PODC 2005

NB: This poster s a reconstruction.
It may not precisely match the version
presented at the conference.

LL/SC as a restricted KCSS
(K-Compare-Single-Swap)

Here K =2. Already-read value of B is 4.

old = LL(&A)
if (B==4) Il compare
if (SC(&A,new) == false) // compare & swap
return false
else
return true
else

return false
NB: requires that Aand B

always play the same roles

WSTM Data Structures

Shared Memory Ownership Records Transaction Descriptor
Hash table

- Py Status: Active

e o~ [e3-100.7)> oo

a2 e (1039 (1013

a4 2

a5

Transaction T

2CSS Application in
Atomic Copyback

old = orec

LL(addr)
if (orec == old)
if (SC(addr,newval))
return true
else
return false

/I compare
/I compare and swap

NB: meets the requirement
that orec and addr always
play the same roles

% ROCHESTER

Using LL/SC to Simplify Word-based
Software Transactional Memory

by
Virendra J. Marathe and Michael L. Scott
Department of Computer Science
University of Rochester

I
Software Transactional
Memory
e A nonblocking synchronization construct

e Makes concurrent programming (almost) as
simple as sequential programming
e Gives disjoint access parallel concurrency

&

WSTM Transactions

Shared Memory Ownership Records Transaction Descriptor
Hash table
a1 10
a2 Version 15
a3 300
: Vorsion 1 Transaction 1

= /CAS (steal) merge
/

. Version 1
a4 0 /’ =1/
a5 T Status: Active

a3 (300.8) > (101.9)

at: (11,8) > (11,9 J

[[Ref count ] Transaction 2

To avoid stale updates

Proposed Simplification

wl=
g
a2 \- Version 15 o)) > 9008
a3 300 o at: (10,15) -> (10.15)
Voo | ¢ Transaction 1
| LL(a3), Verify orec, SC(a3,300), Steal
a4 5 Version 1
a5 -
Transaction 2

Word-based Software
Transactional Memory
(WSTM)

e by Harris and Fraser [OOPSLA03]
e API for accessing shared memory
o STMStart
 STMRead(addr), STMWrite(addr,value)
» STMCommit(), STMAbort()
o STMValidate()

WSTM Drawbacks

e Bounded memory blow-up problem — due to
merging and false conflicts

e Complexity — merging, stealing, redo,
reference counts

o False merging — merge even when not
necessary

& Tradeoffs of
Proposed Simplification

+ Simplicity — No merging, no stealing, no redo, just
selective helping

+ No reference counts

+ No false merging

— Too many LL/SCs (equal to number of locations
updated)

= Future Work — Empirical evaluation of proposed
simplification



