
`

  Take a sequence of requests as inputs.

  The service to the requests composes the
kernel computation; the behavior highly
depends on the request.

  The behavior variations give challenges to
behavior characterizations.

  Examples:

 GCC (each input function is a request)

 Compress, Interpreter, etc.

Goals!

Utility Programs!

  To recognize behavior patterns of utility
programs and then detect phase boundaries
(i.e. the boundaries of behavior patterns).

Motivations!

  Program and hardware adaptation is
becoming increasingly important.

 The benefit of the adaptation depends on
the accuracy of phase partitioning and
behavior prediction.

  Utility programs pose big challenges to
previous techniques.

  The irregular behavior due to their
high dependence on the inputs.

  Previous online methods cannot afford
sophisticated analysis.

  Previous offline methods don’t apply to
utility programs due to the irregular
behavior (Shen etc. ASPLOS’04).

Technique Overview!

(a) IPC Curve of GCC on a ref input
(scilab)

(b) IPC Curve of GCC on a regular input

  Taking advantage of input-dependent behavior, we use regular inputs
to induce regular behavior repetitions.

  Example: feed GCC with a C program containing 4 identical functions
with different function names. Figure (a) shows the irregular IPC curve
of a ref execution; Figure (b) shows the IPC curve of the execution on
a regular input with vertical blue lines as the boundaries of outermost
phases.

Finding Phase Markers!

  Checking for regularity (filtering on frequency and recurring patterns)

  Profile execution on the regular input with f identical requests.
  Only record those basic blocks that appear exactly f times.

  Remove noisy blocks based on recurring patterns.

  A tuple to represent the recurring patterns of a basic block.

!

(r b , "rb
)

: the average recur-distance of block b.

!

r b
: the standard deviation of the recur-distance of block b.

!

"rb
  The outliers of the tuple set are considered noisy blocks.

  Checking for consistency

  Rerun the application on one or more real (irregular) inputs.

  Record the blocks appearing as many times as the number of requests.

  Take the intersection between this set of blocks and the one from the
regularity check.

  Find the boundaries of the large gaps in the temporal sequence of the
remaining blocks as phase boundaries: selecting the outliers of the gap
size.

Large gap selection. A circle at (x, y) shows a basic block
with ID y appearing at logical time x. A solid line shows
the boundary of a large gap, whose size is an outlier of
all the gaps’

Techniques �Introduction �

Evaluation �

  Benchmarks

Methodology!

Benchmark Description Source

Compress common UNIX compression utility SPEC95Int

GCC GNU C compiler 2.5.3 SPEC2kInt

LI Xlisp interpreter SPEC95Int

Parser natural language parser SPEC2kInt

Vortex object oriented database SPEC2kInt

  In the analysis stage, we use ATOM for instrumentation on a
Digital Alpha machine.

  For evaluation, we use PMAPI on an IBM POWER4 machine for
hardware performance measurement.

  The source code has 120 files and 222182 lines of C code.

  The outermost phase boundary is found at the start of the
compilation of an input function.

  Eight inner phases show different compilation stages.

  Some phase boundaries do not coincide with loop or function
boundaries.

  With phase markers, regularity emerges from visually irregular
behavior curve.

Evaluation on GCC!

(a) IPC on input I (scilab) (b) part of (a) enlarged

(c) IPC on input II (166)

  Blue solid vertical lines show
outermost phase boundaries; blue
broken vertical lines show inner phase
boundaries.

  Phase behavior regularity emerges as
the consistency of phase IPC patterns
across phase instances inside and
across the figures.

Evaluation on Other Benchmarks!

Comparison with Procedure and Interval Phases!

(a) CoV mean bar and maximum and minimum of phase cache hit rates

(b) CoV mean bar and maximum and minimum of phase instructions per cycle (IPC)

Co
V

(
%
)

For each benchmark, from left to right are
active-profiling, procedure, interval and interval-cluster phase CoVs

GCC Compress Vortex Li Parser Average

GCC Compress Vortex Li Parser Average

  Coefficient of Variance (CoV) is the standard deviation divided by the mean.

  Use the IPC and cache miss CoVs of the instances of a phase to measure the consistency of
the phase behavior.

  Comparison of Different Approaches:

  Active-profiling : our method.

  Procedure : taking important subroutines as phases [Maglis etc. ISCA’03].

  Interval : fixed-length intervals as phase instances.
  Interval-cluster : the upper-bound of interval-based methods, which clusters intervals
according to cache hit rate or IPC directly.

Uses in Memory Management!

  A phase, especially the outermost phase,
often represents a memory usage cycle, in
which temporary data are allocated and then
collected.

  Monitor and predict memory demand trend
by measuring memory usage at phase
boundaries.

  Categorize objects as phase local or global,
helping leak detection.

  Optimize garbage collection by invoking GC
at phase boundaries.

  Reduce execution time by 44% on Xlisp.

Conclusions!

  A two-step technique for detecting
input-dependent phase behavior in utility
programs.

  Active-profiling induces repeating
behavior.

  Examines all program statements to
identify phase boundaries that recur
regularly in frequency and distance in
the regular input and recur consistently
in real inputs.

  Compared with procedure-based and
interval-based methods, the technique
often captures and predicts program
behavior at larger granularity with higher
accuracy, using NO thresholds.

(a) Compress (b) Vortex (c) LI (d) Parser

Detecting Variable-Length Phases in Utility Programs"
Xipeng Shen, Chen Ding, Sandhya Dwarkadas, and Michael L. Scott"

Department of Computer Science, University of Rochester"

Adaptive Profiling: Convert Challenges to Opportunities!

  Through active profiling, we induce perfect behavior repetitions in
utility programs.

  Then we find the phase boundaries through the filtering of dynamic
basic block traces based on frequencies and distances.

Co
V

(
%
)

For each benchmark, from left to right are
active-profiling, interval and interval-cluster phase CoVs

