MLS

Conflict Detection and
Validation Strategies for
Software Transactional Memory

Michael F. Spear, Virendra J. Marathe,
William N. Scherer IITI, and
Michael L. Scott

University of Rochester
www.cs.rochester.edu/research/synchronization/

DISC 2006

MLS

Software Transactional Memory

Atomicity rather than mutual exclusion; avoids

deadlock, priority inversion, and "wrong lock" bugs
aims for the clarity of coarse grain locks with the
performance of fine(r)-grain locks

Nonblocking STM additionally tolerates preemption,

page faults, and thread failure

these may be more important on "general purpose” systems
than they have been at the high end

- more multiprogramming
- less predictable job mix

#* Focus on NB TM—how fast can we make it go?
some results applicable to blocking TM as well

MLS

RSTM Overview

Nonblocking (obstruction free) TM library for C++
Per-object metadata, explicit atomic operations

Roll back only shared (transactional) objects on
failure

Open operation (as opposed to per-access
bookkeeping)

Described at TRANSACT ‘06
Optimized for low heap churn and limited indirection

Object-based NB STM

Object

® Only owner can
change the object

® Only one
transaction can
own the object at
a fime

® Until the owner
commits, everyone
sees Valid Version

Data pointer

—_—

ACTIVE

MLS

Atomic Commit

COMMITTED

® Single CAS updates all objects to the
hew version CAS

MLS

MLS

Conflict Detection

Identifies threats to serializability

If A and B use X concurrently and at least one writes,
they cannot both commit

Choosing between them is the subject of other papers
Writers become visible by acquiring an object

can do so eagerly (at open time) or lazily (at commit)

eager avoids useless work; lazy avoids spurious aborts
Readers may or may not be visible

if visible, they suffer misses for metadata update

otherwise, only readers can detect RW conflicts
Mixed invalidation delays action on RW conflicts

both threads may commit if reader does so first

Validation

Assures isolation of doomed transactions

Newly opened objects must be consistent with
previous reads

Tolerate errors in doomed transactions?
Rely on a typesafe language?

No! These do not protect us.

MLS

Validation matters!

® Suppose class A has subclasses B and C
® B.foo() is tx-safe; C.foo() is not

Transaction 1 Transaction 2 Object X Object Y

Read X Acquire Y
Acquire X
Make Y a B

Update X
COMMIT

Read Y — Validation could detect inconsistency here

Call Y.foo() — Error!

* Periodic checks are not enough
» must validate prior to every dangerous op
MLS

MLS

What to do?

Complete sandboxing (high constant OH)
Visible readers (heavy cache penalty)
Incremental validation (O(n?) total cost)
HW assist (not in this talk :-)

Dump it on the programmer

Incremental + heuristics

Lev & Moir: per-object reader count, global conflict
count; skip validation if the latter does not change

= 2N extra atomic ops for an N-object reader, most of
which will miss in the cache

MLS

The Global Commit Counter

Shared count of transactions that have tried to
commit

Check on every new open, and prior to commit
If value has changed, do incremental validation;
otherwise transaction is still safe

approximates mixed invalidation
(we also built true mixed; see paper for details)

If value never seems to change, can optimistically
elide bookkeeping and contention management
single-thread optimization
(must still update and check the global counter)

10

HGSh 7000 T T T T T

Table
6000 r =
5000 r —
g 4000 r Vis/lEager —®— i
g Invis/Eager —&—
= Invis/Lazy —6—
~ 3000 r - Invis/Eager + CCtr ——--8--- i
Invis/Lazy + CCtr ----o----
Mixed + CCtr ----x----
2000 Coarse Grain Lock -+ |
80/10/10 ¢ o
50% load YT s < W |
Ouch/ e TP
. O 1 1 1 1 1
16p SunFire 0 5 10 15 20 25

MLS

Threads
e Very few objects read; invisible readers work great
e Very little contention; global commit counter doesn't help

30

11

Red_ 2500 1 T T T T
B
Black 3052 T
Tree 2000 ° SN e]
/ £ ___:: __\)
, 1500 F pR Vis/Eager — =<8 -
i 3 éﬁb Invis/Eager —=—
X / Invis/Lazy —o—
v B Invis/Eager + CCir -5
1000 F i ot Invis/Lazy + CCtr -—--o--- N
] Mixed + CCtr —-—-x---
5. / R Q_Qarse Grain Lock -~ g
500 - & @@=0oow = |
80/10/10
64K range 0 . . . , |
0 53 10 15 20 25 30

Threads
® Modest contention; visible reads are too expensive
® ~16 objects read —> sig. validation OH; CCtr, Mixed work well

MLS

LFU 1800 :
+ I 1 1 I T
Cache 1600 L - e Vis/Eager —®— |
¥ g A Invis/Eager —&—
3 Invis/Lazy —e—
1400 - i Invis/Eager + CCtr 8- 7
i Invis/Lazy + CCtr ----6---
1200+ e Mixed + CCtr ---->--- -
o S Coarse Grain Lock -+
% 1000 | 2 |
. +
800 |- S A
600 g 1
: 400 F -
index
+ PQ); 200
Zipf 5 1 1 , , ,
0 5 10 15 20 25 30

MLS

Threads
® Extreme case: short transactions, high contention —> Invis/Lazy
e Validation not significant —> CCtr doesn't help much

13

Random
B - . Sp__immanansl |
Graph ™ s i
16 + - o o |
X D-0-O-Oee g OO
é,@
14 Z]
/lé,E}-B &\
12 + 4 SN |
§ 5(@ T ST ST E3--mmeeeee I £
< 10O]
5 Vis/Eager —=&—
8 r Invis/Eager —&— o
Invis/Lazy —o—

6 Invis/Eager + CCtr -—--8--- i
~128 Invis/Lazy + CCtr -—--©6---

4 r Mixed + CCtr - |
hodes; Coarse Grain Lock: off the chart
degree 2T AOOOW 5
avg. ~4 4 - e e 3 . .

0 5 10 15 20 25
Threads

MLS

20 . , | | |

® Torture test: long transactions, high contention
® CCtr, Mixed a huge win, but coarse grain lock much better

30

14

MLS

Conclusions

Conflict detection and validation matter
dramatic effect on performance
No overall winning policy—one size does not fit all
adaptation a promising direction for future work
Visible readers are rarely worthwhile
too many cache misses
Global commit counter a valuable heuristic
can dramatically reduce the cost of validation
approximates mixed invalidation

20% - 5X gain when running single-threaded
may hurt a little in low-contention SMP workloads

15

MLS

Status and Plans

RSTM 2 available for download

» www.cs.rochester.edu/research/synchronization/rstm/
» for gcc C++ on SPARC v8-plus and x86
» Java version planned for later this year (collaboration w/Sun)

Formalization of STM semantics
RTM HW/SW hybrid

Planning compiler support
Numerous semantic/notational issues (ask me later!)
Benchmarks and applications

Interoperation with lock-based and nonblocking code

} TRANSACT 06

16

UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

www.cs.rochester.edu/research/synchronization/

