obstruction-free concurrent algorithms differ from
those with stronger nonblocking conditions in that
they separate progress from correctness. While it
must always maintain data invariants, an obstruction-
free algorithm need only guarantee progress in the
absence of contention. The programmer can (and in-
deed must) address progress as an out-of-band, or-
thogonal concern.

In this work we consider the Java-based obstruc-
tion-free Dynamic Software Transaction Memory
(DSTM) system of Herlihy et al. When two or
more transactions attempt to access the same block
of transactional memory concurrently, at least one
transaction must be aborted. The decision of which
transaction to abort, and under what conditions, is
the contention managementproblem. We introduce
several novel policies for contention management,
and evaluate their performance on a variety of bench-
marks, all running on a 16-processor SunFire 6800.
We also evaluate the marginal utility of earlier, but
somewhat more expensive detection of conflicts be-
tween readers and writers.

1 Introduction
Non-blocking algorithms are notoriously difficult to
design and implement. Although this difficulty is
partially inherent to asynchronous interleavings due
to concurrency, it may also be ascribed to the many
different concerns that must be addressed in the de-

∗This work was supported in part by NSF grants num-
bers EIA-0080124, CCR-9988361, and CCR-0204344, by
DARPA/AFRL contract number F29601-00-K-0182, and by fi-
nancial and equipment grants from Sun Microsystems Labora-
tories.

sign process. With lock-free synchronization, for
example, one must not only ensure that the algo-
rithm functions correctly, but also guard against live-
lock. With wait-free synchronization one must ad-
ditionally ensure that every thread makes progress in
bounded time; in general this requires that one “help”
conflicting transactions rather than aborting them.

Obstruction-free concurrent algorithms[3] lighten
the burden by separating progress from correct-
ness, allowing programmers to address progress as
an out-of-band, orthogonal concern. The core of
an obstruction-free algorithm need only guarantee
progress when only one thread is running (though
other threads may be in arbitrary states).

Dynamic software transactional memory (DSTM)
[4] is a general purposesystem for obstruction-free
implementation of arbitrary concurrent data struc-
tures. Though applicable in principle to many pro-
gramming environments, it is currently targeted at
Java, where automatic garbage collection simplifies
storage management concerns. DSTM is novel in its
support for dynamically allocated objects and trans-
actions, and for its use of modular contention man-
agers to separate issues of progress from the correct-
ness of a given data structure.

Contention management in DSTM may be
summed up as the question: what do we do when
two transactions have conflicting needs to access a
single block of memory? At one extreme, a policy
that never aborts an “enemy” transaction can lead to
deadlock in the event of priority inversion or mutual
blocking, to starvation if a transaction deterministi-
cally encounters enemies, and to a major loss of per-
formance in the face of page faults and preemptive

1



scheduling. At the other extreme, a policy that al-
ways aborts an enemy may also lead to starvation,
or to livelock if transactions repeatedly restart and
then at the same step encounter and abort each other.
A good contention manager must lie somewhere in
between, aborting enemy transactions often enough
to tolerate page faults and preemption, yet seldom
enough to make starvation unlikely in practice. We
take the position that policies must also be provably
deadlock free. It is the duty of the contention man-
ager to ensure progress; we say that it does so out-of-
band because its code is entirely separate from that of
the transactions it manages, and contributes nothing
to their conceptual complexity.

Section 2 begins our study with an overview of
DSTM. Section 3 then describes our contention
management interface and presents several novel
contention management policies. Section 4 evalu-
ates the performance of these policies on a suite of
benchmark applications. Our principal finding is that
different policies perform best for different combi-
nations of application, workload, and level of con-
tention. The out-of-band nature of contention man-
agers in DSTM is thus quite valuable: it allows the
programmer to choose the policy best suited to a
given situation. We also find that early detection of
conflicts between readers and writers can be either
helpful or harmful, again depending on application,
workload, and level of contention. This suggests that
it may be desirable to provide both “visible” and “in-
visible” reads in future versions of DSTM. We sum-
marize our conclusions in Section 5.

2 Dynamic STM
DSTM transactions operate on blocks of memory.
Typically, each block corresponds to one Java ob-
ject. Each transaction performs a standard sequence
of steps: initialize; open and update one or more
blocks (possibly choosing later blocks based on data
in earlier blocks); attempt to commit; if committing
fails, retry. Blocks can be opened for full read-write
access, read-only access, or for temporary access
(where the block can later be discarded if changes
to by other transactions won’t affect the viability of
current one).

Under the hood, each block is represented by a
TMObject data structure that consists of a pointer

aborted

Data

Data

start

old object

new object

transaction

Locator
TMObject

Figure 1: Transactional object structure

to a Locator object. The Locator in turn has point-
ers to the transaction that has most recently opened
the TMObject, together with old and new data object
pointers (see Figure 1).

When a transaction attempts to open a block, we
first read the Locator pointer in the TMObject for the
block. We then read the status word for the transac-
tion that has most recently updated the block to deter-
mine whether the old or the new data object pointer is
current. If this status word iscommitted , then the
new object is current; otherwise the old one is. Next,
we build a new Locator that points to our transaction
and has the active version of the data as its old ob-
ject. We copy the data for the new object and then
atomically update the TMObject to point to our new
Locator. Finally, we store the new Locator and its
corresponding TMObject in our transaction record.

To validate that a transaction is still viable, we ver-
ify that each Locator in it is still the current Locator
for the appropriate TMObject. Finally, to commit
a transaction, we atomically update our transaction’s
status word fromactive to committed . This up-
date, if successful, signals that all of our updated ver-
sions of the data objects are the ones that are current.

With this implementation, only one transaction at
a time can have a block open for write access, be-
cause only one can have its Locator pointed to by the
block’s TMObject. If another transaction wishes to
write an already-opened block, it must first abort the
“enemy” transaction. This is done by atomically up-
dating that transaction’s status field fromactive to
aborted . Once this is done, the aborted transac-
tion’s attempt to commit is doomed to fail.

2.1 Visible and Invisible Reads
In the original version of the DSTM, read-only ac-
cess to blocks was achieved by creating a private
copy. The Locator for the block was then stored
with the transaction record. At validation time, a
conflict would be detected if the current and stored

2



Locators did not match. We term this implementa-
tion aninvisibleread because it associates no artifact
from the reading transaction with the block. A com-
peting transaction attempting to open the block for
write access cannot tell that readers exist, so there
is no “hook” through which contention management
can address the potential conflict.

An alternative implementation of read-only access
adds a pointer to the transaction to a linked list of
readers for the block. This implementation adds
some overhead to read operations and increases the
complexity of subsequently opening the block for
read-write access: the writer must traverse the list
and explicitly abort the readers. In exchange for this
overhead, however, we gain the ability to explicitly
manage conflicts between readers and writers, and to
abort doomed readers early.

2.2 Limiting Mutual Abortion
If a thread decides to abort another transaction in
the current DSTM implementation, it does so with-
out first checking to see whether its own transac-
tion remains viable. There is thus a significant win-
dow during which two transactions can detect a mu-
tual conflict and decide to abort each other. To nar-
row (though not eliminate) this window, we propose
checking the status of the current transaction imme-
diately before aborting an enemy. This is a very low-
overhead change: it consists of a single read of the
transaction’s status word.

3 Contention Management Policies
The contention management interface for the DSTM
includes notification methods for about various
events that can occur during the processing of trans-
actions, plus two request methods that ask the man-
ager to make a decision. Notifications include

• Beginning a transaction

• Successfully committing a transaction

• Failing to commit a transaction

• Self-abortion of a transaction

• Beginning an attempt to open a block (for read-
only, temporary, or read-write access)

• Successfully opening a block (3 variants)

• Failing to open a block (3 variants) due to failed
transaction validation

• Successfully changing access to read-only/tem-
porary/read-write on a block already open in an-
other mode (6 total variants)

Requests are
• Should the transaction (re)start at this time?
• Should the transaction abort an enemy?

Because the contention management methods are
called in response to DSTM operations, they must
themselves be non-blocking. Additionally, a con-
tention manager must always (eventually) abort a
competing transaction (else deadlock could result).
There are no further correctness considerations for
contention managers: one is free to design them as
needed for overall efficiency. As illustrated by the
sample managers presented here and in the original
DSTM paper [4], the design space is quite large. In
this work, we begin to explore that space by adapting
policies used in a variety of related problem domains.

3.1 Aggressive
The Aggressive manager ignores all notification
methods, and always chooses to abort an enemy
transaction at conflict time. Although this makes it
highly prone to livelock, it forms a useful baseline
against which to compare other policies.

3.2 Polite
The Polite contention manager uses exponential
backoff to resolve conflicts encountered when open-
ing blocks. Upon detecting contention, it spins for
a period of time proportional to2nns, wheren is
the number of retries that have been necessary so far
for access to a block. After a maximum of 8 retries,
the polite manager unconditionally aborts an enemy
transaction. One might expect the Polite manager to
be particularly vulnerable to performance loss due to
preemption and page faults.

3.3 Randomized
A very simple contention manager, the Randomized
policy ignores all notification methods. When it en-
counters contention, it flips a coin to decide between
aborting the other transaction and waiting for a ran-
dom interval of up to a certain length. The coin’s
bias and the maximum waiting interval are tunable
parameters; we used 50% and 64ns, respectively.

3.4 Karma
The Karma manager attempts to judge the amount of
work that a transaction has done so far when deciding

3



whether to abort it. Although it is hard to estimate
the amount of work that a transaction performs on
the data contained in a block, the number of blocks
the transaction has opened may be viewed as a rough
indication of investment. For system throughput,
aborting a transaction that has just started is prefer-
able to aborting one that is in the final stages of an
update spanning tens (or hundreds) of blocks.

The Karma manager tracks the cumulative num-
ber of blocks opened by a transaction as its priority.
More specifically, it resets the priority of the current
thread to zero when a transaction commits and in-
crements that priority when the thread successfully
opens a block. When a thread encounters a conflict,
the manager compares priorities and aborts the en-
emy if the current thread’s priority is higher. Other-
wise, the manager waits for a fixed amount of time
to see if the enemy has finished. Once the number of
retries plus the thread’s current priority exceeds the
enemy’s priority, the manager kills the it.

What about the thread whose transaction was
aborted and has to start over? In a way, we owe it
a karmic debt: it was killed before it had a chance
to finish its work. We thus allow it to keep the pri-
ority (“karma”) that it had accumulated before being
killed, so it will have a better chance of being able
to finish its work in its “next life”. Note that every
thread necessarily gains at least one point in each un-
successful attempt. This allows short transactions to
gain enough priority to compete with others of much
greater lengths.

3.5 Eruption
The Eruption manager is similar to the Karma man-
ager in that both use the number of opened blocks
as a rough measure of investment. It resolves con-
flicts, however, by increasing pressure on the transac-
tions that a blocked transaction is waiting on, eventu-
ally causing them to “erupt” through to completion.
Each time a block is successfully opened, the trans-
action gains one point of “momentum” (priority).
When a transaction finds itself blocked by one of
higher priority, it adds its momentum to the conflict-
ing transaction and then waits for it to complete. Like
the Karma manager, Eruption waits for time propor-
tional to the difference in priorities before killing an
enemy transaction.

The reasoning behind this management policy is

that if a particular transaction is blocking resources
critical to many other transactions, it will gain all of
their priority in addition to its own and thus be much
more likely to finish quickly and stop blocking the
others. Hence, resources critical to many transac-
tions will be held (ideally) for short periods of time.
Note that while a transaction is blocked, other trans-
actions can accumulate behind it and increase its pri-
ority enough to outweigh the transaction blocking it.

Mutually blocking transactions are a potential
problem, since one will have to time out before ei-
ther can progress. To keep this problem from recur-
ring, the Eruption manager halves the accumulated
priority of an aborted transaction.

In addition to the Karma manager, Eruption draws
on Tuneet al.’s QOldDep and QCons techniques
for marking instructions in the issue queue of a su-
perscalar out-of-order microprocessor to predict in-
structions most likely to lie on the critical path of
execution [8].

3.6 KillBlocked
Adapted from McWherteret al.’s POW lock priori-
tization policy [6], the KillBlocked manager is less
complex than Karma or Eruption, and features rapid
elimination of cyclic blocking. The manager marks a
transaction as blocked when first notified of an (un-
successful) non-initial attempt to open a block. The
manager aborts an enemy transaction whenever (a)
the enemy is also blocked, or (b) a maximum wait-
ing time has expired.

3.7 Kindergarten
Based loosely on the conflict resolution rule in
Chandy and Misra’ Drinking Philosophers problem
[2], the Kindergarten manager encourages transac-
tions to take turns accessing a block. For each
transactionT , the manager maintains a list (initially
empty) of enemy transactions in favor of whichT
has previously aborted. At conflict time, the manager
checks the enemy transaction and aborts it if present
in the list; otherwise it adds the enemy to the list and
backs off for a short length of time. It also stores the
enemy’s hash code as the transaction on whichT is
currently waiting. If after a fixed number of back-
off intervals it is still waiting on the same enemy, the
Kindergarten manager aborts transactionT . When
the calling thread retriesT , the Kindergarten man-

4



ager will find the enemy in its list and abort it.

3.8 Timestamp
The Timestamp manager is an attempt to be as fair
as possible to transactions. The manager records
the current time at the beginning of each transaction.
When it encounters contention between transaction
T and some enemy, it compares timestamps. IfT ’s
timestamp is earlier, the manager aborts it. Other-
wise, it begins waiting for a series of fixed intervals.
After half the maximum number of these intervals,
it flags the enemy transaction as potentially defunct.
After the maximum number of intervals, if the de-
funct flag has been set all along, the manager aborts
the enemy. If the flag has ever been reset, however,
the manager doubles the wait period and starts over.
Meanwhile, if the enemy transaction performs any
transaction-related operations, its manager will see
and clear the defunct flag.

Timestamp’s goal is to avoid aborting an earlier-
started transaction regardless of how slowly it runs
or how much work it performs. The defunct flag
provides a feedback mechanism for the other trans-
action to enable us to distinguish a dead transaction
from one that is still active. Of course, the use of
timestamps to resolve contention is hardly new to
this context; similar algorithms have been in use in
the database community for almost 25 years [1].

3.9 QueueOnBlock
The QueueOnBlock manager reacts to contention by
linking itself into a queue hosted by the enemy trans-
action. It then spins on a “finished” flag that is
eventually set by the enemy transaction’s manager
at completion time. Alternatively, if it has waited
for too long, it aborts the enemy transaction and
continues; this is necessary to preserve obstruction
freedom. For its part, the enemy transaction walks
through the queue setting flags for competitors when
it is either finished or aborted. Note that not all
of these competitors need have been waiting for the
same block. If more than one was, any that lose the
race to next open it will enqueue themselves with the
winner.

Clearly, QueueOnBlock does not effectively deal
with block dependency cycles: at least one transac-
tion must time out before either can progress. On
the other hand, if the block access pattern is free of

such dependencies, this manager will usually avoid
aborting another transaction.

4 Experimental Results
4.1 Benchmarks
We present experimental results for five benchmarks.
Three implementations of an integer set (IntSet,
IntSetRelease, RBTree) are drawn from the original
DSTM paper [4]. These three repeatedly but ran-
domly insert or delete integers in the range 0..255
(keeping the range restricted increases the probabil-
ity of contention). The total number of success-
ful operations completed in a fixed period of time
is reported as the overall throughput for the bench-
mark. The first implementation uses a sorted linked
list in which every block is opened for write access;
the second uses a sorted linked list in which blocks
are first opened transiently and then released as the
transaction approaches its insertion/deletion point;
the third uses a red-black tree in which blocks are
first opened for read-only access, then upgraded to
read-write access when changes are necessary.

The fourth benchmark (Counter) is a simple
shared counter that threads increment via transac-
tions. The fifth (LFUCache) is a simulation of cache
replacement in an HTTP web proxy using the least-
frequently used (LFU) algorithm [7]. caching com-
munity, this algorithm is treated as folklore; however,
an algorithm assumes that frequency (rather than re-
cency) of web page access is the best predictor for
whether a web page is likely to be accessed again in
the future (and thus, worth caching).

The simulation uses a two-part data structure to
emulate the cache. The first part is a lookup table
of 2048 integers, each of which represents the hash
code for an individual HTML page. These are stored
as a single array ofTMObject s. Each contains the
key value for the object (an integer in the simulation)
and a pointer to the page’s location in the main por-
tion of the cache. The pointers are null if the page is
not currently cached.

The second, main part of the cache consists of a
fixed size priority queue heap of 255 entries (a binary
tree, 8 layers deep), with lower frequency values near
the root. Each priority queue heap node contains a
frequency (total number of times the cached page has
been accessed) and a page hash code (effectively, a

5



backpointer to the lookup table).
Worker threads repeatedly access a page. To ap-

proximate the workload for a real web cache, we pick
pages randomly from a Zipf distribution with expo-
nent 2. So, for pagei, the cumulative probability
pc(i) ∝

∑
0≤j≤i 1/j2. We precompute this distri-

bution normalized to a sum of one million so that a
page can be chosen with a flat random number.

The algorithm for “accessing a page” first finds the
page in the lookup table and reads its heap pointer.
If that pointer is non-null, we increment the fre-
quency count for the cache entry in the heap and
then reheapify the cache using backpointers to up-
date lookup table entries for data that moves. If
the heap pointer is null, we replace the root node of
the heap (guaranteed by heap properties to be least-
frequently accessed) with a node for the newly ac-
cessed page. In order to induce hysteresis and give
pages a chance to accumulate cache hits, we perform
a modified reheapification in which the new node
switches place with any children that have thesame
frequency count (of one).

4.2 Methodology
Our results were obtained on a 16-processor SunFire
6800, a cache-coherent multiprocessor with 1.2Ghz
UltraSPARC III processors. Our test environment
was Sun’s Java 1.5 beta 1 HotSpot JVM, augmented
with a JSR 166 update jar file obtained from Doug
Lea’s web site [5]. We ran each benchmark with each
of the contention management policies described in
Section 3 for 10 seconds. We completed four passes
of this test regime for both visible and invisible read
implementations, varying the level of concurrency
from 1 to 128 threads. We also repeated the tests
both with and without our optimization to limit mu-
tual abortion of transactions described in Section 2.2.
Although we do not compare our results to a lock-
based system, this comparison may be found in the
original DSTM paper [4].

Figures 2–6 show averaged results for the Counter
and LFUCache benchmarks, the read-black tree-
based integer set benchmark, and the two linked
list-based integer set benchmarks. Each graph is
shown both in total and zoomed in on the first 16
threads (where multiprogramming does not occur).
We present results only for tests with the reduced
window for mutual abortion. Only one of our bench-

marks (the red-black tree) is susceptible to mutual
blocking, and even here the optimization does not
produce a significant difference in results. On the
other hand, there is also no noticeable overhead for
the optimization.

4.3 Comparison Among Managers
The graphs illustrate that the choice of contention
manager is crucial. For every configuration of every
benchmark, the difference between a top-performing
and a bottom-performing manager is at least a factor
of 4, and for all but the IntSetRelease benchmark a
factor of 10.

In the Counter benchmark, where every trans-
action conflicts with every other, the Kindergarten
manager performs best. This effect can probably
be attributed to the delay that is introduced when a
Kindergarten manager aborts its own transaction be-
fore flipping state to abort an opposing transaction;
transactions in this benchmark are short enough that
the opposing transaction has a chance to complete in
that window. The Timestamp manager also does well
in the Counter benchmark. Here, there is no poten-
tial concurrency to be lost to serialization from the
implicit queue formed by transaction start times.

In the non-release variant of the IntSet bench-
mark, again every transaction conflicts with every
other transaction. Mirroring the Counter benchmark,
the Kindergarten manager gives best performance,
though by a much larger margin. The other man-
agers perform very badly, though Karma gives some
throughput at low contention levels.

For the IntSetRelease benchmark, managers sep-
arate into a few levels of performance. In the case
with invisible reads, Timestamp performs badly, but
the others are roughly comparable, with a slight edge
to the Kindergarten manager. With visible reads,
however, Karma achieves a substantial gain over all
other managers tested, averaging about a factor of
two in non-preemptive thread counts. Interestingly,
the single worst performer is the Kindergarten man-
ager; here, it virtually livelocks.

Greater disparity between managers can be found
in the LFUCache benchmark. Before multiprogram-
ming, with invisible reads, managers either perform
well (Karma, Kindergarten, Polite, KillBlocked) or
livelock at four threads (all others). With preemp-
tion, however, only Karma is able to sustain top per-

6



0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

20 40 60 80 100 120

Tx/10s (dstm.benchmark.Counter) [Invisible Reads]

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.Counter) [Invisible Reads]

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

20 40 60 80 100 120

Tx/10s (dstm.benchmark.Counter) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.Counter) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 2: Counter benchmark results

formance; the others drop off to varying extents.
With visible reads, on the other hand, there is a
clear performance advantage for the Kindergarten
manager. All others drop to low performance very
quickly, although Karma does not do as poorly as the
others and QueueOnBlock seems to do well at high
levels of multiprogramming.

We also see much disparity in the RBTree bench-
mark. With visible reads, Karma outperforms all
other managers by a wide margin, beginning at two
threads; it is the only manager that does not vir-
tually livelock by six threads. For invisible reads,
Karma still gives top performance, but the Aggres-
sive and Polite managers perform equally well, and
QueueOnBlock is strong except in the 8–32 thread
range. Interestingly, most of the remaining managers
improve performance as the level of multiprogram-
ming increases, with a plateau around 80 threads.

Across benchmarks, no single manager gives good
performance in all cases. Karma and Kindergarten,
however, are frequently top performers. Although
overall throughput never increases with increasing
numbers of threads, each benchmark has some man-
agement policy that does not degrade throughput. Of
course, the limited set size we use in the benchmarks

is designed to artificially increase contention, so op-
portunities for parallelism are limited anyway.

4.4 Visibility of Reads
In both the Counter and non-release IntSet bench-
marks, there are no read accesses to blocks. As ex-
pected, we see no performance difference between
visible and invisible read implementations.

In the IntSetRelease benchmark, however, there is
a significant difference. While more of the managers
do well with invisible reads, visible reads enable top
performers to achieve almost 15 times the through-
put that top performers manage with invisible reads.
Middle-of-the-road managers with visible reads far
outperform themselves with invisible reads. Only the
Kindergarten manager does worse with visible than
invisible reads.

With the RBTree benchmark, however, the sit-
uation is reversed: Karma does well with either
read implementation, but all other managers perform
worse, dramatically so in most cases. Similarly, in
the LFUCache benchmark, managers universally do
worse with visible than with invisible reads.

Why does this happen? In IntSetRelease, most
reads are temporary, lasting just long enough for a
thread to find the next element in the linked list; true

7



0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

20 40 60 80 100 120

Tx/10s (dstm.benchmark.LFUCache) [Invisible Reads]

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.LFUCache) [Invisible Reads]

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

20 40 60 80 100 120

Tx/10s (dstm.benchmark.LFUCache) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.LFUCache) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 3: LFUCache benchmark results

conflict only occurs when two threads need to up-
date the same node. Visible reads allow writers to
stall and let the readers move on instead of forcing
them to restart from the beginning.

In the RBTree benchmark, by comparison, con-
flicts between readers and writers are typically be-
tween a reading thread that is working its way from
the root of the red-black tree towards an inser-
tion/deletion point and a writing thread that is restor-
ing the red-black tree properties upwards to the root
after an insertion/deletion. If we make the reads vis-
ible, not only do the writers get delayed repeatedly
(all transactions start at the tree root), but each time a
writer clobbers an enemy transaction, they are likely
to meet again, closer to the root. This especially ex-
plains the performance of the Kindergarten manager
here: if a writer meets the same enemy twice, the
other thread will “get a turn” and abort it.

5 Conclusions
In this paper we have presented a variety of con-
tention management policies embodied in contention
managers for use with dynamic software transac-
tional memory. We have evaluated each of these
managers against a variety of benchmark applica-
tions, including one novel benchmark (LFUCache)

created specifically for this purpose. We have fur-
ther evaluated each combination of benchmark and
manager with each of two different implementations
of read access in the DSTM, and with and without an
optimization designed to the limit the window during
which two transactions can mutually abort.

We found that different contention management
policies work better for different benchmark applica-
tions, and that no single manager provides all-around
best results. In fact, every manager that does well
in any one benchmark does abysmally in one of the
others we tested. Since the difference in throughput
performance can span several orders of magnitude,
gaining better understanding of when and why vari-
ous policies do well is a crucial open problem.

The choice between visible and invisible reads
is similarly difficult: different benchmarks perform
better with different implementations. Again, further
research is needed to understand when to use each
type of reads. We speculate that it may be helpful to
allow applications or contention managers to choose
between implementations. For example, a transac-
tion that tends to succeed almost all the time with
little contention might be better served with lower-
overhead invisible reads, but if it fails several times

8



0

200000

400000

600000

800000

1e+06

1.2e+06

20 40 60 80 100 120

Tx/10s (dstm.benchmark.RBTree) [Invisible Reads]

0

200000

400000

600000

800000

1e+06

1.2e+06

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.RBTree) [Invisible Reads]

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06
1.8e+06

2e+06

20 40 60 80 100 120

Tx/10s (dstm.benchmark.RBTree) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06
1.8e+06

2e+06

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.RBTree) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 4: RBTree benchmark results

in a row, visible reads could be used to signal other
transactions not to abort it.

Our benchmark suite provides little opportunity to
assess the value of a narrowed window for mutual
aborts. Further experimentation is needed with ap-
plications in which mutual blocking may arise.

6 Acknowledgments
We are indebted to Maurice Herlihy, Victor
Luchangco, and Mark Moir for various useful and
productive conversations on the topic of contention
management, and for providing a version of the
DSTM that supports both visible and invisible reads.

References
[1] P. A. Bernstein and N. Goodman. Timestamp-Based

Algorithms for Concurrency Control in Distributed
Database Systems. InProceedings of the Sixth
VLDB, pages 285–300, Montreal, Canada, October
1980.

[2] K. M. Chandy and J. Misra. The Drinking Philoso-
phers Problem. ACM Transactions on Program-
ming Languages and Systems, 6(4):632–646, Octo-
ber 1984.

[3] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-Free Synchronization: Double-
Ended Queues as an Example. InProceedings
of the Twenty-Third International Conference on
Distributed Computing Systems, Providence, RI,
May, 2003.

[4] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer III. Software Transactional Memory for
Dynamic-sized Data Structures. InProceedings of
the Twenty-Second ACM Symposium on Principles
of Distributed Computing, pages 92–101, Boston,
MA, July 2003.

[5] D. Lea. Concurrency JSR-166 Interest Site.
http://gee.cs.oswego.edu/dl/concurrency-interest/.

[6] D. T. McWherter, B. Schroeder, A. Ailamaki, and
M. Harchol-Balter. The Case for Preemptive Pri-
ority Scheduling in Transactional Database Work-
loads. Submitted to VLDB 2004.

[7] J. T. Robinson and N. V. Devarakonda. Data Cache
Management Using Frequency-Based Replacement.

[8] E. Tune, D. Liang, D. M. Tullsen, and B. Calder.
Dynamic Prediction of Critical Path Instructions.
In Proceedings of the Seventh International Sympo-
sium on High Performance Computer Architecture,
pages 185–196, January 2001.

9



0
50000

100000
150000
200000
250000
300000
350000

20 40 60 80 100 120

Tx/10s (dstm.benchmark.IntSet) [Invisible Reads]

0
50000

100000
150000
200000
250000
300000
350000

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.IntSet) [Invisible Reads]

0
50000

100000
150000
200000
250000
300000
350000
400000

20 40 60 80 100 120

Tx/10s (dstm.benchmark.IntSet) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0
50000

100000
150000
200000
250000
300000
350000
400000

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.IntSet) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 5: IntSet benchmark results

0

5000

10000

15000

20000

25000

20 40 60 80 100 120

Tx/10s (dstm.benchmark.IntSetRelease) [Invisible Reads]

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.IntSetRelease) [Invisible Reads]

0

50000

100000

150000

200000

250000

300000

20 40 60 80 100 120

Tx/10s (dstm.benchmark.IntSetRelease) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0

50000

100000

150000

200000

250000

300000

2 4 6 8 10 12 14 16

Tx/10s (dstm.benchmark.IntSetRelease) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 6: IntSetRelease benchmark results

10


