HotOS 2005

Aggressive Prefetching: An Idea Whose Time Has Come

*

Athanasios E. Papathanasiou and Michael L. Scott
University of Rochester
{papathan,scott} @cs.rochester.edu

http://www.cs.rochester.edu/{~papathan,~scott}

Abstract

I/O prefetching serves to hide the latency of slow pe-
ripheral devices. Traditional OS-level prefetching strate-
gies have tended to be conservative, fetching only those
data that are very likely to be needed according to some
simple heuristic, and only just in time for them to ar-
rive before the first access. More aggressive policies,
which might speculate more about which data to fetch,
or fetch them earlier in time, have typically not been
considered a prudent use of computational, memory, or
bandwidth resources. We argue, however, that techno-
logical trends and emerging system design goals have
dramatically reduced the potential costs and dramati-
cally increased the potential benefits of highly aggressive
prefetching policies. We propose that memory manage-
ment be redesigned to embrace such policies.

1 Introduction

Prefetching, also known as prepaging or read-ahead, has
been standard practice in operating systems for more
than thirty years. It complements traditional caching
policies, such as LRU, by hiding or reducing the latency
of access to non-cached data. Its goal is to predict future
data accesses and make data available in memory before
they are requested.

A common debate about prefetching concerns how ag-
gressive it should be. Prefetching aggressiveness may
vary in terms of timing and data coverage. The tim-
ing aspect determines how early prefetching of a given
block should occur. The data coverage aspect determines
how speculative prefetching should be regarding which
blocks are likely to be accessed. Conservative prefetch-
ing attempts to fetch data incrementally, just in time to
be accessed, and only when confidence is high [2]. Ag-
gressive prefetching is distinguished in two ways. First,
it prefetches deeper in a reference stream, earlier than

*This work was supported in part by NSF grants EIA-0080124,
CCR-0204344, and CNS-0411127; and by Sun Microsystems Labo-
ratories.

would be necessary simply to hide I/O latencies. Second,
it speculates more about future accesses in an attempt to
increase data coverage, possibly at the cost of prefetch-
ing unnecessary data.

The literature on prefetching is very rich (far too rich
to include appropriate citations here). Researchers have
suggested and experimented with history-based predic-
tors, application disclosed hints, application-controlled
prefetching, speculative execution, and data compression
in order to improve prefetching accuracy and coverage
for both inter- and intra-file accesses. Various methods
have also been proposed to control the amount of mem-
ory dedicated to prefetching and the possible eviction of
cached pages in favor of prefetching.

Published studies have shown that aggressive
prefetching has the potential to improve I/O perfor-
mance for a variety of workloads and computing
environments, either by eliminating demand misses on
pages that a conservative system would not prefetch, or
by avoiding long delays when device response times are
irregular. Most modern operating systems, however, still
rely on variants of the standard, conservative sequential
read-ahead policy. Linux, for example, despite its rep-
utation for quick adoption of promising research ideas,
prefetches only when sequential access is detected, and
(by default) to a maximum of only 128 KB.

Conservative algorithms have historically been rea-
sonable: aggressive prefetching can have a negative im-
pact on performance. We begin by reviewing this down-
side in Section 2. In Section 3, however, we argue that
the conventional wisdom no longer holds. Specifically,
the risks posed by aggressive prefetching are substan-
tially reduced on resource-rich modern systems. More-
over, new system design goals, such as power efficiency
and disconnected or weakly-connected operation, de-
mand the implementation of very aggressive policies that
predict and prefetch data far ahead of their expected use.
Finally, in Section 4 we present new research challenges
for prefetching algorithms and discuss the implications

mls
HotOS 2005

of those algorithms for OS design and implementation.

2 Traditional concerns

Under certain scenarios aggressive prefetching may have
a severe negative impact on performance.

Buffer cache pollution. Prefetching deeper in a refer-
ence stream risks polluting the buffer cache with unnec-
essary data and ejecting useful data. This risk is par-
ticularly worrisome when memory is scarce, and when
predictable (e.g. sequential) accesses to predictable (e.g.
server disk) devices make it easy to compute a minimum
necessary “lead time”, and offer little benefit from work-
ing farther ahead.

Increased physical memory pressure. Aggressive
prefetching may increase physical memory pressure,
prolonging the execution of the page replacement dae-
mon. In the worst case, correctly prefetched pages may
be evicted before they have a chance to be accessed. The
system may even thrash.

Inefficient use of I/O bandwidth. Aggressive prefetch-
ing requires speculation about the future reference
stream, and may result in reading a large amount of un-
necessary data. Performance may suffer if bandwidth is
a bottleneck.

Increased device congestion. Aggressive prefetching
leads to an increased number of asynchronous requests
in I/O device queues. Synchronous requests, which have
an immediate impact on performance, may be penalized
by waiting for prefetches to complete.

Techniques exist to minimize the impact of these prob-
lems. More accurate prediction algorithms can minimize
cache pollution and wasted I/O bandwidth. The ability
to cancel pending prefetch operations may reduce the
risk of thrashing if memory becomes too tight. Replace-
ment algorithms that balance the cost of evicting an al-
ready cached page against the benefit of prefetching a
speculated page can partially avoid the ejection of useful
cached data (this assumes an on-line mechanism to accu-
rately evaluate the effectiveness of caching and prefetch-
ing). Prefetched pages can be distinguished from other
pages in the page cache so that, for example, they can
use a different replacement policy (LRU is not suitable).
Finally, priority-based disk queues that schedule requests
based on some notion of criticality can reduce the im-
pact of I/O congestion. All of these solutions, unfortu-
nately, introduce significant implementation complexity,
discouraging their adoption by general-purpose operat-
ing systems. In addition, most of the problems above
are most severe on resource-limited systems. A general-
purpose OS, which needs to run on a variety of machines,
may forgo potential benefits at the high end in order to
avoid more serious problems at the low end.

3 Why it makes sense now

Two groups of trends suggest a reevaluation of the con-
ventional wisdom on aggressive prefetching. First, tech-
nological and market forces have led to dramatic im-
provements in processing power, storage capacity, and to
a lesser extent I/O bandwidth, with only modest reduc-
tions in I/O latency. These trends serve to increase the
need for aggressive prefetching while simultaneously de-
creasing its risks. Second, emerging design goals and us-
age patterns are increasing the need for I/O while making
its timing less predictable; this, too, increases the value
of aggressive prefetching.

3.1 Technological and market trends

Magnetic disk performance. Though disk latency has
been improving at only about 10% per year, increases in
rotational speed and recording density have allowed disk
bandwidths to improve at about 40% per year [5]. Higher
bandwidth disks allow—in fact require—the system to
read more data on each disk context switch, in order to
balance the time that the disk is actively reading or writ-
ing against the time spent seeking. In recognition of this
fact, modern disks have large controller caches devoted
to speculatively reading whole tracks. In the absence of
memory constraints, aggressive prefetching serves to ex-
ploit large on-disk caches, improving utilization.

Large memory size at low cost. Memory production is
increasing at a rate of 70% annually, while prices have
been dropping by 32% per year [4], reaching a cost to-
day of about 12 cents per megabyte. Laptop computers
with 512 MB of memory are now common, while desk-
top and high-end systems may boast several Gigabytes.
While application needs have also grown, it seems fair to
say on the whole that today’s machines have significantly
more memory “slack” than their predecessors did, pro-
viding the opportunity to prefetch aggressively with low
risk of pollution or memory pressure. As memory sizes
and disk bandwidths continue to increase, and as multi-
media applications continue to proliferate (more on this
below), the performance benefit of aggressive prefetch-
ing will surpass that of caching policies.

I/0 performance variability. In the past, prefetching
algorithms have been developed under the assumption
that storage devices are able to deliver data at relatively
constant latencies and bandwidths. This assumption no
longer holds. First, users access data through multiple
devices with different performance characteristics. Sec-
ond, the performance of a given device can vary greatly.
Increases in areal densities of magnetic disks have led to
bandwidth differences of 60% or more [6] between in-
ner and outer tracks, and this gap is expected to grow.
Li et al. [9] demonstrate a 15% to 47% throughput im-
provement for server-class applications through a com-
petitive prefetching algorithm that takes into account the

performance variability of magnetic disks. Similarly,
wireless network channels are prone to noise and con-
tention, resulting in dramatic variation in bandwidth over
time. Finally, power-saving modes in disks and other
devices can lead, often unpredictably, to very large in-
creases in latency. To maintain good performance and
make efficient use of the available bandwidth, prefetch-
ing has to be sensitive to a device’s performance vari-
ation. Aggressive prefetching serves to exploit periods
of higher bandwidth, hide periods of higher latency, and
generally smooth out fluctuations in performance.

The processor-1/0 gap. Processor speeds have been
doubling every 18 to 24 months, increasing the perfor-
mance gap between processors and I/O systems. Pro-
cessing power is in fact so far ahead of disk latencies that
prefetching has to work multiple blocks ahead to keep
the processor supplied with data. Moreover, many appli-
cations exhibit phases that alternate between compute-
intensive and I/O-intensive behavior. To maximize pro-
cessor utilization, prefetch operations must start early
enough to hide the latency of the last access of an 1/O-
intensive phase. Prefetching just in time to minimize the
impact of the next access is not enough. Early prefetch-
ing, of course, implies reduced knowledge about future
accesses, and requires both more sophisticated and more
speculative predictors, to maximize data coverage. For-
tunately, modern machines have sufficient spare cycles
to support more computationally demanding predictors
than anyone has yet proposed. In recognition of the in-
creased portion of time spent on I/O during system start-
up, Microsoft Windows XP employs history-based in-
formed prefetching to reduce operating system boot time
and application launch time [11]. Similar approaches are
being considered by Linux developers [7].

3.2 Design goals and usage patterns

Larger data sizes. Worldwide production of magnetic
content increased at an annual rate of 22% from 1999
to 2000 [10]. This increase has been facilitated by an-
nual increases in disk capacity of 130% [18]. Multime-
dia content (sound, photographs, video) contributes sig-
nificantly to and will probably increase the growth rate
of on-line data. As previous studies have shown [1, 13],
larger data sets diminish the impact of larger memories
on cache hit rates, increasing the importance of prefetch-
ing. Media applications also tend to touch each datum
only once, limiting the potential of caching.

Multitasking. The dominance and maturity of multi-
tasking computer systems allow end users to work con-
currently on multiple tasks. On a typical research desk-
top, it is easy to imagine listening to a favorite MP3
track while browsing the web, downloading a movie, re-
building a system in the background, and keeping half an
eye on several different instant messaging windows. The

constant switching among user applications, several of
which may be accessing large amounts of data, reduces
the efficiency of LRU-style caching; aggressive prefetch-
ing allows each application to perform larger, less fre-
quent I/O transfers, exploiting the disk performance ad-
vances described above.

Energy and power efficiency. Energy and power have
become major issues for both personal computers and
servers. Components of modern systems—and I/O de-
vices in particular—have multiple power modes. Bursty,
speculative prefetching can lead to dramatic energy sav-
ings by increasing the time spent in non-operational low-
power modes [14]. As shown in our previous work [15],
we can under reasonable assumptions' save as much as
72% of total disk energy even if only 20% of what we
prefetch actually turns out to be useful. At the same time,
operational low-power modes, as in recent proposals for
multi-speed disks [3], suggest the need for smooth access
patterns that can tolerate lower bandwidth. Prefetching
algorithms for the next generation of disks may need to
switch dynamically between smooth low-bandwidth op-
eration and bursty high-bandwidth operation, depending
on the offered workload.

Reliability and availability of data. Mobile sys-
tems must increasingly accommodate disconnected or
weakly-connected operation [8], and provide efficient
support for several portable storage devices [12]. Reli-
ability and availability have traditionally been topics of
file system research. We believe, however, that mem-
ory management and specifically prefetching must play
a larger role. Mobile users may need to depend on mul-
tiple legacy file systems, not all of which may handle
disconnection well. But while computers may have mul-
tiple file systems, they have a single memory manage-
ment system. The file system functionality that provides
access under disconnected or weakly-connected opera-
tion is based on aggressive, very speculative prefetch-
ing (with caching on local disk). This prefetching can
be moved from the low-level file system to the mem-
ory management and virtual file system layers, where
it can be used in conjunction with arbitrary underlying
file systems. Aggressive prefetching that monitors ac-
cess patterns through the virtual file system and is imple-
mented at the memory management level might prefetch
and back up data to both RAM and local peripheral de-
vices.

IWe assume 50MB of memory dedicated to prefetching and an
application data consumption rate of 240 KB/s (equivalent to MPEG
playback). Energy savings are significant for several combinations of
memory sizes used for prefetching, data rates and prefetching accuracy
ratings.

4 Research challenges

The trends described in Section 3 raise new design chal-
lenges for aggressive prefetching.

Device-centric prefetching. Traditionally, prefetching
has been application-centric. Previous work [16] sug-
gests a cost-benefit model based on a constant disk la-
tency in order to control prefetching. Such an assump-
tion does not hold in modern systems. To accommo-
date power efficiency, reliability, and availability of data
under the varying performance characteristics of storage
devices, prefetching has to reflect both the application
and the device. Performance, power, availability, and
reliability characteristics of devices must be exposed to
prefetching algorithms [9, 12, 15].

Characterization of I/O demands. Revealing device
characteristics is not enough. To make informed deci-
sions the prefetching and memory management system
will also require high level information on access pat-
terns and other application characteristics. An under-
standing of application reliability requirements, band-
width demands, and latency resilience can improve
prefetching decisions.

Coordination. Non-operational low-power modes de-
pend on long idle periods in order to save energy. Unco-
ordinated I/O activity generated by multitasking work-
loads reduces periods of inactivity and frustrates the goal
of power efficiency. Aggressive, coordinated prefetching
can be used in order to coordinate I/O requests across
multiple concurrently running applications and several
storage devices.

Speculative predictors that provide increased data
coverage. Emerging design goals, described in Sec-
tion 3, make the case to prefetch significantly deeper
than traditional just-in-time policies would suggest. In
addition to short-term future data accesses, prefetching
must predict long-term user intention and tasks in or-
der to minimize the potentially significant energy costs
of misses (e.g. for disk spin-up) and to avoid the possi-
bility of application failure during weakly-connected op-
eration.

Prefetching and caching metrics. Traditionally, cache
miss ratios have been used in order to evaluate the effi-
ciency of prefetching and caching algorithms. The utility
of this metric, however, depends on the assumption that
all cache misses are equivalent [17]. Power efficiency,
availability, and varying performance characteristics lead
to different costs for each miss. For example, a miss
on a spun-down disk can be significantly more expen-
sive in terms of both power and performance than a miss
on remote data accessed through the network. We need
new methods to evaluate the effectiveness of proposed
prefetching algorithms.

In addition, several traditional prefetching problems
may require new or improved solutions as prefetching
becomes more aggressive. Examples include:

e Separate handling of prefetched and cached, accessed
pages.

e Algorithms that dynamically control the amount of
physical memory dedicated to prefetching.

e Monitoring systems that evaluate the efficiency of
predictors and prefetching algorithms using multiple
metrics (describing performance, power efficiency,
and availability) and take corrective actions if neces-
sary.

e Priority-based disk queues that minimize the possible
negative impact of I/O queue congestion.

e Mechanisms to cancel in-progress prefetch operations
in the event of mispredictions or sudden increases in
memory pressure.

e Data compression or other techniques to increase data
coverage.

To first approximation, the memory management sys-
tem of today assumes responsibility for caching sec-
ondary storage without regard to the nature of either
the applications above it or the devices beneath it. We
believe this has to change. The ‘“storage management
system” of the future will track and predict the behav-
ior of applications, and prioritize and coordinate their
likely I/O needs. At the same time, it will model the
latency, bandwidth, and reliability of devices over time,
moving data not only between memory and I/O devices,
but among those devices as well, to meet user-specified
needs for energy efficiency, reliability, and interactive re-
sponsiveness.

References

[1] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,
and J. K. Ousterhout. Measurements of a Distributed File
System. In Proc. of the 13th ACM Symp. on Operating
Systems Principles, 1991.

[2] P. Cao, E. W. Felten, and K. Li. A Study of
Integrated Prefetching and Caching Strategies. In
Proc. of the 1995 ACM Joint Int. Conf. on Measure-
ment and Modeling of Computer Systems (SIGMETR-
CIS’95/PERFORMANCE’95), 1995.

[3] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: Dynamic Speed Control for Power
Management in Server Class Disks. In Proc. of the 30th
Int. Symp. on Computer Architecture (ISCA’03), June
2003.

[4] J. Handy. Will the Memory Market EVER Re-
cover?, Sept. 1999. http://www.reed-electronics.com/
electronicnews/article/CA47864.html.

[5] J. L. Hennessy and D. A. Patterson. Computer Architec-

ture: A Quantitative Approach. Morgan Kaufman, 3rd
edition, 2003.

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

Hitachi Global Storage Technologies. Hard Disk Drive
Specification; Hitachi Travelstar 5K80 2.5 inch ATA/IDE
hard disk drive, Nov. 2003.

Kerneltrap.org. Linux: Boot Time Speedups Through
Precaching, Jan. 2004. http://kerneltrap.org/node/2157.

J. J. Kistler and M. Satyanarayanan. Disconnected Oper-
ation in the Coda File System. ACM Trans. on Computer
Systems, 10(1), Feb. 1992.

C. Li, A. E. Papathanasiou, and K. Shen. Competitive
Prefetching for Data-Intensive Online Servers. In Proc.
of 1st Workshop on Operating Sys. and Arch. Support for
the on-demand IT InfraStructure, Oct. 2004.

P. Lyman and H. R. Varian. How Much Information,
2003. School of Information Management and Sys-
tems, University of California at Berkeley. Available:
http://www.sims.berkeley.edu/how-much-info-2003/.

Microsoft Corporation. Kernel Enhancements for Win-
dows XP, Jan. 2003. http://www.microsoft.com/whdc/
driver/kernel/XP_kernel.mspx.

E. B. Nightingale and J. Flinn. Energy-Efficiency and
Storage Flexibility in the Blue File System. In Proc. of
the 6th USENIX Symp. on Operating Systems Design and
Implementation, Dec. 2004.

J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A Trace-driven Analysis
of the UNIX 4.2 BSD File System. In Proc. of the 10th
ACM Symp. on Operating Systems Principles, Dec. 1985.

A. E. Papathanasiou and M. L. Scott. Energy Efficiency
Through Burstiness. In Proc. of the 5th IEEE Workshop
on Mobile Computing Systems and Applications, Oct.
2003.

A. E. Papathanasiou and M. L. Scott. Energy Efficient
Prefetching and Caching. In Proc. of the USENIX 2004
Annual Technical Conf., June 2004.

R. H. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed Prefetching and Caching. In Proc.
of the 15th ACM Symp. on Operating Systems Principles,
Dec. 1995.

M. Satyanarayanan. Mobile Computing: Where’s the
Totu? ACM SIGMOBILE Mobile Comp. and Comm. Re-
view, 1(1), Apr. 1997.

G. Zeytinci. Evolution of the Major Computer
Storage Devices, 2001. Available: http://www.
computinghistorymuseum.org/teaching/papers/research/
StorageDevices-Zeytinci.pdf.

