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Abstract

The proliferation of multiprocessor servers and multithreaded applications has increased
the demand for high-performance synchronization. Traditional scheduler-based locks incur
the overhead of a full context switch between threads and are thus unacceptably slow for many
applications. Spin locks offer low overhead, but they either scale poorly on large-scale SMPs
(test-and-set style locks) or behave poorly in the presence of preemption (queue-based locks).

Previous work has shown how to build preemption-tolerant locks using an extended ker-
nel interface, but such locks are neither portable to nor even compatible with most operating
systems.

In this work, we propose a time-publishing heuristic in which each thread periodically
records its current timestamp to a shared memory location. Given the high resolution, roughly
synchronized clocks of modern processors, this convention allows threads to guess accurately
which peers are active based on the currency of their timestamps. We implement two queue-
based locks, MCS-TP and CLH-TP, and evaluate their performance relative to both traditional
spin locks and preemption-safe locks on a 32-processor IBM p690 multiprocessor. Experi-
mental results indicate that time-published locks make it feasible, for the first time, to use
queue-based spin locks on multiprogrammed systems with a standard kernel interface.

1 Introduction
Historically, spin locks have found most of their use in operating systems and dedicated servers,
where the entire machine is dedicated to whatever task the locks are protecting. This is fortunate,
because spin locks typically don’t handle preemption very well: if the thread that holds a lock
is suspended before releasing it, any processor time given to waiting threads will be wasted on
fruitless spinning.

Recent years, however, have seen a marked trend toward multithreaded user-level programs,
such as databases and on-line servers. Further, large multiprocessors are increasingly shared among
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multiple multithreaded programs. As a result, modern applications cannot in general count on
any specific number of processors; spawning one thread per processor does not suffice to avoid
preemption.

For multithreaded servers, the high cost of context switches makes scheduler-based locking
unattractive, so implementors are increasingly turning to spin locks to gain performance. Unfor-
tunately, this solution comes with hidden drawbacks: queue-based locks are highly vulnerable to
preemption, but test-and-set locks do not scale beyond a modest number of processors. Although
several heuristic strategies can reduce wasted spinning time [13, 16], multiprogrammed systems
usually rely on non-queue-based locks [20]. Our goal is to combine the efficiency and scalability
of queue-based spin locks with the preemption tolerance of the scheduler-based approach.

1.1 Related Work
One approach to avoiding excessive wait times can be found in abortable locks (sometimes called
try locks), in which a thread “times out” if it fails to acquire the lock within a specified patience
interval [12, 27, 28]. Although timeout prevents a thread from being blocked behind a preempted
peer, it does nothing to improve system-wide throughput if the lock is squarely in the application’s
critical path. Further, any timeout sequence that requires cooperation with neighboring threads in a
queue opens yet another window of preemption vulnerability. Known approaches to avoiding this
window result in unbounded worst-case space overhead [27] or very high base time overhead [12].

An alternative approach is to adopt nonblocking synchronization, eliminating the use of locks [8].
Unfortunately, while excellent nonblocking implementations exist for many important data struc-
tures (only a few of which we have room to cite here [21, 23, 24, 29, 30]), general-purpose mecha-
nisms remain elusive. Several groups (including our own) are working on this topic [6, 10, 18, 26],
but it still seems unlikely that nonblocking synchronization will displace locks entirely soon.

Finally, several researchers have suggested operating system mechanisms that provide user
applications with a limited degree of control over scheduling, allowing them to avoid [4, 5, 14,
19, 25] or recover from [1, 2, 31, 33] inopportune preemption. Commercial support for such
mechanisms, however, is neither universal nor consistent.

Assuming, then, that locks will remain important, and that many systems will not provide an
OS-level solution, how can we hope to leverage the fairness and scalability of queue-based spin
locks in multithreaded user-level programs?

In this work, we answer this question with two new abortable queue-based spin locks that
combine fair and scalable performance with good preemption tolerance: the MCS time-published
lock (MCS-TP) and the CLH time-published (CLH-TP) lock. In this context, we use the term
time-published to mean that contending threads periodically write their wall clock timestamp to
shared memory in order to be able to estimate each other’s runtime states. In particular, given a
low-overhead hardware timer with bounded skew across processors and a memory bus that handles
requests in bounded time (both of which are typically available in modern multiprocessors), we can
guess with high accuracy that another thread is preempted if the current system time exceeds the
thread’s latest timestamp by some appropriate threshold. We now have the ability to selectively
pass a lock only between active threads. Although this doesn’t solve the preemption problem
completely (threads can be preempted while holding the lock, and our heuristic suffers from a race
condition in which we read a value that has just been written by a thread immediately before it was
preempted), experimental results (Sections 4 and 5) confirm that our approach suffices to make the

2



Lock MCS-TP CLH-TP

Link Structure Queue linked head to tail Queue linked tail to head
Lock handoff Lock holder explicitly grants the lock to a

waiter
Lock holder marks lock available and
leaves; next-in-queue claims lock

Timeout preci-
sion

Strict adherence to patience Bounded delay from removing timed-
out and preempted predecessors

Queue
management

Only the lock holder removes timed-out or
preempted nodes (at handoff)

Concurrent removal by all waiting
threads

Space
management

Semi-dynamic allocation: waiters may rein-
habit abandoned nodes until removed from
the queue

Dynamic allocation: separate node
per acquisition attempt

Figure 1: Comparison between MCS and CLH time-published locks.

locks preemption adaptive: free, in practice, from virtually all preemption-induced performance
loss.

2 Algorithms
We begin this section by presenting common features of our two time-published (TP) locks; Sec-
tions 2.1 and 2.2 cover algorithm-specific details.

Our TP locks are abortable variants of the well-known MCS [20] and CLH [3, 17] queue-based
spin locks. Their acquire functions return success or failure to indicate whether the
thread acquired the lock within a patience interval specified as a parameter. Both locks maintain a
linked-list queue in which the head node corresponds to the thread that holds the lock.

With abortable queue-based locks, there are three ways in which preemption can interfere with
throughput. First, as with any lock, a thread that is preempted in its critical section will block
all competitors. Second, a thread preempted while waiting in the queue will block others once it
reaches the head; strict FIFO ordering is generally a disadvantage in the face of preemption. Third,
any timeout protocol that requires explicit handshaking among neighboring threads will block a
timed-out thread if its neighbors are not active.

The third case can be avoided with nonblocking timeout protocols, which guarantee a waiting
thread can abandon an acquisition attempt in a bounded number of its own time steps [27]. To
address the remaining cases, we use a timestamp-based heuristic. Each waiting thread periodically
writes the current system time to a shared location. If a thread A finds a stale timestamp for another
thread B, A assumes that B has been preempted and removes B’s node from the queue. Further,
any time A fails to acquire the lock, it checks the critical section entry time recorded by the current
lock holder. If this time is sufficiently far in the past (farther than longest plausible critical section
time—the exact value is not critical), A yields the processor in the hope that a suspended lock
holder might resume.

There is a wide design space for time-published locks, which we have only begun to explore.
Our initial algorithms, described in the two subsections below, are designed to be fast in the com-
mon case, where timeout is uncommon. They reflect our attempt to adopt straightforward strate-
gies consistent with the head-to-tail and tail-to-head linking of the MCS and CLH locks, respec-
tively. These strategies are summarized in Figure 1. Time and space bounds are considered in
Appendix A.
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Figure 2: State transitions for MCS-TP queue nodes.

2.1 MCS Time-Published Lock
Our first algorithm is adapted from Mellor-Crummey and Scott’s MCS lock [20]. In the original
MCS algorithm, a contending thread A atomically swaps a pointer to its queue node α into the
queue’s tail. If the swap returns nil, A has acquired the lock; otherwise the return value is A’s
predecessor B. A then updates B’s next pointer to α and spins until B explicitly changes the
A’s state from waiting to available. To release the lock, B reads its next pointer to find a
successor node. If it has no successor, B atomically updates the queue’s tail pointer to nil.

The MCS-TP lock uses the same head-to-tail linking as MCS, but adds two additional states:
left and removed. When a waiting thread times out before acquiring the lock, it marks its node
left and returns, leaving the node in the queue. When a node reaches the head of the queue but
is either marked left or appears to be owned by a preempted thread (i.e., has a stale timestamp),
the lock holder marks it removed, and follows its next pointer to find a new candidate lock
recipient, repeating as necessary. Figure 2 shows the state transitions for MCS-TP queue nodes.
Source code can be found in Appendix B.

The MCS-TP algorithm allows each thread at most one node per lock. If a thread that calls
acquire finds its node marked left, it reverts the state to waiting, resuming its former place
in line. Otherwise, it begins a fresh attempt from the tail of the queue. To all other threads, timeout
and retry are indistinguishable from an execution in which the thread was waiting all along.

To guarantee bounded-time lock handoff, we must avoid a pathological case in which waiting
threads might repeatedly time out, have their nodes removed, rejoin the queue, and then time out
again before obtaining the lock. In this scenario, a lock holder might see an endless treadmill
of abandoned nodes, and never be able to release the lock. We therefore arrange for the lock
holder to remove only the first T abandoned nodes it encounters; thereafter, it scans the list until
it either reaches the end or finds a viable successor. Only then does it mark the scanned nodes
removed. (If a scanned node’s owner comes back to waiting before being marked removed,
it will eventually see the removed state and quit as a failed attempt). Because skipped nodes’
owners reclaim their existing (bypassed) spots in line, the length of the queue is bounded by the
total number of threads T and this process is guaranteed to terminate in at most 2T steps. In
practice, we have never observed the worst case; lock holders typically find a viable successor
within the first few nodes.
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Figure 3: State transitions for CLH-TP queue nodes.

2.2 CLH Time-Published Lock
Our second time-published lock is based on the CLH lock of Craig [3] and Landin and Hager-
sten [17]. In the original CLH lock, as in MCS, a contending thread A atomically swaps a pointer
to its queue node α into the queue’s tail. This swap always returns a pointer to the node β inserted
by A’s predecessor B (or, the very first time, to a dummy node, marked available, created at
initialization time). A updates α’s prev pointer to β and spins until β’s state is available.
Note that, in contrast to MCS, links point from the tail of the queue toward the head, and a thread
spins on the node inserted by its predecessor. To release the lock, a thread marks the node it in-
serted available; it then takes the node inserted by its predecessor for use in its next acquisition
attempt. Because a thread cannot choose the location on which it is going to spin, the CLH lock
requires cache-coherent hardware in order to bound contention-inducing remote memory opera-
tions.

CLH-TP retains the link structure of the CLH lock, but adds both non-blocking timeout and
removal of nodes inserted by preempted threads. Unlike MCS-TP, CLH-TP allows any thread
to remove the node inserted by a preempted predecessor; removal is not reserved to the lock
holder. Middle-of-the-queue removal adds significant complexity to CLH-TP; experience with
earlier abortable locks [27, 28] suggests that it would be very difficult to add to MCS-TP. Source
code for the CLH-TP lock can be found in Appendix C, together with a control flow graph for lock
acquisition.

We use low-order bits in a CLH-TP node’s prev pointer to store the node’s state, allowing
us to modify the state and the pointer together, atomically. If prev is a valid pointer, its two
lowest-order bits specify one of three states: waiting, transient, and left. Alternatively,
prev can be a nil pointer with low-order bits set to indicate three more states: available,
holding, and removed. Figure 3 shows the state transition diagram for CLH-TP queue nodes.

In each lock acquisition attempt, thread B dynamically allocates a new node β and links it to
predecessor α as before. While waiting, B handles three events. The simplest occurs when α’s
state changes to available; B atomically updates β’s state to holding to claim the lock.
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int cas_w_waiting(node_t * volatile *addr,
unsigned long oldv,
unsigned long newv,
node_t * volatile *me) {

do {
unsigned long tmp = LL(addr); // if needed, add a member barrier here to

// ensure the read order of addr and me.
if (tmp != oldv || !is_waiting(me))
return 0;

} while(!SC(addr, newv));
return 1;

}

Figure 4: Conditional updates in CLH-TP

The second event occurs when B believes A to be preempted or timed out. Here, B performs
a three-step removal sequence to unlink A’s node from the queue. First, B atomically changes α’s
state from waiting to transient, to prevent A from acquiring the lock or from reclaiming and
reusing α if it is removed from the queue by some successor of B (more on this below). Second,
B removes α from the queue, simultaneously verifying that B’s own state is still waiting (since
β’s prev pointer and state share a word, this is a single compare-and-swap). Hereafter, α is no
longer visible to other threads in the queue, and B spins on A’s predecessor’s node. Finally, B

marks α as safe for reclamation by changing its state from transient to removed.
The third event occurs when B times out or when it notices that β is transient. In either

case, it attempts to atomically change β’s state from transient or waiting to left. If the
attempt (a compare-and-swap) succeeds, B has delegated responsibility for reclamation of β to
a successor. Otherwise, B has been removed from the queue and must reclaim its own node. In
both cases, whichever of B and its successor is the last to notice that β has been removed from the
queue handles the memory reclamation; this simplifies memory management.

A corner case occurs when, after B marks α transient, β is marked transient by some
successor thread C before B removes α from the queue. In this case, B leaves α for C to clean up;
C recognizes this case by finding α already transient.

The need for the transient state derives from a race condition in which B decides to remove
α from the queue but is preempted before actually doing so. While B is not running, successor
C may remove both β and α from the queue, and A may reuse its node in this or another queue.
When B resumes running, we must ensure that it does not modify (the new instance of) A. The
transient state allows us to so, if we can update α’s state and verify that β is still waiting
as a single atomic operation. The custom atomic construction shown in Figure 4 implements this
operation, assuming the availability of load-linked / store-conditional. Since C must have removed
β before modifying α, if B reads α’s state before C changes β, then the value read must be α’s
state from before C changed α. Thereafter, if α is changed, the store-conditional will force B to
recheck β. Alternative solutions might rely on a tracing garbage collector (which would decline to
recycle α as long as B has a reference) or on manual reference-tracking methodologies [9, 22].

3 Scheduling and Preemption
TP locks publish timestamps to enable a heuristic that guesses whether the lock holder or a waiting
thread is preempted. This heuristic admits a race condition wherein a thread’s timestamp is polled
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just before it is descheduled. In this case, the poller will mistakenly assume the thread to be
active. In practice (see Section 4), the timing window is too narrow to have a noticeable impact
on performance. Nevertheless it is instructive to consider modified TP locks that use a stronger
scheduler interface to completely eliminate preemption vulnerabilities.

Extending previous work [14], we distinguish three levels of APIs for user-level feedback to
the kernel scheduler implementation:

(I) Critical section protection (CSP): these APIs can bracket a block of code to request that a
thread not be preempted while executing it.

(II) Runtime state check: these APIs allow inquiries as to whether a thread is currently preempted.
(III) Directed preemption avoidance: threads can ask the scheduler not to preempt others.

Several commercial operating systems, including AIX 5L, provide Level I APIs [11]. Level II
and III APIs are generally confined to research systems [1, 4, 19]. The Mach scheduler [2] provides
a variant of the Level III API that includes a directed yield of the processor to a specified thread.

For Test-and-Set (TAS) locks, preemption-safe variants need only a Level I API [14] to avoid
preemption during the critical section of a lock holder. By comparison, a thread contending for a
(non-abortable) queue-based lock is sensitive to preemption in two additional timing windows—
windows not addressed by the preemption adaptivity of the MCS-TP and CLH-TP locks. The
first window occurs between swapping a node into the queue’s tail and connecting links with the
remainder of the queue. The second occurs between when a thread is granted the lock and when it
starts actually using the lock. We say that a lock is preemption-safe only if it provably prevents all
such timing windows.

Previous work proposed two algorithms for preemption-safe MCS variants: the Handshaking
and SmartQ locks [14]. Both require a Level I API to prevent preemption in the critical section
and in the first (linking-in) window described above. For the second (lock-passing) window, the
lock holder in the Handshaking lock exchanges messages with its successor to confirm that it has
invoked the Level I API. In practice, this transaction has undesirably high overhead (two additional
remote coherence misses on the critical path), so SmartQ employs Level II and III APIs to replace
it. We characterize the preemption safety of the Handshaking lock as heuristic, in the sense that a
thread guesses the status of a successor based on the speed of its response, and may err on the side
of withholding the lock if, for example, the successor’s processor is momentarily busy handling an
interrupt. By contrast, the preemption safety of the SmartQ lock is precise.

Our MCS-TP lock uses a one-way handoff transaction similar to, but simpler and faster than,
that of the Handshaking lock. However, because of the reduced communication, the lock cannot
be made preemption safe with a Level I API. By contrast, a preemption-safe CLH variant can be
built efficiently from the CLH-TP lock. The tail-to-head direction of linking eliminates the first
preemption window. The second is readily addressed if a thread invokes the Level I API when it
sees the lock is available, but before updating its state to grab the lock. If the lock holder grants
the lock to a preempted thread, the first active waiter to remove all inactive nodes between itself
and the queue’s head will get the lock. We call this clock CLH-CSP (critical section protection).
Like the Handshaking lock, it is heuristically preemption safe. For precise preemption safety, one
can use a Level II API for preemption monitoring (CLH-PM).

Note that TAS locks require nothing more than a Level I API for (precise) preemption safety.
The properties of the various lock variants are summarized in Figure 5. The differences among
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This table lists the minimum requirements of NB/PA/PS capabilities and their implementations in this paper. The
Handshaking and SmartQ locks are from Kontothanassis et al. [14]. “CSP” indicates use of a Level I API for critical
section protection; “PM” indicates preemption monitoring with a Level II API; “try” indicates an abortable (timeout-
capable) lock. NB: Non-Blocking; PA: Preemption-Adaptive; PS: Preemption-Safe; /: unnecessary.

Support TAS MCS CLH

Atomic instructions PA NB-try (TAS-yield) standard lock (MCS) standard lock (CLH)
NB timeout algorithms / NB-try (MCS-NB) NB-try (CLH-NB)
TP algorithms / PA NB-try (MCS-TP) PA NB-try (CLH-TP)
Level I API precise PS (TAS-CSP) heuristic PS

(Handshaking)
heuristic PS (CLH-CSP)

Level II API / / precise PS (CLH-PM)
Level III API / precise PS (SmartQ) /

Figure 5: Families of locks.

families (TAS, MCS, CLH) stem mainly from the style of lock transfer. In TAS locks, the opportu-
nity to acquire an available lock is extended to all comers. In the MCS locks, only the current lock
holder can determine the next lock holder. In the CLH locks, waiting threads can pass preempted
peers to grab an available lock, though they cannot bypass active peers.

4 Microbenchmark Results
We test our TP locks on an IBM pSeries 690 (Regatta) multiprocessor. For comparison purposes,
we include a range of user-level spin locks: TAS, MCS, CLH, MCS-NB, and CLH-NB. TAS is
a test-and-test-and-set lock with (well tuned) randomized exponential backoff. MCS-NB
and CLH-NB are abortable queue-based locks with non-blocking timeout [27]. We also test spin-
then-yield variants [13] of each lock in which threads yield the processors after exceeding a wait
threshold.

Finally, we test preemption-safe locks dependent on scheduling control APIs: CLH-CSP, TAS-
CSP, Handshaking, CLH-PM, and SmartQ. TAS-CSP and CLH-CSP are TAS and CLH locks
augmented with critical section protection (the Level I API discussed in Section 3). The Hand-
shaking lock [14] also uses CSP. CLH-PM adds the Level II preemption monitoring API to assess
the preemptive state of threads. The SmartQ lock [14] uses all three API Levels.

Our p690 has 32 1.3GHz Power4 processors, running AIX 5.2. Since AIX 5.2 provides no
scheduling control APIs, we have also implemented a synthetic scheduler similar to that used
by Kontothanassis et al. [14]. This scheduler runs on one dedicated processor, and sends Unix
signals to threads on other processors to mark the end of each 20 ms quantum. If the receiving
thread is preemptable, that thread’s signal handler spins in an idle loop to simulate execution of a
compute-bound thread in some other application; otherwise, preemption is deferred until the thread
is preemptable. Our synthetic scheduler implements all three Levels of scheduling control APIs.

Our microbenchmark application has each thread repeatedly attempt to acquire a lock. We
simulate critical sections (CS) by updating a variable number of cache lines; we simulate non-
critical sections (NCS) by varying the time spent spinning in an idle loop between acquisitions.
We measure the total throughput of lock acquisitions and we count successful and unsuccessful
acquisition attempts, across all threads for one second, averaging results of 6 runs. For abortable
locks, we retry unsuccessful acquisitions immediately, without executing a non-critical section.
We use a fixed patience of 50 µs.
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Figure 6: Single-thread performance results.
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Figure 7: User-level locks; 2 cache line-update critical section (CS);
1 µs non-critical section (NCS).

Critical section service time (left) and success rate (right)

4.1 Single Thread Performance
Because low overhead is crucial for locks in real systems, we assess it by measuring throughput
absent contention with one thread and empty critical and non-critical sections. We organize the
results by lock family in Figure 6.

As expected, the TAS variants are the most efficient for one thread, absent contention. MCS-
NB has one compare-and-swap more than the base MCS lock; this appears in its single-thread
overhead. Similarly, other differences between locks trace back to the operations in their acquire
and release methods. We note that time-publishing functionality adds little overhead to locks.

A single-thread atomic update on our p690 takes about 60 ns. Adding additional threads in-
troduces delays from memory and processor interconnect bus traffic contention and from cache
coherence overhead when transferring a cache line between processors. We have measured over-
heads for an atomic update at 120 and 420 ns with 2 and 32 threads.

4.2 Comparison to User-Level Locks
Under high contention, serialization of critical sections causes application performance to depend
primarily on the overhead of handing a lock from one thread to the next; other overheads are
typically subsumed by waiting. We present two typical configurations for critical and non-critical
section lengths.
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Figure 8: User-level locks; 40 cache line CS; 4 µs NCS.
Critical section service time (left) and success rate (right)

Our first configuration simulates contention for a small critical section with a 2-cache-line-
update critical section and a 1 µs non-critical section. Figure 7 plots the performance of the user-
level locks with a generic kernel interface (no scheduler control API). Up through 32 threads (our
machine size), queue-based locks outperform TAS; however, only the TP and TAS locks main-
tain throughput in the presence of preemption. MCS-TP’s overhead increases with the number
of preempted threads because it relies on the lock holder to remove nodes. By contrast, CLH-TP
distributes cleanup work across active threads and keeps throughput more steady. The right-hand
graph in Figure 7 shows the percentage of successful lock acquisition attempts for the abortable
locks. MCS-TP’s increasing handoff time forces its success rate below that of CLH-TP as the
thread count increases. CLH-NB and MCS-NB drop to nearly zero due to preemption while wait-
ing in the queue.

Our second configuration uses 40-cache-line-update critical sections 4 µs non-critical sections.
It models larger longer operations in which preemption of the lock holder is more likely. Figure 8
shows the behavior of user-level locks with this configuration. That the TP locks outperform TAS
demonstrates the utility of cooperative yielding for preemption recovery. Moreover, the CLH-
TP–MCS-TP performance gap is smaller here than in our first configuration since the relative
importance of removing inactive queue nodes goes down compared to that of recovering from
preemption in the critical section.

In Figure 8, the success rates for abortable locks drop off beyond 24 threads. Since each
critical section takes about 2 µs, our 50 µs patience is just enough for a thread to sit through 25
predecessors. TP locks adapt better to insufficient patience.

One might expect a spin-then-yield policy [13] to allow other locks to match TP locks in pre-
emption adaptivity. In Figure 9 we test this hypothesis with a 50 µs spinning time threshold and a
2 cache line critical section. (Other settings produce similar results.) Although yielding improves
the throughput of non-TP queue-based locks, they still run off the top of the graph. TAS benefits
enough to become competitive with MCS-TP, but CLH-TP still outperforms it. These results con-
firm that targeted removal of inactive queue nodes is much more valuable than simple yielding of
the processor.
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Figure 9: Spin-then-yield variants; 2 cache line CS; 1 µs NCS.
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Figure 10: Preemption-safe locks: 2 cache line CS; 1 µs NCS.

4.3 Comparison to Preemption-Safe Locks
For this section, we used our synthetic scheduler to compare TP and preemption-safe locks. Results
for short critical sections are shown in Figure 10, both with (multiprogrammed mode) and without
(dedicated mode) an external 50% load.

Overall, TP locks are competitive with preemption-safe locks. The modest increase in per-
formance gained by locks that use high levels of scheduling control is comparatively minor. In
dedicated mode, CLH-TP is 8–9% slower than the preemption-safe CLH variants, but it performs
comparably in multiprogrammed mode. MCS-TP closely matches SmartQ (based on MCS) in
both modes. Both TP locks clearly outperform the Handshaking lock.

In dedicated mode, CLH-TP incurs additional overhead from reading and publishing time-
stamps. In multiprogrammed mode, however, overhead from the preemption recovery mechanisms
dominates. Since all three CLH variants handle preemption by removing inactive predecessor
nodes from the queue, their performance is very similar.

Among preemption-safe locks, CLH-PM slightly outperforms CLH-CSP because it can more
accurately assess whether threads are preempted. SmartQ significantly outperforms the Hand-

11



� ��� ����� ����� ����� ����� ����� ����� 	���� 	
���
���
���
�������
�������
�������
�
�����
�������
�������
��	
����������
�������
�
�
���
�������
��������������
�������
�������
�������

������������� �
�
� �
!������"� ���
� �
!������"� #�$
������������� #
$

%�&�')( *,+�-�*,.0/21
3

45
467
896
4: 7
;< =
8>5=<
6
4

� ��� ����� ����� ����� ����� ����� ����� 	���� 	
���
�
���
���
���
	��
���
���
�?�
���
���
�����

%�&�')( *,+�-�*,.0/21
3

@8>9
84= 7
A99
877

Figure 11: Varying patience for TP locks; 40 cache line CS; 4 µs NCS.

shaking lock due to the latter’s costly roundtrip handshakes and its use of timeouts to confirm
preemption.

4.4 Sensitivity to Patience
Timeout patience is an important parameter for abortable locks. Insufficient patience yields low
success rates and long average critical section service times [27, 28]. Conversely, excessive pa-
tience can delay a lock’s response to bad scenarios. Our experiments show TP locks to be highly
robust to changes in patience. Figure 11 shows the case with a large critical section; for smaller
critical sections, the performance is even better. Overall, TP locks are far less sensitive to tuning
of patience than other locks; with very low patience, the self-timeout and removal behaviors of the
locks help to maintain critical section service time even as the acquisition rate plummets.

4.5 Time and Space Bounds
As a final experiment, we measure the time overhead for removing an inactive node. On our
Power4 p690, we calculate that the MCS-TP lock holder needs about 200–350 ns to delete each
node. Similarly, a waiting thread in CLH-TP needs about 250–350 ns to delete a predecessor node.
By combining these values with our worst-case analysis for the number of inactive nodes in the
lock queues (Appendix A), one can estimate an upper bound on delay for lock handoff when the
holder is not preempted.

In our analysis of the space bounds for the CLH-TP lock (Appendix A) we show a worst-
case bound quadratic in the number of threads, but claim an expected linear value. Two final
tests maximize space consumption to gather empirical evidence for the expected case. One test
maximizes contention via empty critical and non-critical sections. The other attacks concurrent
timeouts and removals by presetting the lock to held, so that every contending thread times out.

We ran both tests 6 times, for 5 and 10 second runs. We find space consumption to be very
stable over time, getting equivalent results with both test lengths. With patience as short as 15 µs,
the first test consumed at most 77 queue nodes with 32 threads, and at most 173 nodes with 64
threads. The second test never used more than 64 or 134 nodes with 32 or 64 threads. Since our
allocator always creates a minimum of 2T nodes, 64 and 128 are optimal. The results are far closer
to the expected linear than the worst-case quadratic space bound.
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Configuration M.N means M application threads and (32 − M) + N external threads on the 32-way SMP.

Figure 12: Parallel execution times for Raytrace and Barnes on a 32-processor machine

5 Application Results
In a final set of tests we measure the performance of the TP locks on the Raytrace and Barnes
benchmarks from the SPLASH-2 suite [32]. Other applications are a subject for future work.

Application Features: Raytrace and Barnes spend much time in synchronization [15, 32].
Raytrace uses no barriers but features high contention on a small number of locks. Barnes uses
limited barriers (17 for our test input) but numerous locks. Both offer reasonable parallel speedup.

Experimental Setup: We test each of the locks in Section 4 plus the native pthread mutex
on our p690, averaging results over 6 runs. We choose inputs large enough to execute for several
seconds: 800×800 for Raytrace and 60K particles for Barnes. We limit testing to 16 threads due
to the applications’ limited scalability. External threads running idle loops generate load and force
preemption.

Raytrace: The left side of Figure 12 shows results for three preemption adaptive locks: TAS-
yield, MCS-TP and CLH-TP. Other spin locks give similar performance absent preemption; when
preemption is present, non-TP queue-based locks yield horrible performance (Figures 7, 8, and 9).
The pthread mutex lock also scales very badly; with high lock contention, it can spend 80%
of its time in kernel mode. Running Raytrace with our input size took several hours for 4 threads.

Barnes: Preemption adaptivity is less important here than in Raytrace because Barnes dis-
tributes synchronization over a very large number of locks, greatly reducing the impact of pre-
emption. We demonstrate this by including a highly preemption-sensitive lock, MCS, with our
preemption adaptive locks in the right side of Figure 12; MCS “only” doubles its execution time
with heavy preemption.

With both benchmarks, we find that our TP locks maintain good throughput and adapt well to
preemption. With Raytrace, MCS-TP in particular yields 8-18% improvement over a yielding TAS
lock with 4 or 8 threads. Barnes is less dependent on lock performance in that different locks have
similar performance.

6 Conclusions and Future Work
In this work we have demonstrated that published timestamps provide an effective heuristic by
which a thread can accurately guess the running state of its peers, without support from a non-
standard scheduler API. We have used this published-time heuristic to implement preemption
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adaptive versions of standard MCS and CLH queue-based locks. Empirical tests confirm that these
locks combine scalability, strong tolerance for preemption, and low observed space overhead with
throughput as high as that of the best previously known solutions. Given the existence of a low-
overhead time-of-day register with low system-wide skew, our results make it feasible, for the first
time, to use queue-based locks on multiprogrammed systems with a standard kernel interface.

For cache-coherent machines, we recommend CLH-TP when preemption is frequent and strong
worst-case performance is needed. MCS-TP gives better performance in the common case. With
unbounded clock skew, slow system clock access, or a small number of processors, we recommend
a TAS-style lock with exponential backoff combined with a spin-then-yield mechanism. Finally,
for non-cache-coherent (e.g. Cray) machines, we recommend MCS-TP if clock registers support
it; otherwise the best choice is the abortable MCS-NB try lock.

As future work, we conjecture that time can be used to improve thread interaction in other ar-
eas, such as preemption-tolerant barriers, priority-based lock queueing, dynamic adjustment of the
worker pool for bag-of-task applications, and contention management for nonblocking concurrent
algorithms. Further, we note that we have examined only two points in the design space of TP
locks; other variations may merit consideration.
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A Time and Space Bounds
This appendix provides an informal analysis of time and space requirements for the MCS-TP and
CLH-TP locks. Figure 13 provides an overview summary of worst- and expected-case processor
time steps for timing out and lock handoff, as well as per-lock queue length and total memory
requirements.

A.1 MCS-TP Bounds
We first consider space management in MCS-TP. Because no thread can ever have more than one
node in the queue, the queue length is trivially linear in the number of threads T . A thread cannot
reuse a node for another lock until that node is first removed from the previous lock’s queue. This
gives a worst-case space consumption for L locks of O(T × L). However, since lock holders
clean up timed-out nodes during lock handoff, a thread will rarely have more than a small constant
number of allocated nodes; this gives an expected space requirement of O(T + L).

To time out, a waiting thread must update its node’s state from waiting to left. It must also
reclaim its node if removed from the queue by the lock holder. Both operations require a constant
number of steps, so the overall time requirement for leaving is O(1).

As discussed in Section 2.1, the MCS-TP lock holder removes at most T nodes from the queue
before switching to a scan. Since each removal and each step of the scan can be done in O(1) time,
the worst case is that the lock holder removes T nodes and then scans through T more timed-out
nodes before reaching the end of the queue. It then marks the queue empty and re-traverses the
(former) queue to remove each node, for a total of O(T ) steps. In the expected case a thread’s
immediate successor is not preempted, allowing handoff in O(1) steps.

A.2 CLH-TP Bounds
In our implementation, the CLH-TP lock uses a timeout protocol in which it stops publishing up-
dated timestamps kµs1 before its patience has elapsed, where k is the staleness bound for deciding
that a thread has been preempted. Further, so long as a thread’s node remains waiting, the thread
continues to remove timed-out and preempted predecessors. In particular, a thread only checks to
see if it has timed out if its predecessor is active.

A consequence of this approach is that thread A cannot time out before its successor B has
had a chance to remove it for inactivity. If B is itself preempted, then any successor active before
it is rescheduled will remove B’s and then A’s node; otherwise, B will remove A’s node once
rescheduled. This in turn implies that any pair of nodes in the queue abandoned by the same thread
have at least one node between them that belongs to a thread that has not timed out. In the worst
case, T − 1 nodes precede the first, suspended, “live” waiter, T − 2 precede the next, and so on,
for a total of O(T 2) total nodes in the queue.

As in MCS-TP, removing a single predecessor can be performed in O(1) steps. As the queue
length is bounded, so, too, is the timeout sequence. Unlike MCS-TP, successors are responsible
for actively claiming the lock; a lock holder simply updates its state to show that it is no longer
using the lock, clearly an O(1) operation.

Since all waiting threads concurrently remove inactive nodes, it is unlikely that an inactive
node will remain in the queue for long. In the common case, then, the queue length is close to the
total number of threads currently contending for the lock. Since a thread can only contend for one

1For best performance, kµs should be greater than the round-trip time for a memory bus or interconnect transaction
on the target machine, plus the maximal pairwise clock skew observable between processors.
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Worst case Common case
MCS-TP CLH-TP (both locks)

Timeout O(1) O(T ) O(1)
Lock handoff O(T ) O(1) O(1)
Queue length O(T ) O(T 2) O(T )
Total space O(T × L) O(T 2 × L) O(T + L)

Figure 13: Time/space bounds for T contending threads and L locks.

lock at a time, we can expect average-case space O(T + L). Similarly, the average timeout delay
is O(1) if most nodes in the queue are actively waiting.
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B MCS-TP Lock Algorithm
B.1 Data structures
typedef struct mcstp_qnode {
mcstp_lock *last_lock; /* lock ptr from last timeout attempt. */
volatile hrtime_t time; /* node owner’s published timestamp */
volatile qnode_status status;
struct mcstp_qnode *volatile next;

} mcstp_qnode;

typedef struct mcstp_lock {
mcstp_qnode *volatile tail;
volatile hrtime_t cs_start_time;

} mcstp_lock;

B.2 Lock Routines
B.2.1 Global constants and subroutines

• MAXIMUM CS TIME: An estimated maximum length for a critical section. Any thread holding the lock
for a longer period is assumed to have been preempted. To help the lock holder be rescheduled, threads which
time out whilst waiting yield their processors.

If this constant is under-estimated, waiting threads may yield when the lock holder is not preempted. If over-
estimated, waiting threads will be less reactive to preemption in the critical section.

• gethrtime() : returns the latest processor time

• swap(ptr, new):

atomic { old = (*ptr); (*ptr) = new; return old; }

• is TIMEDOUT( start time, T ): returns true if the current time has passed the deadline (start time + T)

• CAS BOOL( ptr, oldval, newval): compare-and-swap, return true if successful

atomic {
if ((*ptr) != oldval)

return false;
(*ptr) = newval;
return true;

}

B.2.2 Main acquire routine
int mcstp_acquire(mcstp_lock * L, mcstp_qnode * I, hrtime_t T)
Input:

L - the lock pointer
I - my queue node for the lock
T - my patience to wait in the queue, in CPU ticks

Output:
1: the attempt is successful
-1: the attempt failed (possibly because I was preempted) and my
queue node is safe to reclaim
-2: the attempt timed out and my queue node remains enqueued

begin
mcstp_qnode *pred;
hrtime_t start_time = gethrtime();

/* if my status is "timeout", CAS it to waiting; otherwise,
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just start a new try */
if (I->status == timeout && I->last_lock == L &&

CAS_BOOL(&I->status, timeout, waiting))
/* I have rejoined the queue. */

else
/* initialize and enqueue */
I->status = waiting;
I->next = 0;
pred = swap(&L->tail, I);

if (!pred) /* lock was free */
L->cs_start_time = gethrtime();
return 1;

else
pred->next = I;

endif

loop
if (I->status == available)
L->cs_start_time = gethrtime();
return 1;

elif (I->status == failed)
if (is_TIMEDOUT(L->cs_start_time, MAXIMUM_CS_TIME)

sched_yield();
endif
I->last_lock = L;
return -1;

endif

while (I->status == waiting) /* the lock holder hasn’t changed me. */
I->time = gethrtime();
if (!is_TIMEDOUT(start_time, T))

continue;
endif
if (!CAS_BOOL(&I->status, waiting, timeout))

break;
endif
if (is_TIMEDOUT(L->cs_start_time, MAXIMUM_CS_TIME))

sched_yield();
endif
return -2;

endwhile
endloop

end
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B.3 Unlock Routine
B.3.1 Global constants and subroutines

• MAX THREAD NUM: The approximate maximum number of threads in the system.

This is used when handling the pathological (treadmill) case. An under-estimate will introduce some delay
when aborting inactive acquisition attempts. An over-estimate will force the lock holder to scan more nodes in
the pathological case.

• UPDATE DELAY: The approximate length of time it takes a process to see a timestamp published on another
thread, including any potential skew between the two system clocks.

B.3.2 Main routine

void mcstp_release (mcstp_lock *L, mcstp_qnode *I)
Input:

L - the lock pointer
I - my queue node for the lock

begin
mcstp_qnode *succ, *currentI;
mcstp_qnode *scanned_queue_head=NULL;
int scanned_nodes = 0;
currentI = I; /* ptr to the currently scanned node */
/* Case 1: if no successor, fix the global tail ptr and return;

Case 2: if a successor inactive, grab its next ptr and fail its attempt;
Case 3: if a successor active, set it to available. */

loop
succ = currentI->next;
if (!succ)
if (CAS_BOOL(&L->tail, currentI, 0))
currentI->status = failed;
return; /* I was last in line. */

endif
while (!succ)
succ = currentI->next;

endwhile
endif
if (++scanned_nodes < MAX_THREAD_NUM)
currentI->status = failed;

elif (!scanned_queue_head)
scanned_queue_head = currentI; /* handle the treadmill case */

endif
if (succ->status == waiting)
hrtime_t succ_time = succ->time;
if (!is_TIMEDOUT(succ_time, UPDATE_DELAY) &&

CAS_BOOL(&succ->status, waiting, available))
if (scann_queue_head)

set status to "failed" for nodes from scan_queue_head to currentI;
endif
return;

endif
endif
currentI = succ;

endloop
end
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Figure 14: Control Flow Graph for the CLH-TP Locking

C CLH-TP Lock Algorithm
Figure 14 provides an overview of control flow for the CLH-TP algorithm.

C.1 Data structures

typedef struct clhtp_qnode {
volatile hrtime_t time;
char padding[CACHELINE];
struct clhtp_qnode *volatile prev;

} clhtp_qnode;

typedef clhtp_qnode *volatile clhtp_qnode_ptr;

typedef struct clhtp_lock {
clhtp_qnode_ptr tail;
clhtp_qnode_ptr lock_holder;
volatile hrtime_t cs_start_time;

} clhtp_lock;

C.2 Lock Routine
C.2.1 Global constants and subroutines

#define UPDATE_DELAY 200
// bit tags
#define WAITING 0
#define PTIMEOUT 2 /* transient */
#define SUCRC 1 /* left */
#define TAGMASK 0x3
#define PTRMASK (˜ TAGMASK)
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// value tags
#define INITIAL (void*) 0x7 /* 111B */
#define HOLDING (void*) 0xB /* 1011B */
#define AVAILABLE (void*)0x13 /* 10011B */
#define SELFRC (void*)0x23 /*100011B -- removed */

#define get_tagbits(_ptr) ((unsigned long)(_ptr) & TAGMASK)
#define get_ptr(_taggedptr) ((clhtp_qnode *)((unsigned long)(_taggedptr) & PTRMASK))
#define replace_tag(_ptr, _tag) (((unsigned long)(_ptr) & PTRMASK) | _tag )
#define tagged_wptr(_ptr, _tag) ((unsigned long)(_ptr) | _tag)

bool clhtp_swap_and_set(clhtp_qnode *volatile *swap_addr,
clhtp_qnode *new_ptr, clhtp_qnode *volatile *set_addr)

/* atomic operation which saves the old value of swap_addr in
set_addr, and swaps the new_ptr into the swap_addr. */

begin
unsigned long pred;
repeat

pred = LL(swap_addr);
(*set_addr) = (clhtp_qnode *) pred;

while (0 == SC(swap_addr, new_ptr));
return (clhtp_qnode *)pred;

end

bool clhtp_tag_cas_bool(clhtp_qnode * volatile * p,
unsigned long oldtag, unsigned long newtag)

/* atomic compare and swap the tag in the pointer. */
begin
unsigned long oldv, newv;
repeat

oldv = LL(p);
if (get_tagbits(oldv) != oldtag)
return false;

endif
newv = replace_tag(oldv, newtag);

while (0 == SC(p, newv));
return true;

end

bool clhtp_rcas_bool(clhtp_qnode *volatile *stateptr, clhtp_qnode *volatile *ptr,
clhtp_qnode *oldp, unsigned long newv)

begin
unsigned long oldv = (unsigned long)oldp;
repeat

unsigned long tmp = LL(ptr);
if (get_tagbits(*stateptr) != WAITING)
return false;

endif
if (tmp != oldv)
return true;

endif
while (0 == SC(ptr, newv));
return true;

end
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void clhtp_failure_epilogue(clhtp_lock *L, clhtp_qnode *I)
begin
if (I->prev==SELFRC || !clhtp_tag_cas_bool(&I->prev, PTIMEOUT, SUCRC))

free_clhtp_qnode(I, 5);
endif

end

void clhtp_success_epilogue(clhtp_lock *L, clhtp_qnode *I, clhtp_qnode *pred)
begin
L->lock_holder = I;
L->cs_start_time = gethrtime();
free_clhtp_qnode(pred, 8);

end

C.2.2 Main routines
The main locking routine is clhtp acquire().

bool clhtp_acquire(clhtp_lock *L, hrtime_t T)
begin
clhtp_qnode *I = alloc_qnode();
clhtp_qnode *pred;

I->time = gethrtime();
pred = swap_and_set(&L->tail, I, &I->prev);
if (pred->prev == AVAILABLE)

if (CAS_BOOL(&I->prev, pred, HOLDING))
clhtp_success_epilogue(L, I, pred);
return true;

else
clhtp_failure_epilogue(L, I);
if (gethrtime() - L->cs_start_time > MAXIMUM_CSTICKS)

sched_yield();
endif
return false;

endif
endif

/* the lock is occupied, set local time variables and go waiting. */
bool result = clhtp_acquire_slow_path(L, T, I, pred);
if (!result)

if (gethrtime() - L->cs_start_time > MAXIMUM_CSTICKS)
sched_yield();

endif
endif
return result;

end

bool clhtp_acquire_slow_path(clhtp_lock *L, hrtime_t T,
clhtp_qnode * I,clhtp_qnode * pred)

begin
hrtime_t my_start_time, current, pred_time;

my_start_time = I->time;
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pred_time = pred->time;

while (true)
clhtp_qnode *pred_pred;
current = gethrtime();
I->time = current;
pred_pred = pred->prev;

if (pred_pred == AVAILABLE)
if (CAS_BOOL(&I->prev, pred, HOLDING)) goto label_success;
else goto label_failure;
endif

elif (pred_pred == SELFRC) goto label_self_rc;
elif (pred_pred == HOLDING or INITIAL) goto check_self;

// INITIAL: I->prev’s write may haven’t propagated to other processors
// though the tail has been propagate.
else
clhtp_qnode *pp_ptr;
unsigned int pred_tag;

pred_tag = get_tagbits(pred_pred);
pp_ptr = get_ptr(pred_pred);

if (pred_tag == SUCRC)
if (!CAS_BOOL(&I->prev, pred, pp_ptr)) goto label_failure;
endif
free_clhtp_qnode(pred,1);
pred = pp_ptr;
pred_time = pred->time;
continue;

elif (pred_tag == PTIMEOUT)
if (!CAS_BOOL(&I->prev, pred, pp_ptr)) goto label_failure;
endif
if (!CAS_BOOL(&pred->prev, pred_pred, SELFRC))

free_clhtp_qnode(pred, 2);
endif
pred = pp_ptr;
pred_time = pred->time;
continue;

elif (pred_tag == WAITING)
if (is_TIMEDOUT(pred_time, current, UPDATE_DELAY))

if (pred->time != pred_time)
pred_time = pred->time;
continue;

elif (clhtp_rcas_bool(&I->prev, &pred->prev, pred_pred,
tagged_wptr(pred_pred, PTIMEOUT)))

continue;
endif

endif
endif
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check_self:
unsigned int my_tag;
pred = I->prev;
if (pred == SELFRC) goto label_self_rc;
endif
my_tag = get_tagbits(pred);
if (my_tag == PTIMEOUT) goto label_failure;
elif (my_tag == WAITING)
if (is_TIMEDOUT(my_start_time, current, T))
goto label_self_timeout;

endif
endif

endwhile

label_success:
clhtp_success_epilogue(L, I, pred);
return true;

label_failure:
label_self_rc:
clhtp_failure_epilogue(L, I);
return false;

label_self_timeout:
if (!CAS_BOOL(&I->prev, pred, tagged_wptr(pred, SUCRC)))

clhtp_failure_epilogue(L, I);
return false;

end

C.3 Unlock Routine
void clhtp_try_release(clhtp_lock *L)
begin
clhtp_qnode *I = L->lock_holder;
I->prev = AVAILABLE;

end
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