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NB: This poster s a reconstruction.
It may not precisely match the version
presented at the conference.

LL/SC as a restricted KCSS
(K-Compare-Single-Swap)

Here K =2. Already-read value of B is 4.

old = LL(&A)
if (B==4) Il compare
if (SC(&A,new) == false) // compare & swap
return false
else
return true
else

return false
NB: requires that Aand B

always play the same roles
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2CSS Application in
Atomic Copyback

old = orec

LL(addr)
if (orec == old)
if (SC(addr,newval))
return true
else
return false

/I compare
/I compare and swap

NB: meets the requirement
that orec and addr always
play the same roles
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I
Software Transactional
Memory
e A nonblocking synchronization construct

e Makes concurrent programming (almost) as
simple as sequential programming
e Gives disjoint access parallel concurrency
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Proposed Simplification
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Word-based Software
Transactional Memory
(WSTM)

e by Harris and Fraser [OOPSLA03]
e API for accessing shared memory
o STMStart
 STMRead(addr), STMWrite(addr,value)
» STMCommit(), STMAbort()
o STMValidate()

WSTM Drawbacks

e Bounded memory blow-up problem — due to
merging and false conflicts

e Complexity — merging, stealing, redo,
reference counts

o False merging — merge even when not
necessary

& Tradeoffs of
Proposed Simplification

+ Simplicity — No merging, no stealing, no redo, just
selective helping

+ No reference counts

+ No false merging

— Too many LL/SCs (equal to number of locations
updated)

= Future Work — Empirical evaluation of proposed
simplification



