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Abstract. In a software transactional memory (STM) system,conflict detection
is the problem of determining when two transactions cannot both safely commit.
Validation is the related problem of ensuring that a transaction never views in-
consistent data, which might potentially cause a doomed transaction to exhibit
irreversible, externally visible side effects. Existing mechanisms for conflict de-
tection vary greatly in their degree of speculation and their relative treatment of
read-write and write-write conflicts. Validation, for its part, appears to be a dom-
inant factor—perhapsthedominant factor—in the cost of complex transactions.

We present the most comprehensive study to date of conflict detection strategies,
characterizing the tradeoffs among them and identifying the ones that perform
the best for various types of workload. In the process we introduce a lightweight
heuristic mechanism—theglobal commit counter—that can greatly reduce the
cost of validation and of single-threaded execution. The heuristic also allows
us to experiment withmixed invalidation, a more opportunistic interleaving of
reading and writing transactions. Experimental results on a 16-processor SunFire
machine running our RSTM system indicate that the choice of conflict detection
strategy can have a dramatic impact on performance, and that the best choice is
workload dependent. In workloads whose transactions rarely conflict, the com-
mit counter does little to help (and can even hurt) performance. For less scalable
applications, however—those in which STM performance has traditionally been
most problematic—it can improve transaction throughput many fold.

1 Introduction

Thirty years of improvement in the speed of CMOS uniprocessors have recently come
to an end. In the face of untenable heat dissipation and waning gains in ILP, hardware
vendors are turning to multicore, multithreaded chips for future speed improvements.
As a result, concurrent programming is suddenly on the critical path of every major
software vendor, and traditional lock-based programming methodologies are looking
decidedly unattractive. A growing consensus views transactional memory (TM) [12],
implemented in hardware or software, as the most promising near-term technology to
simplify the construction of correct multithreaded applications. Transactions eliminate
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the semantic problems of deadlock and priority inversion. They also address the per-
formance problems of convoying and of preemption or page faults in critical sections.
Perhaps most important, they eliminate the need to choose between the conceptual sim-
plicity of coarse grain locks and the concurrency of fine grain locks.

Unfortunately, hardware implementations of transactional memory have yet to reach
the market, and the performance of current software transactional memory (STM) sys-
tems leaves much to be desired. In recent work we introduced a comparatively light-
weight system, RSTM, and carefully analyzed its costs [19]. In addition to copying
overhead, which appears to be unavoidable in a nonblocking STM system, we found
the two principal sources of overhead to bebookkeepingand incremental validation.
Bookkeeping serves largely to implementconflict detection—that is, to identify pairs
of concurrent transactions which, if permitted to commit, would not be linearizable [13].
Validation serves to ensure that transactions never see or make decisions based on in-
consistent data; we use the term “incremental” to indicate strategies in which the over-
head of validation is proportional to the number of objects previously accessed.

Two concurrent transactions are said to conflict if they access the same object and
at least one of them modifies that object. When an STM system identifies a conflict,
it typically allows one transaction to continue, and delays or aborts the other. If the
system is nonblocking, the choice may be based on a built-in policy (as, for example, in
the lock-free OSTM [3]), or it may be deferred to a separatecontention manager(as, for
example, in the obstruction-free DSTM [11]). The design of contention managers has
received considerable attention in recent years [4, 5, 6, 22, 23, 24]. Conflict detection
and validation have not been as thoroughly or systematically studied.

Conflict detection. An STM system may notice potential conflicts early in the life of
the conflicting transactions, or it may delay such notice until one of the transactions
attempts to commit. The choice may depend on whether the conflict is between two
writers or between a reader and a writer. In the latter case, it may further depend on
whether the reader or the writer accesses the object first. If transactionsS andT conflict,
abortingS early may avoid fruitless further computation. In general, however, there is
no way to tell whetherT will ever commit; if it doesn’t, thenS might have been able to
do so if it had been permitted to continue.

We have recently studied the semantics of several alternative strategies for conflict
detection, and have identified existing systems that implement these strategies [25]. In
this study we suggested that it might make sense to detect write-write conflicts early
(since at most one of the conflicting transactions can ever commit), but read-write con-
flicts late (since both may commit if the reader does so first). We refer to this hybrid
strategy asmixed invalidation; to the best of our knowledge, it has not been explored in
any prior TM system.

Validation. Since a transaction that commits successfully has no visible side effects
prior to the commit, it is tempting to assume that an aborted transaction will have no
visible effects whatsoever. Problems arise, however, in the presence of transaction con-
flicts. Suppose, for example, thatf() is a virtual method of classA, from which are
derived subclassesB andC. Suppose further that whileB.f() can safely be called in
transactional code,C.f() cannot (perhaps it performs I/O, acquires a lock, or mod-



ifies global data under the assumption that some lock is already held). Now suppose
that transactionT reads objectsx andy. Objecty contains a reference to an object
of classA. Objectx contains information implying that the reference iny points to a
transaction-safeB object. Unfortunately, afterT readsx but before it readsy, another
transaction modifies both objects, putting aC reference intoy and recording this fact
in x. Becausex has been modified,T is doomed to abort. If it does not notice this fact
right away, however,T may read theC reference iny and call its unsafe methodf() .

While this example is admittedly contrived, it illustrates a fundamental problem:
even in a typesafe, managed language, a transaction that is about to perform a poten-
tially unsafe operation must verify the continued validity of any previously read objects
on which that operation has a control or data dependence. Unfortunately, straightfor-
ward incremental validation—checking all previously read objects on each new object
reference—leads toO(n2) total cost when openingn objects, an extraordinary bur-
den for transactions that access many objects. Similarly, visible readers—which allow
a writer to identify and explicitly abort the transactions with which it conflicts—incur
very heavy bookkeeping and cache eviction penalties; in our experiments, for all but
the largest transactions, these penalties, though linear, are worse than the quadratic cost
of incremental validation.

Static analysis of data flow and safety may allow a compiler-based STM system to
avoid validation in many important cases, but library-based STM has traditionally been
stuck with one of two alternatives: (1) require the programmer to validate manually
wherever necessary, or (2) accept the quadratic cost of incremental validation. Option
(1), we believe, is unacceptable: identifying the places that require validation is too
much to expect of the typical programmer. We prefer instead to find ways to avoid or
reduce the cost of incremental validation.

Contributions. This paper makes two principal contributions. First, we present the
most thorough evaluation to date of strategies for conflict detection, all in the context
of a single STM system. We considerlazy acquire, in which conflicts are noticed only
at commit time;eager acquire, in which conflicts are noticed as soon as two transac-
tions attempt to use an object in incompatible ways; andmixed invalidation, in which
conflicts are noticed early, but not acted upon until commit time in the read-write case.
We also consider bothvisibleandinvisiblereaders. Invisible readers require less book-
keeping and induce fewer cache misses, but require that read-write conflicts be noticed
by the reader. Visible readers allow such conflicts to be noticed by writers as well.

Second, we introduce a lightweight heuristic mechanism—theglobal commit
counter—that eliminates much of the overhead of incremental validation. Specifically,
we validate incrementally only if some other transaction has committed writes since the
previous validation. In multithreaded experiments, the savings ranges from negligible in
very short transactions to enormous in long-running applications (95% reduction in val-
idation overhead for our RandomGraph “torture test”). Because it allows us to overlook
the fact that a previously read object is being written by an as-yet-uncommitted trans-
action, the commit counter provides a natural approximation of mixed invalidation. It
also allows us to notice when a transaction is running in isolation, and to safely elide
bookkeeping, validation, and contention management calls. This elision dramatically
reduces the cost of STM in the single-threaded case.



Section 2 provides an overview of our RSTM system, including a description of
eager and lazy acquire, visible and invisible readers, and mixed invalidation. Section 3
then presents the global commit counter heuristic. Performance results appear in Sec-
tion 4, related work in Section 5, and conclusions in Section 6.

2 Overview of RSTM

The Rochester Software Transactional Memory System (RSTM) is a fast, nonblocking
C++ library that seeks to maximize throughput, provide a simple programming inter-
face, and facilitate experimentation. To first approximation, its metadata organization
(Figure 1) resembles that of DSTM [11], but with what the latter calls a “Locator”
merged into the newest copy of the data. Detailed description can be found in a previ-
ous paper [19]; we survey the highlights here.

Transaction

Descriptor

Data Object –

new version

Status

New Data Owner

Visible Readers Old Data

Object Header

Data Object –

old version

Clean Bit

Fig. 1. RSTM metadata. Visible Readers are implemented as a bitmap index into a global table.
Up to 32 concurrent transactions can read visibly, together with an unlimited number of invisible
readers. The Clean Bit, when set, indicates that the new Data Object is valid; the Transaction
Descriptor need not be inspected.

As in most other nonblocking STMs, an object is accessed through anobject header,
which allows transactions to identify the last committed version of the object and, when
appropriate, the current speculative version. The metadata layout is optimized for read-
heavy workloads; in the common case, the header points directly to the current version
of the object. When an object is being written, one additional level of indirection is
needed to reach the last committed version.

Each thread maintains atransaction descriptorthat indicates the status (active /
committed / aborted) of the thread’s most recent transaction, together with lists of ob-
jects opened (accessed) for reading and for writing. To minimize memory management
overhead, descriptors are allocated statically and reused in the thread’s next transaction.
RSTM currently supports nested transactions only via subsumption in the parent.

Data object versions are dynamically allocated from a special per-thread heap with
lazy generational reclamation. As in OSTM [2] or McRT [14], “deleted” objects are not
reclaimed until every thread is known to have been outside any potentially conflicting
transaction.



Acquisition A transaction never modifies a data object directly; instead, it clones the
object and makes changes to the copy. At some point between open time (initial access)
and commit time, the transaction mustacquirethe object by making the object header
point to the new version of the data (which in turn points to the old). Since each new
version points to the transaction’s descriptor, atomically CAS-ing the descriptor’s status
from active to committed has the effect of updating every written object to its new
version simultaneously. Eager (open-time) acquire allows conflicts to be detected early.
As noted in Section 1, the timing of conflict detection enables a tradeoff between, on
the one hand, avoiding fruitless work, and, on the other, avoiding spurious aborts.

Reader visibility The programmer can specify whether reads should be visible or in-
visible. If reads are visible, the transaction arbitrates for one of 32 visible reader tokens.
Then, when it opens an object for reading, the transaction sets the corresponding bit in
the object’s visible reader bitmap. Thus while the system as a whole may contain an
arbitrary number of threads, at most 32 of them can be visible readers concurrently (the
rest can read invisibly). The bitmap is simpler and a little bit faster than an alternative
mechanism we have described [19] that supports an arbitrary number of visible readers.

Before it can acquire an object for writing, a transaction must obtain permission
from its contention manager to abort all visible readers. It performs these aborts im-
mediately after acquisition. A transaction that has performed only visible reads is thus
guaranteed that if it has not been aborted, all of its previously read objects are still valid.
By contrast, as described in Section 1, an invisible reader must (absent static analysis)
incrementally validate those objects on every subsequent open operation, atO(n2) ag-
gregate cost.

In practice, visible readers tend to cause a significant increase in memory traffic,
since the write by which a reader announces its presence necessarily evicts the object
header from every other reader’s cache. In several of our microbenchmarks, visible
readers perform worse than invisible readers at all thread counts higher than one.

Mixed invalidation If two transactions attempt to write the same object, one argu-
ment for allowing both to proceed (as in lazy acquire) holds that any execution history
in which both remain active can, in principle, be extended such that either commits
(aborting the other); there is no a priori way for an implementation to tell which trans-
action “ought” to fail. This is a weak argument, however, since both cannot succeed.
When a reader and a writer conflict, however, there is a stronger argument for allow-
ing them to proceed concurrently: both can succeed if the reader commits first. We
therefore consider amixed invalidationstrategy [25] in which write-write conflicts are
detected eagerly but read-write conflicts are ignored until commit time. The following
section considers the implementation of mixed invalidation and a heuristic that cheaply
approximates its behavior.

3 The Global Commit Counter Heuristic

As noted in Section 1, a transaction must validate its previously-opened objects when-
ever it is about to perform an operation that may be unsafe if the values of those objects
are mutually inconsistent. We take the position that validation must be automatic—that



it is unreasonable to ask the programmer to determine when it is necessary. In either
case, the question arises: how expensive must validation be?

With visible readers, validation is very inexpensive: a reader need only check to
see whether it has been aborted. With invisible readers and eager acquire, naive (in-
cremental) validation takes time linear in the number of open objects. In a poster at
PODC’04 [15], Lev and Moir suggested a heuristic that could reduce this cost in impor-
tant cases. Specifically, they suggest per-object reader counters coupled with a global
conflict counter. Readers increment and decrement the per-object counters at open and
commit time, respectively. Writers increment the conflict counter whenever they ac-
quire an object whose reader counter is nonzero. When opening a new object, a reader
can skip incremental validation if the global conflict counter has not changed since the
last time the reader checked it.

The conflict counter is a useful improvement over visible readers in systems like
DSTM [11] and SXM [5], where visible readers require the installation of a new Locator
and thus are very expensive. Unfortunately, every update of a reader counter will inval-
idate the counter in every other reader’s cache, leading to cache misses at commit time
even when there are no writers. In the absence of any contention, a transactionT1 read-
ing R objects will skip all validation but must perform2R atomic increment/decrement
operations. For each object that is also read byT2, T1 will incur at least one cache miss,
regardless of whether the counter is stored with the object metadata or in a separate
cache line.

We observe that if one is willing to detect read-write conflicts lazily, a more light-
weight optimization can employ a globalcommit counterthat records only the number
of writer transactions that have attempted to commit. When a transaction acquires an
object, it sets a local flag indicating that it must increment the counter before attempting
to commit. Now when opening a new object, a reader can skip incremental validation if
the global commit counter has not changed since the last time the reader checked it. If
the counter has changed, the reader performs incremental validation.

In comparison to the Lev and Moir counter, this heuristic requires no atomic op-
erations by readers, and the same amount of bookkeeping. A transactionT1 that reads
R objects will validate by checking the global counterR times. Reading the counter
will only be a cache miss if a writing transaction commits during the execution of
T1, in which case an incremental validation is necessary. For a successful transaction
T1, the cost of validation with the global commit counter is a function of four vari-
ables: the number of objects read byT1 (R), the number of writer transactions that
commit during the execution ofT1 (||{Tw}|| = W ), the cost of validating a single ob-
ject (a cache hit and a single word comparisonCv, which we also use as the cost of
detecting that the counter has not changed), and the cost of a cache miss (Cmiss). As-
suming that allR objects fit inT1’s cache, the baseline cost of incremental validation
without the commit counter isCv

∑R
i=1 i = Cv

R(R+1)
2 . Assuming a uniform distri-

bution of writer commits across the duration ofT1, the cost of validation is the cost
of W successful validations ofR/2 objects,W cache misses, andR − W success-
ful checks of the global counter. For workload and machine configurations in which
Cv(R−W ) + W (Cmiss + CvR

2 ) < Cv
R(R+1)

2 , we expect the commit counter to offer
an advantage.



Mixed invalidation. The global commit counter gets us partway to mixed invalidation:
readers will notice conflicting writes only if (a) the writer acquires the object before the
reader opens it, or (b) some transaction (not necessarily the writer) commits after the
writer acquires and before the reader attempts to commit.

For comparison purposes, we have also built a full implementation of mixed inval-
idation. This implementation permits a transactionT to read the old version of object
O even ifO has been acquired by transactionS, so long asS has not committed. To
correctly permit this “read through” operation, we augmented RSTM with a two-stage
commit, similar to that employed by OSTM [3]. A writer transactionS that is ready
to commit first CAS-es its status fromactive to finishing. S then attempts to CAS the
global commit counter to one more than the valueS saw when it last validated. If the
increment fails,S revalidates its read set and re-attempts the increment. If the increment
succeeds,S attempts to CAS its status fromfinishing to committed.

If transactionT readsO, then whenS increments the counter, we are certain thatT
will validate before accessing any new state; this preserves consistency. Furthermore,
althoughT can validateO against the old version when acquirerS is active, onceS
changes its status tofinishing and increments the counter,T will fail validation. To
preserve non-blocking properties, any transaction can (with permission from the con-
tention manager) abortS even if it isfinishing. In particular, ifT ’s validation fails and
T restarts, it will have the opportunity to abortS if it tries to openO.

Single thread optimization.A transaction can easily count the number of times that
it commits a writing transaction without ever needing incremental validation. If this
occurs many times in succession, the thread can assume that it is running in isolation
and skip all bookkeeping and contention management calls (it must still increment the
counter at the end of each write transaction). Should the global counter change due to
activity in another thread, such an opportunistic transaction will have to abort and retry.

Using this optimization, transactions with large read and write sets can skip the
O(n) time and space overhead of bookkeeping, resulting in significant speedup for
single-threaded transactional code.

4 Experimental Evaluation of Conflict Detection and Validation
Strategies

In this section we evaluate the effectiveness of six different conflict detection strategies.
For comparison, we also plot results for coarse-grained locks and for the Lev and Moir
conflict counter. We consider different lookup / insert / remove ratios for benchmarks
that include a lookup operation, and show that as the read ratio increases, so does the
relative benefit of the global commit counter. Thus while no single conflict detection
strategy offers consistently superior performance, we believe that our approximation
of mixed invalidation constitutes an important new point in the design space. We also
show that due to the cost of atomic operations on the critical path of every read, the
Lev and Moir heuristic performs roughly at the level of visible readers in RSTM, rarely
outperforming even the baseline RSTM system with invisible reads and eager acquire.

We performed all experiments on a 16-processor SunFire 6800, a cache-coherent
multiprocessor with 1.2GHz UltraSPARC III CPUs. All code was compiled withGCC



v3.4.4using –O3 optimizations. For each benchmark and lookup / insert / remove mix,
we averaged the throughput of three 10-second executions. For RSTM benchmarks, we
used thePolkacontention manager [23].

4.1 Strategies Considered

RSTM supports both visible and invisible readers, and both eager and lazy acquire. We
examine every combination other than visible reading with lazy acquire, which offers
poor performance for our benchmarks and has comparatively weak motivation: while
visibility allows readers to avoid incremental validation even when (unrelated) writers
have committed, the effort they expend making themselves visible to writers is largely
ignored, since writers delay conflict detection until commit time.

Visible readers with eager acquire (Vis-Eager) provides early detection of all con-
flicts without incremental validation. Invisible readers with eager acquire (Invis-Eager)
also results in eager detection of all conflicts. Since reads are invisible, however, an
acquiring transaction cannot detect that an object is being read; consequently, the ac-
quirer cannot perform contention management but instead acquires the object oblivi-
ously, thereby implicitly dooming any extant invisible readers. To ensure consistency,
transactions must incrementally validate their read set on every API call.

Invisible reads with lazy acquire (Invis-Lazy) results in lazy detection of all con-
flicts. This permits a high degree of concurrency between readers and writers, but re-
quires incremental validation.

We also evaluate three heuristic validation methods, all based on a global commit
counter.

In Invis-Eager + Heuristic, a transactionT validates incrementally only if some
writer transactionW has committed since the last timeT validated. In addition to re-
ducing the frequency of incremental validations, this permits some lazy detection of
read-write conflicts. IfT readsO and thenW acquiresO, T may still complete if no
other writing transaction commits between whenW acquiresO and whenT commits.

Invis-lazy + Heuristic detects all conflicts lazily (at commit time). However, the
heuristic permits a reduction in the overhead of validation: rather than incrementally
validating on every API call, a transaction can validate trivially when no writer transac-
tion W has committed since the last timeT validated.

In Mixed Invalidation , read-write conflicts are detected lazily while write-write
conflicts are detected eagerly. In contrast to Invis-Eager + Heuristic, Mixed Invalidation
has precise conflict detection. For example, ifT readsO, thenS acquiresO, thenW
acquires some other objectP and commits,T will not fail its validation; it will detect
thatS has not committed, and that its version ofO is valid.

4.2 Benchmarks

We tested our conflict detection strategies against six microbenchmarks: a web cache
simulation using least-frequently-used page replacement (LFUCache [22]), an adja-
cency list-based undirected graph (RandomGraph), and four variants of an integer set.



The LFUCache benchmark uses a large array-based index and a small priority queue
to track frequently accessed pages in a simulated web cache. When the queue is re-
heapified, we introduce hysteresis by swapping value-one nodes with value-one chil-
dren. This helps more pages to accumulate hits. A Zipf distribution determines the
likelihood that a page is accessed, with probability of an access to pagei given as
pc(i) ∝

∑
0≤j≤i j−2.

In the RandomGraph benchmark, there is an even mix of inserts and deletes. When
a node is inserted, it is given four randomly chosen neighbors. As nodes insert and
leave the graph, the vertex set changes, as does the degree of each node. The graph is
implemented as a sorted list of nodes, with each node owning a sorted list of neigh-
bors. Every transaction entails traversal of multiple lists; transactions tend to be quite
complex. Transactions also tend to overlap significantly; it is rare to have an empty
intersection of one transaction’s read set with another transaction’s write set.

In the integer set benchmarks, we consider anequalratio, consisting of one-third
each of lookup, insert, and remove operations, and aread-heavymix with 80% lookups
and 10% each inserts and removes.

The integer set benchmarks are a red-black tree, a hash table, and two sorted linked
lists. Transactions in the hash table insert or remove one of 256 keys from a 256 bucket
hash table with overflow chains. This implementation affords high concurrency with
very rare conflicts. The red-black tree is a balanced binary tree of values in the range
0..65535. The linked lists hold values from0..255; one list usesearly release[11] to
avoid false conflicts; the other does not.

4.3 Discussion of Results

In LFUCache (Figure 2), transactions usually do only a small amount of work, access-
ing one or two objects. Furthermore, the work done by all transactions tends to be on the
same object or small set of objects. As a result, there is no significant parallelism in the
benchmark. Lazy acquire performs best in this setting, because it shrinks the window
of contention between two transactions, decreasing the chance that a transaction that
successfully acquires an object will be aborted. Furthermore, since the read and write
sets are small, the global commit counter saves little validation effort. The only benefit
of our heuristic is slightly better performance in the single-threaded case.

RandomGraph (Figure 3), by contrast, benefits greatly from a global commit counter.
Its transactions’ read sets typically contain hundreds of objects. Avoiding incremental
validation consequently enables orders of magnitude improvement. We observe real
scalability with all three heuristic policies. This scalability is directly related to relax-
ing the detection of read-write conflicts: reading and acquiring are heavily interleaved in
the benchmark, and detecting read-write conflicts early leads to near-livelock, as shown
by the Invis/Eager line. Mixed invalidation, moreover, outperforms the best lazy con-
flict detection strategy. This is a direct consequence of avoiding concurrent execution
of two transactions that want to modify the same object, a scenario we have previously
identified as dangerous. In the interest of full disclosure, we note that the lack of true
concurrency still gives coarse-grain locks a dramatic performance advantage, ranging
from more than two orders of magnitude at low thread counts to a factor of almost 3
with 28 active threads.
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The LinkedList benchmarks (Figures 4–7) show a tremendous benefit from the
global commit counter when early release is not used, and a small constant improve-
ment with early release. The difference stems from the fact that without early release
this benchmark is largely serial: the average reader opens 64 nodes to reach the middle
of the list; any concurrent transaction that modifies an early node will force the reader
to abort. With early release the programmer effectively certifies that modifications to
early nodes are irrelevant once the reader has moved past them. No transaction keeps
more than 3 nodes open at any given time, greatly increasing potential concurrency.
Since transactions that modify the list do so with an acquire at the end of their transac-
tion, there is little benefit to a relaxation of read-write conflict detection. The commit
counter effectively reduces the frequency of incremental validation, however, and also
significantly improves the single-threaded case.

In the RBTree benchmark (Figures 8–9), transactions tend to be small (fewer than
16 objects in the read set), with limited conflict. As a result, decreasing the cost of vali-



dation does not significantly improve performance, nor does relaxing read-write conflict
detection. However, the heuristic significantly improves the single-threaded case. The
value of the heuristic also increases noticeably with the fraction of read-only transac-
tions, as the cost of validation becomes a larger portion of overall execution time.

Unlike the other benchmarks, HashTable (Figures 10–11) is hurt by the global com-
mit counter. Since the table is only 50% loaded on average, the likelihood of two trans-
actions conflicting is negligible. Furthermore, non-conflicting transactions do not read
any common data objects. As a result, the benchmark is “embarrassingly concurrent.”
The introduction of a global counter serializes all acquiring transactions at a single
memory location, and thus decreases opportunities for parallelism. Some of this cost is
regained with mixed invalidation, especially when there is a high percentage of read-
only transactions.

5 Related Work

In previous work, we reviewed several STM systems [16, 18] and ultimately designed
both ASTM [17] and RSTM [19] to decrease overhead on the critical path of transac-
tions. In ASTM, we adaptively switch from DSTM-style eager acquire [11] to OSTM-
style lazy acquire [2, 3]. This permits some dynamic determination of how and when
transactions should validate, but it is not as nuanced as mixed invalidation and does not
avoid unnecessary validation.

In RSTM, we add the ability to switch between visible and invisible readers on a
per-object basis, though we have not yet implemented automatic adaptation. RSTM thus
subsumes the flexibility of Herlihy’s SXM [5], which uses afactory to set visibility for
entire classes of objects. While visible readers offer potential gains in fairness by allow-
ing contention management for writes following uncommitted reads, we have found the
cost in terms of reduced cache line sharing and reduced scalability to be unacceptably
high; visible readers generally scale far worse than invisible readers when more than 4
threads are active.

Intel’s McRT-STM [21] uses locks to avoid the need for object cloning, thereby im-
proving performance. The McRT compiler inserts periodic validation checks in transac-
tions with internal loops, to avoid the performance risk of long-running doomed trans-
actions. As in OSTM, the programmer must insert any validation checks that are needed
for correctness.

Recent proposals from Microsoft Research [9, 10] focus on word-based STM using
Haskell and C#. The C# STM uses aggressive compiler optimization to reduce over-
heads, while the Haskell TM focuses on rich semantics for composability. Like previ-
ous word-based STMs [2, 8, 26], these systems avoid the cost of copying unmodified
portions of objects, but incur bookkeeping costs on every load and store (or at least on
every one that the compiler cannot prove is redundant). These differences complicate di-
rect comparisons between word-based and object-based STM systems. Nonetheless, we
believe that our heuristic mixed invalidation would be a useful addition to word-based
STM, and might assist developers in further reducing the overheads of those systems.

Several proposals [1, 7, 12, 20] seek to leverage cache coherence protocols to achieve
lightweight hardware transactions. However, these hardware TMs generally fix the con-



flict detection policy at design time, with eager read-write conflict detection more com-
mon than lazy [20]. We have recently proposed hardware assists to improve STM per-
formance [27]. We believe this approach is more pragmatic: software dictates conflict
detection and resolution policies, but special hardware instructions and cache states
permit the small transactions in the common case to run as fast as coarse-grained locks.

The only other heuristic validation proposal we are aware of is the Lev and Moir
conflict counter described in Section 3 [15]. While this heuristic removes unnecessary
validation, it does not delay the detection of read-write conflicts. Inserting atomic op-
erations into the critical path of every read shares lower-bound complexity with our
visible reader implementation; we have shown that this strategy suffers the same costs
(less cache line sharing, more processor stalls) as our visible reader implementation,
and thus does not scale as well as invisible readers.

6 Conclusions

We have presented a comprehensive and detailed analysis of conflict detection strategies
in RSTM. We assess existing policies for managing read-write and write-write conflicts
using reader visibility and acquire time, and discuss the utility ofmixed invalidationin
avoiding conservative aborts of transactions that may be able to succeed.

We approximate mixed invalidation in RSTM using a global commit counter heuris-
tic. Our implementation demonstrates that the resulting gain in concurrency can lead to
significant performance improvements in workloads with long, highly contended trans-
actions. We also demonstrate that a global commit counter can be used to detect the case
when a system contains only one transactional thread, which can then opportunistically
avoid the overhead of bookkeeping and contention management.

Our heuristics are still insufficient to close the performance gap between STM and
locks in all cases. In fact, the global commit counter serves todecreaseperformance in
highly concurrent workloads (such as hash tables) by forcing all transactions to serialize
on a single memory location when they otherwise would access disjoint memory sets.
Nonetheless, mixed invalidation appears to be a valuable step toward maximizing STM
performance.

The fact that no one conflict detection or validation mechanism performs best across
all workloads—and that the differences between mechanisms are both large and bidi-
rectional—suggests that a production quality STM system should adapt its policy to
match the offered workload. Our ASTM system [17] adapted in some cases between
eager and lazy acquire; further forms of adaptation are the subject of future work.
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