From How | Teach, V. lll: Essays by winners of the
Goergen teaching award, Univ. of Rochester, 2005.

Teaching Intellectual
Connections

Michael L. Scott
Department of Computer Science

As an academic I have written thousands of pages on my
research, but I have never before been asked—and have certainly
never presumed—to write about my teaching. It’s a humbling
exercise.

My mother has an M.A. in Teaching from Harvard. My father
has a professional degree in Religious Education. My advisor in
graduate school, Raphael Finkel, completed his MAAT at
Chicago before pursuing a scientific doctorate. And here at
Rochester we have a graduate school of education and human
development, full of bona fide experts on teaching. But me? I've
never taken a single course on the subject. My credentials are just
on-the-job experience: 20 years as a student and 20 more as a
teacher.

My position, of course, is not unusual. Unlike our colleagues
in K-12 education, most college professors have no formal train-
ing as teachers. Our student careers were entirely devoted to
reaching and extending the intellectual boundaries of our fields.
To profess, after all, is to make an open declaration of one’s
knowledge and belief, and this is what we do. The quality of our
knowledge and belief is generally very high, but that of our dec-
larations is sometimes hit-or-miss.

Like most of my peers in academia, I am here because I love
what I do. I am devoted to my field and to sharing it with stu-
dents. Computer science is unique in its fusion of abstract struc-
ture with tangible working artifacts. It has sometimes been
described as the discipline for people who love puzzles: logical
puzzles, crossword puzzles, jigsaw puzzles, mechanical puzzles,
or games like chess and go. Unlike the natural sciences, com-
puter science is not constrained by physical reality. Unlike engi-

19

mls
From How I Teach, V. III: Essays by winners of the
Goergen teaching award, Univ. of Rochester, 2005.

neering, it is inherently precise. And unlike mathematics, which
describes so many systems, it embodies those systems directly.

If I had chosen to study religion or history or law (all of which
I considered at one time or another), I would have missed some
wonderful opportunities, but I would probably still have ended up
a teacher. Part of the motivation is undoubtedly innate, but much
of it comes from having had wonderful role models. Wayne
Wolfgram, who taught my high school trigonometry and discrete
math courses, and coached the school’s math team, made math-
ematics not only interesting but fun. Tom Keough poured his
heart into high school English, and directed me in four school
plays. Raphael, my graduate advisor, and his colleague Marvin
Solomon exemplified the fusion of teaching and research, and
Sam Bent, from whom I took about six different graduate courses,
conveyed more enthusiasm for his subject matter than six typical
teachers combined. If not formally then at least by example, they
taught me how to teach. I am deeply indebted to them all and to
others too numerous to mention.

My job as a teacher, as I see it, is to help students experience
the excitement and enthusiasm that comes from deep under-
standing of a rewarding subject. To do that job well I have to
know and love the material, I have to empathize with students,
and I have to apply good techniques. As an experienced if ama-
teur teacher and a sometime mentor to younger colleagues, I
often ask myself: How much of good teaching is talent, and how
much can be learned? I can learn to be an expert in my subject,
but I can’t convey enthusiasm unless I feel it myself. I can learn
to interact with students—to ask them about their lives and
about their experience in my course—but I also think there’s
something innate about being able to model other people’s
thoughts: to imagine myself in their shoes and figure out what
they need to hear in order to understand.

Perhaps the biggest learnable part of teaching is concrete class-
room skills. Like most experienced teachers, 1 have a sense of
what works and what doesn’t work for me, but I'm sure there’s
much I could learn from the folks who study teaching for a liv-
ing. In particular, I'm conscious of how little I know about differ-
ent styles of learning: about how the mind assimilates data, how
that varies from person to person, and how I might encourage it
with better concrete skills. At the same time, I'm convinced that

20

lecturing, at least, involves a significant amount of perform-
ance—of theater, if you will—and while much of that can be
learned, a good part, I think, is innate.

Over the course of 20 years I've learned which parts of the job
I do well. I have a knack for explaining things, both verbally and
in writing. I'm also a bit of a ham, at least in structured settings,
which serves me well in lecture. I enjoy explaining things, and I
never feel T truly understand them until I can explain them. As a
graduate advisor I emphasize the background, the context, and
the implications of research as much as the technical details. I tell
my students that even the most brilliant work will never change
the world unless they can explain it.

[also know what I don’t do well. I'm not by nature a social per-
son. (I've never known what to do at parties.) Outside the struc-
ture of the classroom I struggle to connect with students. I find
it hard to learn about their interests, their families, their hopes,
and their fears. Only a few take advantage of my office hours. 1
think I'm seen as caring, but not particularly approachable. I'm
better at connecting than I once was, but it’s something I really
have to work at. I stand in awe of other teachers for whom such
personal connections are easy. Within my own research group, 1
particularly admire the success of my two youngest colleagues at
promoting undergraduate research. Undergraduates need more
personal attention, direction, and support than graduate students
do, and I'm simply not as good as they are at providing it.

So what about the learnable part? What is it that works for me?
The answer is two-fold. First, I have found that many of the most
interesting ideas, the deepest insights, and the most compelling
educational lessons arise when we find connections among fields
that were previously viewed as independent. Second, I have
learned three crucial practical lessons: be prepared, be interest-
ing, be humble.

Consider the issue of connections. For years I have wondered,
when filling out my income taxes, whether to list my profession
as College Professor or Computer Scientist. One of the joys of
working at the University of Rochester is that I can really and
truly be both. Another joy is that I can afford, both in teaching
and research, to be a generalist.

Within computer science, my research spans the boundaries of
operating systems, programming languages, and computer hard-

21

ware design. In a larger context, members of my department col-
laborate actively with researchers in some 20 other disciplines.
These connections, both within and among departments, are eas-
ier to find at a smaller institution, because everyone rubs elbows
with people in other fields. The resulting cross-fertilization is one
of the principal attractions of working at a place like Rochester.

During my first few years as an assistant professor, I twice
taught our course in compiler design. A compiler is the tool that
translates from a programming language like C or Java into the
binary control language of some particular model of computer—
the Intel Pentium, for example. Then in 1989, with the departure
of one of my colleagues, I inherited the course in comparative
programming languages. At most schools these courses are taught
independently, with neither a prerequisite for the other. But many
of the most important decisions in programming language design
are driven by concerns over how easy or difficult it will be to com-
pile a given language feature, and many of the most important
issues in compilation are driven by the details of language design.

With limited teaching staff, we opted to drop the compiler
course and merged some of its content into the languages course.
I had always believed that it made sense to cover the subjects
together, and this conviction grew over time. Increasingly frus-
trated with the traditional comparative language textbooks, I set
out in 1995 to write a text that would emphasize the interplay of
language design and language implementation. The book was
completed in the summer of 1999 and was published in October
of that year (Programming Language Pragmatics, Morgan Kauf-
mann Publishers, 2000). Conversations with colleagues across
the country and around the world suggest that the integrated
approach is increasingly appealing, and indeed the book has
been highly successful. The second edition will be released in
October 2005.

On a much less ambitious scale, I championed a redesign of
our computer organization course in the spring of 2002, using
the innovative text of Bryant and O’Hallaron. Where the course
had previously focused on computer hardware design, it now
emphasizes the impact of the hardware on operating systems,
compilers, and application programs.

In a field that changes as rapidly as computer science, it’s
important to stay fresh. I can never teach a course from the same

22

set of notes in consecutive years. They always need updating.
This leads to the first of my practical lessons: Be prepared. Like
most teachers, I use detailed lecture notes, and I can always tell
when [haven't put as much time into them as they deserve. In
the languages course, for example, a standard pitfall is to illus-
trate a topic with a toy program: an artificial example that cap-
tures some language feature but doesn’t do anything interesting.
If a feature is worth discussing, then it matters in some real pro-
gram. I don’t necessarily have to find such a program out in the
business world somewhere, but I owe it to my students to craft
an example that could plausibly appear in real life.

In many cases, preparation saves time in the long run. A hast-
ily written exam is often harder to grade, and an unclear or incon-
sistent assignment takes more time to fix or explain than it would
have taken to write well in the first place. One of the most valu-
able roles I have found for TAs is in vetting assignments before 1
give them to students. It also helps, if I can manage it, to solve
each assignment myself, in advance. In systems courses like the
ones [teach, it is common to give assignments of the form “write
a program to do X.” I don’t have to write the program myself to
know whether a student’s version does what it’s supposed to do,
but if T skip that crucial step I won’t have the hands-on experi-
ence to offer good advice, and I risk creating an assignment that’s
too difficult to finish on time.

In many cases, an overly difficult assignment can be simplified
by giving students an initial body of code on which to build. For
the languages course, I provide a complete compiler for a simple
programming language. Students then extend the compiler to
translate additional features. In addition to exposing students to
issues that they would not reach if writing from scratch, the expe-
rience of reading and trying to understand a large existing system
provides valuable preparation for real-world software develop-
ment, which almost always uses large amounts of someone else’s
code. (Students don’t like to read code and often complain about
it on their course evaluations, but I figure it’s much better to gain
some experience now than when facing a real-world deadline,
when one’s job is on the line.) To ease the task somewhat, I often
devote one or more lectures to a tour of the existing code.

Similar preparation is useful in course administration. I provide
a wealth of materials on the Web, including course procedures

23

and expectations, grading standards, my lecture notes, old exams
(with answers), a schedule for the semester, details of all assign-
ments, a list of books on reserve at the library, and pointers to
resources elsewhere on the Web. I also maintain a “newsgroup”
(an online forum), in which students can air questions, concerns,
and suggestions. I read the newsgroup every day and post
responses whenever appropriate.

I give mostly short essay exams, in which students are encour-
aged to apply what they have learned, evaluate tradeoffs, and
extrapolate to situations that they may not have considered
before. I pass out suggested answers to all questions as students
leave the room, so they can get an immediate sense of how
they’ve done. Though I rely on TAs to grade homeworks, I grade
exams myself. Afterwards, I post new answers on the Web to any
questions for which students have made points that did not
occur to me initally.

No amount of preparation, unfortunately, will engage students
in the classroom. While I have taught a variety of graduate semi-
nars and the occasional undergraduate discussion class, most of
my courses are lecture-based, and it is lectures for the most part
that shape a course from the student’s point of view. This leads
to my second lesson: Be interesting. I've already noted that I
experience lectures as performance. I get an adrenaline rush out
of teaching; it takes half an hour afterward to wind down. I use
all the usual tricks: I make a lot of eye contact, I move around a
lot, T use humor when I can. But most important I aim for inter-
action.

If I come into lecture with a fixed agenda and a fixed set of
overhead slides, there’s little to distinguish my performance from
a canned presentation on videotape. The value added for stu-
dents at a residential college is the opportunity to interact with
their instructors, and [strive to help students make the most of
that opportunity.

I've found that the very first class period sets the tone for the
whole semester. If I don’t get students to participate on day one,
they probably won't participate at all, and the course ends up
dreadfully dull. My first lecture in any class thus begins with a
brainstorming exercise, in which I get as many different students
as possible to voice a suggestion or opinion. In the programming
languages class, I simply ask students to name as many program-

24

ming languages as they can. We usually come up with 30-50. We
then organize these into major linguistic groups and ask: Why are
there so many languages? What are the principal ways in which
they differ? What makes a language good for a particular purpose?
What makes a language commercially successful? Is “good” the
same as “commercially successful”? Why or why not? I've found
that this sort of icebreaker sets the stage for ongoing interaction.
Even in a lecture of 75-100 students, where informal discussions
are not practical, I field dozens of questions every lecture.

In recent semesters I have asked my students to let me take
pictures on the first day of class, to help me learn their names.
It’s a somewhat awkward exercise, but I don’t have a talent for
names, and the camera has finally made it possible for me to
learn them all. Students seem to appreciate the effort; they’ve
been good about posing for mug shots.

In general, I try to concentrate in lecture on big-picture issues:
putting material in context, providing historical and interdiscipli-
nary perspective, and emphasizing overarching themes. I try not
to get bogged down in detail—that’s always available from the
textbook—but I spend extra time on subjects that students are
likely to find particularly subtle or confusing. I watch faces to see
who looks confused, and I constantly fish for questions and other
feedback. Often I'll stop and ask, “Who thinks they understood
that?” “Who needs some more explanation?” It’s important to
ask both ways and to insist that everyone raise a hand one way
or the other. I'm quick to praise good questions and never sug-
gest that there is any other kind. I make clear that a student with
a question is doing community service: There are almost always
a dozen others who want to know the answer but were too timid
to voice their confusion.

Depending on the feedback I receive, I adjust the level, direc-
tion, and emphasis of my lectures on the fly. The most interest-
ing classes, both for me and for the students, are often those in
which a question takes me off on a tangent—perhaps a historical
anecdote, perhaps a discussion of a recent commercial
announcement—that I could never anticipate ahead of time.
Significantly, this sort of flexibility does not mix well with over-
head transparencies or video projection. For this reason I'm a
dedicated chalk-and-blackboard lecturer. By limiting myself to
paper notes I give myself the freedom to go where the class needs

25

to go. I also avoid the temptation to cover material more quickly
than I can write.

Classroom technology clearly has its place: I'll often create a
slide for a particularly complex diagram. But far too often I think
slides lead to leaden presentations, and students seem to agree.
When I announced at the beginning of a sophomore class a few
years ago that I didn’t believe in PowerPoint, the students broke
into spontaneous applause.

Of course the danger in going off script is that one will make
mistakes. This leads to the third of my practical lessons: Be hum-
ble. One of the hardest things for me to learn was that it’s ok to
mess up from time to time. Students are forgiving, particularly if
[don’t try to hide my mistakes. Often one of the better students
will catch errors as I make them, or bail me out if I get lost. In the
worst case, I can always move on to the next subject and prom-
ise to straighten things out next time. Students also appreciate an
honest, “I don’t know, but here’s how we might find out,” in
response to an interesting question. The only time I feel I've real-
ly failed is if a student comes up to me after class with a correc-
tion that I could have had immediately if I hadn’t been rushing
and thereby discouraging questions.

For many years the programming languages course at
Rochester was cross-listed for graduate and undergraduate credit
and drew a roughly 50/50 mix of first-year Ph.D. students and
self-selected juniors and seniors. In the fall of 2002, a year after I
received the Goergen award, we created a separate course for the
graduates and made the existing course a requirement for the
undergraduate major. In teaching the course that year, I failed to
adequately adjust for the change in the level of students. The
projects were too hard, the lectures moved too quickly, and the
students grew discouraged. By halfway through the semester I
knew there was a problem, but I had my entire syllabus mapped
out, and I didn’t want to change it. At the end of the semester I
received—and deserved—the worst evaluations of my teaching
career, and I re-learned my third key lesson: Humility requires a
willingness not only to stumble at the blackboard but also to
change the whole course if it isn’t meeting the students’ needs.

Before closing I'd like to turn my attention to a pair of issues
that concern me. Both relate to teaching, but neither, I think, can
be addressed through teaching alone. The first is the need to fos-

26

ter personal integrity, both in the classroom and in society at
large. Surveys suggest that cheating is rampant on college cam-
puses, and that it mirrors the rest of society. Increasingly,
Americans seem to see cheating as commonplace and even as
acceptable, so long as “everyone else is doing it,” and so long as
one doesn’t get caught. We underpay our taxes; we pad our
resumes; we drive 10 mph over the speed limit; we lie in politi-
cal campaigns. And in college we copy some other student’s work.

It’s hard for me to tell how much cheating goes on in my
classes. I don’t see huge amounts, but then I don’t look very
hard, and I'm shocked that it happens at all. I'm also deeply trou-
bled by the sense that students don’t work as hard as they did a
generation ago. Maybe I have a warped view of the past. Maybe
today’s students have too many conflicting commitments. Maybe
I'm becoming a curmudgeon. But what am I to make of students
who spend $40,000 a year on tuition and board and then don’t
read the textbook, don’t attend class, neglect to turn in their
assignments, and complain about their grades? They aren’t the
norm, thank heavens, but they’re a sizable minority, and a grow-
ing one, I fear. Fifteen percent of my students are likely to be
absent on any given day.

I don’t believe that the fear of getting caught is an appropriate
deterrent, let alone an effective one. Society works only when
people follow an internal code of personal integrity. I can make
my standards clear; I can strive to inspire and persuade, but I
can’t stem the tide of social change, and I fear it may be flowing
in a troubling direction.

Hnally, I worry about the image of science in society.
Paradaxically, while Western civilization is increasingly dependent
on technological developments, large segments of the public not
only don’t understand science, but actively mistrust it. Fewer and
fewer students emerging from the public schools have either the
inclination or the preparation (particularly in math) to pursue sci-
entific degrees. For at least a generation, America has depended
on an influx of students from abroad to fill its graduate programs
and its high-tech jobs, and even this source of talent has begun
to evaporate, as the booming tech economies of India and China
keep more of their students at home, and as post-9/11 immigra-
tion restrictions make it harder and less pleasant for foreign
nationals to study here.

27

In computer science, the demographics are particularly bad for
women and members of underrepresented minority groups (basi-
cally all but Asian Americans). While the overall national percent-
age of science and engineering bachelor’s degrees awarded to
women topped 50 percent for the first time in 2000, the percent-
age in computer science is still less than 30 percent and less than
20 percent at top-ranked schools. For African Americans, the
national average in computer science is approximately 10 per-
cent, but only 3 percent at top-ranked schools. These discourag-
ing figures persist despite at least 15 years of intense efforts by
colleges, professional organizations, and the National Science
Foundation to increase diversity.

If we assume, as seems reasonable, that there is no inherent
reason why women and minorities should steer clear of high-tech
degrees, lopsided enrollments suggest that we are shortchanging
both students and the nation, which is trying to populate the
tech economy from a fraction of the total population.

So what are we doing wrong? An increasing body of scholar-
ship makes clear that the problem is deeply rooted in societal
norms and perceptions, and that no comprehensive solution will
be possible without widespread cultural change. At the same
time, there is much that we could be doing individually to
change the way we teach—to improve the classroom climate (see
for example Seymour and Hewitt’s Talking About Leaving: Why
Undergraduates Leave the Sciences, Westview Press, 1997, or the
many resources at cra.org/Activities/craw and at anitaborg.org).
Science and engineering departments tend to have an unusually
competitive, grin-and-bear-it student culture, which white males
seem disproportionately willing to endure, but which serves no
one particularly well. Deliberate steps to reduce competition,
increase collaboration, minimize drop rates, and affirm and
encourage students on a personal level would be good, I believe,
for all concerned. This needn’t entail any lowering of standards,
but it will require more faculty attention, to intervene with strug-
gling students rather than simply dismissing them.

Concurrently, I think that faculty in science and engineering,
and in computer science in particular, need to do a much better
job of explaining their field to others, both as a near-term recruit-
ing aid and as long-term public relations. We should be able, as
no one else, to articulate the excitement we experience as

28

researchers, and that we already convey in the classroom. We
must fight the perception that science is dry, or isolating, or ster-
ile, or amoral. Biologists have won this battle, or very nearly; we
must emulate their success. Most of all, I believe, we must make
the case that science changes lives, that it can make the world a
better place, that it connects with everything else.

And here I come full circle. Computer science is a driving force
behind artistic expression, medical imaging, bioinformatics,
grass-roots democratic movements, independent news reporting,
weather and climate modeling, unmanned space exploration,
security and counter-terrorism, evolutionary biology, cosmologi-
cal and quantum physics, and the quantitative social sciences.
These contributions to allied fields are more than applications.
They are two-way intellectual connections that will shape the
future of computer science, too. In an increasingly interdepend-
ent world, similar lists undoubtedly exist for every realm of intel-
lectual endeavor. We owe it to our students, and to society at
large, to find the cross-connections, to understand their implica-
tions, and to explain them to the best of our ability.

29

