Dynamic Software Transactional Memory
(DSTM) [Herlihy et al., PODC 2003]

 Universal construction for non-blocking synchronization
« Treat memory as a database
 Use transactions to update data structures
 Obstruction-Free

* Highly concurrent operations — full disjoint access

parallelism

* Software version of a hardware scheme
 [Herlihy and Moss, 1993]
* Term STM due from [Shavit and Touitou, 1995]

From the User’s Perspective

Divide memory into a series of objects
Use special interface to access objects

* STM copies object data behind the scenes

« Read-only, read/write access supported

* Manipulate data with normal reads/writes

« Can early-release an object opened read-only

* Requires programmer to ensure consistency

« In cases of conflict, one transaction is aborted
At end of transaction attempt, commit () effects all changes
atomically

« Retry transaction if commit () fails

void sortedListInsert (List L, int v) {
ListNode newList — new ListNode (v);
TMObject newNode = new TMObject (newList);
de {

beginTransaction();
try {
ListNode curr - (ListNode)l.head.openWrite();
ListNode next — (ListNode)curr.next.openWrite();
while (next.key < v) {
curr - next;
next - (ListNode)curr.next.openWrite();

¥
curr.next - newNode;
newList.next - next;
} catch (DeniedException d) {}
while (!commitTransaction());

Under the Hood

Active
Aborted
Committed

Status Word
transaction Object Data
new object

old object

Locator Object Data

Invisible Reads

g

TMObject

transaction Status Word

e] Objea®)
- Object (R)

Ly

e obiect / Object (R)

old object

transaction

000

‘e object Transaction Descriptor

TMObjects

old object

Locators

Visible Reads
TMObject Locator

transaction

new object

9

old object
readers

—J

\

Status Word Status Word Status Word

Object R)[v] H | Object ®) [v] Object (R) [v]

Transaction Descriptors

PODC '05

Randomization in STM Contention Management
Bill Scherer and Michael L. Scott

Contention Management
One manager for each thread
Inputs: notification messages
* Begin/End Transaction; Opening Object
Outputs: decisions
 Abort competitor holding the object I want?
« Choices: abort self, abort other, stall
« Abort often enough to avoid deadlock, but rarely
enough to avoid livelock

How do we decide what policy to use?

The Karma Manager
[Scherer & Scott, CSJP 2004]
Priority = acquired objects = work invested so far
« Increment every time we open an object
Priority reset to 0 on commit
* Not reset if aborted: better chance to finish “next time”
Abort enemy transaction if priority lower
¢ Otherwise, wait for a fixed period
« If priority + #times waited > enemy priority, abort
* Better to abort a lower-priority transaction
* Less rework = higher overall throughput

Randomization
* Abortion
 Basic: abort if #backoff periods exceed difference D in
prmnues
* Randomized: abort with probability (1 + e ~*P)!
« Sigmoid function: see right
* Backoff
* Basic: wait T pisecs between access attempts
* Randomized: uniform from 0..2T
¢ Gain

« Basic: | point of priority with each object opened ~The Sigmoid Function

* Randomized: uniform from 0..200

University of Rochester

Analysis

*Some combination of randomization improves throughput for all benchmarks

*ArrayCounter. IntSet, IntSetUpgrade: randomizing just abortion best

*Randomizing both abortion and backoff:

*Very poor results for ArrayCounter and RBTree

«Improves throughput for LFUCache and Stack

*Randomizing gain (alone or with others) improves LFUCache and RBTree

«Little difference between visible and invisible read patterns

Interpretation
*Abortion

*Powerful for breaking up semi-deterministic livelock patterns

eParticular visible in ArrayCounter, where increment and decrement
transactions are highly prone to repeated mutual abortion

*Gain

Similat in effect to randomizing abortion

*Uniformly random vs biased abortion randomization from sigmoid

*Abortion + Backoff

*Produces great variance in how long a thread waits to abort an enemy

*Reducing wait period hurts longer transactions

*Typified by ArrayCounter, RBTree

Typified by LFUCache, Stack
*Backoff

*Less important for two-transaction case

eIncreasing wait period decreases contention for short transactions

*Good for locking algorithms (avoids simultaneous retry pathology)

*One continues oblivious to conflict; one backs off

AvrayCounter (8 thraads, nvisible resds]

fersyCountar (8 threacs, visile raacs)

SerayCounter (2 hrasds, invisble rnds)

ArtayCounter (32 throads, visble eads)

e amo
@ 150 E e
H 2

:
LIV S R P R
C TS

CS IS

o
@f’ & Py & ,;“: Py«‘ y & &a«' j«' Jw

Tasee
g

f S LS
LA LSS

RBTroe (8 thraads, inuisible roads]

RBTre0 (3 thraads, isble eads]

RBTree (321hveacs, invisible resds)

FETrea (32 hraads, isible reads)

Tuses
Tasee

R - . .
£ g Yy

e & LI R
& pr gf; o @. & @,‘,v &g"

Tuses

£ S f&f@f‘p S

,g.c

e L LI R
& Q'f J@;ﬁ. .y" @f &y @@"

Stack (8 threads, invisile reads]

Stack (hresds, vsible reads)

‘Stack (32 threads, invisible reads)

Stack (3 threads,uisible reads]

£ 20 2ooon

rs S LS
.fgf’v g"@,fdy &

&

f&g‘@ & fwf (f" & ﬁf & ’

L £ @
‘f,}f, & @.é" &rf & 4&’&0 &

Tasee

AV P
‘yg‘& & «p‘f‘v" r

LEUGache (s threags, nvisible reads)

LFUGacho (8 threads, visibie oads]

LFUGache (2 threads, invisible reads)

LFUGach (32 hreads, visise reads)

e S S £ L PR > S L S £ L e B >
4 ,}f & @.e*’ @’(& 5} & 4 y‘x & gf @f & ,;?‘f & “(,éf & @,e*’ g*’(& ‘;f & f@df a*':ﬁf &f & jf &

8 Threads: throughput

32 Threads: throughput

Test Environment

16-processor SunFire 6800 machine
+ Cache-coherent Multiprocessor
* 1.2 GHz UltraSparc III processors
* Donation from Sun’s Scalable Synchronization
Research group
Sun’s HotSpot Java 1.5 VM
10-second test runs
All 8 combination of randomizing three facets of Karma

IntSet

Sorted Linked-list set implementation
Insert, remove transactions
Each list node opened for read/write access

IntSetUpgrade

Another sorted Linked-list set implementation

Objects opened for read-only access until
insertion/deletion point found

Access upgraded to read/write for nodes to be modified

RBTree

Add/remove numbers from a balanced binary tree

* Tight range (0...255) increases contention
Two-step operations

* Work down the tree to find insertion/deletion point

* Work back up the tree restoring balance
Transactions can mutually block each other

« Interesting opportunities for contention mgmt.

LFUCache

Simulates behavior of a web cache
* Least-Frequently Used replacement policy
* Operations are cache updates from page hits
Two-part data structure
* Big array represents all pages
+ Priority queue heap represents the cache itself
« Tree structure; least-used nodes bubble to the root
* Fixed-size cache

Unidirectional —
object access —
pattern

* no mutual

blocking

Two trans. can —
need same —
sequence of objects [——

+ Risk of livelock

* Waiting works

‘\}—‘

Stack

.

.

Concurrent stack
Push, Pop operations

ArrayCounter

Ordered list of 255 simple counters
Increment transactions raise 0,1,2, ... 255
Decrement transactions lower 255, 254, ..., 0
Exacerbates proneness to livelock

mls
PODC '05

