
MLS 1

Conflict Detection and
Validation Strategies for

Software Transactional Memory

Michael F. Spear, Virendra J. Marathe,
William N. Scherer III, and

Michael L. Scott
University of Rochester

www.cs.rochester.edu/research/synchronization/

DISC 2006

MLS 2

Software Transactional Memory

! Atomicity rather than mutual exclusion; avoids
deadlock, priority inversion, and “wrong lock” bugs
» aims for the clarity of coarse grain locks with the

performance of fine(r)-grain locks

! Nonblocking STM additionally tolerates preemption,
page faults, and thread failure
» these may be more important on “general purpose” systems

than they have been at the high end

– more multiprogramming

– less predictable job mix

" Focus on NB TM—how fast can we make it go?
» some results applicable to blocking TM as well

MLS 3

RSTM Overview

! Nonblocking (obstruction free) TM library for C++

! Per-object metadata, explicit atomic operations

! Roll back only Shared (transactional) objects on
failure

! Open operation (as opposed to per-access
bookkeeping)

! Described at TRANSACT ’06

! Optimized for low heap churn and limited indirection

MLS 4

Object-based NB STM

Data pointer

Object

! Only owner can
change the object

! Only one
transaction can
own the object at
a time

! Until the owner
commits, everyone
sees Valid Version

Valid

Version

Owner

Version

O
w

n
e
r S

ta
tu

s

ACTIVE

MLS 5

ACTIVECOMMITTED

Atomic Commit

CAS

! Single CAS updates all objects to the
new version

MLS 6

Conflict Detection

! Identifies threats to serializability
» If A and B use X concurrently and at least one writes,

they cannot both commit
» Choosing between them is the subject of other papers

! Writers become visible by acquiring an object
» can do so eagerly (at open time) or lazily (at commit)
» eager avoids useless work; lazy avoids spurious aborts

! Readers may or may not be visible
» if visible, they suffer misses for metadata update
» otherwise, only readers can detect RW conflicts

! Mixed invalidation delays action on RW conflicts
» both threads may commit if reader does so first

MLS 7

Validation

! Assures isolation of doomed transactions

! Newly opened objects must be consistent with
previous reads

! Tolerate errors in doomed transactions?

! Rely on a typesafe language?

! No! These do not protect us.

MLS 8

Validation matters!

“Object Y

is a B”

this.foo()

is safe

Object YObject X
Transaction 1 Transaction 2

Read X
Acquire Y “Object Y

is a C”

this.foo()

is not safe

Read Y — Validation could detect inconsistency here

Call Y.foo() — Error!

Acquire X

Make Y a B

Update X

COMMIT

" Periodic checks are not enough
» must validate prior to every dangerous op

! Suppose class A has subclasses B and C

! B.foo() is tx-safe; C.foo() is not

MLS 9

What to do?

! Complete sandboxing (high constant OH)

! Visible readers (heavy cache penalty)

! Incremental validation (O(n2) total cost)

! HW assist (not in this talk :-)

! Dump it on the programmer

! Incremental + heuristics
» Lev & Moir: per-object reader count, global conflict

count; skip validation if the latter does not change

! 2N extra atomic ops for an N-object reader, most of
which will miss in the cache

MLS 10

The Global Commit Counter

! Shared count of transactions that have tried to
commit

! Check on every new open, and prior to commit
! If value has changed, do incremental validation;

otherwise transaction is still safe
» approximates mixed invalidation
» (we also built true mixed; see paper for details)

! If value never seems to change, can optimistically
elide bookkeeping and contention management
» single-thread optimization
» (must still update and check the global counter)

MLS 11

! Very few objects read; invisible readers work great

! Very little contention; global commit counter doesn’t help

Hash
Table

80/10/10
50% load

16p SunFire

ouch

MLS 12

! Modest contention; visible reads are too expensive

! ~16 objects read —> sig. validation OH; CCtr, Mixed work well

Red-
Black
Tree

80/10/10
64K range

MLS 13

! Extreme case: short transactions, high contention —> Invis/Lazy

! Validation not significant —> CCtr doesn’t help much

LFU
Cache

index
+ PQ;
 Zipf

MLS 14

! Torture test: long transactions, high contention

! CCtr, Mixed a huge win, but coarse grain lock much better

Random
Graph

~128
nodes;
degree
avg. ~4

MLS 15

Conclusions

! Conflict detection and validation matter
» dramatic effect on performance

! No overall winning policy—one size does not fit all
» adaptation a promising direction for future work

! Visible readers are rarely worthwhile
» too many cache misses

! Global commit counter a valuable heuristic
» can dramatically reduce the cost of validation
» approximates mixed invalidation
» 20% – 5X gain when running single-threaded
» may hurt a little in low-contention SMP workloads

MLS 16

Status and Plans

! RSTM 2 available for download
» www.cs.rochester.edu/research/synchronization/rstm/

» for gcc C++ on SPARC v8-plus and x86

» Java version planned for later this year (collaboration w/Sun)

! Formalization of STM semantics

! RTM HW/SW hybrid

! Planning compiler support

! Numerous semantic/notational issues (ask me later!)

! Benchmarks and applications

! Interoperation with lock-based and nonblocking code

TRANSACT’06

www.cs.rochester.edu/research/synchronization/

