
Integrating Remote Invocation and Distributed Shared State

Chunqiang Tang, DeQing Chen,
Sandhya Dwarkadas, and Michael L. Scott

Computer Science Department, University of Rochester
{sarrmor,lukechen,sandhya,scott}@cs.rochester.edu

Abstract
Most distributed applications require, at least concep-

tually, some sort of shared state: information that is non-
static but mostly read, and needed at more than one site. At
the same time, RPC-based systems such as Sun RPC, Java
RMI, CORBA, and .NET have become the de facto stan-
dards by which distributed applications communicate. As a
result, shared state tends to be implemented either through
the redundant transmission of deep-copy RPC parameters
or through ad-hoc, application-specific caching and coher-
ence protocols. The former option can waste large amounts
of bandwidth; the latter significantly complicates program
design and maintenance.

To overcome these problems, we propose a distributed
middleware system that works seamlessly with RPC-based
systems, providing them with a global, persistent store that
can be accessed using ordinary reads and writes. Relaxed
coherence models and aggressive protocol optimizations re-
duce the bandwidth required to maintain shared state. Inte-
grated support for transactions allows a chain of RPC calls
to update shared state atomically.

We focus in this paper on the implementation challenges
involved in combining RPC with shared state and transac-
tions. In particular, we describe a transaction metadata ta-
ble that allows processes inside a transaction to share data
invisible to other processes and to exchange data modifica-
tions efficiently. Using microbenchmarks and a large-scale
datamining application, we demonstrate how the integra-
tion of RPC, transactions, and shared state facilitates the
rapid development of robust, maintainable code.

1. Introduction

Most Internet-level applications are distributed not for
the sake of parallel speedup, but rather to access peo-
ple, data, and devices in geographically disparate loca-
tions. Typical examples include e-commerce, computer-
supported-collaborative work, multi-player games, peer-to-
peer data sharing, and scientific GRID computing. For the
sake of availability, scalability, latency, and fault tolerance,
most such applications cache information at multiple sites.

To maintain these copies in the face of distributed updates,
programmers typically resort to ad-hoc messaging or RPC
protocols that embody the coherence and consistency re-
quirements of the application at hand. The code devoted to
these protocols often accounts for a significant fraction of
overall application size and complexity, and this fraction is
likely to increase.

To facilitate the design, implementation, maintenance,
and tuning of distributed applications, we have developed
a system known as InterWeave that manages shared state
automatically [4, 20, 22]. InterWeave allows the program-
mer to share both statically and dynamically allocated vari-
ables across programs written in different programming lan-
guages and running on a wide variety of hardware and OS
platforms. InterWeave currently supports C, C++, Java,
Fortran 77, and Fortran 90, running on Alpha, Sparc, x86,
MIPS, and Power series processors, under Tru64, Solaris,
Linux, Irix, AIX, and Windows NT (XP). Driving appli-
cations include datamining, intelligent distributed environ-
ments, and scientific visualization.

Shared data segments in InterWeave are named by
URLs, but are accessed, once mapped, with ordinary loads
and stores. Segments are also persistent, outliving individ-
ual executions of sharing applications, and support a vari-
ety of built-in and user-defined coherence and consistency
models. Aggressive protocol optimizations, embodied in
the InterWeave library, allow InterWeave applications to
outperform all but the most sophisticated examples of ad-
hoc caching [4, 5, 22].

Most distributed applications, despite their need for
shared state, currently use remote invocation to transfer
control among machines. InterWeave is therefore designed
to be entirely compatible with RPC systems such as Sun
RPC, Java RMI, CORBA, and .NET. By specifying where
computation should occur, RPC allows an application to
balance load, maximize locality, and co-locate computation
with devices, people, or private data at specific locations.
At the same time, shared state serves to

• eliminate invocations devoted to maintaining the co-
herence and consistency of cached data;

mls
IPDPS '04

• support genuine reference parameters in RPC calls,
eliminating the need to pass large structures repeat-
edly by value, or to recursively expand pointer-rich
data structures using deep-copy parameter modes;

• reduce the number of trivial invocations used simply to
put or get data.

These observations are not new. Systems such as Emer-
ald [12] and Amber [3] have long employed shared state
in support of remote invocation in homogeneous object-
oriented systems. Kono et al. [13] supported reference pa-
rameters and caching of remote data in a heterogeneous en-
vironment, but with a restricted type system, and with no
provision for coherence across RPC sessions.

Remote invocation mechanisms have long supported au-
tomatic deep-copy transmission of structured data among
heterogeneous languages and machine architectures [11,
25], and modern standards such as XML provide a
language-independent notation for structured data. To the
best of our knowledge, however, InterWeave is the first sys-
tem to automate the typesafe sharing of structured data in its
internal (in-memory) form across multiple languages and
platforms, and to optimize that sharing for distributed ap-
plications.

For Internet-level applications, system failures or race
conditions are common when accessing shared data. Since
fault tolerance is not provided at the RPC level, RPC-based
applications usually have to build their own mechanism to
recover from faults and to improve availability. Recovery
is particularly tricky in the face of cached shared state. In-
terWeave eases the task of building robust distributed appli-
cations by providing them with support for transactions. A
sequence of RPC calls and data access to shared state can be
encapsulated in a transaction in such a way that either all of
them execute or none of them do with respect to the shared
state. Transactions also provide a framework in which the
body of a remote procedure can see (and optionally con-
tribute to) shared data updates that are visible to the caller
but not yet to other processes.

Previous papers have focused on InterWeave’s coher-
ence and consistency models [4], heterogeneity mecha-
nisms [22], and protocol optimizations [5]. The current
paper addresses the integration of shared state, remote in-
vocation, and transactions. Section 2 briefly summarizes
the InterWeave programming model, and introduces a de-
sign that seamlessly integrates shared state, remote invoca-
tion, and transactions to form a distributed computing en-
vironment. Section 3 sketches the basic structure of the
InterWeave client library and server, and then focuses on
implementation issues in adding support for remote invoca-
tion and transactions into InterWeave. Section 4 evaluates
InterWeave in both local and wide area networks, using mi-
crobenchmarks and a larger example, drawn from our work
in data mining, that uses RPC and shared state to offload

computations to back-end servers. Section 5 discusses re-
lated work. Section 6 presents conclusions.

2. InterWeave Design
InterWeave integrates shared state, remote invocation,

and transactions into a distributed computing environment.
The InterWeave programming model assumes a distributed
collection of servers and clients. Servers maintain persistent
copies of shared data and coordinate sharing among clients.
Clients in turn must be linked with a special InterWeave li-
brary, which arranges to map a cached copy of needed data
into local memory. Once mapped, shared data (including
references) are accessed using ordinary reads and writes.
InterWeave servers are oblivious to the programming lan-
guages used by clients, and the client libraries may be dif-
ferent for different programming languages. InterWeave
supports the use of relaxed coherence models when access-
ing shared data. Updates to shared data and invocations to
remote procedures on arbitrary InterWeave processes can be
optionally protected by transactions.

2.1. Data Allocation
The unit of sharing in InterWeave is a self-descriptive

segment (a heap) within which programs allocate strongly
typed blocks of memory. Every segment is specified by an
Internet URL. The blocks within a segment are numbered
and optionally named. By concatenating the segment URL
with a block name or number and optional offset (delimited
by pound signs), we obtain a machine-independent pointer
(MIP): “foo.org/path#block#offset”. To accom-
modate heterogeneous data formats, offsets are measured
in primitive data units—characters, integers, floats, etc.—
rather than in bytes.

Every segment is managed by an InterWeave server at
the IP address corresponding to the segment’s URL. Differ-
ent segments may be managed by different servers. Assum-
ing appropriate access rights, IW open segment() com-
municates with the appropriate server to open an existing
segment or to create a new one if the segment does not yet
exist. The call returns an opaque segment handle, which can
be passed as the initial argument in calls to IW malloc().

As in multi-language RPC systems, the types of shared
data in InterWeave must be declared in an interface descrip-
tion language (IDL—currently Sun XDR). The InterWeave
IDL compiler translates these declarations into the appro-
priate programming language(s) (C, C++, Java, Fortran). It
also creates initialized type descriptors that specify the lay-
out of the types on the specified machine. The descriptors
must be registered with the InterWeave library prior to be-
ing used, and are passed as the second argument in calls
to IW malloc(). These conventions allow the library to
translate data to and from wire format, ensuring that each
type will have the appropriate machine-specific byte order,
alignment, etc. in locally cached copies of segments.

Given a pointer to a block in an InterWeave segment, or
to data within such a block, a process can create a corre-
sponding MIP: “IW mip t m = IW ptr to mip(p)”.
This MIP can then be passed to another process through a
parameter of a remote procedure. Given appropriate access
rights, the other process can convert it back to a machine-
specific pointer, as in “my type *p = (my type*)
IW mip to ptr(m)”. The IW mip to ptr() call re-
serves space for the specified segment if it is not cached
locally, and returns a local machine address. Actual data
for the segment will not be copied into the local machine
unless and until the segment is locked.

2.2. Coherence
Synchronization takes the form of reader-writer locks

that take a segment handle and a transaction handle as pa-
rameters. A process must hold a writer lock on a segment
in order to allocate, free, or modify blocks. When modified
by clients, InterWeave segments move over time through a
series of internally consistent states. The server for a seg-
ment need only maintain a copy of the segment’s most re-
cent version; clients cache entire segments, so they never
need a “missing piece” of something old.

When a process first locks a shared segment (for either
read or write), the InterWeave library obtains a copy from
the segment’s server. At each subsequent read-lock acqui-
sition, the library checks to see whether the local copy of
the segment is “recent enough” to use [4]. If not, it obtains
an update from the server. Twin and diff operations [2],
extended to accommodate heterogeneous data formats [22],
allow the implementation to perform an update in time pro-
portional to the fraction of the data that has changed.

2.3. RPC and Transactions
InterWeave’s shared state can be used with RPC systems

by passing MIPs as ordinary RPC string arguments. When
necessary, a sequence of RPC calls, lock operations, and
data manipulations can be protected by a transaction to en-
sure that distributed shared state is updated atomically. Op-
erations in a transaction are performed in such a way that
either all of them execute or none of them do with respect
to InterWeave shared state. InterWeave may run transac-
tions in parallel, but the behavior of the system is equivalent
to some serial execution of the transactions, giving the ap-
pearance that one transaction runs to completion before the
next one starts (more information on relaxed transactions
can be found in the TR version of this paper [23]). Once a
transaction commits, its changes to the shared state survive
failures.

A transaction starts with an IW begin work()
call, which returns an opaque transaction handle to
be used in later transactional operations, such as
IW commit work() and IW rollback work().
Each RPC call automatically starts a sub-transaction that

can be individually aborted without rolling back the work
that has been done by outer (sub-)transactions. In keeping
with traditional RPC semantics, we assume that only one
process in an RPC call chain is active at any given time.

The skeleton code for the RPC client and server is gen-
erated using the standard rpcgen tool, then slightly modi-
fied by the InterWeave IDL compiler to insert a transaction
handle field in both the RPC argument and result structures.
The XDR translation routines for the arguments and results
are also augmented with a call to xdr trans arg() or
xdr trans result(), respectively. These two Inter-
Weave library functions encode and transmit transaction in-
formation along with other RPC arguments or results.

An RPC caller can pass references to shared state (MIPs)
to the callee as ordinary string arguments. The RPC callee
then locks the segment and operates on it. The callee can
see shared data updates that are visible to the caller but not
yet to other processes. Modifications to the segment made
by the callee will be visible to other processes in the trans-
action when the lock is released, and will be applied to the
InterWeave server’s master copy when the outermost (root)
transaction commits. Before the root transaction commits,
those modifications are invisible to other transactions.

In addition to providing protection against various sys-
tem failures, transactions also allow applications to recover
from problems arising from relaxed coherence models, e.g.,
deadlock or lock failure caused by inter-segment inconsis-
tency. Suppose, for example, that process P has acquired
a reader lock on segment A, and that the InterWeave li-
brary determined at the time of the acquire that the cur-
rently cached copy of A, though not completely up-to-date,
was “recent enough” to use. Suppose then that P attempts
to acquire a lock on segment B, which is not yet locally
cached. The library will contact B’s server to obtain a cur-
rent copy. If that copy was created using information from a
more recent version of A than the one currently in use at P,
a consistency violation has occurred. Users can disable this
consistency check if they know it is safe to do so, but under
normal circumstances the attempt to lock B must fail. The
problem is exacerbated by the fact that the information re-
quired to track consistency (which segment versions depend
on which?) is unbounded. InterWeave hashes this informa-
tion in a way that is guaranteed to catch all true consistency
violations, but introduces the possibility of spurious appar-
ent violations [4]. Transaction aborts and retries can be used
in this case to recover from inconsistency, with automatic
undo of uncommitted segment updates. An immediate retry
is likely to succeed, because P’s out-of-date copy of A will
have been invalidated.

3. Implementation of InterWeave
In this section, we first sketch the basic structure of the

InterWeave client library and server. We then elaborate on

the support for RPC and transactions. Details of the ba-
sic implementation can be found in previous papers. Inter-
Weave currently consists of approximately 45,000 lines of
heavily commented C++ code.

3.1. Basic Implementation
When a client acquires a writer lock on a given segment,

the InterWeave library asks the operating system to disable
write access to the pages that comprise the local copy of
the segment. When a write fault occurs, the SIGSEGV sig-
nal handler, installed by the InterWeave library at program
startup time, creates a pristine copy, or twin [2], of the page
in which the write fault occurred. It saves a pointer to that
twin for future reference, and then asks the operating sys-
tem to re-enable write access to the page.

When a process releases a writer lock, the library gath-
ers local changes, converts them into machine-independent
wire format in a process called diff collection, and sends the
diff to the server. The changes are expressed in terms of seg-
ments, blocks, and offsets of primitive data units (integers,
doubles, chars, etc.), rather than pages and bytes. The diff-
ing routine must have access to type descriptors (generated
automatically by the InterWeave IDL compiler) in order to
compensate for local byte order, word size, and alignment,
and in order to swizzle pointers. The content of each de-
scriptor specifies the substructure and layout of its type.

Each server maintains an up-to-date copy of each of the
segments for which it is responsible, and controls access
to those segments. Upon receiving a diff from a client, an
InterWeave server uses the diff to update its master copy.

When a client acquires a reader lock and determines that
its local cached copy of the segment is not recent enough
to use under the desired coherence model (communicating
with the server to make the decision if necessary [4]), the
client asks the server to build a wire-format diff that de-
scribes the data that have changed between the current local
copy at the client and the master copy at the server.

When the diff arrives the library uses it to update the lo-
cal copy in a process called diff application. In the inverse
of diff collection, the diff application routine uses type de-
scriptors to identify the local-format bytes that correspond
to primitive data changes in the wire-format diff.

3.2. Support for RPC and Transactions
When neither transactions nor RPC are being used, seg-

ment diffs sent from an InterWeave client to a server are
immediately applied to the server’s master copy of the seg-
ment. With transactions, updates to the segment master
copy are deferred until the transaction commits. Like many
database systems, InterWeave employs a strict two-phase
locking protocol and two-phase commit protocol to support
atomic, consistent, isolated, and durable (ACID) transac-
tions. With a strict two-phase locking protocol, locks ac-
quired in a transaction or sub-transaction are not released to

the InterWeave server until the outermost (root) transaction
commits or aborts.

Each InterWeave client runs a transaction manager (TM)
thread that keeps tracks of all on-going transactions involv-
ing the given client and listens on a specific TCP port for
transaction related requests.

In the IW start work() call, a transaction metadata
table (TMT) is created to record information about the new
transaction: locks acquired, locks currently held, version
numbers of locked segments, segments modified, locations
where diffs can be found, etc. The TMT is the key data
structure that supports the efficient implementation of trans-
actions and the integration of shared state and transactions
with RPC. It is passed between caller and callee in every
RPC call and return. With the aid of the TMT, processes co-
operate inside a transaction to share data invisible to other
processes and to exchange data modifications without the
overhead of going through the InterWeave server. This di-
rect exchange of information is not typically supported by
database transactions, but is crucial to RPC performance.

Locks inside a Transaction
When a client requests a lock on a segment us-

ing either IW twl acquire() (for a writer lock) or
IW trl acquire() (for a reader lock), the InterWeave
library searches the TMT to see if the transaction has al-
ready acquired the requested lock. There are four possible
cases. (1) The lock is found in the TMT but another pro-
cess in the transaction is currently holding an incompatible
lock on the segment (e.g., both are write locks). This is
a synchronization error in the application. The transaction
aborts. (2) The lock is found in the TMT and no other pro-
cess in the transaction is currently holding an incompatible
lock on the segment. The lock request is granted locally. (3)
The lock is found in the TMT but only for reading, and the
current request is for writing. The client contacts the Inter-
Weave server to upgrade the lock. (4) The lock is not found
in the TMT, meaning that the segment has not previously
been locked by this transaction. The client contacts the In-
terWeave server to acquire the lock and updates the TMT
accordingly.

When a client releases a lock, the InterWeave library
updates the lock status in the TMT. In keeping with the
strict two-phase locking semantics, the transaction retains
the lock until it commits or aborts rather than returning the
lock to the InterWeave server immediately. During the re-
lease of a write lock, the library collects a diff that describes
the modifications made during the lock critical section. Un-
like the non-transaction environment where the diff is sent
to the InterWeave server immediately, the diff is stored lo-
cally in the created-diff buffer (or in a file, if memory is
scarce). The library also increases the segment’s current
version number, stores this number in the TMT, and ap-
pends an entry indicating that a diff that upgrades the seg-

ment to this new version has been created by this client. The
actual content of the diff is not stored in the TMT.

Interplay of RPC and Transactions
When a client performs an RPC inside a transaction, the

xdr trans arg() call, included in the argument mar-
shaling routine by the InterWeave IDL compiler, encodes
and transmits the TMT to the callee along with other ar-
guments. A complementary xdr trans arg() call on
the callee side will reconstruct the TMT when unmarshal-
ing the arguments. Typically the TMT is small enough to
have a negligible impact on the overhead of the call. For
instance, a complete TMT containing information about a
single segment is only 76 bytes in length. A null RPC call
over a 1Gbps network takes 0.212ms, while a null RPC call
in InterWeave (with this TMT) takes just 0.214ms.

Among other things, the TMT tracks the latest version
of each segment ever locked in the transaction. This latest
version can be either the InterWeave server’s master copy
or a tentative version created in the on-going transaction.
When the callee acquires a lock on a segment and finds
that it needs an update (by comparing the latest version in
the TMT to the version it has cached), it consults the TMT
to decide whether to obtain diffs from InterWeave servers,
from other InterWeave clients, or both. To fetch diffs from
other clients, the callee’s TM contacts the TMs on those
clients directly. Once all needed diffs have been obtained,
the callee applies them, in the order in which they were orig-
inally generated, to the version of the segment it has cached.

If the TMT is modified by the callee to reflect locks
acquired or diffs created during an RPC, the modifica-
tions are sent back to the caller along with the RPC re-
sults, and incorporated into the caller’s copy of the TMT.
As in the original call, the code that does this work
(xdr trans result()) is automatically included in the
marshaling routines generated by the InterWeave IDL com-
piler. When the caller needs diffs created by the callee to
update its cache, it knows where to get them by inspecting
the TMT. Since there is only one active process in a trans-
action, the TMT is guaranteed to be up-to-date at the site
where it is in active use.

Transaction Commits and Aborts
During a commit operation, the library on the client

that originally starts the transaction (the transaction coor-
dinator) finds all InterWeave clients that participated in
the transaction by inspecting the TMT. It then initiates a
two-phase commit protocol among those clients by send-
ing every client a prepare message. During the first, pre-
pare phase of the protocol, each client sends its locally
created and temporarily buffered diffs to the appropriate
InterWeave servers, and asks them to prepare to commit.
A client responds positively to the coordinator only if all
servers the client contacted respond positively. During the

prepare phase, each InterWeave server temporarily stores
the received diffs in memory.

Once the coordinator has heard positively from every
client, it begins the second, commit phase of the protocol
by sending every client a commit message. In response to
this message each client instructs the servers that it con-
tacted during the prepare phase to commit. Upon receiving
the commit message, the server writes all diffs to a diff log
in persistent storage (all non-transaction-based lock releases
are treated as commits and the corresponding diffs logged
as well), and then applies the diffs to the segments’ master
copy in the order in which they were originally generated.
The persistent diff log allows the server to reconstruct the
segment’s master copy in case of server failure. Occasion-
ally, the server checkpoints a complete copy of the segment
to persistent storage and frees space for the diff log.

A transaction abort call, IW rollback work(), can
be issued either by the application explicitly or by the li-
brary implicitly if anything goes wrong during the transac-
tion. Both the InterWeave clients and servers use timeout to
decide when to abort an unresponsive transaction. For the
sake of simplicity, InterWeave does not provide any mech-
anism for deadlock prevention or detection. Transactions
experiencing deadlock are treated as unresponsive and are
aborted by timeout automatically.

Proactive Diff Propagation
Normally, a diff generated inside a transaction is stored

on the InterWeave client that created the diff, and is trans-
mitted between clients on demand. To avoid an extra ex-
change of messages in common cases, however, InterWeave
sometimes may send diffs among clients proactively.

Specifically, the TM of an RPC caller records the diffs
that are created by the caller and requested by the callee
during the RPC session. If the diffs for a segment are re-
quested three times in a row by the same remote procedure,
the library associates the segment with this particular re-
mote procedure. In later invocations of the same remote
procedure, the diffs for the associated segments will be sent
proactively to the callee, along with the TMT and RPC ar-
guments. These diffs are stored in the callee’s proactive
diff buffer. When a diff is needed on the callee, it always
searches the proactive diff buffer first before sending a re-
quest to the InterWeave server or the client that created the
diff. When the RPC call finishes, along with the RPC re-
sults, the callee returns information indicating whether the
proactive diffs are actually used by the callee. If not, the as-
sociation between the segment and the remote procedure is
broken and later invocations will not send diffs proactively.
The same process also applies to the diffs created by the
callee. If those diffs are always requested by the caller after
the RPC call returns, the callee will piggyback those diffs
to the caller along with the RPC results in later invocations.

Always deferring propagating diffs to the InterWeave

servers to the end of a transaction may incur significant
delay in transaction commit. As an optimization, each In-
terWeave client’s TM thread also acts as a “diff cleaner”,
sending diffs in the created-diff buffer to corresponding In-
terWeave servers when the client is idle (e.g., waiting for
RPC results). These diffs are buffered on the server until
the transaction commits or aborts.

4. Evaluation
In this section, we use microbenchmarks and a large-

scale datamining application to evaluate InterWeave. More
results are available in the TR version of this paper [23].

4.1. Transaction Cost Breakdown
We first use a microbenchmark to quantify InterWeave’s

transaction cost in both local area network (LAN) and wide
area network (WAN) environments. In this benchmark, two
processes share a segment containing an integer array of
variable size and cooperatively update the segment inside a
transaction. One process (the RPC caller) starts a transac-
tion and contacts the InterWeave server to acquire a writer
lock on the segment (the “lock” phase); increments every
integer in the array (the “local” phase); generates a diff that
describes the changes it made (the “collect” phase); releases
the writer lock (this may be done automatically through
options in the RPC call, and does not entail notifying the
server); makes an RPC call to the other process, proactively
sending the diff along with the RPC call, and waits for the
callee to finish (the “RPC” phase).

During this “RPC” phase, the callee acquires a writer
lock on the segment (it will find the lock in the TMT, avoid-
ing contacting the InterWeave server); uses the diff in the
proactive diff cache to update its local copy; increments ev-
ery integer in the array; generates a diff that describes the
new changes it made; and proactively sends the diff back to
the caller along with the RPC results.

After the callee finishes, the caller reacquires any locks
that might have been released, uses the returned proactive
diff to update its local copy (the “apply” phase), prints out
some results, and then runs the two-phase commit protocol
to update the InterWeave server’s master copy of the seg-
ment (the “commit” phase). During the “commit” phase,
the caller and callee send the diffs they created to the Inter-
Weave server.

We compare the above “proactive transaction” with
two other alternatives—“nonproactive transaction” and “no
transaction”. With “nonproactive transaction”, the diffs are
only sent between the caller and callee on demand. During
the “RPC” phase, the callee will contact the caller to fetch
the diff created by the caller. Likewise, in the “apply” phase,
the caller will contact the callee to fetch the diff created by
the callee.

With “no transaction” (the basic InterWeave implemen-
tation without support for transactions), in the “collect”

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Size (bytes)

E
xe

cu
ti

on
 T

im
e

(m
s.

) commit
apply
rpc
collect
local
lock

16K 32K 64K 128K 256K 512K 1M

nonproactive

proactive
no trans.

Figure 1. Execution time for transactions that
transmit a large amount of data on a LAN.

phase, the caller sends the diff it created to the InterWeave
server and releases the writer lock. In the “RPC” phase,
the callee contacts the InterWeave server to acquire a writer
lock and request the diff it needs. When the callee finishes,
it sends the diff it created to the InterWeave server and re-
leases the writer lock. In the “apply” phase, the caller ac-
quires a reader lock and fetches the diff created by the callee
from the InterWeave server to update the caller’s local copy.

Local Area Network Environment

The first set of experiments were run on a 1Gbps Eth-
ernet. The InterWeave server, RPC caller, and RPC callee
run on three different 2GHz Pentium IV machines under
Linux 2.4.9. For each configuration, we run the benchmark
20 times and report the median in Figure 1. The X axis is
the size (in bytes) of the segment shared by the caller and
callee. The Y axis is the time to complete the transaction.

Compared to a “proactive transaction”, the “apply”
phase in a “nonproactive transaction” is significantly longer
because it includes the time to fetch the diff from the callee.
Likewise, the “collect” phase and “apply” phase in “no
transaction” are longer than those in “proactive transac-
tion”, because the diffs are sent to or fetched from the Inter-
Weave server during those phases. For a “proactive transac-
tion”, the diffs are sent between the caller and callee during
the “RPC” phase. However, the “commit” phase compen-
sates for the savings, resulting in an overall small overhead
to support transactions for RPC calls that transmit a large
amount of data (see the “proactive” and “no trans.” bars).

With the aid of the TMT, processes avoid propagating the
diffs through the server when sharing segments. As a result,
the critical path of the RPC call for a “proactive transaction”
(the “RPC” phase) is up to 60% shorter than that of “no
transaction” (the “collect”+“RPC”+“apply” phases). In the
benchmark, the local computation cost is trivial. For trans-
actions with relatively long computation, “proactive trans-
action” will send diffs to the InterWeave server in the back-
ground, reducing the time spent in the “commit” phase.

0

0.5

1

1.5

2

2.5

4K 8K
Size (bytes)

E
xe

cu
ti

on
 T

im
e

(m
s.

)

commit
apply
rpc
collect
local
lock

nonproactive
proactive

no trans.

Figure 2. Execution time for transactions that
transmit a small amount of data on a LAN.

0
10
20
30
40
50
60
70
80
90

no-IW
RPC

100% 50% 25% 12.5% 6.25%

Percentage of Changed Data

E
xe

cu
ti

on
 T

im
e

(m
s.

)

commit
apply
rpc
collect
local
lock

Figure 3. Execution time for “proactive transac-
tion” running on a LAN, when both the caller and
callee only update x% of a 1MB segment.

The results for smaller segments are shown in Figure 2.
The “proactive transaction” has slightly better performance
than the “nonproactive transaction” because it saves the ex-
tra two round trip times to fetch the diffs. For transactions
that only transmit a small amount of data between the caller
and callee, the relative overhead of executing the two-phase
commit protocol becomes more significant, as seen by com-
paring with the “no trans.” results.

Figure 3 shows the execution time of a “proactive trans-
action” when both the caller and callee only update x% of a
1MB segment. As the percentage of the changed data goes
down, the transaction cost decreases proportionally, due to
InterWeave’s ability to automatically identify modifications
and only transmit the diffs. In all cases, the overhead to
compute the diffs (the “collect” phase) is negligible com-
pared with the benefits.

The “no-IW RPC” is a simple RPC program with no use
of InterWeave, sending the 1MB data between the caller and
callee directly. It avoids the cost of sending the modifica-
tions to an InterWeave server and the overhead of acquiring
locks and executing the two-phase commit protocol. The
important lesson this figure reveals is that, for temporary
(non-persistent) data with simple sharing patterns, it is more
efficient to transmit them (using deep copy) directly across

0

100

200

300

400

500

600

700

800

900

12
8 2K 32

K
Size (bytes)

E
xe

cu
ti

on
 T

im
e

(m
s.

)
 commit

apply
rpc
collect
local
lock

nonproactive

proactive

no trans.

128 2K 32K

Figure 4. Execution time for transactions running
on a WAN.

different sites than to put them in the global shared space.
However, for persistent data (some data outlive a single run
of the application and hence must be persistent) with non-
trivial sharing patterns, applications can significantly bene-
fit from InterWeave’s caching capability. With InterWeave,
both deep copy arguments and MIPs to the shared store can
be used in a single RPC call, giving the programmer maxi-
mum flexibility to choose the most efficient way to commu-
nicate data.

Wide Area Network Environment
Our second set of experiments runs the same benchmark

on a wide area network. The machines running the Inter-
Weave server, RPC caller, and RPC callee are distributed
at the University of Waterloo (900MHz Pentium III, Linux
2.4.18), the Rochester Institute of Technology (300MHz
AMD K6, Linux 2.2.16), and the University of Virginia
(700MHz AMD Athlon, Linux 2.4.18), respectively.

The execution times of the transactions are shown in Fig-
ure 4. They are more than 100× slower than those in the
fast LAN. As the data size increases, the relative cost of the
“RPC” phase among “nonproactive transaction”, “proactive
transaction”, and “no transaction” changes. When the data
size is small, the “RPC” phase in “proactive transaction” is
the smallest because it avoids the extra round trip time to
acquire the lock or to fetch the diffs. As the data size in-
creases, the diff propagation time, which is included in the
“RPC” phase for “proactive transaction”, dominates. As a
result, the “RPC” phase for “proactive transaction” becomes
the longest among the three. Due to the slow network,
“no transaction” performs noticeably better than “proactive
transaction” as it does not have the overhead of executing
the two-phase commit protocol.

Figure 5 uses the same settings as Figure 3 except that
the experiment is run on a WAN. The results are similar but
there are two important differences. First, the savings due
to cache reuse are much more significant on a WAN be-
cause of the low network bandwidth and long latency. Sec-
ond, InterWeave’s protocol overhead (e.g., diff collection)

0

2000

4000

6000

8000

10000

12000

14000

no-IW
RPC

100% 50% 25% 12.5% 6.25%

Percentage of Changed Data

E
xe

cu
ti

on
 T

im
e

(m
s.

)

commit
apply
rpc
collect
local
lock

Figure 5. Execution time for a “proactive transac-
tion” running on a WAN, when both the caller and
callee update only x% of a 1MB segment.

becomes even more negligible compared with the long data
communication time, justifying the use of complex tech-
niques (e.g., diffing and relaxed coherence models) in mid-
dleware to save bandwidth for WAN applications.

4.2. Service Offloading in Datamining
In this experiment, we implement a sequence mining ser-

vice running on a Linux cluster to evaluate the potential
performance benefit of combining InterWeave and RPC to
build network services, and also to obtain a sense of the ef-
fort that a programmer must expend to use InterWeave.

The service provided by the cluster is to answer sequence
mining queries on a database of transactions (e.g., retail
purchases). Each transaction in the database (not to be con-
fused with transactions on the database) comprises a set of
items, such as goods that were purchased together. Transac-
tions are ordered with respect to each other in time. A query
from a remote user usually asks for a sequence of items that
are most commonly purchased by customers over time.

The database is updated incrementally by distributed
sources. When updates to the database exceed a given
threshold, a data mining server running in the background
uses an incremental algorithm to search for new meaningful
sequences and summarizes the results in a lattice data struc-
ture. Each node in the lattice represents a sequence that has
been found with a frequency above a specified threshold.
Given a sequence mining query, the results can be found
efficiently by traversing this summary structure instead of
reading the much larger database.

We assign one node in the cluster as a front end to re-
ceive queries from clients. The front end can either answer
mining queries by itself, or offload some queries to other
computing nodes in the same cluster when the query load is
high. We compare three different offloading strategies. In
the first strategy, the front end uses RPC to offload queries
to other computing nodes. Each RPC takes the root of the
summary structure and the query as arguments. The offload-
ing nodes do not cache the summary structure. This is the

simplest implementation one can get with the least amount
of programming effort. However, it is obviously inefficient
in that, on every RPC call, the XDR marshaling routine for
the arguments will deep copy the entire summary structure.

The second offloading strategy tries to improve perfor-
mance with an ad-hoc caching scheme. With more pro-
gramming effort, the offloading nodes manually cache the
summary structures across RPC calls to avoid unneces-
sary communication when the summary structure has not
changed since the last call. The data mining server up-
dates the offloading nodes only when a new version of the
summary structure has been produced. When the summary
structure does change, in theory it would be possible for
the programmer to manually identify the changes and only
communicate those changes in the same way as InterWeave
uses diffs. We consider the effort required for this optimiza-
tion prohibitive, however, because the summary is a pointer-
rich data structure and updates to the summary can happen
at any place in the lattice. Therefore, this further optimiza-
tion is not implemented; when the lattice has changed it is
retransmitted in its entirety.

Alternatively, the system designer can use the global
store provided by InterWeave to automate caching in RPC-
based offloading. In this third strategy, we use an Inter-
Weave segment to share the summary structure among the
cluster nodes. The data mining server uses transactions to
update the segment. When making an offloading call, the
data mining server passes the MIP of the root of the sum-
mary structure to the offloading node, within a transaction
that ensures the proper handling of errors. On the offload-
ing node, the MIP is converted back to a local pointer to
the root of the cached copy of the summary structure using
IW mip to ptr.

Our sample database is generated by tools from IBM re-
search [21]. It includes 100,000 customers and 1000 dif-
ferent items, with an average of 1.25 transactions per cus-
tomer and a total of 5000 item sequence patterns of average
length 4. The total database size is 20MB. The experiments
start with a summary data structure generated using half this
database. Each time the database grows an additional 1%
of the total database size, the datamining server updates the
summary structure with newly discovered sequences. The
queries we use ask for the first K most supported sequences
found in the database (K = 100 in our experiments).

We use a cluster of 16 nodes connected with a Gigabit
Ethernet. Each node has two 1.2GHZ Pentium III proces-
sors with 2GB memory, and runs Linux 2.4.2. One node is
assigned as the front-end server and offloads incoming user
queries to some or all of the other 15 nodes.

Figure 6 shows the aggregate service throughput (i.e.,
queries processed in 100 seconds) of the cluster with an
increasing number of offloading nodes. For each offload-
ing node, the front end runs a dedicated thread to dispatch

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 2 4 6 8 10 12 14 16

T
ot

al
 th

ro
ug

hp
ut

Number of offloading nodes

IW-RPC
RPC-cache

RPC-no-cache

Figure 6. The impact of different offloading strate-
gies on the system throughput.

queries to it. The X axis is the number of offloading nodes
we use in the cluster, starting from 0 (no offloading) to a
maximum of 15. Beginning with a database of 50% of its
full contents, we increase the database to its full size in
50 steps. Each step takes about 2 seconds. The Y axis
shows the total number of completed queries during the en-
tire database update process, i.e., 100 seconds. “IW-RPC”
uses InterWeave to automate caching of the summary struc-
ture. For both the “IW-RPC” and the “RPC-cache” cases,
as the database grows, sometimes the cache needs no up-
date while sometimes it does need an update. The reported
throughput represents an average over all queries for each
case. “RPC-no-cache” uses straightforward RPC offload-
ing with no cache. The throughput for “IW-RPC” scales
linearly with the size of the cluster, outperforming “RPC-
cache” by up to 28%. Without caching, the system cannot
benefit much from using RPC for offloading. Please see the
technical report [23] for more detailed results.

5. Related Work

InterWeave finds context in transactional client-server
caching protocols [8], traditional databases [9], distributed
object caching systems [6, 14], S-DSM systems [1, 2, 26],
and a wealth of other work—far too much to document fully
here. The following paragraphs concentrate on what appear
to be the most relevant systems in the literature. The most
prominent features that distinguish InterWeave from previ-
ous work are its support for a shared memory programming
model across heterogeneous platforms, its exploitation of
relaxed coherence models, and its efficient integration of
shared state, transactions, and remote invocation.

PerDiS [7] is perhaps the closest to InterWeave among
existing systems. It also uses URLs for object naming, sup-
ports transactions, and has sharing units equivalent to In-
terWeave’s segments and blocks. PerDiS, however, has no
built-in support for heterogeneous platforms, relaxed coher-

ence models, or pointer swizzling. It does not allow remote
procedure calls to be protected as part of a transaction.

Smart RPC [13] is an extension to conventional RPC
that allows parameter passing using call-by-reference rather
than deep copying call-by-value. It uses S-DSM techniques
to fetch the referenced data when they are actually accessed.
The biggest difference with respect to InterWeave is that
Smart RPC does not have a persistent shared store and lacks
a well-defined cache coherence model. Because it does not
track modifications made by distributed processes, Smart
RPC always propagates the parameters modified in the mid-
dle of an RPC chain back to the initial caller before making
a new RPC. This may significantly slow RPC’s critical path.
Transactions are not supported in Smart RPC.

Zhou and Goscinski [27] present a detailed realization of
an RPC transaction model [9] that combines replication and
transaction management. In this model, database clients
call a set of remote procedures provided by a database
replica to process data managed locally by the replica.
InterWeave supports transactional RPC between arbitrary
clients and maintains coherence efficiently among dynami-
cally created caches.

Dozens of object-based systems attempt to provide a
uniform programming model for distributed applications.
Many are language specific (e.g., Argus [15], Mneme [16],
and Arjuna [18]); many of the more recent ones are based
on Java. Language-independent distributed object systems
include Legion [10], Globe [24], Microsoft’s DCOM [19],
and various CORBA-compliant systems [17]. Globe repli-
cates objects for availability and fault tolerance. A few
CORBA systems (e.g. Fresco [14] and CASCADE [6])
cache objects for locality of reference. Unfortunately,
object-oriented update propagation, typically supported ei-
ther by invalidating and resending on access or by RMI-
style mechanisms, tends to be inefficient (re-sending a
large object or a log of operations). Equally significant
from our point of view, there are important applications
(e.g., compute-intensive parallel applications) that do not
employ an object-oriented programming style.

6. Conclusions
We have described the design and implementation of

a middleware system, InterWeave, that integrates shared
state, remote invocation, and transactions to form a dis-
tributed computing environment. InterWeave works seam-
lessly with RPC systems, providing them with a global, per-
sistent store that can be accessed using ordinary reads and
writes. To protect against various system failures or race
conditions, a sequence of remote invocations and data ac-
cesses to shared state can be protected in an ACID transac-
tion. Our novel use of the transaction metadata table allows
processes to cooperate inside a transaction to safely share
data invisible to other processes and to exchange data mod-

ifications they made without the overhead of going through
the InterWeave server.

Experience with InterWeave demonstrates that the in-
tegration of the familiar RPC, transactional, and shared
memory programming models facilitates the rapid devel-
opment of maintainable distributed applications that are ro-
bust against system failures. Experiments on a cluster-based
datamining service demonstrate that InterWeave can im-
prove service scalability with its optimized “two-way diff”
mechanism and its global address space for passing pointer-
rich shared data structures. In our experiments, an offload-
ing scheme with InterWeave outperforms an RPC offload-
ing scheme with a manually maintained cache by 28% in
overall system throughput.

References
[1] R. Bisiani and A. Forin. Multilanguage Parallel Program-

ming of Heterogeneous Machines. IEEE Trans. on Comput-
ers, 37(8):930–945, Aug. 1988.

[2] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implemen-
tation and Performance of Munin. In Proc. of the 13th ACM
Symp. on Operating Systems Principles, pages 152–164, Pa-
cific Grove, CA, Oct. 1991.

[3] J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy,
and R. J. Littlefield. The Amber System: Parallel Program-
ming on a Network of Multiprocessors. In Proc. of the 12th
ACM Symp. on Operating Systems Principles, pages 147–
158, Litchfield Park, AZ, Dec. 1989.

[4] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L. Scott.
Multi-level Shared State for Distributed Systems. In Proc. of
the 2002 Intl. Conf. on Parallel Processing, pages 131–140,
Vancouver, BC, Canada, Aug. 2002.

[5] D. Chen, C. Tang, B. Sanders, S. Dwarkadas, and M. L.
Scott. Exploiting High-level Coherence Information to Op-
timize Distributed Shared State. In Proc. of the 9th ACM
Symp. on Principles and Practice of Parallel Programming,
San Diego, CA, June 2003.

[6] G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Im-
plementing a Caching Service for Distributed CORBA Ob-
jects. In Proc., Middleware 2000, pages 1–23, New York,
NY, Apr. 2000.

[7] P. Ferreira, M. Shapiro, X. Blondel, O. Fambon, J. Gar-
cia, S. Kloosterman, N. Richer, M. Roberts, F. Sandakly,
G. Coulouris, J. Dollimore, P. Guedes, D. Hagimont, and
S. Krakowiak. PerDiS: Design, Implementaiton, and Use
of a PERsistent DIstributed Store. Research Report 3525,
INRIA, Rocquencourt, France, Oct. 1998.

[8] M. J. Franklin, M. J. Carey, and M. Livny. Transactional
Client-Server Cache Consistency: Alternatives and Perfor-
mance. ACM Trans. on Database Systems, 22(3):315–363,
Sept. 1997.

[9] J. N. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers Inc., San Ma-
teo, CA, 1993.

[10] A. S. Grimshaw and W. A. Wulf. Legion — A View from
50,000 Feet. In Proc. of the 5th Intl. Symp. on High Perfor-
mance Distributed Computing, pages 89–99, Aug. 1996.

[11] M. Herlihy and B. Liskov. A Value Transmission Method
for Abstract Data Types. ACM Trans. on Programming Lan-
guages and Systems, 4(4):527–551, Oct. 1982.

[12] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained
Mobility in the Emerald System. ACM Trans. on Computer
Systems, 6(1):109–133, Feb. 1988. Originally presented at
the 11th ACM Symp. on Operating Systems Principles, Nov.
1987.

[13] K. Kono, K. Kato, and T. Masuda. Smart Remote Procedure
Calls: Transparent Treatment of Remote Pointers. In Proc. of
the 14th Intl. Conf. on Distributed Computing Systems, pages
142–151, Poznan, Poland, June 1994.

[14] R. Kordale, M. Ahamad, and M. Devarakonda. Object
Caching in a CORBA Compliant System. Computing Sys-
tems, 9(4):377–404, Fall 1996.

[15] B. Liskov. Distributed Programming in Argus. Comm. of the
ACM, 31(3):300–312, Mar. 1988.

[16] J. E. B. Moss. Design of the Mneme Persistent Object Store.
ACM Trans. on Information Systems, 8(2):103–139, 1990.

[17] Object Management Group, Inc. The Common Object Re-
quest Broker: Architecture and Specification, Revision 2.0.
Framingham, MA, July 1996.

[18] G. D. Parrington, S. K. Srivastava, S. M. Wheater, and M. C.
Little. The Design and Implementation of Arjuna. Comput-
ing Systems, 8(2):255–308, 1995.

[19] D. Rogerson. Inside COM. Microsoft Press, Redmond,
Washington, Jan. 1997.

[20] M. Scott, D. Chen, S. Dwarkadas, and C. Tang. Distributed
Shared State. In 9th Intl. Workshop on Future Trends of Dis-
tributed Computing Systems, San Juan, Puerto Rico, May
2003.

[21] R. Srikant and R. Agrawal. Mining Sequential Patterns. IBM
Research Report RJ9910, IBM Almaden Research Center,
Oct. 1994. Expanded version of paper presented at the Intl.
Conf. on Data Engineering, Taipei, Taiwan, Mar. 1995.

[22] C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Effi-
cient Distributed Shared State for Heterogeneous Machine
Architectures. In Proc. of the 23rd Intl. Conf. on Distributed
Computing Systems, Providence, RI, May 2003.

[23] C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Integrating
Remote Invocation and Distributed Shared State. TR 830,
Computer Science Dept., Univ. of Rochester, Jan. 2004.

[24] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A
Wide-Area Distributed System. IEEE Concurrency, 7(1):70–
78, Jan.-Mar. 1999.

[25] Xerox Corporation. Courier: The Remote Procedure Call
Protocol. Technical Report XSIS 038112, Dec. 1981.

[26] S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous
Distributed Shared Memory. IEEE Trans. on Parallel and
Distributed Systems, 3(5):540–554, Sept. 1992.

[27] W. Zhou and A. M. Goscinski. Managing Replicated Re-
mote Procedure Call Transactions. The Computer Journal,
42(7):592–608, 1999.

