
Synchronization and Concurrency in
User-level Software Systems

by

William N. Scherer III

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Michael L. Scott

Department of Computer Science
The College

Arts and Sciences

University of Rochester
Rochester, New York

2006

ii

To my loving wife, Blake;

without her support,

this would never have been possible.

iii

Curriculum Vitae

William N. Scherer III was born in Baltimore, Maryland on September 3, 1971.

He attended the Carleton College from 1989 to 1993, receiving a Bachelor of Arts

in Computer Science in 1993. He came to the University of Rochester in the Fall

of 2000 and began graduate studies in Computer Science. He pursued his research

in synchronization under the direction of Professor Michael L. Scott. He received a

Master of Science degree in Computer Science from the University of Rochester in

2002.

iv

Acknowledgments

Words cannot express the debt I owe to my advisor, Michael L. Scott. He has stood

by me, and had faith in me, even through periods of drought when I had no faith in

myself and questioned whether I even belonged in a doctoral program. In addition to

his patience, he has been a steady hand, guiding me gently towards productive areas of

research; a colleague, providing invaluable insights for problems we’ve worked on; a

role model, exhibiting an ideal of scholarship and teaching; and a friend.

I am also extremely grateful to Mark Moir, who supervised me while I was an intern

in the Scalable Synchronization Research Group at Sun Microsystems. The influence

of his hand on the research I have done ever since that time is unmistakable; his sugges-

tions on the theoretical aspects of algorithms and their analysis have been particularly

valuable. He was the main inspiration for the vast majority of the work on contention

management in Chapter 4, for example. Finally, he has been a dangerous competitor at

the pool table, keenly identifying the ideas that make some of my craziest shots actually

work and turning them back upon me.

My committee members, Professors Chen Ding and Kai Shen, have been extremely

helpful in pushing me to seek out practical applications of my work and to stay tar-

geted on ideas that matter and are of practical significance. Their feedback has been

invaluable in shaping this thesis.

I am particularly grateful to Doug Lea and Maurice Herlihy, both of whom have

been unceasing pillars of support in my research and wonderful people to collaborate

with.

v

I would like to thank all of the members of the computer science department for

making this place a very enjoyable site at which to perform research. The systems

group has been a great source of inspiration and feedback; my work would not be

as good without their input. I also would like to thank JoMarie Carpenter and Matt

Boutell for innumerable conversations and discussions on everything under the sun and

then some. Chris Stewart, in his zaniness, has helped me keep a sense of humor about

life and work. Virendra Marathe has been a great collaborator, an excellent source

of ideas, and an insightful critic. Finally, I’d like to thank several people who have

kindly indulged my addiction to the game of Crokinole: Isaac Green, David Ahn, Joel

Tetreault, Chris Stewart, Virendra Marathe, Kirk Kelsey, and Arrvindh Shriraman.

A special thanks goes to Kim and Alex Dresner, who have never let minor things

like oceans stand in the way of friendship.

Finally, this would not have been possible without support from my family. Edie

and Liam have offered nothing short of total, unreserved love, no matter how many

nights I don’t get home until after they go to bed. My mother has been a life-long model

of scientific curiosity; she and my father have always believed in me and pushed me to

excel in academics. I am in awe of my sister Beth and her drive and focus when it comes

to academia, medicine, and life in general. She has been a grounding force, helping

me to remember the importance of staying connected to family by coming to visit me

regularly. Last but not least, my wife Blake has been unconditionally supportive of my

academic career, never once complaining when I’d stay out late for yet another night

debugging some algorithm or other.

The material presented in this dissertation is based upon work supported by grants

from DARPA, number F29601-00-K-0182; the Department of Education (GAANN),

number P200A000306; the National Science Foundation, numbers E1A-0080124, CCR-

0204344, and CNS-0411127; and by funds from Sun Microsystems. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of above named organizations.

vi

Abstract

Concurrency in user applications is on the rise. Modern computers contain multiple

threads per core and multiple cores per chip; and users multitask routinely. Where tra-

ditional scientific and commercial computation assumes dedicated access to hardware,

user applications must tolerate preemption.

To support legacy applications, most of which use lock-based mutual exclusion, we

add timeout capability and preemption tolerance to scalable queue-based locks. This

allows in-place updates to scale programs with fine-grained synchronization to large

multiprogrammed systems.

Unfortunately, fine-grain locking is prone to deadlock, non-composability, prior-

ity inversion, convoying, and intolerance of thread failure, preemption, and even page

faults. Nonblocking algorithms avoid these limitations by ensuring that the delay or

failure of a thread never prevents the system as a whole from making forward progress.

We broaden the range of known nonblocking algorithms by adapting linearizability the-

ory to support partial operations. We define dual data structures as concurrent objects

that may hold data and requests. We present lock-free dual stacks; dual queues; ex-

changers, wherein participants swap data pairwise; and synchronous queues, wherein

consumers explicitly acknowledge handoffs from producers. Our exchangers and syn-

chronous queues will appear in Java 6.

Like fine-grain locks, ad hoc nonblocking algorithms are too difficult for most pro-

grammers to write. While highly valuable in libraries, they are not a general approach

vii

to simple concurrency. Transactional memory allows mechanical translation from serial

algorithms to high-performance concurrent implementations. Central to transactional

systems is the need for contention management, which determines, when transactions

conflict, which will continue, wait, or abort. We introduce several contention manage-

ment policies, and evaluate their performance on a variety of benchmarks. We further

demonstrate proportional-share prioritizing managers, and identify a candidate default

policy that performs well with each benchmark. Finally, we perform a case study ana-

lyzing randomization in our “Karma” manager.

By furthering the state of the art in locks, nonblocking algorithms, and transactional

memory, we expand the options available to programmers for preemption-tolerant syn-

chronization in user-level software applications.

viii

Table of Contents

Curriculum Vitae iii

Acknowledgments iv

Abstract vi

List of Algorithms xv

List of Figures xvii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Disadvantages of Locks . 2

1.1.2 Alternatives to Locks . 3

1.2 Background Information . 5

1.2.1 Read-modify-write Atomic Instructions 5

The Nonblocking Hierarchy 6

1.3 Statement of Thesis . 7

1.4 Organization . 7

ix

2 Lock-based Synchronization 9

2.1 Introduction . 9

2.1.1 Preemption Tolerance . 11

2.1.2 Subsequent Sections . 13

2.2 Literature Review . 14

2.2.1 Early Locks and Terminology 14

2.2.2 A History of Queue-Based Locks 18

Hardware Approaches . 18

Early Queue-based Locks . 21

Doing More (Or at Least, Almost as Much) with Less 23

Adding Properties to Locks 23

Other Data Structures . 26

2.2.3 Lock-based Synchronization in Java 28

2.3 Queue-based Locks with Timeout . 29

CLH-try Lock . 30

MCS-try Lock . 35

2.4 Queue-based Locks with Nonblocking Timeout 38

MCS-NB-Try Lock . 46

2.4.1 Space Requirements . 50

2.5 Time-Published Queue-based Locks 53

2.5.1 The MCS Time-Published Lock 54

2.5.2 The CLH Time-Published Lock 56

2.5.3 Time and Space Bounds . 62

MCS-TP bounds . 62

x

CLH-TP bounds . 66

2.5.4 Scheduling and Preemption 67

2.6 Experimental Results . 70

2.6.1 Single-processor results . 71

2.6.2 Overhead on multiple processors 74

2.6.3 Adding preemption . 78

2.6.4 Time-published locks . 80

Single Thread Performance . 81

Comparison to User-Level Locks 82

Comparison to Preemption-Safe Locks 84

Sensitivity to Patience . 88

Time and Space Bounds . 90

Application results . 90

2.7 Conclusions . 92

2.8 Acknowledgments . 94

3 Ad Hoc Nonblocking Synchronization 96

3.1 Introduction . 96

3.2 Linearizability and Condition Synchronization 98

3.2.1 Motivation . 98

3.2.2 Linearizability . 100

3.2.3 Extending Linearizability to Objects with Partial Methods . . . 101

3.2.4 Contention Freedom . 102

3.2.5 Dual Data Structures . 103

3.3 The Dual Stack and Dual Queue . 103

xi

3.3.1 Semantics . 103

Dual Stack Semantics . 103

Dual Queue Semantics . 105

3.3.2 The Dual Stack . 107

3.3.3 The Dual Queue . 111

3.3.4 Memory Management . 113

3.3.5 Experimental Results . 116

3.4 A Scalable Elimination-based Exchanger 119

3.4.1 Elimination . 120

3.4.2 Algorithm Description . 121

A Simple Nonblocking Exchanger 121

Adding Elimination . 122

Pragmatics . 124

3.4.3 Experimental Results . 125

Benchmarks . 125

Methodology . 128

Discussion . 128

Field Notes: Multi-party Exchange 131

3.5 Scalable Synchronous Queues . 133

3.5.1 Algorithm Descriptions . 136

Classic Synchronous Queues 136

The Java SE 5.0 Synchronous Queue 137

Combining Dual Data Structures with

Synchronous Queues 139

3.5.2 Experimental Results . 148

xii

Benchmarks . 148

Methodology . 148

Discussion . 157

3.6 Conclusions . 166

3.7 Future work . 167

4 Software Transactional Memory 169

4.1 Introduction . 169

4.2 Literature Review . 170

4.2.1 Early Work: The Origins of Universal Constructions 170

4.2.2 Hardware-based Transaction Support 172

4.2.3 Software-based Transactional Approaches 173

4.2.4 Multiword Atomic Update Implementations 176

4.2.5 Using Locks as the Basis of Transactions 179

4.3 Dynamic Software Transactional Memory 181

4.3.1 Visible and Invisible Reads . 183

4.3.2 Benchmarks . 184

4.3.3 Experimental Methodology 186

4.4 Contention Management . 187

4.4.1 The Contention Management Interface 189

4.4.2 Contention Management Policies 190

Aggressive . 190

Polite . 190

Randomized . 191

Karma . 191

xiii

Eruption . 192

KillBlocked . 193

Kindergarten . 193

Timestamp . 194

QueueOnBlock . 194

PublishedTimestamp . 195

Polka . 195

4.4.3 Experimental Results . 196

Second-round Experiment Results 196

4.4.4 Discussion . 197

Initial Experiment Discussion 197

Second-round Experiment Discussion 198

4.4.5 Prioritized Contention Management 205

Karma, Eruption, and Polka 205

Timestamp and PublishedTimestamp 206

Kindergarten . 206

Experimental Results . 206

Discussion . 208

4.4.6 Randomized Contention Management 209

Randomized Abortion . 209

Randomized Backoff . 210

Randomized Gain . 210

Experimental Results . 210

Discussion . 210

4.5 Conclusions . 212

xiv

5 Contributions and Future Work 214

5.1 Contributions in Preemption Tolerant Locks 215

5.2 Contributions in Nonblocking Synchronization 216

5.3 Contributions in Transactional Memory 217

5.4 Future Research Directions . 218

5.4.1 Expanding Algorithmic Techniques 218

5.4.2 New Algorithms for New Hardware 218

5.4.3 Hardware/Software Interaction 219

5.5 Concluding Remarks . 220

Bibliography 221

Appendix 242

A Publications 242

xv

List of Algorithms

2.1 The test-and-test and set (TATAS) lock with exponential backoff . 17

2.2 Knuth’s queue-based lock . 19

2.3 The MCS queue-based spin lock . 22

2.4 The CLH queue-based spin lock . 24

2.5 Alternative (NUMA) version of the CLH lock 24

2.6 The standard TATAS-try lock . 29

2.7 Source code for the CLH-try lock. 33

2.8 Source code for the MCS-try lock. 39

2.9 Scott’s routines for fast space management. 45

2.10 Source code for the MCS-NB-try lock. 51

2.11 Source code for the MCS-TP lock. 57

2.12 Conditional updates in CLH-TP . 61

2.13 Source code for the CLH-TP lock. 63

3.1 The dual stack . 110

3.2 The dual queue . 114

3.3 A simple lock-free exchanger . 123

3.4 The full lock-free exchanger . 126

xvi

3.5 Multi-party exchange in the traveling salesman problem 132

3.6 Multi-party exchange with a red-blue exchanger 133

3.7 Hanson’s synchronous queue . 134

3.8 Naive synchronous queue . 136

3.9 The Java SE 5.0 SynchronousQueue 138

3.10 Synchronous dual queue: Spin-based enqueue 140

3.11 Synchronous dual stack: Spin-based annihilating push 142

3.12 Synchronous dual stack: Cleaning cancelled nodes (unfair mode) 145

3.13 Synchronous dual queue: Cleaning cancelled nodes (fair mode) 147

3.14 The full synchronous queue . 149

xvii

List of Figures

1.1 Synchronization from a user’s perspective 4

2.1 Timeout in the CLH-try lock . 31

2.2 Timeout in the MCS-try lock . 36

2.3 Timeout in the MCS-NB-try lock . 47

2.4 Comparing the MCS-TP and CLH-TP time-published locks 55

2.5 MCS-TP queue node state transitions 56

2.6 Control flow for the CLH-TP lock . 59

2.7 CLH-TP queue node state transitions 60

2.8 Time/space bounds for TP locks . 67

2.9 Preemption tolerance in families of locks 70

2.10 Single-processor spin-lock overhead: Sun E10000 72

2.11 Single processor lock overhead on a SunFire 6800 73

2.12 Queue-based lock performance: 144-processor Sun E25000 75

2.13 Queue-based lock performance: 512-processor Cray T3E 77

2.14 Scalability of queue-based locks on the Cray T3E 78

2.15 The impact of preemption in queue-based locks on a 16-processor Sun-

Fire 6800 . 79

xviii

2.16 Single-processor spin-lock overhead: IBM p690 81

2.17 Queue-based lock performance: IBM p690 (small critical sections) . . . 83

2.18 Queue-based lock performance: IBM p690 (large critical sections) . . . 85

2.19 TP locks vs. spin-then-yield . 86

2.20 Preemption-safe lock performance (small critical sections) 87

2.21 Sensitivity to patience in TP locks . 89

2.22 TP Locks: Evaluation with Raytrace and Barnes 91

3.1 Dual stack performance evaluation . 117

3.2 Dual queue performance evaluation 118

3.3 Exchanger performance evaluation . 129

3.4 Exchanger performance evaluation: Traveling salesman benchmark . . 130

3.5 Synchronous handoff: N : N producers : consumers 160

3.6 Synchronous handoff: 1 : N producers : consumers 161

3.7 Synchronous handoff: N : 1 producers : consumers 162

3.8 Synchronous handoff: Low patience transfers 163

3.9 Synchronous queue: ThreadPoolExecutor benchmark 164

4.1 Transactional object structure . 181

4.2 Opening a TMObject after a recent commit 182

4.3 Opening a TMObject after a recent abort 182

4.4 Counter benchmark performance . 197

4.5 LFUCache benchmark performance 198

4.6 RBTree benchmark performance . 199

4.7 IntSet benchmark performance . 200

4.8 IntSetUpgrade benchmark performance 201

xix

4.9 Benchmarks with only write accesses 202

4.10 LFUCache, RBTree, IntSetUpgrade throughput 203

4.11 Prioritization of the IntSet benchmark 207

4.12 Prioritized contention management: Other benchmarks 208

4.13 Randomization of the “Karma” contention manager 211

1

1 Introduction

1.1 Motivation

Concurrency in user applications is on the rise. Multithreading and multiprogram-

ming are becoming increasingly prevalent in user-level applications and end-user com-

putational environments. GUI-based applications are frequently multithreaded, and

concurrency is a standard part of undergraduate computer science curricula. Mean-

while, chip manufacturers have hit a power wall with processor speed, so they are in-

creasingly turning to multiple threads per core and to multiple cores per chip to satisfy

users’ demands for greater computational power. To developers producing applications

for such environments, synchronization and concurrency are no longer sub-fields for

specialists; they are routine.

Of course, programming for multiprocessors has been extensively studied since they

became widely available for scientific and commercial computing. Bounding destruc-

tive inter-processor contention and improving the scalability of applications and data

structures in particular have been researched for decades.

However, much of this prior research is predicated on the assumption that a single

application will have dedicated access to some subset of the computational hardware.

This is generally true for scientific and commercial computing. By comparison, the

2

multithreaded applications that end users are now running must provide good perfor-

mance even in a highly multiprogrammed environment. Further, since end users typ-

ically run several applications concurrently, the well-known synchronization strategy

of limiting thread creation to one per processor does not suffice to avoid preemption.

Worse, the average programmer has only been taught one technique for dealing with

synchronization: mutual exclusion via locking.

To update existing applications and to produce the next generation of high-perform-

ance concurrent systems, we thus have two choices: Fix locks to make them more

resilient to preemption; or switch to other synchronization strategies. In the remainder

of this Section, we characterize the shortcomings of lock-based synchronization and

discuss alternatives. This dissertation focuses on extending the scope and availability

of “fixed locks” and of lock alternatives.

1.1.1 Disadvantages of Locks

A concurrent object is a data object shared by multiple threads of control within

a concurrent system. Coarse-grained locking implementations of concurrent objects,

though easy to create, are not scalable: The loose granularity of locking inhibits con-

currency by forcing strict serialization among operations. Alternatively, implementa-

tions built with fine-grained locks may be scalable; however, they suffer from several

important drawbacks:

• Deadlock: Any cyclic blocking between threads in a system that requires acqui-

sition of multiple locks prevents these threads from making any forward progress

unless the system is forcibly restarted. Avoiding deadlock makes implementing

concurrent data structures particularly hard for highly complex data structures

such as red-black trees.

3

• Non-composability: Because of the risk of deadlock, programmers cannot com-

pose multiple lock-synchronized operations to form compound operations with-

out careful analysis of lock access patterns.

• Priority inversion: In a system with multiple run-time priorities for threads, if a

high-priority thread H blocks while waiting for a low-priority thread L to finish

using a lock, H is effectively downgraded in priority until L finishes using it.

Worse, on a uniprocessor or overloaded system, scheduling H instead of L can

lead to deadlock.

• Convoying: A common pathology in lock-based systems, convoying occurs

when several threads all block waiting for the same lock in a common execu-

tion sequence. Once this happens, they tend to follow each other in lock-step

from one lock to the next, unbalancing the system at each stop.

• Fault intolerance: Should any thread fail while holding a lock, mutual exclusion

prevents any other thread from ever again acquiring it, absent some fancy repair

mechanism built using application-specific knowledge.

• Preemption intolerance: Even absent permanent failure, a thread that is pre-

empted — or even takes a page fault — while holding a lock prevents any other

thread from utilizing resources guarded by the lock.

1.1.2 Alternatives to Locks

Due to the drawbacks associated with locks, the last two decades have seen increas-

ing interest in nonblocking synchronization algorithms, in which the temporary or per-

manent failure of a thread can never prevent the system from making forward progress.

These ad hoc nonblocking implementations of concurrent objects avoid the semantic

problems of locks and can match or exceed the performance of fine grain locking, but

4

Performance

E
ff

or
t

Coarse
 Locks

NBS

 Fine
Locks

Libraries

 Software
Transactional
 Memory

 Hardware
Transactional
 Memory

Figure 1.1: Synchronization from a user’s perspective

they are at least as difficult to write. Fortunately for application programmers, high-

performance fine-grained locking and nonblocking implementations of commonly-used

data structures are often collected together into libraries such as NOBLE [SuT02] or the

java.util.concurrent.* [Lea05] collection. As shown in Figure 1.1 using such a library is

usually fairly straightforward, though determining atomicity for composite operations

remains problematic.

What can a programmer do, lacking time and/or capability to create either a fine-

grained locking or an ad hoc nonblocking implementation of a data structure not avail-

able in a library? One option that has emerged in recent years is to use a general

purpose universal construction that allows them to be created mechanically. The term

5

software transactional memory (STM)1 was coined by Shavit and Touitou [ShT97] as

a software-only implementation of a hardware-based scheme proposed by Herlihy and

Moss [HeM93]. Although early STM systems were primarily academic curiosities,

more modern systems [Fra04; HaF03; HLM03b] have reduced runtime overheads suf-

ficiently to outperform coarse-grained locks when several threads are active.

STM-based algorithms can generally be expected to be slower than either ad hoc

nonblocking algorithms or highly-tuned fine-grained lock-based code. At the same

time, they are as easy to use as coarse-grain locks: One simply brackets the code that

needs to be atomic. In fact, STM systems allow correct sequential code to be converted,

mechanically, into highly concurrent correct code. 2

1.2 Background Information

1.2.1 Read-modify-write Atomic Instructions

In this work we make reference to several atomic operations. Swap(address, value)

atomically writes a memory location and returns its original contents. Compare and

swap(address, expected value, new value) atomically checks the contents of a mem-

ory location to see if it matches an expected value and, if so, replaces it with a new

value. In either event it returns the original contents. We also use an alternative form,

compare and store, that returns a boolean value indicating whether the compar-

ison succeeded. Fetch and increment(address) atomically increments the con-

tents of a memory location and returns the original contents.

1Although we hereafter tend to use these terms interchangeably, strictly speaking, a universal con-
struction is a mechanical procedure for converting sequential code to concurrent code. An STM is a
library that supports the result of applying a particular (highly straightforward) universal construction.

2This is a slight oversimplification: Open nesting of transactions, uncaught exceptions, and non-
idempotent subroutine calls (such as for I/O) all complicate matters, though we do not discuss these
further in this dissertation.

6

Compare and swap first appeared in the IBM 370 instruction set. Swap and

compare and swap are provided by SPARC V9. Several recent processors, includ-

ing Alpha, MIPS, and PowerPC, provide a pair of instructions, load linked and

store conditional, that can be implemented naturally and efficiently as part of an

invalidation-based cache-coherence protocol, and which provide the rough equivalent

of compare and swap. Both compare and swap and load linked/store

conditional are universal atomic operations, in the sense that they can be used

without locking (but at the cost of some global spinning) to implement any other atomic

operation [Her91]. Fetch and increment, together with a host of other atomic op-

erations, is supported directly but comparatively inefficiently on the x86.

The Nonblocking Hierarchy

In the beginning of this chapter, we characterized nonblocking algorithms as those

for which the pausing or failure of any thread cannot prevent another thread from get-

ting work done. In fact, there are several variants of nonblocking synchronization,

differentiated by the strength of progress guarantees that they offer:

• In a wait-free implementation, every contending thread is guaranteed to complete

its operation within a bounded number of its own time steps [Her91].

• In a lock-free implementation, some contending thread is guaranteed to com-

plete its operation within a bounded number of steps (from any thread’s point of

view) [Her91].

• In an obstruction-free implementation, a thread is guaranteed to complete its op-

eration within a bounded number of steps in the absence of contention, i.e. if no

other threads execute competing methods concurrently [HLM03a].

• In a probabilistically obstruction-free implementation, there exists some bound

B such that for each B steps a thread completes in the absence of contention, it

7

is guaranteed to complete its operation with non-zero probability. By completing

sufficient steps in the absence of contention, it thus completes its operation with

probability one.

1.3 Statement of Thesis

The increasing importance and prevalence of concurrency in user-mode applica-

tions demands new techniques and new algorithms to support preemption-tolerant,

high-performance computing. Improved scalable user-mode locks, extended libraries

of nonblocking synchronization algorithms, and high-performance software transac-

tional memories constitute practical options for improving performance and preemption

tolerance in existing applications and for more simply constructing new ones.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 moves toward

“fixing” locks by addressing the problem of preemption tolerance in scalable user-mode

locking. We extend standard queue-based locks to allow timeout, and then present a se-

ries of refinements in which we remove windows of vulnerability to preemption. First,

we eliminate preemption vulnerability in the timeout protocol, and then we eliminate

virtually all vulnerability in being queued behind a preempted waiter and enable recov-

ery from threads preempted in their critical sections. Experimental evaluation demon-

strates that our algorithms scale well on very large machines (including a 512-processor

Cray T3E supercomputer) and that our preemption tolerance strategies yield very good

utilization of queue-based locks even in a heavily multiprogrammed environment.

In Chapter 3, we focus on nonblocking synchronization in order to expand the body

of standard implementations of concurrent objects that can be collected into libraries.

We propose dual data structures, an adaptation of standard linearizability theory that

8

supports concurrent objects with condition synchronization. We then develop a series

of algorithms for nonblocking dual data structures, including queues, stacks, exchange

channels, and synchronous queues. Empirical evaluation confirms that they provide

considerable advantages over previously known implementations.

Chapter 4 is concerned with the case where high levels of concurrency are needed,

but no appropriate library routines are available and the programmer lacks the time

and/or capability to create a novel fine-grained locking or nonblocking solution. In such

cases, we argue that transactional memory provides a viable alternative. We identify

the problem of contention management as being central to extracting good performance

from transactional memory systems and evaluate a variety of policies for managing

conflict between transactional operations.

Finally, Chapter 5 summarizes our conclusions and suggests several avenues for

future work in this area.

9

2 Lock-based Synchronization

2.1 Introduction

Of all the forms of synchronization in use today, by far the most widely employed

is lock-based mutual exclusion. Spin locks in particular are widely used for mutual

exclusion on shared-memory multiprocessors. Traditional TATAS spin locks (based

on test and set) are vulnerable to memory and interconnect contention, and do

not scale well to large machines. Queue-based spin locks [And90; Cra93a; GrT90;

MLH94; MeS91] avoid contention by arranging for every waiting thread to spin on a

separate, local flag in memory.

Traditionally spin locks have been used primarily for operating systems and for

scientific computing on dedicated servers. This is not an accident: Spin locks do not

handle preemption well. If the thread that holds a lock is suspended before releasing it,

any CPU time given to waiting threads will be wasted on fruitless spinning.

More recently, however, developers have increasingly turned to spins locks for user-

level applications. Central to this use is the ability to time out and return (unsuccess-

fully) from a lock acquisition attempt that takes “too long”:

10

1. A thread in a soft real-time application may need to bound the time it spends

waiting for a lock. If the timeout expires, the thread can choose to announce an

error or to pursue an alternative code path that does not require the lock.

2. If a thread is preempted while holding a lock, timeout allows other threads wait-

ing for the lock to give up, yield the processor, and try again when rescheduled.

(This assumes there are enough non-waiting threads to keep the processor busy.)

3. In a parallel database system, timeout provides a viable strategy for deadlock

recovery. A thread that waits “too long” for a lock can assume that deadlock

has occurred, abort the current transaction, yield the processor, and retry when

rescheduled.

Timeout-capable spin locks are sometimes known as try locks. We are aware of com-

mercially significant signal processing applications that use try locks for reason (1)

above, and parallel database servers that use them for reasons (2) and (3). In the latter

case, timeout may be the deciding factor in making spin locks acceptable for user-level

code.

Unfortunately, while timeout is trivial in a test-and-set lock—threads are mutually

anonymous, and can simply give up and return—it is far from trivial in a queue based

lock. To preserve the integrity of the queue data structure, a timed-out thread must

arrange for its neighbors to find each other, even if they, too, are in the process of

timing out. And since the goal is to build a lock, the mechanism used to modify the

queue must not itself require locks.

The most obvious solution, suggested by Craig in a 1993 technical report [Cra93a],

is for a timed-out thread to simply mark its node as abandoned, and for the thread that

releases a lock to skip over and reclaim abandoned nodes. While simple, this solution

has the disadvantage of introducing overhead on the program’s critical path. In the

worst case, the number of nodes that must be passed over to find a new lock holder is

linear in the number of threads—higher if a timed-out thread may attempt to acquire a

11

lock again before the point at which it would have succeeded if it had stayed in line.

We therefore take the position that abandoned nodes should, whenever possible, be

removed from the queue before they would be seen by the lock releaser.

Sections 2.3 presents new queue-based try-locks (MCS-try and CLH-try) that ex-

tend the MCS lock of Mellor-Crummey and Scott [MeS91] and the CLH lock of

Craig [Cra93a] and Landin and Hagersten [MLH94]. These new locks provides tight

space bounds and good performance in practice. Subsequent to their development,

Scorr published variants (MCS-NB-try and CLH-NB-try) that provide striuct adher-

ence to requested time bounds (timeout is nonblocking) and good space usage in prac-

tice [Sco02]. Section 2.4 presents an alternative realization of the MCS-NB-try lock

that requires only atomic swap and features a simpler design. Depending on the ma-

chine architecture and the relative importance of time and space guarantees, each of

these locks (MCS-try, CLH-try, [the new] MCS-NB-try, and CLH-NMB-try) are viable

candidates for soft real-time or database applications.

2.1.1 Preemption Tolerance

With the increasing use of multiprogrammed multiprocessors for complex server

applications, parallel programs cannot in general count on the dedicated use of any

specific number of processors: Spawning one thread per processor does not suffice to

avoid preemption in a multiprogrammed environment. Scheduler-based locks avoid

wasting time on fruitless spinning if a lock holder is preempted, but the high cost of

context switches can significantly reduce performance in the common, no-preemption

case. So-called “spin-then-block” locks strike a compromise by spinning for a while

and then blocking if unsuccessful [KLM91; Ous82]. Try locks serve a similar purpose,

allowing an individual thread to move on to other work.

12

But what if there is no more work? Although timeout or blocking avoids wasting

time waiting for a preempted peer, it does nothing to improve system-wide throughput

if the lock is squarely on the application’s critical path.

Moreover, in a queue-based lock, a thread preempted while waiting in the queue will

block others once it reaches the head; strict FIFO ordering is generally a disadvantage

in the face of preemption. And in try locks, any timeout protocol that requires explicit

handshaking among neighboring threads will block a timed-out thread if its neighbors

are not active.

The problem of preemption in critical sections has received considerable attention

over the years. Alternative strategies include avoidance [ELS88; FRK02; KWS97;

MSL91; Ous82], recovery [ABL92; Bla90; TaS97; ZhN04], and tolerance [KLM91;

Ous82]. The latter approach is appealing for commercial applications because it does

not require modification of the kernel interface: If a thread waits “too long” for a lock,

it assumes that the lock holder has been preempted. It abandons its attempt, yields the

processor to another thread (assuming there are plenty) and tries again at a later time. In

database systems timeout serves the dual purpose of deadlock recovery and preemption

tolerance; it also potentially allows a preempted lock holder to be rescheduled.

In a different vein, nonblocking algorithms avoid preemption problems by elimi-

nating the use of locks [Her91]. Unfortunately, while excellent nonblocking imple-

mentations exist for many important data structures (see Chapter 3), general-purpose

mechanisms remain elusive. Several groups (including our own) are working on this

topic [HaF03; HLM03b; MSS04; ScS04a; MSS05], but it still seems unlikely that non-

blocking synchronization will displace locks entirely soon.

Assuming, then, that locks will remain important, and that many systems will not

provide an OS-level solution, how can we hope to leverage the fairness and scalability

of queue-based spin locks in multithreaded user-level programs?

We answer this question with a pair of queue-based try locks that combine fair and

scalable performance with good preemption tolerance: the MCS time-published lock

13

(MCS-TP) and the CLH time-published (CLH-TP) lock. In this context, we use the

term time-published to mean that contending threads periodically write their wall clock

time to shared memory in order to be able to estimate each other’s runtime states. Given

a low-overhead hardware timer with bounded skew across processors and a memory bus

that handles requests in bounded time (both of which are typically available in modern

multiprocessors), we can guess with high accuracy that another thread is preempted

if the current system time exceeds the thread’s latest timestamp by some appropriate

threshold. We now have the ability to selectively pass a lock only to an active thread.

Although this doesn’t solve the preemption problem entirely (a thread can be preempted

while holding the lock, and our heuristic suffers from a race condition in which we read

a value that has just been written by a thread immediately before it was preempted), ex-

perimental results (Section 2.6) confirm that our approach suffices to make the locks

preemption tolerant: free, in practice, from virtually all preemption-induced perfor-

mance loss.

2.1.2 Subsequent Sections

The remainder of this chapter is organized as follows: After tracing a history of

lock-based synchronization in Section 2.2, we describe queue-based try locks that sup-

port timeout (Section 2.3), that time out in nonblocking fashion (Section 2.4), and that

are highly preemption tolerant (Section 2.5). In Section 2.6 we present performance re-

sults on several large machines, including a 56-processor Sun Wildfire, a 144-processor

Sun E25K, a 32-processor IBM p690, and a 512-processor Cray T3E. In experiments

with more threads than processors, we also demonstrate clearly the performance ad-

vantage of nonblocking timeout. We return in Section 2.7 to a summary of conclusions

and directions for future work.

14

2.2 Literature Review

Locks are by far, the most prevalent form of synchronization today. A lock is an

implementation of an algorithm that solves the well-known mutual exclusion problem.

Although not all practitioners know the implementation of any particular lock, under-

standing when and how to use one is standard fare for undergraduate computer science

education.

There are two general categories of locks: scheduler-based and spin locks. Scheduler-

based locks rely on the operating system’s (or runtime system’s) context switcher to

manage lock handoff. Although this prevents performance loss from scheduling a

blocked thread, it induces significant overhead, particularly if the operating system is

involved in context switches. Consequently, we do not discuss these locks further.

Spin locks are the main alternative to scheduler-based locks. They make use of pro-

tocols that implement mutual exclusion. Although these protocols can become some-

what complex, the availability of powerful read-modify-write atomic operations sim-

plifies things somewhat. Also, mutual exclusion has been studied for a very long time,

so the design of such protocols is well understood.

In the remainder of this section, we survey historical and modern lock-based syn-

chronization.

2.2.1 Early Locks and Terminology

The mutual exclusion problem may be defined as the construction of a pair of con-

current protocols that we will name acquire and release and which guarantee the prop-

erty that should a thread (or process) t0 complete the acquire protocol, no other thread

will do so until t0 has started to execute the release protocol. The code that t0 executes

between completion of the acquire protocol and the beginning of the release protocol

is referred to as a critical section. In essence, then, mutual exclusion is a general tech-

nique for ensuring in multiprogrammed and multiprocessor environments that only one

15

thread is executing the code in a critical section. This in turn is a basic building block

that can be used for all manner of concurrent systems. Throughout this paper, we will

refer to synchronization algorithms that solve the mutual exclusion problem as locks,

owing to their ability to lock out all but one thread.

In this section, we highlight some of the mutual exclusion algorithms that are of

particular historical significance. This is typically due to their being the first algorithm

to provide guarantees of some important theoretical property that we will discuss later

in this chapter in conjunction with try locks. Readers interested in a more detailed

review of early synchronization are referred to Raynal’s analysis [Ray86] for locks up

to about 1986 and to Anderson and Kim [AnK01] for more recent algorithms.

The mutual exclusion problem was originally described 40 years ago by Dijk-

stra [Dij65]. In this ground-breaking paper, he extended an algorithm due to Dekker

from support for precisely 2 threads to support for an arbitrary number of threads. In

addition to being the first solution to the mutual exclusion problem, Dijkstra’s solution

also guarantees a property known as progress: If a lock is not currently held and any

arbitrary group of k threads attempts to acquire it, one of the k is guaranteed to acquire

the lock within a finite number of steps of execution. (Mutual exclusion in the absence

of this requirement is trivially solved by a protocol in which no thread ever acquires the

lock.)

Less than a year after the first publication of Dijkstra’s lock, Knuth published a

new solution to the mutual exclusion problem [Knu66]. Knuth’s lock improves upon

Dijkstra’s earlier solution by guaranteeing fairness. The fairness property guarantees

that every thread that attempts to acquire a lock eventually does so (though fairness does

not require any bound on the amount of time that the acquiring thread must wait). The

fairness property is also known as starvation freedom, after the Dining Philosophers

problem [Dij72].

Lamport’s Bakery algorithm [Lam74] strengthened the fairness property to FIFO

fairness. The FIFO fairness property holds that threads acquire the lock (complete the

16

acquisition protocol) in the same order that they begin the acquisition attempt. Al-

though Lamport’s algorithm does not provide perfect FIFO ordering, it is FIFO after a

wait-free prologue. (A wait-free protocol is one in which every thread is guaranteed to

complete within a bounded (finite) number of steps.)

Especially because early lock algorithms were relatively complex, the Peterson

2P lock [Pet81] is notable for requiring just three lines of code! Further, although

the algorithm is presented for two threads, it extends easily to arbitrary numbers of

threads [Lyn96]: Nested “copies” of a Peterson 2P lock each hold back one thread, so

n − 1 instances are sufficient to provide mutual exclusion for n threads.

A major concern for early mutual exclusion research was the number of shared vari-

ables required for mutual exclusion and the number of values required of each shared

variable. Burns [Bur81] presents a new lock typical of such efforts to minimize the

required numbers. His algorithm requires n + 1 variables for n threads, n of which are

strictly binary and one which has n values.

Although results such as the previous one are theoretically important, the algo-

rithms that represent this line of research are typically of little immediate commercial

use: Modern hardware has access to advanced atomic primitives that greatly simplify

algorithmic complexity. By way of comparison, Lamport published in 1987 a fast al-

gorithm [Lam87] that was considerably more practical than any of its predecessors.

By fast, we mean an algorithm that requires constant (O(1)) time for the acquisition

protocol in the absence of contention, though the space overhead is still linear. This is

important because it is widely held that in well-tuned systems, contention is rare.

All of the algorithms discussed so far in this section are based on simple reads and

writes to memory. When we consider advanced atomic read-modify-write instructions,

additional locks become possible. For example, repeating test and set (TAS) in-

structions until a thread itself does the “set” is one simple lock that is enabled with

atomic instructions. Similarly, one can repeat atomic swap instructions with a one un-

17

typedef unsigned long bool;
typedef volatile bool tatas_lock;

void tatas_acquire(tatas_lock *L) {
if (test_and_set(L)) {

int b = BACKOFF_BASE;
do {

for (i = rand() % b; i; i--); // back off
b = min(b * BACKOFF_FACTOR, BACKOFF_CAP);
if (*L) continue; // spin

} while (test_and_set(L));
}

}

void tatas_release(tatas_lock *L) {
*L = 0;

}

Listing 2.1: The test-and-test and set (TATAS) lock with exponential backoff. Pa-
rameters BACKOFF BASE, BACKOFF FACTOR, and BACKOFF CAPmust be tuned by
trial and error for each individual machine architecture.

til the value swapped out is a zero to achieve a similar lock (such a protocol is described

in, but probably not original to Raynal’s analysis of early locks [Ray86]).

The simple test and set-based lock has very poor scalability because every

TAS operation requires operations in memory and the bus interconnect between pro-

cessors. An enhanced version of the lock named TATAS (for test-and-test and

set) adds a read spin on the lock between TAS attempts; this reduces wasteful traffic.

Anderson proposes a further improvement (shown in Listing 2.1) to the TATAS lock

that adds exponential backoff to the acquisition protocol [And90]. Backoff prevents a

large spike of message traffic in the processor interconnect by effectively “staggering”

threads so that not all threads see that the lock is available at the same moment when it

is released.

As we shall see in Section 2.6, exponential backoff extends the scalability of TATAS

locks out through about 16 to 20 processors. Beyond this limit, however, they degrade

rapidly. Recently, Radović and Hagersten proposed an extension [RaH03] for non-

uniform communication architecture (NUCA) hardware. In this scheme, acquiring a

lock from a “close” processor costs the same as in other test and set-based locks.

18

To acquire the lock from a more distant processor, however, requires an additional

atomic operation. Coupled with different sets of backoff constants for use when the

lock holder is close or distant, this results in a scheme where locks are preferentially

transferred to nearby processors. In highly NUCA hardware, this can considerably

reduce lock handoff overhead and improve utilization.

2.2.2 A History of Queue-Based Locks

An important paradigm for implementation of mutual exclusion may be found in

queue-based locks. These locks all share a common theme: A thread waits in line until

it reaches the head of the queue; once there, it has acquired the lock. Most of the re-

search completed on queue-based locks has been very recent compared to that spent on

the general mutual exclusion problem. However, the first description of a queue-based

approach dates back to 1966, in one of the first papers on mutual exclusion. Specifi-

cally, in his discussion of the concept of fairness [Knu66], Knuth observes that FIFO

fairness can be achieved if one has access to (using current terminology) atomic imple-

mentations for adding to a queue, retrieving the head of a queue, and removing the head

of a queue. His algorithm (in Listing 2.2) is fundamentally unchanged over the years;

it differs only in implementation details from, say, the MCS lock [MeS91]. (Typically,

however, modern implementations combine add-to-queue() and spinning on calls

to head-of-queue() in a single acquire() procedure.)

In the remainder of this subsection, we discuss a selection of queue-based locks that

follow in Knuth’s footsteps.

Hardware Approaches

Before the development of software queue-based locks, synchronization in parallel

programs was considered a performance nadir to be avoided at all costs. Some stud-

ies found that standard TATAS locks added very high levels of contention in memory

19

begin:
processor i;
queue q;

L0:
add-to-queue(q, i);

L1:
if (i != head-of-queue(q)) then goto L1;
/* critical section */
remove-from-queue(i);
/* remainder */
goto L0;

end.

Listing 2.2: Knuth’s queue-based lock

interconnects, adding up to 49% messaging overhead [PfN85]. This is due to a high

frequency of cache invalidation as each of several threads repeatedly attempts to access

a common memory address.

Because of this overhead, many multiprocessors were designed to provide direct

hardware support for locking. Several architectures had built-in support for queue-

based locking. For example, the BBN Butterfly’s [BBN87] firmware included “dual

queues” of thread-specific “events” that worked in conjunction with the operating sys-

tem to automatically reschedule threads once at the head of the queue.

Another hardware-based scheme appeared in Kendall Square Research’s KSR-1

multiprocessor [Ken92]. This scheme exploited the unidirectional ring topology of the

hardware in order to implement a token ring-like locking scheme that, unfortunately,

never worked quite right and was outperformed by an ordinary TATAS lock.

The Stanford DASH project [LLG92] provided hardware-assisted queue-based spin

locks that again exploited the machine’s clustered topology. In this scheme, rather than

invalidating all caches’ copies of lock variables when the lock is released, an extension

to the cache coherence protocol [LLG90] allows the lock to be passed to a random

20

waiting cluster. This is accomplished by only invalidating one cluster’s cached copies

of the lock variables; 1 other clusters never notice that the lock was ever freed.

A more hardware-agnostic approach, the QOSB instruction [GVW89] was designed

to allow local spinning: spinning in which each thread spins on a separate cache line.

Now, by calling QOSB on a synchronization address, a thread could add itself to a

queue for the address. The test and set operation is modified in this scheme to

additionally fail if there is a queue in place for the target address and the issuing thread

is not at the head of the queue. Finally, a special unset instruction resets the flag bit

to zero in addition to dequeuing the current thread (if it is queued). By virtue of these

modifications, locking-induced remote cache accesses are limited to a small constant.

A small modification to the interface for QOSB was later added. At the same time,

the instruction was renamed to QOLB [KBG97]. In the new interface, a single EnQOLB

instruction enqueues the calling thread, but repeated EnQOLB instructions can be used

to spin until the current thread gets the lock. Also, an EnQOLB instruction can be

inserted ahead of time in the instruction stream to allow pre-fetching of the cache-line

for the word of interest. Finally, a DeQOLB instruction releases the lock and enables

the next waiting thread.

Empirical tests performed by Kägi et al. show that the QOLB instructions allow for

highly scalable, FIFO waiting, significantly outperforming test-and-test and set

locks. (It also outperforms the MCS lock, described in the next section, by roughly a

factor of two when there is moderate contention for the lock; this is because protected

data can be collocated in the same cache line as the lock that guards it.)

In part due to these performance benefits, the QOLB primitive remains in use today

in such multiprocessors as the HP/Convex Exemplar and Sequent/IBM NUMA-Q. A

1Strictly speaking, this approach reduces fairness by abandoning the usual FIFO semantics of queue-
based locks; however, the expected gains in throughput from increased lock utilization outweigh any risk
of starvation.

21

current description for it in may be found in the Scalable Coherent Interface (SCI)

standard [P1590].

Early Queue-based Locks

The first published (and fully implemented) software queue-based lock that we are

aware of is due to Anderson [And90]. As with the hardware solutions embodied in

QOLB, Anderson’s lock scales linearly for lock acquisition time under heavy contention

(beyond a few threads). Unlike the hardware approaches, however, Anderson’s lock has

high overhead in the low-contention case.

Another early queue-based lock is due to Graunke and Thakkar [GrT90]. Their lock

is very similar to Anderson’s, differing mainly in that where Anderson’s uses fetch

and increment, Graunke and Thakkar’s lock uses swap. Their lock (as originally

published) also requires brief access to a hardware mutual exclusion algorithm while

enqueuing a thread, though the hardware lock is released before the spin. Performance

characteristics for Graunke and Thakkar’s lock are similar to those for Anderson’s lock.

Both Anderson’s and Graunke and Thakkar’s locks use an array-based queue. This

has three implications. First, for t threads and n locks that coexist in a system, the

space overhead is O(n × t). Second, since space must be reserved at the time the lock

is created, there is little flexibility to adapt to varying numbers of threads: An expected

maximum must be used. This limits the locks’ usability for user-level synchronization

in multiprogrammed systems. Finally, because space in arrays is typically allocated

contiguously, on machines with cache line sizes of more than one word it is (at least

theoretically) possible for the spin in these locks to still exhibit cache-invalidation-

based memory interconnect contention if one does not pad the array elements.

Inspired by QOSB, Mellor-Crummey and Scott’s MCS lock [MeS91] (shown in

Listing 2.3) addresses many of these limitations by using a linked list for its queue.

Consequently, it has space overhead of O(n + t). Also, because the individual queue

22

typedef struct mcs_qnode {
volatile bool waiting;
volatile struct mcs_qnode *volatile next;

} mcs_qnode;

typedef volatile mcs_qnode *mcs_qnode_ptr;
typedef mcs_qnode_ptr mcs_lock; // initialized to nil

void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I) {
I->next = nil;
mcs_qnode_ptr pred = swap(L, I);
if (pred == nil) return; // lock was free
I->waiting = true; // word on which to spin
pred->next = I; // make pred point to me
while (I->waiting); // spin

}

void mcs_release(mcs_lock *L, mcs_qnode_ptr I) {
mcs_qnode_ptr succ;
if (!(succ = I->next)) { // I seem to have no succ.

// try to fix global pointer
if (compare_and_store(L, I, nil)) return;
do {

succ = I->next;
} while (!succ); // wait for successor

}
succ->waiting = false;

}

Listing 2.3: The MCS queue-based spin lock. Parameter I points to a qnode record
allocated (in an enclosing scope) in shared memory locally-accessible to the invoking
processor.

nodes are allocated separately, the chance of them occupying adjacent memory (and

thus the same cache line) is greatly reduced. This benefit comes at a price, however:

The MCS lock, like Graunke and Thakkar’s, requires access to a compare and swap

instruction. The performance characteristics of the MCS lock are similar to those of An-

derson’s and Graunke and Thakkar’s locks on machines that cache remote memory lo-

cations. However, on non-cache-coherent non-uniform memory access (NCC-NUMA)

hardware, MCS still performs well because it arranges for each thread to spin on a node

in its own memory space. By comparison, the other locks do not share this property;

their performance suffers in such environments.

23

Doing More (Or at Least, Almost as Much) with Less

The requirement of such exotic 2 instructions as compare and swap for the MCS

lock has provoked many people to ask whether simpler, or at least fewer, atomic instruc-

tions could be used. Recognizing this need, Mellor-Crummey and Scott also present a

variant that requires only swap, but this variant lock admits the possibility of starva-

tion [Hua99].

Another reduced-primitives lock, requiring only swap, is due to Landin and Hager-

sten [MLH94], and independently, Craig [Cra93a]. This lock (shown in Listing 2.4)

uses a doubly-indirect pointer, and the node that a thread leaves the queue with is ac-

tually different than the one it entered with. As a result, the lock is of limited use for

NCC-NUMA machines: The node on which a thread spins is not guaranteed to be local

to the thread’s address space. However, by adding an extra level of indirection (as per

Listing 2.5), it can be made to work perform well in such environments.

The M lock, due to Magnussen [MLH94], adds considerable complexity (a third

more code) compared to the MCS lock in order to save a single read access to a global

variable. Huang [Hua99] also gives a queue-based lock — both swap-only and with

compare and swap —that is optimal in terms of memory contention and remote

references. Finally, Krieger et al. also require just swap in their scalable fast reader-

writer lock [KSU93] (one which allows multiple concurrent readers, but only a single

writer).

Adding Properties to Locks

Besides reducing the complexity of atomic instructions needed, another research

path for queue-based spin locks has been to add additional properties, based on short-

comings of earlier locks. For example, they tend to perform badly in environments

2for the day, though compare and swap (or its rough equivalent, load linked/store
conditional) are even today not available for all multiprocessors

24

typedef struct clh_qnode {
volatile bool waiting;
volatile struct clh_qnode *volatile prev;

} clh_qnode;

typedef volatile clh_qnode *clh_qnode_ptr;
typedef clh_qnode_ptr clh_lock;

// initialized to point to an unowned qnode

void clh_acquire(clh_lock *L, clh_qnode_ptr I) {
I->waiting = true;
clh_qnode_ptr pred = I->prev = swap(L, I);
while (pred->waiting); // spin

}

void clh_release(clh_qnode_ptr *I) {
clh_qnode_ptr pred = (*I)->prev;
(*I)->waiting = false;
*I = pred; // take pred’s qnode

}

Listing 2.4: The CLH queue-based spin lock. Parameter I points to qnode record or,
in clh release, to a pointer to a qnode record. The qnode “belongs” to the calling
thread, but may be in main memory anywhere in the system, and will generally change
identity as a result of releasing the lock.

typedef struct clh_numa_qnode {
volatile bool *w_ptr;
volatile struct clh_qnode *volatile prev;

} clh_numa_qnode;

typedef volatile clh_numa_qnode *clh_numa_qnode_ptr;
typedef clh_numa_qnode_ptr clh_numa_lock;

// initialized to point to an unowned qnode

const bool *granted = 0x1;

void clh_numa_acquire(clh_numa_lock *L,
clh_numa_qnode_ptr I) {

volatile bool waiting = true;
I->w_ptr = nil;
clh_numa_qnode_ptr pred = I->prev = swap(L, I);
volatile bool *p = swap(&pred->w_ptr, &waiting);
if (p == granted) return;
while (waiting); // spin

}

void clh_numa_release(clh_numa_qnode_ptr *I) {
clh_numa_qnode_ptr pred = (*I)->prev;
volatile bool *p = swap(&((*I)->w_ptr), granted);
if (p) *p = false;
*I = pred; // take pred’s qnode

}

Listing 2.5: Alternative (NUMA) version of the CLH lock, with an extra level of indi-
rection to avoid remote spinning on a non-cache-coherent machine.

25

where the total number of threads exceeds the number of processors. Here, the busy-

spinning behavior of the lock becomes a detriment: Passing the lock to a swapped-out

thread will cause all waiting threads to spin uselessly until that thread is rescheduled.

Kontothanassis, Wisniewski, and Scott [WKS94; KWS97; WKS95] address this

problem in their Smart-Q lock by exploiting a special kernel interface that allows a

lock holder to determine whether a candidate successor is currently swapped out. If the

successor is in fact swapped out, the lock holder flags its acquisition attempt as failed

and moves on to the next candidate. The former successor then re-enters the queue.

Hence, by relaxing absolute FIFO ordering of lock acquisitions (and adding a very

slim possibility for starvation), the Smart-Q lock eliminates much preemption-induced

overhead. Their handshaking lock uses a standard kernel interface, but slows down the

common case.

Another property that has been added to queue-based locks is support for timeout.

Here, a thread can specify a maximum amount of time that it is willing to wait in order

to acquire the lock. An early mention of this property in relation to queue-based locks

and some detailed comments on the implementation of a timeout-based lock are due

to Craig [Cra93b]. The first published implementations of a timeout-supporting queue-

based lock are the MCS try and CLH try locks [ScS01].

MCS try is vulnerable to preemption issues related to those the original MCS al-

gorithm suffers from. In particular, when a thread wishes to leave the queue, it needs

to handshake with both of its neighbors in order to leave safely. Should a neighbor be

swapped out, this protocol again results in useless spinning. In order to address this

problem, Scott [Sco02] derives variants of the MCS try and CLH try locks that time out

in nonblocking fashion. Again, this comes at a cost: The space overhead for the locks

is no longer bounded (though in practice it is unlikely that worse than O(n+ p2) would

ever be observed). By using a priority queue, Jayanti [Jay03] establishes a bound on

worst-case space overhead; however, his algorithm incurs far too much overhead for

practical use.

26

A final property that has been added to queue-based locks is the ability to recover

from a crashed thread. By considering a crashed thread as one that is swapped out

indefinitely, one can see that all of the issues we have discussed thus far in this sec-

tion apply doubly in the case of thread death: A swapped out thread eventually comes

back, so preemption is “just” a time delay. To quote a popular environmentalist slogan,

“extinction is forever”.

In order to add support for recovery (the ability to go on despite a crashed thread),

Bohannon [BLS96] adds a separate cleanup procedure invoked periodically by a thread

guaranteed to never wait for the lock. Although cleanup overhead is high (all lock activ-

ity is blocked while checking to see if cleanup is necessary), the frequency with which

cleanups occur can be tuned to amortize this cost to arbitrarily low amounts. Nonethe-

less, this facility must be used carefully; it is difficult to determine that a thread is truly

dead, and careful analysis of application-specific knowledge is generally necessary to

restore invariants when a thread dies halfway through an operation.

Other Data Structures

Besides the locks previously mentioned, a few other variants make use of non-queue

data structures, yet are still derived from the MCS lock. The first of these locks is due

to Lim and Agarwal [LiA94]. Noticing that the MCS lock is outperformed by a simple

test-and-test and set lock in the absence of contention, they set out to get the best

of both worlds by having a lock that uses different protocols under different conditions.

For example they might create a lock that switches between test-and-test and set

locks and MCS depending on whether contention is low or high. In order to effect a

clean transfer, they introduce a new data structure, the consensus object, that can only

be accessed by threads that hold the lock. Consensus objects contain boolean flags for

whether they are currently valid, and one consensus object is globally shared for each

protocol, for each instance of the reactive lock. Changing protocols is a simple mat-

ter of invalidating the flag for the old protocol and validating the flag for the new one;

27

the trick is deciding when to switch. It turns out that fairly simple decision protocols

are sufficient to achieve overall performance comparable to the low-contention perfor-

mance of test-and-test and set locks and the high-contention performance of the

MCS lock.

Another instance of a changed data structure may be found in the work of Fu and

Tzeng [Fu97; HuS98], who use a circularly linked list as the foundation for a queue-

based lock. In their analysis of the MCS lock, they observe that the base lock pointer

itself is a single place in memory that all threads access, hence a hot spot. By using

a circularly linked list, they spread out the initial memory accesses across multiple

memory locations. Notably, their lock outperforms the MCS lock in all instances in

their tests; however, these tests were performed on simulated hardware.

The final alternate data structure we consider is the priority queue. Locks of this

form relax absolute FIFO fairness to level-specific FIFO fairness within multiple ser-

vice levels. Generally, a thread in a higher priority level is allowed to acquire the lock

ahead of every thread at lower levels; to avoid starvation, some authors bound the num-

ber of times the longest-waiting thread at a lower priority level can be passed over to

some constant factor k per priority level.

The first published priority queue-based lock, which is based on MCS with a doubly-

linked list, is due to Markatos and LeBlanc [Mar91]. This lock has a serious drawback,

however: Priority queue maintenance is performed at release time, where it adds to

the wait time for all threads. The PR-lock, due to Johnson and Harathi [JoH97], cor-

rects this problem by moving lock maintenance procedures into the enqueue operation

(thereby folding maintenance costs into wait time). This yields a large performance

gain in lock acquisition, and converts from linear to constant time overhead in lock

release. Another priority lock due to Craig [Cra93a] uses swap instead of compare

and swap and also allows nesting locks with only one lock record.

A standard problem with prioritized threads and waiting is known as priority in-

version. Essentially, when a high-priority thread is forced to wait for a lower-priority

28

thread that has the lock it wants, it needs to wait at the lower priority. A standard way

to solve this problem is to bump up the lower thread’s priority to match that of the wait-

ing thread. Wang, Takada, and Sakamura [WTS96] give a pair of algorithms that use

exactly this approach to solve the priority inversion problem. The main difference be-

tween the two is that the second algorithm is designed to avoid non-local spins, which

result in heavy interconnect traffic on hardware that does not cache remote memory

locations.

2.2.3 Lock-based Synchronization in Java

Because monitors and synchronizedmethods are particularly prevalent in Java,

many groups have sought to reduce the cost of locks in this environment. For example,

Bacon et al. [BKM98] propose an “inflatable” lock that allows a thread to “own” an

object in the absence of contention and cheaply lock or unlock it. When contention

occurs, the lock expands into a queue to support multiple waiters. Once expanded,

however, the lock remains expanded forever. Meta-locks [ADG99] use a secondary

lock to explicitly manage synchronization data, thereby avoiding some space overhead.

Relaxed locks [Dic01] address the space concern by speculatively deflating the lock

when the contention appears to end; if contention has not actually ended, then the

overhead of inflation recurs.

A different approach to reducing the cost of locking in Java is to remove locks that

are never contended in the first place. If compile-time program analysis can deter-

mine that a particular lock will never be contended for, the overhead of synchronization

can be deleted altogether. Many groups have applied this approach [ACS99; BoH99;

DiR99; FKR00; GRS00; Ruf00].

29

// return value indicates whether lock was acquired
bool tatas_try_acquire(tatas_lock *L, hrtime_r T) {

if (tas(L)) {
hrtime_t start = gethrtime();
int i, b = BACKOFF_BASE;
do {

if (gethrtime() - start > T) return false;
for (i = rand() % b; i; i--); // back off
b = min(b * BACKOFF_FACTOR, BACKOFF_CAP);
if (*L) continue; // spin

} while (tas(L));
}

}

Listing 2.6: The standard TATAS-try lock. Type definitions and release code are the
same as in Figure 2.1.

2.3 Queue-based Locks with Timeout

As noted in Section 2.1, a thread may wish to bound the time it may wait for a

lock in order to accommodate soft real-time constraints, avoid waiting for a preempted

peer, or recover from transaction deadlock. Such a bound is easy to achieve with a

TATAS lock (see Figure 2.6): Threads are anonymous and compete with one another

chaotically. Things are not so simple, however, in a queue-based lock: A waiting thread

is linked into a data structure on which other threads depend; it cannot simply leave.

Previous work in scheduler-conscious synchronization [KWS97] arranged to mark

the queue node of a preempted thread so that the thread releasing the lock would simply

pass it over. Upon being rescheduled, a skipped-over thread would have to reenter the

queue. A thread that had yet to reach the head of the queue when rescheduled would

retain its original position. Several years before, Craig proposed (in narrative form)

a similar “mark the node” strategy for queue-based try locks [Cra93a]. Specifically,

he suggested that a timed-out thread leave its queue node behind, where it would be

reclaimed by another thread when it reached the head of the queue.

Unfortunately, this strategy does not work nearly as well for timeout as it does for

preemption. The problem is that a timed-out thread is not idle: It may want to acquire

other locks. Because we have no bound on how long it may take for a marked queue

30

node to reach the head of the queue, we cannot guarantee that the same queue node will

be available the next time the thread tries to acquire a lock. As Craig notes, the total

space required for T threads and L locks rises from O(T + L) with the original CLH

lock to O(T ×L) in a mark-the-node try lock. Further, this approach requires dynamic

memory allocation of nodes. We also note that the need to skip over abandoned queue

nodes increases the worst case lock release time from O(1) to O(T).

We have addressed these space and time problems in new timeout-capable versions

of both the CLH and MCS locks. In fairness to Craig, the code presented here requires

a compare and swap (CAS) operation; his work was predicated on the assumption

that only swap was available. A different version of the MCS-try lock, also using only

swap, has been developed by Vitaly Oratovsky and Michael O’Donnell of Mercury

Computer Corp. [OrO00]. Their lock has the disadvantage that newly arriving threads

that have not specified a timeout interval (i.e. that are willing to wait indefinitely) will

bypass any already-waiting threads whose patience is more limited. A thread that spec-

ifies a timeout may thus fail to acquire a lock—may in fact never acquire a lock, even if

it repeatedly becomes available before the expiration of the timeout interval—so long

as threads that have not specified a timeout continue to arrive.

CLH-try Lock

In the standard CLH lock, a thread leaves its queue node behind when releasing the

lock. In its place it takes the node abandoned by its predecessor. For a try lock we

prefer to arrange for a timed-out thread to leave with its own queue node. Otherwise,

as noted above, we might need O(T × L) queue nodes in the system as a whole.

It is relatively easy for a thread B to leave the middle of the queue. Since B’s

intended successor C (the thread behind it in the queue) is already spinning on B’s

queue node, B can simply mark the node as “leaving”. C can then dereference the

node to find B’s predecessor A and mark B’s node as “recycled”, whereupon B can

safely reclaim its node and leave. (B’s wait for notification from C is an example of

31

W R W

T R

T L

T L

A B C

W W W

T W W

W

W

W

W W

A B Q

W W

T W

T L

T L

W L

W

action by B

action by B

action by B

action by C

Figure 2.1: Timeout in the CLH-try lock (two principal cases). In the figure at left
thread B can leave the middle of the queue as soon as it receives confirmation from its
successor, C, that no pointer to its queue node remains. In the figure at right, B can
leave the end of the queue once it has updated the tail pointer, Q, using compare
and swap. The transitions from waiting to leaving and from waiting to
available (not shown) must also be made with compare and swap, to avoid
overwriting a transient flag.

handshaking.) There is no race between A and B because A never inspects B’s queue

node.

Complications arise when the departing thread B is the last thread in the queue. In

this case B must attempt to modify the queue’s tail pointer to refer to A’s queue node

instead of its own. We can naturally express the attempt with a CAS operation. If the

CAS fails we know that another thread C has arrived. At this point we might hope to

revert to the previous (middle-of-the-queue) case. Unfortunately, it is possible that C

may successfully leave the queue after B’s CAS, at which point B may wait indefinitely

for a handshake that never occurs. We could protect against the indefinite wait by

repeatedly re-checking the queue’s tail pointer, but that would constitute spinning on a

non-local location, something we want to avoid.

Our solution is to require C to handshake with B in a way that prevents B from

trying to leave the queue while C is in the middle of leaving. (B, likewise, must hand-

shake with A so A cannot leave while B is leaving.) The handshake is effected by

32

defining an additional “transient” state for a queue node. Prior to marking its own node

leaving, B uses a CAS to mark A’s node transient. After B handshakes with

C (or successfully updates the tail pointer to point to A’s node), it changes the status

of A’s node back to waiting. The two principal cases (B in the middle of the queue

and at the end) are illustrated in Figure 2.1.

Like the standard CLH lock, the CLH-try lock depends on cache coherence to avoid

remote spinning. In the CLH-try lock it is actually possible for two threads to end up

spinning on the same location. In the fourth line of the right-hand side of Figure 2.1,

if thread A calls clh release, it will spin until the transient flag reverts to

waiting. If a new thread C arrives at about this time, it, too, will begin to spin on the

flag in A’s queue node, hoping it will change to available. When B finally updates

the flag, its write will terminate A’s spin and cause a reload of C’s cached copy. A’s

immediately subsequent CAS will terminate C’s spin.

Code for the CLH-try lock can be found in Listing 2.7. It includes two optimizations

that are not obviously necessary in a naive implementation of the algorithm illustrated

in Figure 2.1.

First, a lock releaser might become “stuck” if its successor were preempted while

timing out, leaving the lock holder’s node in transient state. Even absent pre-

emption, a pathological timing sequence could allow a series of successors to time out

and change the lock holder’s node’s status word to transient just as it was reset

to waiting. Since these successors are (prior to initiating their time-out sequences)

spinning on the same node status word as the lock holder, they will be notified of the

update in the same bus transaction as the lock holder; whether the lock holder subse-

quently releases the lock or the successor begins its timeout sequence is then a question

of which update to this same status word happens to win the bus arbitration.

We improve this situation by introducing a new state for the status word that means

“transient, but available”. Now, the lock holder can alternate between CASing the sta-

tus word from waiting to available and CASing the status word from transient to

33

typedef enum {
waiting, // lock is held
available, // lock is free
preleaving, // thread intends to leave
leaving, // node owner is giving up
transient, // successor is giving up
transvailable, // predecessor leaving, lock free
recycled // no pointers to node remain

} clh_status;

typedef struct clh_qnode {
volatile clh_status status;
volatile struct clh_qnode *volatile prev;

} clh_qnode;

typedef volatile clh_qnode *clh_qnode_ptr;
typedef clh_qnode_ptr clh_try_lock;

bool clh_try_acquire(clh_try_lock *L, clh_qnode_ptr I, hrtime_t T)
{

clh_status stat;

I->status = waiting;
clh_qnode_ptr pred = swap(L, I);

if (pred->status == available) {
I->prev = pred;
return true;

}
hrtime_t start = gethrtime();
bool timeout = false;

while (1) {
stat = pred->status;
if (stat == available) {

I->prev = pred;
return true;

}
if (stat == leaving) {

clh_qnode_ptr temp = pred->prev;
pred->status = recycled;
pred = temp;
continue;

}
// stat might also be transient, if somebody left the queue just
// before I entered; or preleaving, if predecessor is timing out
if (timeout || CUR_TIME - start > T) {

// if either I or prev == trans, a neighbor
// is timing out, so I must wait
timeout == true;
if (stat == preleaving || stat == transient ||

stat == transvailable || I->status == transient) {
continue;

} else if (!compare_and_store(&I->status, waiting, preleaving)) {
continue;

} else break;
}

}

Listing 2.7: Source code for the CLH-try lock.

34

// timed out
while (1) {

// Spin while predecessor is transient or getting available
stat = pred->status;
if (stat == available) {

I->prev = pred;
I->status = waiting;
return true;

}
if (stat == waiting) {

if (compare_and_store(&pred->status, waiting, transient))
break;

else continue;
}
if (stat == leaving) {

clh_qnode_ptr temp;
temp = pred->prev;
pred->status = recycled;
pred = temp;

}
}

if (!compare_and_store(L, I, pred)) {
while (I->status != recycled); // spin

}
if (!compare_and_store(&pred->status, transient, waiting))

pred->status = available;
return false;

}

void clh_try_release(clh_qnode_ptr *I)
{

clh_qnode_ptr pred = (*I)->prev;
while (1) {

if (compare_and_store(&(*I)->status, waiting, available))
break;

if (compare_and_store(&(*I)->status, transient, transvailable))
break;

}
*I = pred;

}

Listing 2.7: (continued)

“transvailable”. If the successor is preempted then one of these will certainly

succeed and the lock holder (though no one else) is free to proceed. Finally, when

a timing-out thread sees that its node has become recycled, rather than uncondi-

tionally mark its predecessor’s status word as waiting, it must first attempt to CAS

it from transient to waiting. If the CAS fails then the word must have been

transvailable and the timing-out thread can simply mark it available with a

simple write.

35

Our second optimization introduces a new status value (preleaving) that gives

preference to older threads when two adjacent waiters in the queue time out at approx-

imately the same time. Without this optimization, younger threads got priority, so an

older thread trying to time out could block the queue and not let any other thread reach

the head to acquire the lock. At the very beginning of the new time-out sequence, a

thread sets its own node’s status word to preleaving. A successor will decline to

change this to transient.

MCS-try Lock

A feature of the standard MCS lock is that each thread spins on its own queue node,

which may be allocated in local memory even on a machine that does not cache remote

locations. To leave the queue, therefore, a thread B must update the successor pointer

in the queue node of its predecessor A so that it points to B’s successor C, if any, rather

than to B. If C later chooses to leave the queue as well, it will again need to update

A’s queue node, implying that B must tell it where A’s queue node resides. Pointers to

both predecessors and successors must therefore reside in the queue nodes in memory,

where they can be read and written by neighboring threads. These observations imply

that an MCS-try lock must employ a doubly linked queue, making it substantially more

complex than the CLH-try lock. The benefit of the complexity is better memory locality

on a machine that does not cache remote memory locations.

As in the CLH-try lock there are two principal cases to consider for the MCS-try

lock, depending on whether the departing thread B is currently in the middle or at the

end of the queue. These cases are illustrated in Figure 2.2. While waiting to be granted

the lock, a thread ordinarily spins on its predecessor pointer. In the middle-of-the-queue

case, departing thread B first replaces the four pointers into and out of its queue node,

respectively, with leaving other and leaving self flags (shown as LO and LS

in the figure). It then updates C’s predecessor pointer, and relies on C to update A’s

successor pointer. In the end-of-the-queue case, B “tags” A’s nil successor pointer to

36

A B C

LS

LS LO

LSLS LO

LSLS LOLO

LSLSLO

A B Q

LS

LSLS

LSLS

LSLS

action by C

action by B action by B

1 1

3

2

3

4 4

5

6

5

6

Figure 2.2: Timeout in the MCS-try lock (two principal cases). In the figure at left
thread B uses atomic swap operations to replace the pointers into and out of its queue
node, in a carefully chosen order, with leaving other and leaving self flags.
It then updates the pointer from C to A, and relies on C to update the pointer from A
to C. In the figure at right, B has no successor at step 2, so it must perform the final
update itself. In the meantime it leaves a “tag” on A’s (otherwise nil) successor pointer
to ensure that a newly arriving thread will wait for B’s departure to be finalized.

indicate that additional changes are pending. Absent any race conditions, B eventually

clears the tag using CAS.

Unfortunately, there are many potential races that have to be resolved. Thread A

at the head of the queue may choose to grant the lock to its successor B while B is

attempting to leave the queue. In this case, the race is between A’s attempt to change

its next pointer to granted and B attempt to change this pointer to leaving other

in step 4; if A wins the race then B obtains the lock serendipitously and must restore

its own next pointer and, if it has a successor C, C’s predecessor pointer to it. For

its part, C will find that B is again its predecessor when it relinks itself at step 6 of

B’s departure. Alternatively, if A loses the race, B will have already removed any

reference to itself from A’s next pointer, so A must wait for B’s successor (if present)

or B (otherwise) to update its next pointer before it can hand off the lock.

Another race condition occurs when B’s predecessor A decides to leave the queue

at approximately the same time as B. Generally, the timeout protocol is designed to

37

favor B’s departure ahead of A. The crucial decision point is again in B’s step 4:

If B successfully updates A’s next pointer to leaving other before A updates it

to leaving self as its step 1, then B is committed to leaving and A must wait

for it to do so. In particular, A must here again wait for B’s successor (if present)

or B (otherwise) to update its next pointer before it can resume its attempt to leave.

Alternatively, if A changes its next pointer to leaving self in step 1 before B can

change it to leaving other, A has priority over B in leaving, so B must revert its

attempt to leave (as before) and wait until A has finished departing.

In yet a third race, a thread B that is initially at the end of the queue in step 2 may

discover in step 5 that it now has a successor. Handling this case is straightforward, and

mirrors the spin in release for the original MCS lock: B waits until its (new) successor

C updates B’s next pointer to C.

In general, the order of updates to pointers is chosen to ensure that (1) no thread

ever returns from mcs try acquire until we are certain that no pointers to its queue

node remain, and (2) if two adjacent threads decide to leave concurrently, the one closer

to the front of the queue leaves first.

Handing off the MCS-try lock is very similar to handing off the original MCS lock.

To do so, the lock holder A first marks its next pointer granted. This guarantees that

if A’s successor B should attempt to time out and leave, it will fail step 4 and realize that

it has obtained the lock. A then marks B’s predecessor pointer granted to indicate

that B now owns the lock. If this is successful, A waits for B to acknowledge receipt

(by changing A’s next pointer to nil) before departing.

If A doesn’t have a successor, then it attempts to update the lock pointer from itself

to nil. If successful, it is free to leave. Otherwise, exactly as in the original MCS lock,

a new successor is in the process of enqueuing itself and A must wait to discover that

successor’s identity so it can hand off the lock.

38

Finally, in the event that A loses the race to a successor B that is timing out (the first

race condition described earlier), A must wait for B to be fully gone and then repeat

the entire release cycle with its new successor (if any is present).

Code for the MCS-try lock appears in Listing 2.8.

2.4 Queue-based Locks with Nonblocking Timeout

The algorithms of the previous section have the advantage of cleanly removing a

timed-out thread’s node from the lock queue. Unfortunately they require handshaking

with neighbor threads, which may not currently be running on a multiprogrammed sys-

tem. Further, the MCS-try lock is extraordinarily complex. In this section we describe

MCS-NB-try, 3 a queue-based spin lock that supports timeout and in which the timeout

protocol is wait-free: A thread can time out and leave the queue in a bounded number

of time steps regardless of any action or inaction on the part of other threads.

Where the CLH, CLH-try, MCS, and MCS-try locks all support static memory al-

location for queue nodes, MCS-NB-try, like Scott’s earlier nonblocking timeout locks,

requires dynamic memory management for them. Following Scott’s example, nodes

are allocated as part of the acquire method for MCS-NB-try; this requires writing a

pointer to the lock holder’s node in a field of the lock itself in order that the release

method might find the node to reclaim it. As Scott points out, this has the side benefit

of allowing a standardized API for the locks. The MCS-NB-try lock reuses Scott’s fast

memory allocator (see Listing 2.9).

3Though it shares the name, this algorithm is distinct from, and supersedes the MCS-NB-try lock
previously published by Scott [Sco02]: After we published MCS-try and CLH-try, Scott published MCS-
NB-try and CLH-NB-try [Sco02]. In my efforts to create a CLH-NB-NUMA-try lock, we discovered
that adding NUMA indirection to CLH yields was very similar to what Scott acheived from eliminating
the spin in release in MCS, so CLH-NB-NUMA-try ended up as an improved version of MCS-NB-try. I
present it here.

39

typedef struct mcs_qnode {
volatile struct mcs_qnode *volatile prev;
volatile struct mcs_qnode *volatile next;

} mcs_qnode;
typedef volatile mcs_qnode *mcs_qnode_ptr;
typedef mcs_qnode_ptr mcs_try_lock;

/* We assume that all valid qnode pointers are word- aligned addresses
(so the two low-order bits are zero) and are larger than 0x10. We use
low-order bits 01 to indicate restoration of a prev pointer that had
temporarily been changed. We also use it to indicate that a next
pointer has been restored to nil, but the thread that restored it has
not yet fixed the global tail pointer. We use low-order bits of 10 to
indicate that a lock has been granted (If it is granted to a thread
that had been planning to leave, the thread needs to know who its
[final] predecessor was, so it can synch up and allow that predecessor
to return from release). Those two bits are mutually exclusive,
though we don’t take advantage of the fact. We use bogus pointer
values with low-order 0 bits to indicate that a thread or its neighbor
intends to leave, or has recently done so. */

#define nil ((qnode_ptr) 0x0)
#define leaving_self ((qnode_ptr) 0x4)
#define leaving_other ((qnode_ptr) 0x8)
#define gone ((qnode_ptr) 0xc)
#define restored_tag ((unsigned long) 0x1)
#define transient_tag restored_tag
#define granted_tag ((unsigned long) 0x2)
#define is_restored(p) ((unsigned long) (p) & restored_tag)
#define is_transient(p) is_restored(p)
#define is_granted(p) ((unsigned long) (p) & granted_tag)
#define restored(p) ((qnode_ptr)

((unsigned long) (p) | restored_tag))
#define transient(p) restored(p)
#define granted(p) ((qnode_ptr)

((unsigned long) (p) | granted_tag))
#define cleaned(p) ((qnode_ptr)

(((unsigned long) (p)) & ˜0x3))
#define is_real(p) (!is_granted(p)

&& ((unsigned long) (p) > 0x10))
/* prev pointer has changed from pred to temp, and we know temp is a
real (though possibly restored) pointer. If temp represents a new
predecessor, update pred to point to it, clear restored flag, if any
on prev pointer, and set next field of new predecessor (if not
restored) to point to me. In effect, RELINK is step 6. */
#define RELINK \

do { \
if (is_restored(temp)) { \

(void) compare_and_swap(&I->prev, \
temp, cleaned(temp)); \

/* remove tag bit from pointer, \
if it hasn’t been changed \
to something else */ \

temp = cleaned(temp); \

Listing 2.8: Source code for the MCS-try lock.

40

} else { \
pred = temp; \
temp = swap(&pred->next, I); \
if (temp == leaving_self) { \

/* Wait for predecessor to notice \
I’ve set its next pointer \
and move on to step 2 \
(or, if I’m slow, step 5). */ \

do { \
temp == I->prev; \

} while (temp == pred); \
continue; \

} \
} \
break; \

} while (is_real(temp));

bool mcs_try_acquire(mcs_try_lock *L, qnode_ptr I, hrtime_t T)
{

qnode_ptr pred;
qnode_ptr succ;
qnode_ptr temp;

I->next = nil;
pred = swap(L, I);
if (pred == nil) { // lock was free

return true;
}
// else queue was non-empty
hrtime_t start = gethrtime();
I->prev = transient(nil); // word on which to spin
// Make predecessor point to me, but preserve transient tag if set.
do {

temp = pred->next;
} while (!compare_and_store(&pred->next, temp,

(is_transient(temp) ? transient(I) : I)));
// Old value (temp) can’t be granted, because predecessor sets that
// only via CAS from a legitimate pointer value. Might be nil
// (possibly transient) or leaving_self, though.
if (is_transient(temp)) {

while (I->prev == transient(nil)); // spin
// Wait for thread that used to occupy my slot in the queue
// to clear the transient tag on our (common) predecessor’s
// next pointer. The predecessor needs this cleared so it
// knows when it’s safe to return and deallocate its qnode.
// I need to know in case I ever time out and try to leave:
// The previous setting has to clear before I can safely set
// it again.

// Store pred for future reference, if predecessor has not
// modified my prev pointer already.
(void) compare_and_swap(&I->prev, nil, pred);

} else if (temp == leaving_self) {
// I’ve probably got the wrong predecessor. Must wait to learn
// id of real one, *without timing out*.
do {

temp = I->prev;
} while (temp == transient(nil));
if (is_real(temp)) {

RELINK
}

} else {
// Store pred for future reference, if predecessor has not
// modified my prev pointer already.
(void) compare_and_swap(&I->prev, transient(nil), pred);

}

Listing 2.8: (continued)

41

while (1) {
do {

if (gethrtime() - start > T) {
goto timeout; // 2-level break

}
temp = I->prev;

} while (temp == pred); // spin
if (is_granted(temp)) { // (optimization)

break;
}
if (temp == leaving_other) {

// Predecessor is leaving; wait for identity of new predecessor.
do {

temp = I->prev;
} while (temp == leaving_other);

}
if (is_granted(temp)) {

break;
}
RELINK

}
// Handshake with predecessor.
pred = cleaned(temp);
pred->next = nil;
return true;

// Step 1: Atomically identify successor and indicate intent to leave
timeout:

while (1) {
do {

do {
succ = I->next;

} while (is_transient(succ));
} while (!compare_and_store(&I->next, succ, leaving_self));

// don’t replace a transient value
if (succ == gone)

succ = nil;
if (succ == nil) {

// No visible successor; we’ll end up skipping step 2 and
// doing an alternative step 6.
break;

}
if (succ == leaving_other) {

// Wait for new successor to complete step 6.
do {

temp = I->next;
} while (temp == leaving_self);
continue;

}
break;

}
// Step 2: Tell successor I’m leaving
if (succ != nil) {

temp = swap(&succ->prev, leaving_other);
if (temp == leaving_self) {

// Successor beat me to the punch. Must wait until it tries
// to modify my next pointer, at which point it will know I’m
// leaving, fail step 4, and wait for me to finish.
do {

temp = I->next;
} while (temp != succ);

}
}

Listing 2.8: (continued)

42

// Step 3: Identify predecessor and indicate intent to leave.
while (1) {

qnode_ptr n;
temp = swap(&I->prev, leaving_self);
if (is_granted(temp)) {

goto serendipity;
}
if (temp == leaving_other) {

// Predecessor is also trying to leave; it takes precedence.
do {

temp = I->prev;
} while (temp == leaving_self || temp == leaving_other);
if (is_granted(temp)) {

// I must have been asleep for a while. Predecessor won
// the race, then experienced serendipity itself, restored
// my prev pointer, finished its critical section, and
// released.
goto serendipity;

}
RELINK
continue;

}
if (temp != pred) {

RELINK
// I’m about the change pred->next to leaving_other or
// transient(nil), so why set it to I first? Because
// otherwise there is a race. I need to avoid the
// possibility that my (new) predecessor will swap
// leaving_self into its next field, see leaving_other (left
// over from its old successor), and assume I won the race,
// after which I come along, swap leaving_other in, get
// leaving_self back, and assume my predecessor won the race.

}

// Step 4: Tell predecessor I’m leaving.
if (succ == nil) {

n = swap(&pred->next, transient(nil));
} else {

n = swap(&pred->next, leaving_other);
}
if (is_granted(n)) {

// Predecessor is passing me the lock; wait for it to do so.
do {

temp = I->prev;
} while (temp == leaving_self);
goto serendipity;

}
if (n == leaving_self) {

// Predecessor is also trying to leave. I got to step 3
// before it got to step 2, but it got to step 1 before I got
// to step 4. It will wait in Step 2 for me to acknowledge
// that my step 4 has failed.
pred->next = I;
// Wait for new predecessor (completion of old predecessor’s step 5)
do {

temp = I->prev;
} while (temp == leaving_self // what I set

|| temp == leaving_other); // what pred will set in step 2
if (is_granted(temp))

goto serendipity;
RELINK
continue;

}
break;

}

Listing 2.8: (continued)

43

if (succ == nil) {
// Step 5: Try to fix global pointer.
if (compare_and_store(L, I, pred)) {

// Step 6: Try to clear transient tag.
temp = compare_and_swap(&pred->next, transient(nil), gone);
if (temp != transient(nil)) {

pred->next = cleaned(temp);
// New successor got into the timing window, and is now
// waiting for me to signal it.
temp = cleaned(temp);
(void) compare_and_swap(&temp->prev, transient(nil), nil);

}
} else {

// Somebody has gotten into line. It will discover that I’m
// leaving and wait for me to tell it who the real
// predecessor is (see pre-timeout loop above).
do {

succ = I->next;
} while (succ == leaving_self);
pred->next = leaving_other;
succ->prev = pred;

}
} else {

// Step 5: Tell successor its new predecessor.
succ->prev = pred;

}
// Step 6: Count on successor to introduce itself to predecessor.
return false;

serendipity: // I got the lock after all; temp contains a granted
// value read from my prev pointer.

// Handshake with predecessor:
pred = cleaned(temp);
pred->next = nil;
if (succ == nil) {

// I don’t think I have a successor. Try to undo step 1.
if ((temp = compare_and_swap(&I->next,

leaving_self, succ)) != leaving_self) {
// I have a successor after all. It will be waiting for me
// to tell it who its real predecessor is. Since it’s me
// after all, I have to tag the value so successor will
// notice change. Undo step 2:
temp->prev = restored(I);

}
} else {

// I have a successor, which may or may not have been trying to
// leave. In either case, I->next is now correct. Undo step 1:
I->next = succ;
// Undo step 2:
succ->prev = restored(I);

}
return true;

}

Listing 2.8: (continued)

44

void mcs_release(mcs_try_lock *L, qnode_ptr I)
{

qnode_ptr succ;
qnode_ptr temp;

while (1) {
succ = I->next;
if (succ == leaving_other || is_transient(succ)) {

// successor is leaving, but will update me.
continue;

}
if (succ == gone) {

if (compare_and_store(&I->next, gone, nil)) {
succ = nil;

} else {
continue;

}
}
if (succ == nil) {

// Try to fix global pointer.
if (compare_and_store(L, I, nil)) {

// Make sure anybody who happened to sneak in and leave
// again has finished looking at my qnode.
do {

temp = I->next;
} while (is_transient(temp));
return; // I was last in line.

}
do {

temp = I->next;
} while (temp == nil);
continue;

}
if (compare_and_store(&I->next, succ, granted(nil))) {

// I have atomically identified my successor and indicated
// that I’m releasing; now tell successor it has the lock.
temp = swap(&succ->prev, granted(I));
// Handshake with successor to make sure it won’t try to
// access my qnode any more (might have been leaving).
do {

temp = I->next;
} while (temp != nil);
return;

}
// Else successor changed. Continue loop. Note that every
// iteration sees a different (real) successor, so there isn’t
// really a global spin.

}
}

Listing 2.8: (continued)

45

// Code to manage a local but shared pool of qnodes.
// All nodes are allocated by, and used by, a given thread,
// and may reside in local memory on an NCC-NUMA machine.
// The nodes belonging to a given thread form a circular
// singly linked list. The head pointer points to the node
// most recently successfully allocated. A thread allocates
// from its own pool by searching forward from the pointer
// for a node that’s marked "unused". A thread (any thread)
// deallocates a node by marking it "unused".

typedef struct local_qnode {
union {

clh_nb_qnode cnq; // members of this union are
mcs_nb_qnode mnq; // never accessed by name

} real_qnode;
volatile bool allocated;
struct local_qnode *next_in_pool;

} local_qnode;

typedef struct {
local_qnode *try_this_one; // pointer into circular list
local_qnode initial_qnode;

} local_head_node;

inline local_qnode *alloc_local_qnode(local_head_node *hp)
{

local_qnode *p = hp->try_this_one;
if (!p->allocated) {

p->allocated = true;
return p;

} else {
local_qnode *q = p->next_in_pool;
while (q != p) {

if (!q->allocated) {
hp->try_this_one = q;
q->allocated = true;
return q;

} else {
q = q->next_in_pool;

}
}
// All qnodes are in use.
// Allocate new one and link into list.
special_events[mallocs]++;
q = (local_qnode *) malloc(sizeof(local_qnode));
q->next_in_pool = p->next_in_pool;
p->next_in_pool = q;
hp->try_this_one = q;
q->allocated = true;
return q;

}
}

#define free_local_qnode(p) ((p)->allocated = false)

Listing 2.9: Scott’s routines for fast space management.

46

MCS-NB-Try Lock

Our MCS-NB-try lock combines nonblocking timeout with strictly local spinning.

As usual, an MCS-NB lock variable takes the form of a tail pointer for a list of queue

nodes, but where Scott’s CLH-NB queue is linked from tail to head, the bulk of the

MCS-NB queue is linked from head to tail. After swapping a reference to its own

queue node into the tail pointer, a thread writes an additional reference to its node into

the next pointer of its predecessor’s node. It then spins on its own node’s status, rather

than the predecessor’s node. As in the original MCS lock, this “backward” linking

enables local spinning, even on a machine that does not cache remote locations.

To release a standard MCS lock, a thread attempts to follow its next pointer and

update the word on which its successor is spinning. If the pointer is still nil, the thread

performs a CAS on the lock tail pointer, in an attempt to replace a pointer to its own

node with a nil pointer. If that attempt fails then some other thread must be in the pro-

cess of linking itself into the queue. The releasing thread waits for its next pointer

to be updated, then follows it and updates the successor’s status word. As with hand-

shaking in the locks of Section 2.4 we must eliminate the spin in release if we are

to bound the time required by lock operations.

The solution employs a technique due to Craig, who explains how to employ an

extra level of indirection in a CLH lock to obtain local-only spinning on machines that

do not cache remote locations [Cra93a]. (His lock variant, which we call CLH-NUMA,

is generally slower than the MCS lock, but it does not require CAS.) The idea is that

when a thread A wants to change the status of its successor node, it swaps a sentinel

value into its next pointer, rather than merely reading it. If the swap returns a valid

pointer, it dereferences this and updates the successor’s node. If the swap returns nil,

however, no further action is required: A successor B, when and if it appears, will find

the sentinel when it attempts to swap the address of its own node into A’s next pointer.

47

A

W W W

B C

action by B

W W W

W W W

W W

L

L

L

L

W W L

X Y Z

action by C

LW W L

W L

W W

Figure 2.3: Timeout in the MCS-NB-try lock, with departing thread B in the middle. If
thread C is not present, B can return after the third line of the figure; the next arriving
thread will reclaim node Y . For clarity, references to predecessor nodes that are held in
local variables, rather than in qnodes, are not shown.

The value of the sentinel tells B what A would have written to B’s status word if A had

known how to find it.

Queue nodes in the MCS-NB lock (see Figure 2.3) contain a status flag and a pair

of pointers, used to link the queue in both directions. When nil, the backward-pointing

next pointer indicates that no successor node is known. Two sentinel values (assumed

not to be the same as any valid reference) correspond to special states. When set to

AVAILABLE, the next pointer indicates that the lock is currently available. When

set to LEAVING, it indicates that the thread that allocated the node has timed out. The

forward prev pointer is normally nil, but when a thread times out it fills this pointer

with a reference to its predecessor’s node; this allows its successor to remove it from

the queue.

The status word of a queue node (separate from either pointer) has three possible

values. Before linking its node into the queue, a thread initializes its status word to

48

waiting. Once the link-in operation is complete, the thread spins, waiting for the

value to change. The other two possible values—available and leaving—mirror

the values of the predecessor’s next pointer, described in the previous paragraph.

When a thread C performs an initial swap on the tail pointer of a lock that is not

currently available, it receives back a reference to the queue node Y allocated by C’s

predecessor, B. C swaps a reference to its own node, Z, into Y ’s next pointer. If the

swap returns AVAILABLE, C knows that it has the lock. Moreover, C knows that no

other thread has performed a swap on Y ’s next pointer, so B must have abandoned

this node in the queue at release time and C is responsible for reclaiming Y . Otherwise,

C is linked into the queue and it spins on the status word in its node (Z). When the

word changes to available, C writes a reference to Z into the head pointer field of

the lock, and returns successfully.

If Z’s status word changes to leaving, C knows that B has timed out. It must

therefore clean up the queue and find a new predecessor node X allocated by thread A.

C first resets its status word to waiting, and then reads Y ’s prev pointer to find A’s

node X . C then swaps a reference to Z into X’s next pointer. If the swap returns

a reference to Y , C knows that Y has been removed from the queue and can safely be

reclaimed; otherwise A must have changed its own next pointer.

One possibility is that A is in the process of releasing the lock, in which case the

swap might return AVAILABLE. C knows that A will at some point write available

to Y ’s status word. If C were to reclaim Y before this happens, mutual exclusion could

be compromised if Y were reinserted into the queue before A’s update. Hence, C also

swaps available into Y ’s status field; whichever of C and A completes the swap

last (getting available as the result of the swap) knows that it is responsible for

reclaiming Y . Either way, C knows that it will be next to get the lock, so it writes a

reference to Z into the head pointer field of the lock, and returns successfully.

The other possibility is that both A and B are in the process of timing out, in which

case C’s swap of X’s next pointer might return LEAVING. Paralleling the previous

49

case, A and C both swap leaving into Y ’s status word; whichever swap returns

leaving indicates responsibility for reclaiming the node. Once this is decided, C

updates its local pred pointer from Y to X , writes LEAVING back into X’s next

pointer, and branches back to the top of the acquire routine. On its next pass through

the code it will see the sentinel and attempt to reclaim X .

While waiting for the lock, A spins on X’s status word and also periodically polls

the system clock. If it times out in this inner loop, A first writes its local pred pointer

into X’s prev pointer. It then proceeds to swap the LEAVING sentinel into X’s next

pointer. If this swap does not return a valid pointer, then A has no successor and

it is free to leave; the next thread that arrives will reclaim X . Otherwise, A swaps

leaving into Y ’s status word to inform B that it (A) is leaving. If this swap returns

waiting the timeout is complete. It may also return leaving, however, in which

case A has reached the other half of the race condition described in the previous para-

graph. A knows that B has timed out, that A won the race to update X’s next pointer,

that C won the race to update Y ’s status word, and that A is therefore responsible for

reclaiming Y .

Releasing a MCS-NB-try lock occurs in two steps. First, thread A swaps the sen-

tinel AVAILABLE into its next pointer. If this swap returns nil, no successor has yet

arrived and the next to do so will see the sentinel and know it has acquired the lock. Oth-

erwise, the swap returns the node Y of A’s successor B. A swaps available into

Y ’s status word to inform B that it has now received the lock. In a manner analogous to

the actions of the previous paragraph, if this second swap returns available, then

A must reclaim Y . Source code for the MCS-NB-try appears in Listing 2.10.

Like the original CLH lock, the MCS-NB-try lock uses only read, write, and

swap instructions to access memory. This settles in the affirmative an open question

posed by Oratovsky and O’Donnell [OrO00]: namely, whether it is possible to construct

a fair, timeout-capable queue-based lock without a universal primitive like compare

and swap or load linked/store conditional.

50

Interestingly, both the original MCS lock and the MCS-try lock require CAS. The

explanation is as follows: Where the original MCS lock guarantees that a thread’s queue

node will be reusable when the release routine returns, MCS-NB has no hope of

doing so. Because it plans to leave its node behind, it can safely swap an AVAILABLE

sentinel into its next pointer and avoid the need to CAS the tail pointer of the queue if

no successor has yet announced itself. Of course by the same token a thread can swap

a LEAVING sentinel into its next pointer when it times out, and in this case its node

will not be reclaimed until some new thread joins the queue.

Scott previously described an alternative version of the MCS-NB-try lock that uses

CAS to reclaim its own node when it is the last thread in the queue [Sco02]. Unfortu-

nately, to resolve a race condition when the second-to-last thread is also timing out, this

version must incorporate an extra first step in the timeout protocol, in which a thread

erases its predecessor’s next pointer. On balance, we do not believe that the desire to

reclaim end-of-queue nodes immediately justifies the time and complexity introduced

by the extra step (not to mention the need for CAS).

2.4.1 Space Requirements

Like Scott’s CLH-NB-try lock, the MCS-NB try lock typically abandons queue

nodes in an unsuccessful acquire operation. This means that the O(L + T) space

bound for L locks and T threads that the non-timeout and blocking timeout CLH and

MCS locks achieve is not matched by MCS-NB-try. In fact, Scott describes a sce-

nario observed by Victor Luchangco of Sun Microsystems’ Scalable Synchronization

Research Group [Luc02] in which worst-case space overhead is unbounded; the same

scenario applies to the new MCS-NB-try lock as well.

51

typedef enum {available, leaving, waiting
} qnode_status;
typedef struct mcs_nb_qnode {

struct mcs_nb_qnode * volatile prev;
volatile qnode_status status;
struct mcs_nb_qnode * volatile next;

} mcs_nb_qnode;
typedef mcs_nb_qnode *volatile mcs_nb_qnode_ptr;
typedef struct {

mcs_nb_qnode_ptr volatile tail;
mcs_nb_qnode_ptr lock_holder;

// node allocated by lock holder
} mcs_nb_lock;

#define AVAILABLE ((mcs_nb_qnode_ptr) 1)
#define LEAVING ((mcs_nb_qnode_ptr) 2)

#define mqn_swap(p,v) (mcs_nb_qnode *) \
swap((volatile unsigned long *) (p), (unsigned long) (v))

#define s_swap(p,v) (qnode_status)
swap((volatile unsigned long *) (p), (unsigned long) (v))

#define alloc_qnode() \
(mcs_nb_qnode_ptr)alloc_local_qnode(my_head_node_ptr())

bool mcs_nb_try_acquire(mcs_nb_lock *L, hrtime_t T)
{

mcs_nb_qnode_ptr I = alloc_qnode();
mcs_nb_qnode_ptr tmp, pred, pred_pred;
I->status = waiting;
I->prev = NULL;
I->next = NULL;
pred = mqn_swap(&L->tail, I);
hrtime_t start = START_TIME;

// Each loop, we link to a new predecessor
while (1) {

tmp = mqp_swap(&pred->next, I);
if (tmp == AVAILABLE) {

// lock was free; just return
L->lock_holder = I;
free_qnode(pred);
return true;

}
if (!tmp) {

spin: while (I->status == waiting)
if (CUR_TIME - start > T)

goto timeout;
if (I->status == available) {

free_qnode(pred);
L->lock_holder = I;
return true;

}
I->status = waiting; // reset status
// fall through to predecessor-timed-out case

}

Listing 2.10: Source code for the MCS-NB-try lock.

52

// Predecessor timed out, get new predecessor
pred_pred = pred->prev;
tmp = mqp_swap(&pred_pred->next, I);
if (tmp == pred) {

free_qnode(pred);
recovered_nodes++;
pred = pred_pred;
goto spin; // target is UP 20 lines

} else if (tmp == AVAILABLE) {
// Pred_pred will try to access pred’s status;
// we and it are in a race.
if (s_swap(&pred->status, available) == available) {

// Pred_pred got to the status before us.
// We’ll get the lock (next pass), but
// must recycle pred.
free_qnode(pred);

} // else swap returned waiting: we won the
// race to get to pred’s status. Pred_pred
// will still try to access the status at
// some point. It will know to recycle pred.

// Recycle pred_pred and take the lock
free_qnode(pred_pred);
L->lock_holder = I;
return true;

} else {
// Pred_pred will try to access pred’s status;
// we and it are in a race.
if (s_swap(&pred->status, leaving) == leaving) {

// Pred_pred got to the status before we
// did: we must recycle pred.
free_qnode(pred);

} // else we won the race. Pred_pred will
// still try to access the status at some
// point. It will know to recycle pred.

pred = pred_pred;
pred->next = LEAVING;

// to fool ourselves into thinking this
// is a normal top-of-loop case. Note
// that pred (formerly pred_pred) has
// already either tried to release the
// lock or timed out, so it won’t
// subsequently try to change the field
// we just wrote into, so the plain
// write (not swap) is safe.

if CUR_TIME - start > T) {
break; /* drop to timeout code below */

}
}

}

Listing 2.10: (continued)

53

// Timed out
timeout:

I->prev = pred;
tmp = mqp_swap(&I->next, LEAVING);
if (tmp) {

// Tell my successor I’ve timed out
if (s_swap(&tmp->status, leaving) == leaving) {

// My successor’s successor beat me to this
// point, so I need to recycle my successor’s
// node. This status value implies that my
// successor is also timed out.
free_qnode(tmp);

}
}
return false;

}

void mcs_nb_try_release(mcs_nb_lock *L)
{

mcs_nb_qnode_ptr I = L->lock_holder;
mcs_nb_qnode_ptr succ = mqn_swap(&I->next, AVAILABLE);
if (succ) {

if (swap(&succ->status, available) == available) {
// somebody beat us to succ->status; we are
// responsible for recycling succ.
free_qnode(succ);

} // else swap returned waiting: clean hand-off
}

}

Listing 2.10: (continued)

2.5 Time-Published Queue-based Locks

The locks of Sections 2.3 and 2.4 allow a thread to cleanly leave the queue of a

CLH- or MCS-style lock. By choosing a timeout significantly smaller than a scheduling

quantum, these locks can be used to tolerate preemption of predecessors in the queue,

assuming the lock is not on the application’s critical path. This assumption is safe in

some applications but not in others. For the general case we need (a) a better way to

prevent or recover from preemption of the lock holder and (b) a way to avoid passing a

lock to an already preempted thread.

As noted in Section 2.1, some operating systems provide mechanisms that address

need (a), but such mechanisms are neither universal nor standardized. To the best of

our knowledge, no commercial operating system provides mechanisms sufficient to

address need (b). Most modern machines and operating systems do, however, provide

54

a fine grain, low overhead user-level clock, often in the form of a fast running cycle or

nanosecond counter register, that is synchronized across processors. In this Section we

explain how to use such a clock to build preemption tolerant queue locks—locks that

are free, in practice, from virtually all preemption-induced performance loss.

Each waiting thread in our time-published locks, co-designed with Bijun He, peri-

odically writes the current system time to a thread-specific shared location. If a thread

A sees a stale timestamp for its predecessor thread B, A assumes that B has been pre-

empted and removes B’s node from the queue. Further any thread that acquires a lock

writes the time at which it did so to a lock-specific shared location. If it sees an acquisi-

tion timestamp that is sufficiently far in the past (farther than longest plausible critical

section time—the exact value is not critical), A yields the processor in the hope that

a suspended lock holder might resume. Use of the acquisition timestamp allows A to

distinguish, with high accuracy, between preemption of the lock holder and simple high

contention, both of which manifest themselves as long delays in lock acquisition time.

There is a wide design space for time-published locks, portions of which are il-

lustrated in Figure 2.4. Two specific points in this design space—the MCS-TP and

CLH-TP locks—are described in the following two subsections. These algorithms re-

flect straightforward strategies consistent with the head-to-tail and tail-to-head linking

of the MCS and CLH locks, respectively.

2.5.1 The MCS Time-Published Lock

Our MCS-TP try lock uses the same head-to-tail linking as other MCS variants.

Unlike the MCS and MCS-NB try locks of Sections 2.3 and 2.4, however, it does not

attempt to remove abandoned nodes from the queue.

We add two new states to the waiting and available of the standard MCS

lock. When a waiting thread times out before acquiring the lock, it marks its node

left and returns, leaving the node in the queue. When a node reaches the head of

55

Lock MCS-TP CLH-TP
Link Structure Queue linked head to tail Queue linked tail to head
Lock handoff Lock holder explicitly grants the

lock to a waiter
Lock holder marks lock available
and leaves; next-in-queue claims
lock

Timeout preci-
sion

Strict adherence to patience Bounded delay from removing
timed-out and preempted prede-
cessors

Queue
management

Only the lock holder removes
timed-out or preempted nodes (at
handoff)

Concurrent removal by all wait-
ing threads

Space
management

Semi-dynamic allocation: Wait-
ers may reinhabit abandoned
nodes until removed from the
queue

Dynamic allocation: Separate
node per acquisition attempt

Figure 2.4: Comparing the MCS-TP and CLH-TP time-published locks

the queue but is either marked left or appears to be owned by a preempted thread

(i.e., has a stale timestamp), the lock holder marks it removed, and follows its next

pointer to find a new candidate lock recipient, repeating as necessary. Figure 2.5 shows

state transitions for MCS-TP queue nodes. Source code for the MCS-TP lock appears

in Listing 2.13.

The MCS-TP algorithm allows each thread at most one node per lock. If a thread

that calls acquire finds its previous node (which is cached on a failed acquire oper-

ation) still marked left, it reverts the state to waiting, resuming its former place

in line. Otherwise, it begins a fresh attempt from the tail of the queue. To all other

threads, timeout and retry are indistinguishable from an execution in which the thread

was waiting all along.

To guarantee bounded-time lock handoff, we must avoid a pathological case in

which waiting threads might repeatedly time out, have their nodes removed, rejoin the

queue, and then time out again before obtaining the lock. In this scenario, a lock holder

might see an endless treadmill of abandoned nodes, and never be able to release the

56

waiting

path for reusing spacedriven by self driven by the lock holder

(My attempt
 failed)

The lock holder
 sees me inactive

(I abort my
acquisition attempt)

I rejoin the
queue at
my former
position

my node from the queue.
The lock holder removes

available

left removed

removedI time out

critical section

The lock holder passes
me the lock

(New Attempt)

(New Attempt)

Figure 2.5: MCS-TP queue node state transitions

lock. We therefore arrange for the lock holder to remove only the first T left nodes

it encounters; thereafter, it scans the list until it either reaches the end or finds a viable

successor. Only then does it mark the scanned nodes removed. (If a scanned node’s

owner comes back to waiting before being marked removed, it will eventually see the

removed state and quit as a failed attempt). Because skipped nodes’ owners reclaim

their existing (bypassed) spots in line, the length of the queue is bounded by the total

number of threads T and this process is guaranteed to terminate in at most 2T steps. In

practice, we have never observed the worst case, even in contrived “torture tests”; lock

holders typically find a viable successor within the first few nodes.

2.5.2 The CLH Time-Published Lock

Our CLH-TP try lock retains the tail-to-head linking of the CLH lock, but re-

moves nodes inserted by threads that have timed out or (appear to have) been pre-

empted. Unlike MCS-TP, CLH-TP allows any thread to remove the node inserted

by a preempted predecessor; removal is not reserved to the lock holder. Middle-of-

the-queue removal adds significant complexity to CLH-TP; experience with the MCS

57

typedef struct mcstp_qnode {
mcstp_lock *last_lock; // lock from last attempt
volatile hrtime_t time; // published timestamp
volatile qnode_status status;
struct mcstp_qnode *volatile next;

} mcstp_qnode;

typedef struct mcstp_lock {
mcstp_qnode *volatile tail;
volatile hrtime_t cs_start_time;

} mcstp_lock;

#define mtp_swap(p,v) ((mcstp_qnode *) \
swap((volatile unsigned long *)(p), (unsigned long)(v)))

#define compare_and_store(p,o,n) \
(cas((volatile unsigned long *) (p), \

(unsigned long) (o), (unsigned long) (n)) \
== (unsigned long) (o))

extern int MAX_CS_TIME; // Approximate upper bound
// on the length of a critical
// section.

extern int MAX_THREADS; // Approximate max number
// of threads in the system.

extern int UPDATE_DELAY; // Approximate length of time
// it takes a thread to see
// a timestamp published on
// another thread, including
// any potential clock skew.

bool mcstp_acquire(mcstp_lock *L, mcstp_qnode *I,
hrtime_t T)

{
mcstp_qnode *pred;
hrtime_t start_time = START_TIME;

// try to reclaim position in queue
if (I->status != timedout || I->last_lock != L ||

!compare_and_store(&I->status, timedout, waiting)) {
I->status = waiting;
I->next = 0;
pred = swap(&L->tail, I);

if (!pred) { // lock was free
L->cs_start_time = gethrtime();
return true;

} else pred->next = I;
}

while (1) {
if (I->status == available) {

L->cs_start_time = gethrtime();
return 1;

} else if (I->status == failed) {
if (CUR_TIME - L->cs_start_time > MAX_CS_TIME)

yield();
I->last_lock = L;
return false;

}

Listing 2.11: Source code for the MCS-TP lock.

58

while (I->status == waiting) {
I->time = gethrtime();
if (CUR_TIME - start_time <= T)

continue;
if (!compare_and_store(&I->status,

waiting, timedout)) {
I->last_lock = L;
break;

}
if (CUR_TIME - L->cs_start_time > MAX_CS_TIME)

yield();
return false;

}
}

}

void mcstp_release (mcstp_lock *L, mcstp_qnode *I)
{

int scanned_nodes = 0;
mcstp_qnode *succ, *curr = I, *last = NULL;

while (1) {
succ = curr->next;
if (!succ) {

if (compare_and_store(&L->tail, curr, 0)) {
curr->status = failed;
return; // I was last in line.

}
while (!succ)

succ = curr->next;
}
if (++scanned_nodes < MAX_THREADS)

curr->status = failed;
else if (!last)

last = curr; // handle treadmill case
if (succ->status == waiting) {

hrtime_t succ_time = succ->time;
if ((CUR_TIME - succ_time <= UPDATE_DELAY) &&

compare_and_store(&succ->status, waiting,
available)) {

for (; last && last != curr; last = last->next)
last->status = failed;

return;
}

}
curr = succ;

}
}

Listing 2.11: (continued)

59

X status of "PRED"(predcessor’s node)

x status of "ME"(my node)

x y compare−and−swap from x to y

status from "t" to "w" only
if my status is "w"

wt w compare−and−swap PRED’s

A, a: available
H, h: holding

W, w: waiting
R, r: removed
T, t: transient

L,l: left
w1: waiting status with my pred ptr
w2: waiting status with my pred’s pred ptr

Legend

W

T

L

t r

w2w1

w2w1

R reclaim_exit

reclaim(PRED)

PRED=ME−>prev

timeout_exit

failure_exit

failure_exit

H
reload PRED’s
status and switch:
get_status(PRED)

update my time

Insert ME in lock queue
ME= allocate_node();

w h reclaim(PRED)

failure_exit

N

Nww tY

N

N N

patient?
Am I still Y

N

Is PRED
active?

New Attempt

N

A return
success

Y

Y

Y

Y

Y

reclaim(me)reclaim_exit

failure_exit

timeout_exit

Yield my processor

lw

t l

Y

N
Y

N

CS
is active?

Y

N
return
failure

Figure 2.6: Control flow for the CLH-TP lock

and MCS-NB try locks suggests that it would be very difficult to add to MCS-TP.

Source code for the CLH-TP lock appears in Listing 2.13. (Although the code shown

uses a compare and swap operation, this is trivial to emulate via load linked/

store conditional; only load linked/store conditional – on an em-

ulation of it via CAS – is needed to implement this algorithm.) Figure 2.6 provides an

overview of control flow for the CLH-TP algorithm.

We use low-order bits in a CLH-TP node’s prev pointer to store the node’s state,

allowing us to modify the state and the pointer together, atomically. If prev is a valid

pointer, its two lowest-order bits specify one of three states: waiting, transient,

and left. Alternatively, prev can be a nil pointer with low-order bits set to indicate

three more states: available, holding, and removed. Figure 2.7 shows the state

transition diagram for CLH-TP queue nodes.

In each lock acquisition attempt, thread B dynamically allocates a new node Y

and links it to predecessor X as before. While waiting, B handles three events. The

simplest occurs when X’s state changes to available; B atomically updates Y ’s

60

waiting

holding

finish
critical section

reclaimed

reclaimed

removed

driven by successordriven by self

left

available

New Attempt

reclaimedtransient

return failure

return failure

return success critical section

Figure 2.7: CLH-TP queue node state transitions

state to holding to claim the lock. The other two are described in the paragraphs

below.

The second event occurs when B sees that X has been marked left (implying it

has timed out), or that its timestamp has grown stale (implying it has been preempted).

If X is marked left, B knows that A has left the queue and will no longer access X .

B therefore links X out of the queue and reclaims it. If X is still marked waiting, but

A’s timestamp is stale, B performs a three-step removal sequence to unlink A’s node

from the queue. First, B atomically changes X’s state from waiting to transi-

ent, to prevent A from acquiring the lock or from reclaiming and reusing X if it is

removed from the queue by some successor of B (more on this below). Second, B

removes X from the queue, simultaneously verifying that B’s own state is still wait-

ing (since Y ’s prev pointer and state share a word, this is a single compare and

swap). Hereafter, X is no longer visible to other threads in the queue, and B spins

on A’s predecessor’s node. Finally, B marks X as safe for reclamation by changing its

state from transient to removed.

The third event occurs when B times out or when it notices that Y is transient.

In either case, it attempts to atomically change Y ’s state from transient or wait-

61

int cas_w_waiting(node_t * volatile *addr,
unsigned long oldv,
unsigned long newv,
node_t * volatile *me)

{
do {

unsigned long tmp = LL(addr);
if (tmp != oldv || !is_waiting(me))

return 0;
} while(!SC(addr, newv));
return 1;

}

Listing 2.12: Conditional updates in CLH-TP

ing to left. If the attempt (a compare and swap) succeeds, B has delegated

responsibility for reclamation of Y to a successor. Otherwise, B has been removed

from the queue and must reclaim its own node. In both cases, whichever of B and

its successor is the last to notice that Y has been removed from the queue handles the

memory reclamation; this simplifies memory management.

A corner case occurs when, after B marks X transient, Y is marked transi-

ent by some successor thread C before B removes X from the queue. In this case, B

leaves X for C to clean up; C recognizes this case by finding X already transient.

The need for the transient state derives from a race condition in which B de-

cides to remove X from the queue but is preempted before actually doing so. While

B is not running, successor C may remove both Y and X from the queue, and A may

reuse its node in this or another queue. When B resumes running, we must ensure that

it does not modify (the new instance of) A. The transient state allows us to do

so, if we can update X’s state and verify that Y is still waiting as a single atomic

operation. The custom atomic construction shown in Figure 2.12 implements this op-

eration, assuming the availability of load linked/store conditional. Since

C must have removed Y before modifying X , if B reads X’s state before C changes

Y , then the value read must be X’s state from before C changed X . Thereafter, if X is

changed, the store-conditional will force B to recheck Y . Alternative solutions might

rely on a tracing garbage collector (which would decline to recycle X as long as B has

62

a reference), on RCU-style grace periods [MAK01], or on manual reference-tracking

methodologies [HLM02; Mic04].

2.5.3 Time and Space Bounds

This subsection provides an informal analysis of time and space requirements for

the MCS-TP and CLH-TP locks. Figure 2.8 provides an overview summary of worst-

and common case processor time steps for timing out and lock handoff, as well as

per-lock queue length and total memory requirements.

MCS-TP bounds

We first consider space management in MCS-TP. Because no thread can ever have

more than one node in the queue, the queue length is trivially linear in the number

of threads T . A thread cannot reuse a node for another lock until that node is first

removed from the previous lock’s queue. This gives a worst-case space consumption for

L locks of O(T×L). However, since lock holders clean up timed-out nodes during lock

handoff, a thread will rarely have more than a small constant number of allocated nodes;

this suggests that the space requirement will be closer to O(T +L) in the common case.

To time out, a waiting thread must update its node’s state from waiting to left.

It must also reclaim its node if removed from the queue by the lock holder. Both oper-

ations require a constant number of steps, so the overall time requirement for leaving is

O(1).

As discussed in Section 2.5.1, the MCS-TP lock holder removes at most T nodes

from the queue before switching to a scan. Since each removal and each step of the

scan can be done in O(1) time, the worst case is that the lock holder removes T nodes

and then scans through T more timed-out nodes before reaching the end of the queue. It

then marks the queue empty and re-traverses the (former) queue to remove each node,

63

// atomic operation which saves the old value of
// swap_addr in set_addr, and swaps the new_ptr
// into the swap_addr.
bool clhtp_swap_and_set(

clhtp_qnode *volatile *swap_addr,
clhtp_qnode *new_ptr,
clhtp_qnode *volatile *set_addr)

{
unsigned long pred;
repeat

pred = LL(swap_addr);
(*set_addr) = (clhtp_qnode *) pred;

while (0 == SC(swap_addr, new_ptr));
return (clhtp_qnode *)pred;

}

// atomic compare and swap the tag in the pointer.
bool clhtp_tag_cas_bool(clhtp_qnode * volatile * p,

unsigned long oldtag, unsigned long newtag)
{

unsigned long oldv, newv;
do {

oldv = LL(p);
if (get_tagbits(oldv) != oldtag)

return false;
newv = replace_tag(oldv, newtag);

} while (!SC(p, newv));
return true;

}

bool clhtp_rcas_bool(
clhtp_qnode *volatile *stateptr,
clhtp_qnode *volatile *ptr,
clhtp_qnode *oldp,
unsigned long newv)

{
unsigned long oldv = (unsigned long)oldp;
do {

unsigned long tmp = LL(ptr);
if (get_tagbits(*stateptr) != WAITING)

return false;
if (tmp != oldv)

return true;
} while (0 == SC(ptr, newv));

return true;
}

void clhtp_failure_epilogue(
clhtp_lock *L, clhtp_qnode *I)

{
if (I->prev == SELFRC ||

!clhtp_tag_cas_bool(&I->prev, PTIMEOUT, SUCRC)) {
free_clhtp_qnode(I);

}
}

Listing 2.13: Source code for the CLH-TP lock.

64

void clhtp_success_epilogue(clhtp_lock *L,
clhtp_qnode *I, clhtp_qnode *pred)

{
L->lock_holder = I;
L->cs_start_time = CUR_TIME;
free_clhtp_qnode(pred);

}

bool clhtp_acquire(clhtp_lock *L, hrtime_t T)
{

clhtp_qnode *I = alloc_qnode();
clhtp_qnode *pred;

I->time = CUR_TIME;
pred = swap_and_set(&L->tail, I, &I->prev);
if (pred->prev == AVAILABLE) {

if (compare_and_store(&I->prev, pred, HOLDING)) {
clhtp_success_epilogue(L, I, pred);
return true;

} else {
clhtp_failure_epilogue(L, I);
if (CUR_TIME - L->cs_start_time > MAX_CSTICKS)

yield();
return false;

}
}

bool result = clhtp_acquire_slow_path(L, T, I, pred);
if (!result)

if (CUR_TIME - L->cs_start_time > MAX_CSTICKS)
yield();

return result;
}

bool clhtp_acquire_slow_path(clhtp_lock *L, hrtime_t T,
clhtp_qnode * I,clhtp_qnode * pred)

{
hrtime_t my_start_time, current, pred_time;

my_start_time = I->time;
pred_time = pred->time;

while (true) {
clhtp_qnode *pred_pred;
current = gethrtime();
I->time = current;
pred_pred = pred->prev;

if (pred_pred == AVAILABLE) {
if (compare_and_store(&I->prev, pred, HOLDING))

goto label_success;
goto label_failure;

} else if (pred_pred == SELFRC)
goto label_self_rc;

else if (pred_pred == HOLDING or INITIAL)
goto check_self;

Listing 2.13: (continued)

65

else {
clhtp_qnode *pp_ptr = get_ptr(pred_pred);
unsigned int pred_tag = get_tagbits(pred_pred);

if (pred_tag == SUCRC) {
if (!CAS_BOOL(&I->prev, pred, pp_ptr))

goto label_failure;
free_clhtp_qnode(pred);
pred = pp_ptr;
pred_time = pred->time;
continue;

}

else if (pred_tag == PTIMEOUT) {
if (!compare_and_store(&I->prev, pred, pp_ptr))

goto label_failure;
if (!compare_and_store(&pred->prev,

pred_pred, SELFRC))
free_clhtp_qnode(pred);

pred = pp_ptr;
pred_time = pred->time;
continue;

}

else if (pred_tag == WAITING) {
if (CUR_TIME - pred_time - UPDATE_DELAY >

current) {
if (pred->time != pred_time) {

pred_time = pred->time;
continue;

} else if (clhtp_rcas_bool(
&I->prev, &pred->prev, pred_pred,
tagged_wptr(pred_pred, PTIMEOUT)))
continue;

}
}

}

check_self:
unsigned int my_tag;
pred = I->prev;
if (pred == SELFRC)

goto label_self_rc;
my_tag = get_tagbits(pred);
if (my_tag == PTIMEOUT)

goto label_failure;
else if (my_tag == WAITING) {

if (CUR_TIME - my_start_time - T > current)
goto label_self_timeout;

}
}

Listing 2.13: (continued)

66

label_success:
clhtp_success_epilogue(L, I, pred);
return true;

label_failure:
label_self_rc:

clhtp_failure_epilogue(L, I);
return false;

label_self_timeout:
if (!compare_and_store(&I->prev, pred,

tagged_wptr(pred, SUCRC))) {
clhtp_failure_epilogue(L, I);
return false;

}
}

void clhtp_try_release(clhtp_lock *L)
{

clhtp_qnode *I = L->lock_holder;
I->prev = AVAILABLE;

}

Listing 2.13: (continued)

for a total of O(T) steps. In the common case a thread’s immediate successor is not

preempted, allowing handoff in O(1) steps.

CLH-TP bounds

In our implementation, the CLH-TP lock uses a timeout protocol in which it stops

publishing updated timestamps kµs before its patience has elapsed, where k is the stal-

eness bound for deciding that a thread has been preempted. 4 Further, so long as a

thread’s node remains waiting, the thread continues to remove timed-out and pre-

empted predecessors. In particular, a thread only checks to see if it has timed out if its

predecessor is active.

A consequence of this approach is that thread A cannot time out before its successor

B has had a chance to remove it for inactivity. If B is itself preempted, then any

successor active before it is rescheduled will remove B’s and then A’s node; otherwise,

4For best performance, kµs should be greater than the round-trip time for a memory bus or inter-
connect transaction on the target machine, plus the maximal pairwise clock skew observable between
processors.

67

Worst-case Common case
MCS-TP CLH-TP (both locks)

Timeout O(1) O(T) O(1)

Lock handoff O(T) O(1) O(1)

Queue length O(T) O(T 2) O(T)

Total space O(T × L) O(T 2 × L) O(T + L)

Figure 2.8: Time/space bounds for TP locks: T threads and L locks

B will remove A’s node once rescheduled. This in turn implies that any pair of nodes

in the queue abandoned by the same thread have at least one node between them that

belongs to a thread that has not timed out. In the worst case, T − 1 nodes precede the

first, suspended, “live” waiter, T − 2 precede the next, and so on, for a total of O(T 2)

total nodes in the queue.

As in MCS-TP, removing a single predecessor can be performed in O(1) steps. As

the queue length is bounded, so, too, is the timeout sequence. In contrast to MCS-

TP, successors in CLH-TP are responsible for actively claiming the lock; a lock holder

simply updates its state to show that it is no longer using the lock, clearly an O(1)

operation.

Since all waiting threads concurrently remove inactive nodes, it is unlikely that an

inactive node will remain in the queue for long. In the common case, then, the queue

length is close to the total number of threads currently contending for the lock. Since

a thread can only contend for one lock at a time, we can expect common case space

O(T + L). Similarly, the average timeout delay is O(1) if most nodes in the queue are

actively waiting.

2.5.4 Scheduling and Preemption

TP locks publish timestamps to enable a heuristic that guesses whether the lock

holder or a waiting thread is preempted. This heuristic admits a race condition wherein

68

a thread’s timestamp is polled just before it is descheduled. In this case, the poller will

mistakenly assume the thread to be active. In practice (see Section 2.6), the timing

window is too narrow to have a noticeable impact on performance. Nevertheless it

is instructive to consider modified TP locks that use a stronger scheduler interface to

completely eliminate preemption vulnerabilities.

Extending previous work [KWS97], we distinguish three levels of APIs for user-

level feedback to the kernel scheduler implementation:

(I) Critical section protection (CSP): A thread can bracket a block of code to request

that it not be preempted while executing inside.

(II) Runtime state check: A thread can query the status (running, preempted) of other

threads.

(III) Directed preemption avoidance: A thread can ask the scheduler not to preempt a

specified peer thread.

Several commercial operating systems, including Solaris and AIX 5L (which we use

in our experiments [IBM01]) provide Level I APIs. Level II and III APIs are generally

confined to research systems [ABL92; ELS88; MSL91]. The Mach scheduler [Bla90]

provides a variant of the Level III API that includes a directed yield of the processor to

a specified thread.

For TATAS locks, a Level I API is sufficient [KWS97] to create a variant that avoids

preemption during the critical section of a lock holder. By comparison, a thread con-

tending for a (non-timeout-capable) queue-based lock is sensitive to preemption in two

additional timing windows—windows not addressed by the preemption tolerance of

the MCS-TP and CLH-TP locks. The first window occurs in MCS-style locks between

swapping a node into the queue’s tail and connecting links with the remainder of the

queue. The second occurs between when a thread is granted the lock and when it starts

69

actually using the lock. We say that a lock is preemption-safe only if it prevents all such

timing windows.

Previous work proposed two algorithms for preemption-safe MCS variants: the

Handshaking and SmartQ locks [KWS97]. Both require a Level I API to prevent pre-

emption in the critical section and in the first (linking-in) window described above. For

the second (lock-passing) window, the lock holder in the Handshaking lock exchanges

messages with its successor to confirm that it has invoked the Level I API. In prac-

tice, this transaction has undesirably high overhead (two additional remote coherence

misses on the critical path), so SmartQ employs Level II and III APIs to replace it. We

characterize the preemption safety of the Handshaking lock as heuristic, in the sense

that a thread guesses the status of a successor based on the speed of its response, and

may err on the side of withholding the lock if, for example, the successor’s processor

is momentarily busy handling an interrupt. By contrast, the preemption safety of the

SmartQ lock is precise.

Our MCS-TP lock uses a one-way handoff transaction similar to, but simpler and

faster than, that of the Handshaking lock. However, because of the reduced commu-

nication, the lock cannot be made preemption safe with a Level I API. By contrast,

a preemption-safe CLH variant can be built efficiently from the CLH-TP lock. The

tail-to-head direction of linking eliminates the first preemption window. The second

is readily addressed if a thread invokes the Level I API when it sees the lock is avail-

able, but before updating its state to grab the lock. If the lock holder grants the lock to

a preempted thread, the first active waiter to remove all inactive nodes between itself

and the queue’s head will get the lock. We call this clock CLH-CSP (critical section

protection). Like the Handshaking lock, it is heuristically preemption safe. For precise

preemption safety, one can use a Level II API for preemption monitoring (CLH-PM).

Note that TATAS locks require nothing more than a Level I API for (precise) pre-

emption safety. The properties of the various lock variants are summarized in Fig-

ure 2.9. The differences among families (TATAS, MCS, CLH) stem mainly from the

70

This table lists minimum requirements for implementing NB/PT/PS capabilities. The Handshaking and
SmartQ locks are from Kontothanassis et al. [KWS97]. “CSP” indicates use of a Level I API for critical
section protection; “PM” indicates preemption monitoring with a Level II API; “try” indicates a timeout-
capable lock. NB: Non-Blocking; PT: Preemption-Tolerant; PS: Preemption-Safe; —: unnecessary.

Support TATAS MCS CLH
Atomic
instructions

PT NB-try
(TAS-yield)

standard
lock (MCS)

standard
lock
(CLH)

NB timeout
algorithms

— NB-try
(MCS-NB)

NB-try
(CLH-NB)

TP
algorithms

— PT NB-try
(MCS-TP)

PT NB-try
(CLH-TP)

Level I API precise PS
(TAS-CSP)

heuristic
PS (Hand-
shaking)

heuristic
PS
(CLH-CSP)

Level II
API

— — precise PS
(CLH-PM)

Level III
API

— precise PS
(SmartQ)

—

Figure 2.9: Preemption tolerance in families of locks (using the classification from
Section 2.5.4 for required kernel support)

style of lock transfer. In TATAS locks, the opportunity to acquire an available lock is

extended to all comers. In the MCS locks, only the current lock holder can determine

the next lock holder. In the CLH locks, waiting threads can pass preempted peers to

grab an available lock, though they cannot bypass active peers.

2.6 Experimental Results

Using the atomic operations available on three different platforms, we have imple-

mented nine different lock algorithms: TATAS, TATAS-try, CLH, CLH-NUMA, CLH-

try, CLH-NB-try [Sco02], MCS, MCS-try, and MCS-NB-try. We have tested on large

multiprocessors based on three different processor architectures: Sun E25000 and Sun-

Fire 6800 servers based on the SPARC V9 instruction set, an IBM p690 based on the

Motorola Power4 instruction set, and a Cray T3E based on the Alpha 21264 instruction

set and Cray shmem libraries. On the IBM p690, we have additionally implemented

71

the CLH-TP and MCS-TP locks (these locks require access to the load linked/

store conditional instruction pair, so require additional software infrastructure

on the other platforms). Our main test employs a microbenchmark consisting of a tight

loop containing a single acquire/release pair and optional timed “busywork” inside and

outside the critical section. In this benchmark, a “fuzz factor” optionally adds a small

random factor to the busywork and to the patience used for try locks.

Acquire and release operations are implemented as in-line subroutines wher-

ever feasible. Specifically: For CLH, CLH-NUMA, and MCS we in-line both acquire

and release. For TATAS, TATAS-try, and CLH-try we in-line release and the

“fast path” of acquire (with an embedded call to a true subroutine if the lock is

not immediately available). For MCS-try we in-line fast paths of both acquire and

release. For CLH-NB-try, MCS-NB-try, CLH-TP, and MCS-TP, the need for dy-

namic memory allocation forces us to implement both acquire and release as

true subroutines.

We present performance results from a diverse collection of machines: a 144-way

Sun E25000 multiprocessor with 1.35 GHz UltraSPARC III processors, a 32-way IBM

p690 multiprocessor with 1.3 GHz Power4 processors, and a 512-way Cray T3E with

600 MHz Alpha 21264 processors. We additionally present limited results from a 64-

way Sun E10000 and a 16-way SunFire 6800. In each case, assignment of threads to

processors was left to the operating system, and the machine was otherwise unloaded.

Code was compiled with the maximum level of optimization supported by the various

compilers, but was not otherwise hand-tuned.

2.6.1 Single-processor results

We can obtain an estimate of lock overhead in the absence of contention by running

the microbenchmark on a single processor, and then subtracting out the loop overhead.

Results, calculated in hardware cycles, appear in Figure 2.10; these were collected on

72

a 64-processor Sun Enterprise 10000. In an attempt to avoid perturbation due to other

activity on the machine (such as invocations of kernel daemons), we have reported the

minima over a series of 8 runs. Data in this chart is reproduced from Scott’s 2002

PODC paper [Sco02]; the newer version of MCS-NB-try that we present here did not

exist yet. The times presented for the CLH-NB-try and MCS-NB-try locks include

dynamic allocation and deallocation of queue nodes.

cycles atomic ops reads writes
TATAS 19 1 0 1
TATAS-try 19 1 0 1
CLH 35 1 3 4
CLH-try 67 2 3 3
CLH-NB try 75 2 3 4
MCS 59 2 2 1
MCS-try 59 2 2 1
MCS-NB-try (original) 91 3 3 4
MCS-NB-try (current) na 4 2 3

Figure 2.10: Single-processor spin-lock overhead: Sun E10000

As one might expect, none of the queue-based locks is able to improve upon the time

of the TATAS lock. The plain CLH lock, which in our early studies was able to match

TATAS, now performs almost twice as slowly, due to the increasingly disparity in run-

time overhead between atomic and regular instructions. The relatively high overhead

we see for nonblocking timeout locks reflects the lack of inlined acquire and release

functions.

The importance of single-processor overhead can be expected to vary from applica-

tion to application. It may be significant in a database system that makes heavy use of

locks, so long as most threads inspect independent data, keeping lock contention low.

For large scientific applications, on the other hand, Kumar et al. [KJC99] report that

single-processor overhead—lock overhead in general—is dwarfed by waiting time at

contended locks, and is therefore not a significant concern.

73

Single-processor Overhead - 16-way SunFire 6800

0

100

200

300

400

500

600

700

800

900

1000
ns

CLH CLH-NUMA CLH-try MCS-NB-try CLH-NB-try MCS MCS-try TATAS TATAS-try

Figure 2.11: Single processor lock overhead on a SunFire 6800

Although the single-processor results in Figure 2.10 show wide disparity, this is

largely because all non-lock overhead has been removed. By way of comparison, we

present in Figure 2.11 single-processor overhead in combination with modest critical

and non-critical sections (25 and 50 repetitions of an idle loop, respectively) on our Sun-

Fire 6800. The same general performance trends manifest as before, but the differences

in magnitude are greatly diminished. That the performance advantage of the TATAS

lock is considerably reduced relative to the E10000 results is probably attributable to

the deprecation of the test and set instruction that we used in the SPARC v9 ar-

chitecture.

74

2.6.2 Overhead on multiple processors

We can obtain an estimate of the time required to pass a lock from one processor to

another by running our microbenchmark on a large collection of processors. This pass-

ing time is not the same as total lock overhead: As discussed by Magnussen, Landin,

and Hagersten [MLH94], queue-based locks tend toward heavily pipelined execution,

in which the initial cost of entering the queue and the final cost of leaving it are over-

lapped with the critical sections of other processors.

Figure 2.12 shows lock behaviors on the Sun E25000, with timeout threshold (pa-

tience) of 240µs, non-critical busywork corresponding to 50 iterations of an empty

loop, and critical section busywork corresponding to 25 iterations of the loop.

With this patience level, the various try locks exhibit distinctly bimodal behavior.

Up through 68 active processors, timeout almost never occurs, and lock behavior mim-

ics that of the non-try CLH and MCS locks. With more active processors, timeouts

begin to occur.

For higher processor counts, as for lower patience levels, the chance of a processor

getting a lock is primarily a function of the number of processors that are in the queue

ahead of it minus the number of those that time out and leave the queue before obtaining

the lock. As is evident in these graphs, when patience is insufficient, this chance drops

off sharply. The average time per try also drops, because giving up is cheaper than

waiting to acquire a lock.

Comparing individual locks, we see that the best performance up through 12 pro-

cessors is obtained with the TATAS locks, though the gap is fairly small. Thereafter,

MCS and CLH give roughly equivalent performance, with CLH-try close behind. CLH-

NUMA and the remaining try locks all cluster just behind. Finally, the TATAS-try and

TATAS locks display a considerable performance penalty at these processor counts.

(The poor showing of CLH-NB-try at these processor counts is an artifact of a bug that

we were unable to track down before losing access to the test machine.)

75

ns/t ry - Pat ience 240µs [144-way E25K]

0

2000

4000

6000

8000

10000

12000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

12
4

13
2

14
0

Threads

na
no

se
co

nd
s

CLH-NB-try TATAS TATAS-try CLH-NUMA CLH

MCS MCS-NB-try MCS-try CLH-try

Acq% - Pat ience 240µs [144-way E25K]

0

20

40

60

80

100

120

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

12
4

13
2

14
0

Threads

na
no

se
co

nd
s

CLH-try MCS-NB-try MCS-try CLH-NB-try TATAS-try

Figure 2.12: Queue-based lock performance: 144-processor Sun E25000. Microbench-
mark net iteration time (top) and success rate (bottom) with patience 240µ s, non-
critical busywork of 50 repetitions of an idle loop, and critical busywork of 25 repe-
titions of an idle loop

76

The tradeoffs among MCS-NB-try, MCS-try, and plain MCS are as expected: At

the cost of a higher average iteration time (per attempt), the plain MCS lock always

manages to successfully acquire the lock. At the cost of greater complexity, the MCS-

try lock provides the option of timing out. Dynamic allocation of queue nodes incurs

a small amount of additional overhead in the MCS-NB-try lock. Similar tradeoffs hold

among the CLH, CLH=try, and CLH-NB-try locks.

The tradeoffs between try locks and TATAS are also interesting. While iteration

time is consistently higher for the queue-based locks, the acquisition (success) rate de-

pends critically on the ratio between patience and the level of competition for the lock.

When patience is high, relative to competition, the queue-based locks are successful all

the time. Once the expected wait time exceeds the timeout interval in the queue-based

locks, however, the TATAS lock displays a higher acquisition rate. In these executions,

however, the same processor tends to repeatedly reacquire a TATAS lock; the queue-

based locks are much more consistently fair.

Figure 2.13 shows lock behaviors on the Cray T3E, with patience of 250µs, non-

critical busywork corresponding to 50 iterations of an empty loop), and critical section

busywork corresponding to 25 iterations of the loop. Figure 2.14 shows that (with suffi-

cient patience of 750µs) the locks scale well to the full extent of the Cray machine. (The

gradual increase in acquisition time reflects the increasing diameter of the hypertorus

interconnect between processors.)

Where the E25000 shows relatively little difference between the MCS and CLH

lock families, the Cray T3E results are more pronounced. For example, the plain MCS

lock is twice as fast as the plain CLH. This is because the T3E, while cache-coherent,

does not cache remote memory locations. 5 Hence, locks in the MCS family, which

5In fact, by default, pointers on the Cray T3E refer explicitly to memory in the local node. Porting
the various locks to it required creating higher-level pointers that added information about the host node,
and implementing a “portability layer” that invoked calls to Cray’s shmem libraries with these global
pointers. We were fortunate that the addressing limits of the Alpha processors left room for us to steal
enough bits to represent an operand node.

77

ns/t ry - Pat ience 250µs [512-way Cray T3E]

0

200

400

600

800

1000

1200

1400

1600

16 48 80 11
2

14
4

17
6

20
8

24
0

27
2

30
4

33
6

36
8

40
0

43
2

46
4

49
6

Threads

CLH-NB-try MCS-NB-try Cray shmem lock CLH

CLH-try CLH-NUMA MCS-try TATAS

TATAS-try MCS

Acq % - Pat ience 250µs [512-way Cray T3E]

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Threads

MCS-try CLH-try CLH-NB-try MCS-NB-try TATAS-try

Figure 2.13: Queue-based lock performance: 512-processor Cray T3E. Microbench-
mark net iteration time (top) and success rate (bottom) with patience 250µ s, non-
critical busywork of 50 repetitions of an idle loop, and critical busywork of 25 repe-
titions of an idle loop

78

ns/succ - Pat ience 750µs [512-way Cray T3E]

0
200
400
600
800

1000
1200
1400
1600
1800
2000

16 48 80 11
2

14
4

17
6

20
8

24
0

27
2

30
4

33
6

36
8

40
0

43
2

46
4

49
6

Threads

CLH-NB-try MCS-NB-try Cray shmem lock CLH

CLH-try CLH-NUMA MCS-try TATAS-try

TATAS MCS

Figure 2.14: Scalability of queue-based locks on the Cray T3E at patience 750µ s.

arrange to spin on a memory location local to the waiting processor, incur far less

interconnect traffic and outperform their CLH counterparts by considerable margins.

Given this characterization, it seems surprising that Cray’s default shmem lock appears

to be based on an algorithm that mirrors the performance of the CLH algorithm.

2.6.3 Adding preemption

Following Scott’s example [Sco02], we present results on a heavily multiprogrammed

system: up to 64 threads on the 16-processor SunFire 6800. By increasing the total

number of threads, the various windows of preemption vulnerability discussed in Sec-

tion 2.5 – the critical section, in the queue, during timeout – are increasingly likely to be

hit; not surprisingly, the nonblocking timeout locks give far better preemption tolerance

than do their blocking-timeout counterparts.

79

ns/t ry - Pat ience 15µs [16-way SunFire 6800]

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10 12 14 16 20 24 28 32 36 40 44 48 52 56 60 64

threads

ns

CLH-try MCS-try MCS-NB-try CLH-NB-try

ns/t ry - Pat ience 24µs [16-way SunFire 6800]

0

2000

4000

6000

8000

10000

12000

14000

16000

2 4 6 8 10 12 14 16 20 24 28 32 36 40 44 48 52 56 60 64

threads

ns

CLH-try MCS-try MCS-NB-try CLH-NB-try

Figure 2.15: The impact of preemption in queue-based locks on a 16-processor SunFire
6800: Acquirable (top) and unacquirable (bottom) locks.

80

Figure 2.15 plots iteration times for our preemption sensitivity experiment. Results

were averaged over three runs. As can be clearly seen, the cumulative effect of hitting

various windows of preemption vulnerability directly affects the time overhead spent

on each attempt to acquire the lock; locks with nonblocking timeout suffer from fewer

such windows and thus maintain better performance.

2.6.4 Time-published locks

Although nonblocking timeout helps get threads out of the queue for a lock, it does

not tend to improve overall lock utilization with high levels of preemption. As discussed

in Section 2.5, our TP locks attack the core of this problem. We tested these TP locks on

an IBM pSeries 690 (Regatta) multiprocessor. For comparison purposes, we included

a range of user-level spin locks: TATAS, MCS, CLH, MCS-NB, and CLH-NB. We

also tested spin-then-yield variants [KLM91] of each lock in which threads yield the

processors after exceeding a wait threshold.

Finally, we tested preemption-safe locks dependent on scheduling control APIs:

CLH-CSP, TAS-CSP, Handshaking, CLH-PM, and SmartQ. TAS-CSP and CLH-CSP

are TATAS and CLH locks augmented with critical section protection (the Level I API

discussed in Section 2.5.4). The Handshaking lock [KWS97] also uses CSP. CLH-PM

adds the Level II preemption monitoring API to assess the preemptive state of threads.

The SmartQ lock [KWS97] uses all three API Levels.

Our p690 runs AIX 5.2. Since this system provides no scheduling control APIs, we

have also implemented a synthetic scheduler similar to that used by Kontothanassis et

al. [KWS97]. This scheduler runs on one dedicated processor, and sends Unix signals

to threads on other processors to mark the end of each 20 ms quantum. If the receiving

thread is preemptable, that thread’s signal handler spins in an idle loop to simulate

execution of a compute-bound thread in some other application; otherwise, preemption

81

Figure 2.16: Single-processor spin-lock overhead: IBM p690

is deferred until the thread is preemptable. Our synthetic scheduler implements all three

Levels of scheduling control APIs.

Our microbenchmark application has each thread repeatedly attempt to acquire a

lock. We simulate critical sections (CS) by updating a variable number of cache lines;

we simulate non-critical sections (NCS) by varying the time spent spinning in an idle

loop between acquisitions. We measure the total throughput of lock acquisitions and

we count successful and unsuccessful acquisition attempts, across all threads for one

second, averaging the results of 6 runs. For try locks, we retry unsuccessful acquisitions

immediately, without executing a non-critical section. We use a fixed patience of 50 µs.

Single Thread Performance

Because low overhead is crucial for locks in real systems, we assess it by measur-

ing throughput absent contention with one thread and empty critical and non-critical

sections. We organize the results by lock family in Figure 2.16.

As expected, the TATAS variants are the most efficient for one thread. MCS-NB

has one compare and swap more than the base MCS lock; this appears in its single-

82

thread overhead. Similarly, other differences between locks trace back to the operations

in their acquire and release methods. One difference between the results for this

machine and those for the Sun E10000 in Figure 2.10 is that the CLH and MCS are

comparable in cost on the p690 where MCS was half again as expensive on the Sun.

This suggests that the difference in cost between an atomic instruction and a remote

read that misses in cache is far smaller on the p690 than on the E10000. We note that

time-publishing functionality adds little overhead to locks.

A single-thread atomic update on our p690 takes about 60 ns. Adding additional

threads introduces delays from memory and processor interconnect contention, and

from cache coherence overhead when transferring a cache line between processors. We

have measured overheads for an atomic update at 120 and 420 ns with 2 and 32 threads.

Comparison to User-Level Locks

Under high contention, serialization of critical sections causes application perfor-

mance to depend primarily on the overhead of handing a lock from one thread to the

next; other overheads are typically subsumed by waiting. We present two configura-

tions for critical and non-critical section lengths that are representative of large and

small critical sections.

Our first configuration simulates contention for a small critical section with a 2-

cache-line-update critical section and a 1 µs non-critical section. Figure 2.17 plots

the performance of the user-level locks with a generic kernel interface (no scheduler

control API). Up through 32 threads (our machine size), queue-based locks outperform

TATAS; however, only the TP and TATAS locks maintain throughput in the presence

of preemption. MCS-TP’s overhead increases with the number of preempted threads

because it relies on the lock holder to remove nodes. By contrast, CLH-TP distributes

cleanup work across active threads and keeps throughput more steady. The right-hand

graph in Figure 2.17 shows the percentage of successful lock acquisition attempts for

the try locks. MCS-TP’s increasing handoff time forces its success rate below that

83

Figure 2.17: Queue-based lock performance: IBM p690 (small critical sections).
2 cache line-update critical section (CS); 1 µs non-critical section (NCS).
Critical section service time (top) and success rate (bottom)

84

of CLH-TP as the thread count increases. CLH-NB and MCS-NB drop to almost no

successes due to preemption while waiting in the queue.

Our second configuration uses 40-cache-line-update critical sections and 4 µs non-

critical sections. It models longer operations in which preemption of the lock holder

is more likely. Figure 2.18 shows the behavior of user-level locks with this configu-

ration. That the TP locks outperform TATAS demonstrates the utility of cooperative

yielding for preemption recovery. Moreover, the gap in performance between CLH-TP

and MCS-TP is smaller here than in our first configuration: The relative importance

of removing inactive queue nodes goes down compared to that of recovering from pre-

emption in the critical section.

In Figure 2.18, the success rates for try locks drop off beyond 24 threads. Since

each critical section takes about 2 µs, our 50 µs patience is just enough for a thread to

sit through 25 predecessors. TP locks adapt better to insufficient patience.

One might expect a spin-then-yield policy [KLM91] to allow other locks to match

TP locks in preemption tolerance. In Figure 2.19 we test this hypothesis with a 50 µs

spinning time threshold and a 2 cache line critical section. (Other settings produce sim-

ilar results.) Although yielding improves the throughput of non-TP queue-based locks,

they still run off the top of the graph. TATAS benefits enough to become competitive

with MCS-TP, but CLH-TP still outperforms it. These results confirm that targeted

removal of inactive queue nodes is much more valuable than simple yielding of the

processor.

Comparison to Preemption-Safe Locks

For this section, we used our synthetic scheduler to compare TP and preemption-

safe locks. Results for short critical sections are shown in Figure 2.20, both with (mul-

tiprogrammed mode) and without (dedicated mode) an external 50% load.

85

Figure 2.18: Queue-based lock performance: IBM p690 (large critical sections).
40 cache line CS; 4 µs NCS. Critical section service time (top) and
success rate (bottom)

86

Figure 2.19: TP locks vs. spin-then-yield: 2 cache line CS; 1 µs NCS.
Critical section service time (top) and success rate (bottom)

87

Critical section service time with (top) and without (bottom) 50% load on processors.
Top, the curves of SmartQ and MCS-TP overlap with each other as do those of CLH-CSP and CLH-PM.
Bottom, the close clustering of five curves suggests that they have similar tolerance for preemption.

Figure 2.20: Preemption-safe lock performance (small critical sections): 2 cache line
CS; 1 µs NCS.

88

Overall, TP locks are competitive with preemption-safe locks. The modest increase

in performance gained by locks that use high levels of scheduling control is compar-

atively minor. In dedicated mode, CLH-TP is 8–9% slower than the preemption-safe

CLH variants, but it performs comparably in multiprogrammed mode. MCS-TP closely

matches SmartQ (based on MCS) in both modes. Both TP locks clearly outperform the

Handshaking lock.

In dedicated mode, CLH-TP incurs additional overhead from reading and publish-

ing timestamps. In multiprogrammed mode, however, overhead from the preemption

recovery mechanisms dominates. Since all three CLH variants handle preemption by

removing inactive predecessor nodes from the queue, their performance is very similar.

Among preemption-safe locks, CLH-PM slightly outperforms CLH-CSP because

it can more accurately assess whether threads are preempted. SmartQ significantly

outperforms the Handshaking lock due to the latter’s costly round-trip handshakes and

its use of timeouts to confirm preemption.

Sensitivity to Patience

Timeout patience is an important parameter for try locks. Insufficient patience

yields low success rates and long average critical section service times [Sco02; ScS01].

Conversely, excessive patience can delay a lock’s response to bad scenarios. Our ex-

periments show TP locks to be highly robust to changes in patience. Figure 2.21 shows

the case with a large critical section; for smaller critical sections, the performance is

even better. Overall, TP locks are far less sensitive to tuning of patience than other

locks; with very low patience, the self-timeout and removal behaviors of the locks help

to maintain critical section service time even as the acquisition rate plummets.

89

Figure 2.21: Sensitivity to patience in TP locks: 40 cache line CS; 4 µs NCS.

90

Time and Space Bounds

As a final experiment, we measure the time overhead for removing an inactive node.

On our Power4 p690, we calculate that the MCS-TP lock holder needs about 200–

350 ns to delete each node. Similarly, a waiting thread in CLH-TP needs about 250–

350 ns to delete a predecessor node. By combining these values with our worst-case

analysis for the number of inactive nodes in the lock queues (Section 2.5.3), one can

estimate an upper bound on delay for lock handoff when the holder is not preempted.

In our analysis of the space bounds for the CLH-TP lock (Section 2.5.3) we show

a worst-case bound quadratic in the number of threads, but claim an expected linear

value. Two final tests maximize space consumption to gather empirical evidence for

the expected case. One test maximizes contention via empty critical and non-critical

sections. The other stresses concurrent timeouts and removals by presetting the lock to

held, so that every contending thread times out.

We ran both tests 6 times, for 5 and 10 second runs. We find space consumption to

be very stable over time, getting equivalent results with both test lengths. With patience

as short as 15 µs, the first test consumed at most 77 queue nodes with 32 threads, and at

most 173 nodes with 64 threads. The second test never used more than 64 or 134 nodes

with 32 or 64 threads. Since our allocator always creates a minimum of 2T nodes, 64

and 128 are optimal. The results are far closer to the expected linear than the worst-case

quadratic space bound.

Application results

In a final set of tests we measure the performance of the TP locks on Raytrace and

Barnes, two lock-based benchmarks from the SPLASH-2 suite [ABD92].

Application Features: Raytrace and Barnes spend much time in synchroniza-

tion [KJC99; WOT95]. Raytrace uses no barriers but features high contention on a

91

Figure 2.22: TP Locks: Evaluation with Raytrace and Barnes. Configuration M.N
means M application threads and (32 − M) + N external threads on the 32-way SMP.

small number of locks. Barnes uses limited barriers (17 for our test input) but numer-

ous locks. Both offer reasonable parallel speedup.

Experimental Setup: We test each of the locks in Section 2.6 plus the native

pthread mutex on our p690, averaging results over 6 runs. We choose inputs large

enough to execute for several seconds: 800×800 for Raytrace and 60K particles for

Barnes. We limit testing to 16 threads due to the applications’ limited scalability. Ex-

ternal threads running idle loops generate load and force preemption.

Raytrace: The left side of Figure 2.22 shows results for three preemption tolerant

locks: TAS-yield, MCS-TP and CLH-TP. Other spin locks give similar performance ab-

sent preemption; when preemption is present, non-TP queue-based locks yield horrible

performance (Figures 2.17, 2.18, and 2.19). The pthread mutex lock also scales

very badly; with high lock contention, it can spend 80% of its time in kernel mode.

Running Raytrace with our input size took several hours for 4 threads.

Barnes: Preemption tolerance is less important here than in Raytrace because

Barnes distributes synchronization over a very large number of locks, greatly reducing

the impact of preemption. We demonstrate this by including a highly preemption-

92

sensitive lock, MCS, with our preemption tolerance locks in the right side of Fig-

ure 2.22; MCS “only” doubles its execution time with heavy preemption.

With both benchmarks, we find that our TP locks maintain good throughput and

tolerate preemption well. With Raytrace, MCS-TP in particular yields 8-18% improve-

ment over a yielding TATAS lock with 4 or 8 threads. Barnes is less dependent on lock

performance in that the various preemption-tolerant locks have similar performance.

2.7 Conclusions

We have shown that it is possible, given standard atomic operations, to construct

queue-based locks in which a thread can time out and abandon its attempt to acquire

the lock. Our bounded-space algorithms (MCS-try and CLH-try) guarantee immediate

reclamation of abandoned queue nodes, but require that a departing thread obtain the

explicit cooperation of its neighbors. Our nonblocking timeout algorithm (MCS-NB-

try) greatly improves tolerance for preemption, provided that alternative useful work

exists that can be executed while waiting for the lock holder to resume. Our time-

published algorithms ensure very high levels of throughput even in the presence of pre-

emption, and even when contended locks are on the application’s critical path. We have

argued for the nonblocking timeout and time-published algorithms that large amounts

of space are unlikely to be required in practice, and our experimental results support

this argument.

In the 15 years since Mellor-Crummey and Scott’s original comparison of spin lock

algorithms [MeS91], ratios of single-processor latencies have remained remarkably sta-

ble. On a 16MHz Sequent Symmetry multiprocessor, a TATAS lock without contention

consumed 7µs in 1991. The MCS lock consumed 9µs, a difference of 29%. On a 900

MHz SunFire v880, a TATAS lock without contention takes about 60ns today. The

MCS lock takes about 115ns, a difference of almost 2×. The CLH lock, which was not

93

included in the 1991 study, takes about 75ns, 25% slower than a TATAS lock, but 35%

faster than an MCS lock on a single processor.

With two or more threads competing for access to a lock, the numbers have changed

more significantly over the years. In 1991 the TATAS lock (with backoff) ran slightly

slower than the MCS lock at modest levels of contention. Today it runs in less than a

third of the time of all the queue-based locks. Why then would one consider a queue-

based lock?

The answer is three-fold. First, the apparent speed of TATAS on small numbers

of processors is misleading in our microbenchmarks: Because the lock is accessed in

a tight loop, a single processor is able to reacquire the lock repeatedly, avoiding all

cache misses. In fact, in the entire region in which TATAS locks appear to outperform

queue-based alternatives, the lock is reacquired by the previous lock holder more than

half the time. Second, TATAS does not scale well. With large numbers of processors

attempting to acquire the lock simultaneously, we observe dramatic degradation in the

relative performance of the TATAS lock and queue-based alternatives. Third, even

with patience as high as 2ms—200 times the average lock-passing time—the TATAS

algorithm with timeout fails to acquire the lock about 20% of the time. This failure

rate suggests that a regular TATAS lock (no timeout) will see significant variance in

acquisition times—in other words, significant unfairness. The queue-based locks, by

contrast, guarantee that threads acquire the lock in the order that their requests register

with the lock queue.

For applications that do not have sufficient parallelism to tolerate preemption, we

have demonstrated that published timestamps provide an effective heuristic by which

a thread can accurately guess the scheduling status of its peers, without support from

a nonstandard scheduler API. Empirical tests confirm that our MCS-TP and CLH-TP

locks combine scalability, preemption tolerance, and low observed space overhead with

throughput as high as that of the best previously known solutions. Given the existence

of a low-overhead time-of-day register with low system-wide skew, our results make it

94

feasible, for the first time, to use queue-based locks on multiprogrammed systems with

a standard kernel interface.

As future work, we conjecture that published timestamps can be used to improve

thread interaction in other areas, such as preemption-tolerant barriers, priority-based

lock queuing, dynamic adjustment of the worker pool for bag-of-task applications, and

contention management for nonblocking concurrent algorithms (see Section 4.4). Fi-

nally, we note that we have examined only two points in the design space of TP locks;

other variations may merit consideration.

2.8 Acknowledgments

We are indebted to Vitaly Oratovsky and Michael O’Donnell of Mercury Computer

Corp. for drawing our attention to the subject of queue-based try locks. Mark Hill, Alaa

Alameldeen, and the Computer Sciences Department at the University of Wisconsin–

Madison provided access to a Sun Wildfire machine used for preliminary evaluation

of the MCS-try and CLH-try locks [ScS01]. Victor Luchangco, Paul Martin, Mark

Moir, and Brian Whitney of Sun Microsystems were instrumental in obtaining results

on more recent large-scale Sun machines.

The MCS-try and CLH-try locks were originally designed by Michael L. Scott; my

primary contribution to their development was to run and analyze experiments to assess

their performance characteristics; I also co-developed with Dr. Scott the microbench-

mark test driver and co-designed substantial improvements to the CLH-try lock with

him and with Bijun He (now at Google, Inc.). I also created the extended description

of the MCS-try in Section 2.3. Finally, I designed the new version of MCS-NB-try

presented in Section 2.4, and ported the various locks to the Cray T3E and collected the

results presented in Figures 2.13 and 2.14.

The idea of using time to further reduce windows of preemption vulnerability in

queue-based locks was mine; however it was Bijun He who brought this idea to fruition.

95

I co-designed the time-published locks with her, but she is the one who completed

the implementations, devised the technique used for conditional updates in the CLH-

TP lock presented in Figure 2.12, and collected and graphed the performance results

described in Section 2.6.4.

96

3 Ad Hoc Nonblocking

Synchronization

3.1 Introduction

As discussed in Chapter 1, lock-based implementations of concurrent data struc-

tures come in two flavors: coarse-grained algorithms that do not scale very well; and

fine-grained algorithms for which avoiding deadlock and ensuring correct semantics

require extremely careful protocols. Either category is further subject to a variety

of problems inherent to locking, such as priority inversion or vulnerability to thread

crashes and preemption.

An alternative to lock-based synchronization may be found in nonblocking algo-

rithms. Such algorithms share with fine-grained locking implementations a need for

careful protocols to avoid problems despite a wide range of possible interleavings of

concurrent operations. On the other hand, they are by definition immune to many of

the problems inherent to lock-based synchronization.

Although nonblocking synchronization generally incurs some amount of base-case

overhead, for certain key data structures — stacks [Tre86] and queues [MiS96] in par-

ticular — nonblocking implementations outperform [MiS98] lock-based implementa-

tions.

97

Nonblocking algorithms are notoriously difficult to design and implement. Al-

though this difficulty is partially inherent to asynchronous interleavings due to con-

currency, it may also be ascribed to the many different concerns that must be addressed

in the design process. With lock-free synchronization, for example, one must not only

ensure that the algorithm functions correctly, but also guard against livelock. With wait-

free synchronization one must additionally ensure that every thread makes progress in

bounded time; in general this requires that one “help” conflicting transactions rather

than aborting them.

Obstruction-free concurrent algorithms[HLM03a] lighten the burden by separating

progress from correctness, allowing programmers to address progress as an out-of-

band, orthogonal concern. The core of an obstruction-free algorithm only needs to

guarantee progress when only one thread is running (though other threads may be in

arbitrary states).

Many nonblocking algorithms are known, including implementations of such com-

mon data structures as stacks [Tre86; SuT02; HSY04], queues [Sto92; PLJ94; MiS96;

Val94; SHC00; TsZ01; LaS04; MNS05], deques [ADF00; DFG00; Mic03; HLM03a],

priority queues [ShZ99; SuT03], hash tables [Mic02; ShS03], linked lists [Val95; Har01;

Mic02; HHL05], and skiplists [Pug90]. One common feature shared by all of these al-

gorithms is that every method is total: It has no preconditions that must be satisfied

before it can be executed. In particular, any blocking that a thread might perform by

definition precludes it from being nonblocking. This restriction against any form of

blocking stems both from the nonblocking progress condition definitions and from lin-

earizability theory [HeW90], the primary tool by which designers prove the correctness

of nonblocking algorithms.

In Section 3.2, we introduce a design methodology that allows some blocking in

restricted cases to support concurrent objects with condition synchronization, enabling

the use of linearizability theory for objects with partial methods. This in turn allows

meaningful definitions of the various nonblocking progress conditions with such ob-

98

jects. We then apply these definitions in Section 3.3 to create general lock-free dual

stacks and dual queues, which in turn are building blocks for our lock-free exchangers

(Section 3.4) and synchronous queues (Section 3.5), both of which will appear in the

concurrency package of Java 6.

3.2 Linearizability and Condition Synchronization

3.2.1 Motivation

Since its introduction fifteen years ago, linearizability has become the standard

means of reasoning about the correctness of concurrent objects. Informally, lineariz-

ability “provides the illusion that each operation. . . takes effect instantaneously at some

point between its invocation and its response” [HeW90, abstract]. Linearizability is

“nonblocking” in the sense that it never requires a call to a total method (one whose

precondition is simply true) to wait for the execution of any other method. (Cer-

tain other correctness criteria, such as serializability [Pap79], may require blocking,

e.g. to enforce coherence across a multi-object system.) The fact that it is nonblocking

makes linearizability particularly attractive for reasoning about nonblocking implemen-

tations of concurrent objects, which provide guarantees of various strength regarding

the progress of method calls in practice. In a wait-free implementation, every contend-

ing thread is guaranteed to complete its method call within a bounded number of its

own time steps [Her91]. In a lock-free implementation, some some contending thread

is guaranteed to complete its method call within a bounded number of steps (from any

thread’s point of view) [Her91]. In an obstruction-free implementation, a thread is guar-

anteed to complete its method call within a bounded number of steps in the absence of

contention, i.e. if no other threads execute competing methods concurrently [HLM03a].

These various progress conditions all assume that every method is total. As Herlihy

puts it [Her91, p. 128]:

99

We restrict our attention to objects whose operations are total because it is unclear
how to interpret the wait-free condition for partial operations. For example, the
most natural way to define the effects of a partial deq in a concurrent system is to
have it wait until the queue becomes nonempty, a specification that clearly does
not admit a wait-free implementation.

To avoid this problem the designers of nonblocking data structures typically “totalize”

their methods by returning an error flag whenever the current state of the object does

not admit the method’s intended behavior.

But partial methods are important! Many applications need a dequeue, pop, or

deletemin operation that waits when its structure is empty; these and countless other

examples of condition synchronization are fundamental to concurrent programming.

Given a nonblocking data structure with “totalized” methods, the obvious spin-

based strategy is to embed each call in a loop, and retry until it succeeds. This strategy

has two important drawbacks. First, it introduces unnecessary contention for memory

and communication bandwidth, which may significantly degrade performance, even

with careful backoff. Second, it provides no fairness guarantees.

Consider a total queue whose dequeue method waits until it can return success-

fully, and a sequence of calls by threads A, B, C, and D:

C enqueues a 1
D enqueues a 2
A calls dequeue
A’s call returns the 2
B calls dequeue
B’s call returns the 1

This is clearly a “bad” execution history, because it returns results in the wrong (non-

FIFO) order; it implies an incorrect implementation. The following is clearly a “good”

history:

A calls dequeue
B calls dequeue
C enqueues a 1
D enqueues a 2

100

A’s call returns the 1
B’s call returns the 2

But what about the following:

A calls dequeue
B calls dequeue
C enqueues a 1
D enqueues a 2
B’s call returns the 1
A’s call returns the 2

If the first line is known to have occurred before the second (this may be the case, for

example, if waiting threads can be identified by querying the scheduler, examining a

thread control block, or reading an object-specific flag), then intuition suggests that

while this history returns results in the right order, it returns them to the wrong threads.

If we implement our queue by wrapping the nonblocking “totalized” dequeue in a

loop, then this third, questionable history may certainly occur.

3.2.2 Linearizability

Following Herlihy and Wing [HeW90], a history of an object is a (potentially in-

finite) sequence of method invocation events 〈m(args) t〉 and response (return) events

〈r(val) t〉, where m is the name of a method, r is a return condition (usually “ok”),

and t identifies a thread. An invocation matches the next response in the sequence that

has the same thread id. Together, an invocation and its matching response are called an

operation. The invocation and response of operation o may also be denoted inv(o) and

res(o), respectively. If event e1 precedes event e2 in history H , we write e1 <H e2.

A history is sequential if every response immediately follows its matching invoca-

tion. A non-sequential history is concurrent. A thread subhistory is the subsequence

of a history consisting of all events for a given thread. Two histories are equivalent

if all their thread subhistories are identical. We consider only well-formed concurrent

histories, in which every thread subhistory is sequential, and begins with an invocation.

101

The semantics of an object determine a set of legal sequential histories. In a queue,

for example, items must be inserted and removed in FIFO order. That is, the nth suc-

cessful dequeue in a legal history must return the value inserted by the nth enqueue.

Moreover at any given point the number of prior enqueues must equal or exceed the

number of successful dequeues. To permit dequeue calls to occur at any time (i.e.,

to make dequeue a total method—one whose precondition is simply true), one can

allow unsuccessful dequeues [〈deq() t〉 〈no(⊥) t〉] to appear in the history whenever

the number of prior enqueues equals the number of prior successful dequeues.

A (possibly concurrent) history H induces a partial order ≺H on operations: oi ≺H

oj if res(oi) <H inv(oj). We say that a history H is linearizable if (a) it is equivalent

to some legal sequential history S, and (b) ≺H ⊆≺S . Finally, an object is concurrent

if its operations are linearizable to those of a sequential version.

3.2.3 Extending Linearizability to Objects with Partial Methods

When an object has partial methods, we divide each such method into separate,

first-class request and followup operations, each of which has its own invocation and

response. A total queue, for example, would provide dequeue request and de-

queue followup methods. By analogy with Lamport’s bakery algorithm [Lam74],

the request operation returns a unique ticket (also referred to as a reservation), which is

then passed as an argument to the follow-up method. The follow-up, for its part, returns

either the desired result (if one is matched to the ticket) or, if the method’s precondition

has not yet been satisfied, an error indication.

Given standard definitions of well-formedness, a thread t that wishes to execute a

partial method p must first call p request and then call p followup in a loop until

it succeeds. This is very different from calling a traditional “totalized” method until

it succeeds: Linearization of distinguished request operations is the hook that allows

object semantics to address the order in which pending requests will be fulfilled.

102

As a practical matter, implementations may wish to provide a p demand method

that waits until it can return successfully, and/or a plain p method equivalent to p de-

mand(p request). The obvious implementation of p demand contains a busy-wait

loop, but other implementations are possible. In particular, an implementation may

choose to use scheduler-based synchronization to put t to sleep on a semaphore that

will be signaled when p’s precondition has been met, allowing the processor to be used

for other purposes in the interim. We require that it be possible to provide request and

follow-up methods, as defined herein, with no more than trivial modifications to any

given implementation. The algorithms we present in Section 3.3 provide only a plain p

interface, with internal busy-wait loops.

3.2.4 Contention Freedom

When reasoning about progress, we must deal with the fact that a partial method

may wait for an arbitrary amount of time (perform an arbitrary number of unsuccessful

followups) before its precondition is satisfied. Clearly it is desirable that requests and

follow-ups be nonblocking. But in practice, good system performance will also typi-

cally require that unsuccessful follow-ups not interfere with progress in other threads.

In this spirit, we define a concurrent data structure as contention-free if none of its fol-

lowup operations performs more than a constant number of remote memory accesses

across all unsuccessful invocations with the same request ticket. On a cache-coherent

machine that can cache remote memory locations, an access by thread t within opera-

tion o is said to be remote if it writes to memory that may (in some execution) be read

or written by threads other than t more than a constant number of times between inv(o)

and res(o), or if it reads memory that may (in some execution) be written by threads

other than t more than a constant number of times between inv(o) and res(o). On a

non-cache-coherent machine, an access by thread t is also remote if it refers to memory

that t itself did not allocate. Compared to the local-spin property [MeS91], contention

103

freedom allows operations to block in ways other than busy-wait spinning; in particular,

it allows other actions to be performed while waiting for a request to be satisfied.

3.2.5 Dual Data Structures

Borrowing terminology from the BBN Butterfly Parallel Processor of the early

1980s [BBN86], we define a dual data structure to be any concurrent object that

supports partial methods via the request—followup methodology described in Sec-

tion 3.2.3. By extension, then, a nonblocking dual data structure is simply dual data

structure with nonblocking request and followup operations.

3.3 The Dual Stack and Dual Queue

In this section, we present two sample dual data structures, the dual stack and the

dual queue, that exemplify the benefits inherent to our dual methodology.

3.3.1 Semantics

Dual Stack Semantics

A dual stack DS is an object that supports three operations: push, pop reserve,

and pop followup. The state of a dual stack is a tuple composed from an ordered

sequence of requests (ri), an ordered sequence of data items (vj), and a set of matched

requests (mrk/mvk); DS = 〈〈r0, . . . ri〉, 〈v0, . . . vj〉, {(mr0/mv0), . . . (mrk/mvk)}〉.

The dual stack is initially 〈〈〉, 〈〉, ∅〉; the state transition rules defined below ensure that

at least one of ri and vi is always empty. The operations push, pop reserve, and

pop followup induce the following state transitions on the tuple DS = 〈〈r0, . . . ri〉,

〈v0, . . . vj〉, {(mr0/mv0), . . . (mrk/mvk)}〉, with appropriate return values:

104

• push(vnew): If the list ri is empty, changes DS to be 〈〈〉, 〈vnew, v0, . . . vj〉,

{(mr0/mv0), . . . (mrk/mvk)}〉. Otherwise, it changes DS to be 〈〈r1, . . . ri〉,

〈〉, {(mr0/mv0), . . . (mrk/mvk), (r0/vnew)}〉.

• pop reserve(): If the list vj is empty, changes DS to be 〈〈rnew, r0, . . . ri〉,

〈〉, {(mr0/mv0), . . . (mrk/mvk)}〉, and returns rnew as the reservation (request

ticket) for this operation. Otherwise, it changes DS to be 〈〈〉, 〈v1, . . . vj}〉,

{(mr0/mv0), . . . (mrk/mvk), (mrnew/v0)}〉 and returns mrnew as the reserva-

tion for this operation.

• pop followup(res): If res matches mri in the set of matched requests,

changes DS to 〈〈〉, 〈v0, . . . vj〉, {(mr0/mv0), . . . (mri−1/mvi−1), (mri+1/mvi+1),

(mrk/mvk)}〉. Otherwise, it returns failed and DS is unchanged.

A common shorthand (for programmer convenience) is to partially combine pop re-

serve() and pop followup() into a single pop conditional() operation

that, if the list vj is non-empty, returns the result of pop followup(pop reserve());

and otherwise returns the ticket from pop reserve().

A dual stack has correct LIFO semantics if the following requirements are met for

all dual stack operations: 1

1. If op is a pop followup that returns item i, then i was previously pushed by a

push operation.

2. If op1 is a push operation that pushed a item i to the dual stack and op2 and op3

are pop followup operations that return i, then op2 = op3.

3. If op1 is a pop followup operation that returns item i for the reservation re-

turned by pop reserve operation op2, where i was pushed by push operation

1For simplicity of presentation, we have assumed that all items pushed to the dual stack are unique;
extending these semantics to support item duplication is straightforward if one couples items with the
sequence number of the push operation that placed them in the stack.

105

op3, then equal numbers of push and pop reserve operations completed in

the interval bounded by op2 and op3.

4. If op is a pop followup operation that returns failed for the N th reservation

returned by pop reserve, then either at most (N − 1) push operations have

completed, or at least (K ≥ N + 1) pop reserve operations have completed

and at most (K − 1) push operations have completed.

We claim (proof ommitted) that any dual stack that correctly implements the push,

pop reserve, and pop followup operations will also satisfy these semantics.

In summary, a concurrent dual stack is a dual data structure whose operations are

linearizable [HeW90] to those of the sequential dual stack just defined. The dual stack

we present in Section 3.3.2 is both lock-free and contention-free.

Dual Queue Semantics

A dual queue DQ is an object that supports three operations: enqueue, dequeue

reserve, and dequeue followup. The state of a dual queue is a tuple composed

from an ordered sequence of requests (ri), an ordered sequence of data items (vj), and a

set of matched requests (mrk/mvk); DS = 〈〈r0, . . . ri〉, 〈v0, . . . vj〉, {(mr0/mv0), . . .

(mrk/mvk)}〉. The dual queue is initially 〈〈〉, 〈〉, ∅〉; the state transition rules defined

below ensure that at least one of ri and vi is always empty. The operations enqueue,

dequeue reserve, and dequeue followup induce the following state transi-

tions on the tuple DQ = 〈〈r0, . . . ri〉, 〈v0, . . . vj〉, {(mr0/mv0), . . . (mrk/mvk)}〉,

with appropriate return values:

• enqueue(vnew): If the list ri is empty, changes DQ to be 〈〈〉, 〈v0, . . . vj, vnew〉,

{(mr0/mv0), . . . (mrk/mvk)}〉. Otherwise, it changes DQ to be 〈〈r1, . . . ri〉,

〈〉, {(mr0/mv0), . . . (mrk/mvk), (r0/vnew)}〉.

106

• dequeue reserve(): If the list vj is empty, changes DQ to be 〈〈r0, . . .

ri, rnew〉, 〈〉, {(mr0/mv0), . . . (mrk/mvk)}〉, and returns rnew as the reservation

(request ticket) for this operation. Otherwise, it changes DQ to be 〈〈〉, 〈v1, . . .

vj〉, {(mr0/mv0), . . . (mrk/mvk), (mrnew/v0)}〉 and returns mrnew as the reser-

vation for this operation.

• dequeue followup(res): If res matches mri in the set of matched requests,

changes DQ to 〈〈〉, 〈v0, . . . vj〉, {(mr0/mv0), . . . (mri−1/mvi−1),

(mri+1/mvi+1), (mrk/mvk)}〉. Otherwise, it returns failed and DQ is un-

changed.

A common shorthand (for programmer convenience) is to partially combine de-

queue reserve() and dequeue followup() into a single dequeue con-

ditional() operation that, if the list vj is non-empty, returns the result of dequeue

followup(dequeue reserve()); and otherwise returns the ticket from de-

queue reserve().

A dual queue has correct FIFO semantics if the following requirements are met for

all dual queue operations: 2

1. If op is a dequeue followup that returns item i, then i was previously en-

queued by an enqueue operation.

2. If op1 is an enqueue operation that pushed a item i to the dual queue and op2

and op3 are dequeue followup operations that return i, then op2 = op3.

3. If op is a dequeue followup operation that returns item i for the N th reser-

vation returned by a dequeue reserve operation, then i was previously en-

queued by the N th enqueue operation.

2Again, for simplicity of presentation, we have assumed that all items enqueued in the dual queue
are unique; extending these semantics to support item duplication is straightforward if one couples items
with the sequence number of the enqueue operation that placed them in the queue.

107

4. If op is a dequeue followup operation that returns item i for the N th reser-

vation returned by a dequeue reserve operation, then at least N enqueue

operations have completed.

5. If op is a dequeue followup operation that returns failed for the N th

reservation returned by a dequeue reserve operation, then at most N − 1

enqueue operations have completed.

We claim (proof ommitted) that any dual queue that correctly implements the enqueue,

dequeue reserve, and dequeue followup operations will also satisfy these se-

mantics.

In summary, a concurrent dual queue is a dual data structure whose operations are

linearizable [HeW90] to those of the sequential dual queue just defined. The dual queue

we present in Section 3.3.3 is both lock-free and contention-free.

3.3.2 The Dual Stack

The dual stack is based on the standard lock-free stack of Treiber [Tre86]. So long

as the number of calls to pop does not exceed the number of calls to push, the dual

stack behaves the same as its non-dual cousin. Pseudocode for the dual stack appears

in Listing 3.1.

When the stack is empty, or contains only reservations, the pop method pushes a

reservation, and then spins on the data node field within it. A push method always

pushes a data node. If the previous top node was a reservation, however, the data node

is marked as fulfilling it and the two adjacent nodes “annihilate” each other: Any thread

that finds a filler node and an underlying reservation at the top of the stack attempts to

(a) write the address of the former into the data node field of the latter, and then

(b) pop both nodes from the stack. At any given time, the stack contains either all

reservations, all data, or one datum (a filler node at the top) followed by reservations.

108

Both the head pointer and the next pointers in stack nodes are tagged to indicate

whether the next node in the list is a reservation or a datum and, if the latter, whether

there is a reservation beneath it in the stack. 3 We assume that nodes are word-aligned,

so that these tags can fit in the low-order bits of a pointer. For presentation purposes

the pseudocode assumes that data values are integers, though this could obviously be

changed to any type (including a pointer) that will fit, together with a serial number,

in the target of a double-width CAS (or in a single word on a machine with LL/SC).

To differentiate between the cases where the topmost data node is present to fulfill a

request and where the stack contains all data, pushes for the former case set both the

data and reservation tags; pushes for the latter set only the data tag.

As mentioned in Section 3.2.3 our code provides a single pop method that sub-

sumes the sequence of operations from a pop request through its successful follow-up.

The linearization point in the pop reserve subcomponent of pop, like the lineariza-

tion point in push, is the CAS that modifies the top-of-stack pointer. The linearization

of the pop followup subcomponent is either when the spin is broken by having data

supplied, or immediately after the linearization point of pop reserve, in the case

where data was already present in the stack.

The code for push is lock-free, as is the code for the pop reserve and pop

followup portions of pop. Moreover, the spin in pop (which would comprise the

body of an unsuccessful follow-up operation, if we provided it as a separate method),

is entirely local: It reads only the requester’s own reservation node, which the requester

allocated itself, and which no other thread will write except to terminate the spin. The

dual stack therefore satisfies the conditions listed in Section 3.2.5.

3For languages like Java in which tag bits in pointers are unavailable, we can either use a run-time type
identification (RTTI) mechanism to distinguish between trivial subclasses of a node type (that represent
the bit on or off) or place the bits inside the object itself

109

Though we do not offer a proof, one can analyze the code to confirm that the dual

stack satisfies the LIFO semantics presented in Section 3.3.1: 4 If the number of previ-

ous push operations exceeds the number of previous pop operations, then a new pop

operation p will succeed immediately, and will return the value provided by the most

recent previous push operation h such that the numbers of pushes and pops between

h and p are equal. In a similar fashion, the dual stack satisfies pending requests in

LIFO order: If the number of previous pop operations exceeds the number of previous

push operations, then a push operation h will provide the value to be returned by the

most recent previous pop operation p such that the numbers of pushes and pops that

linearized between p and h are equal.

The spin in pop is terminated by a CAS in some other thread (possibly the fulfilling

thread, possibly a helper) that updates the data node field in the reservation. Once

the fulfilling push has linearized, no thread will be able to make progress until the a

successful pop followup linearizes.

It is tempting to consider a simpler implementation in which the fulfilling thread

pops a reservation from the stack and then writes the fulfilling datum directly into the

reservation. This implementation, however, is not comformant to the dual stack seman-

tics: It admits executions in which the other push operations complete between the pop

and the write. In particular, if the fulfilling thread were to failure or stall subsequent

to popping the reservation but prior to writing the datum, the reservation would no

longer be in the stack and an arbitrary number of additional pop operations (performed

by other threads, and returning subsequently pushed data) could complete before the

requester’s successful pop followup operation. This allows violations of semantic

rules 3 and 4 from Section 3.3.1.

4Strictly speaking, the initial CAS can fail, so no CAS-based stack can offer perfectly LIFO se-
mantics. In this work, we have followed the usual convention of defining semantics relative to the
linearization points for push and pop operations. We define FIFO ordering in queues similarly.

110

struct cptr { // counted pointer
snode *ptr;
int sn;

}; // 64-bit datatype

struct tptr { // tagged pointer
snode *30 ptr;
bool is_request; // tags describe pointed-to node;
bool data_flag; // together mark a filler node

}; // 32-bit datatype

struct ctptr extends tptr { // counted tagged pointer
int sn;

}; // 64-bit datatype

struct dualstack {
ctptr head;

};

struct snode { // stack node
union {

int data;
cptr data_node; // data must overlie ptr, not sn

};
tptr next;

};

void ds_init(dualstack *S) {
stack->head.ptr = {NULL, FALSE, FALSE};

}
void push(int v, dualstack *S) {

snode *n = (snode)allocate_snode();
n->data = v;

while (1) {
ctptr head = S->head;
n->next = head;
if (head.ptr == NULL || (head.data_flag && !head.is_request)) {
if (cas(&S->head, head, {{n, FALSE, TRUE}, head.sn+1})) return;

} else if (head.is_request) {
tptr next = head.ptr->next;
cptr old = head.ptr->data_node;
// link in filler node
if (!cas(&S->head, head, {{n, TRUE, TRUE}, head.sn+1}))

continue; // someone else fulfilled the request
// fulfill request node
(void)cas(&head.ptr->data_node, old, {n, old.sn+1});
// link out filler and request
(void)cas(&S->head, {{n, TRUE, TRUE}, head.sn+1}, {next, head.sn+2});
return;

} else { // data underneath; need to help
tptr next = head.ptr->next;
if (next.ptr == NULL) continue; // inconsistent snapshot
cptr old = next.ptr->data_node;
if (head != S->head) continue; // inconsistent snapshot
// fulfill request node
if (old.ptr == NULL)

(void)cas(&next.ptr->data_node, old, {head.ptr, old.sn+1});
// link out filler and request
(void)cas(&S->head, head, {next->next, head.sn+1});

}
}

}

Listing 3.1: The dual stack

111

int pop(dualstack *S) {
snode *n = NULL;

while (1) {
ctptr head = S->head;
if (head.data_flag && !head.is_request) {
tptr next = head.ptr->next;
if (cas(&S->head, head, {next, head.sn+1})) {

int result = head.ptr->data;
deallocate(head.ptr);
if (n != NULL) deallocate(n);
return result;

}
} else if (head.ptr == NULL || head.is_request) {
if (n == NULL) {

n = allocate_snode();
n->data_node.ptr = {NULL, FALSE, FALSE};

}
n->next = {head.ptr, TRUE, FALSE};
if (!cas(&S->head, head, {{n, TRUE, FALSE}, head.sn+1}))

continue; // couldn’t push request
while (NULL == n->data_node.ptr); // local spin
// help remove my request node if needed
head = S->head;
if (head.ptr == n)

(void)cas(&S->head, head, {n->next, head.sn+1});
int result = n->data_node.ptr->data;
deallocate(n->data_node.ptr); deallocate(n);
return result;

} else { // data underneath; need to help
tptr next = head.ptr->next;
if (next.ptr == NULL) continue; // inconsistent snapshot
cptr old = next.ptr->data_node;
if (head != S->head) continue; // inconsistent snapshot
// fulfill request node
if (old.ptr == NULL)

(void)cas(&next.ptr->data_node, old, {head.ptr, old.sn+1});
// link out filler and request
(void)cas(&S->head, head, {next->next, head.sn+1});

}
}

}

Listing 3.1: (continued)

3.3.3 The Dual Queue

The dual queue is based on the M&S lock-free queue [MiS96]. So long as the

number of calls to dequeue does not exceed the number of calls to push, it behaves

the same as its non-dual cousin. Source code for the dual queue appears in Listing 3.2.

112

The dual queue is initialized with a single “dummy” node; the first real datum (or

reservation) is always in the second node, if any. At any given time the second and

subsequent nodes will either all be reservations or all be data.

When the queue is empty, or contains only reservations, the dequeue method

enqueues a reservation, and then spins on the request pointer field of the former tail

node. The enqueuemethod, for its part, fulfills the request at the head of the queue, if

any, rather than enqueue a datum. To do so, the fulfilling thread uses a CAS to update

the reservation’s request field with a pointer to a node (outside the queue) containing

the provided data. This simultaneously fulfills the request and breaks the requester’s

spin.5 Any thread that finds a fulfilled request at the head of the queue removes and

frees it.

As in the dual stack, queue nodes are tagged as requests by setting a low-order

bit in pointers that point to them. We again assume, without loss of generality, that

data values are integers, and we provide a single dequeue method that subsumes the

sequence of operations from a dequeue request through its successful follow-up.

The code for enqueue is lock-free, as is the code for the dequeue reserve and

dequeue followup portions of dequeue. The spin in dequeue (which would

comprise the body of an unsuccessful follow-up) accesses a node that no other thread

will write except to terminate the spin. The dual queue therefore satisfies the conditions

listed in Section 3.2.5 on a cache-coherent machine. (On a non-cache-coherent machine

we could simply arrange for the head-most node in the queue to always be the dummy

node and spin on the node that we allocated and inserted. This has the disadvantage

of moving a cache line miss onto the critical path when an enqueuer provides data to

a dequeuer. In the implementation presented here, this cache line miss does not occur

until after the waiter is signaled.)

5Note, however, that acting on the head of the queue requires careful consistency validation of the
head, tail, and next pointers. Extending the technique of the original M&S queue, we use a two-
stage check to ensure sufficient consistency to prevent untoward race conditions.

113

Though we do not offer a proof, one can analyze the code to confirm that the dual

queue satisfies the FIFO semantics presented in Section 3.3.1: If the number of previ-

ous enqueue operations exceeds the number of previous dequeue operations, then a

new, nth dequeue operation will return the value provided by the nth enqueue. In a

similar fashion, the dual queue satisfies pending requests in FIFO order: If the number

of previous dequeue operations exceeds the number of previous enqueue opera-

tions, then a new, nth enqueue operation will provide a value to the nth dequeue.

The spin in dequeue is terminated by a CAS in another thread’s enqueuemethod.

Note again that a simpler algorithm, in which the enqueue method could remove a

request from the queue and then fulfill it, would be semantically nonconformant: An

arbitrary number of dequeue operations could complete between the CAS used for re-

moval and the linearization point for a successful dequeue followup if the thread

performing the enqueue were to stall.

3.3.4 Memory Management

For both the dual stack and the dual queue, correctness is dependent on an as-

sumption that a block of memory, once allocated for use as a stack or queue node,

cannot be used to contain other data until no thread maintains a reference to it. For

garbage-collected languages, one gets this “for free”. However, for C (as for other

non-garbage-collected languages), the standard malloc and free library routines

in particular do not suffice for this purpose. One approach that one could use to

ensure this requirement be met would be to use a pointer tracking scheme [Mic04;

HLM02] that manages threads’ outstanding pointer references. For the experiments

described here, however, we instead use a custom memory allocator [Sco02] (shown in

Listing 2.9) that permanently marks memory as being for use in the dual data structure;

it has the advantage of being extremely fast.

114

struct cptr {
qnode *ptr;
int sn;

}; // 64-bit datatype

struct ctptr { // counted tagged pointer
qnode *31 ptr;
bool is_request; // tag describes pointed-to node
int sn;

}; // 64-bit datatype

struct qnode {
cval data;
cptr request;
ctptr next;

};

struct dualqueue {
cptr head;
ctptr tail;

};

void dq_init(dualqueue *Q)
{

qnode *qn = allocate_qnode();
qn->next.ptr = NULL;
Q->head.ptr = Q->tail.ptr = qn;
Q->tail.is_request = FALSE;

}

void enqueue(int v, dualqueue *Q) {
qnode *n = allocate_qnode();
n->data = v;
n->next.ptr = n->request.ptr = NULL;
while (1) {

ctptr tail = Q->tail;
cptr head = Q->head;
if (tail.ptr == head.ptr) || !tail.is_request) {
cptr next = tail.ptr->next;
if (tail == Q->tail) { // tail and next are consistent

if (next.ptr != NULL) { // tail falling behind
(void)cas(&Q->tail, tail, {{next.ptr, next.is_request}, tail.sn+1});

} else { // try to link in the new node
if (cas(&tail.ptr->next, next, {{n, FALSE}, next.sn+1})) {
(void)cas(&Q->tail, tail, {{n, FALSE}, tail.sn+1});
return;

}
}

}
} else { // queue consists of requests
ctptr next = head.ptr->next;
if (tail == Q->tail) { // tail has not changed

cptr req = head.ptr->request;
if (head == Q->head) { // head, next, and req are consistent

bool success = (req.ptr == NULL
&& cas(&head.ptr->request, req, {n, req.sn+1}));

// try to remove fulfilled request even if it’s not mine
(void)cas(&Q->head, head, {next.ptr, head.sn+1});
if (success) return;

}
}

}
}

}

Listing 3.2: The dual queue

115

int dequeue(dualqueue *Q) {
qnode *n = allocate_qnode();
n->is_request = TRUE;
n->ptr = n->request = NULL;

while (1) {
cptr head = Q->head;
ctptr tail = Q->tail;
if ((tail.ptr == head.ptr) || tail.is_request) {
// queue empty, tail falling behind, or queue contains data (queue could also
// contain exactly one outstanding request with tail pointer as yet unswung)
cptr next = tail.ptr->next;
if (tail == Q->tail) { // tail and next are consistent

if (next.ptr != NULL) { // tail falling behind
(void)cas(&Q->tail, tail, {{next.ptr, next.is_request}, tail.sn+1});

} else { // try to link in a request for data
if (cas(&tail.ptr->next, next, {{n, TRUE}, next.sn+1})) {
// linked in request; now try to swing tail pointer
(void)cas(&Q->tail, tail, {{n, TRUE}, tail.sn+1}) {
// help someone else if I need to
if (head == Q->head && head.ptr->request.ptr != NULL) {

(void)cas(&Q->head, head, {head.ptr->next.ptr, head.sn+1});
}
while (tail.ptr->request.ptr == NULL); // spin
// help snip my node
head = Q->head;
if (head.ptr == tail.ptr) {

(void)cas(&Q->head, head, {n, head.sn+1});
}
// data is now available; read it out and go home
int result = tail.ptr->request.ptr->data;
deallocate(tail.ptr->request.ptr); deallocate(tail.ptr);
return result;

}
}

}
} else { // queue consists of real data
cptr next = head.ptr->next;
if (tail == Q->tail) {

// head and next are consistent; read result before swinging head
int result = next.ptr->data;
if (cas(&Q->head, head, {next.ptr, head.sn+1})) {

deallocate(head.ptr); deallocate(n);
return result;

}
}

}
}

}

Listing 3.2: (continued)

116

3.3.5 Experimental Results

In this section we compare the performance of the dual stack and dual queue to

that of Treiber’s lock-free stack [Tre86], the M&S lock-free queue [MiS96], and four

lock-based alternatives. With Treiber’s stack and the M&S queue we embed the calls to

pop and dequeue, respectively, in a tight loop6 that repeats until the operations suc-

ceed. Two lock-based alternatives, the “locked stack” and the “locked queue” employ

similar loops. The remaining two alternatives are lock-based dual data structures. Like

the nonblocking dual stack and dual queue, the “dual locked stack” and “dual locked

queue” can contain either data or requests. All updates, however, are protected by a

test-and-set lock.

Our experimental platform is a 16-processor SunFire 6800, a cache-coherent mul-

tiprocessor with 1.2GHz UltraSPARC III processors. Our benchmark creates n + 1

threads for an n thread test. Thread 0 executes as follows:

while time has not expired
for i = 1 to 3

insert -1 into data structure
repeat

pause for about 50µs
until data structure is empty
pause for about 50µs

Other threads all run the following:

while time has not expired
remove val from data structure
if val == -1

for i = 1 to 32
insert i into data structure

pause for about 0.5µs

These conventions arrange for a series of “rounds” in which the data structure alter-

nates between being full of requests and being full of data. Three threads, chosen more

6We do not test separately with exponential backoff between attempts to pop/dequeue. Although
this would also serve to mitigate the contention that hurts performance, we know that exponential back-
off has only limited scalability from our analysis of TATAS locks in Chapter 2.6. We believe that a
comparable effect would be visible here, but only on a machine larger than the one we test on here.

117

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24 26 28 30 32

Threads

n
s
/o
p
e
ra
ti
o
n

dualstack dual locked stack locked stack Trieber stack

Figure 3.1: Dual stack performance evaluation: Benchmark time per operation for stack
algorithms.

or less at random, prime the structure for the next round, and then join their peers in

emptying it. We ran each test for two seconds, and report the minimum per-operation

run time across five trials. Spot checks of longer runs revealed no anomalies. Choosing

the minimum effectively discards the effects of periodic execution by kernel daemons.

Code for the various algorithms was written in C (with embedded assembly for

CAS), and was compiled with gcc version 3.3.2 and the -O3 level of optimization. As

discussed previously, we use the fast local memory allocator from Section 2.4 [Sco02].

Stack results appear in Figure 3.1. For both lock-based and lock-free algorithms,

dualism yields a significant performance improvement: At 14 worker threads the dual

locked stack is about 9% faster than (takes 93% as much time as) the locked stack that

retries failed pop calls repeatedly; the nonblocking dual stack is about 20% faster than

its non-dual counterpart. In each case the lock-based stack is faster than the correspond-

118

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24 26 28 30 32

Threads

n
s
/o
p
e
ra
ti
o
n

dualqueue dual locked queue locked queue M&S queue

Figure 3.2: Dual queue performance evaluation: Benchmark time per operation for
queue algorithms.

ing lock-free stack due, we believe, to reduced contention for the top-of-stack pointer.

Nonetheless, both dual versions outperform the non-dual stacks; again, by spinning lo-

cally within their request nodes, waiters avoids hammering on the top-of-stack pointer.

The resulting benefits are analogous to those obtained from local spin in queue-based

locks [MeS91].

Queue results appear in Figure 3.2. Here dualism again yields significant improve-

ments: At 14 worker threads the dual locked queue is about 14% faster than the locked

queue that retries failed dequeue calls repeatedly; the nonblocking dual queue is more

than 40% faster than its non-dual counterpart. Unlike the stacks, the nonblocking dual

queue outperforms the dual locked queue by a significant margin; we attribute this

difference to the potential concurrency between enqueues and dequeues. The M&S

queue is slightly faster than the locked queue at low thread counts, slightly slower for

119

12–15 threads, and significantly faster once the number of threads exceeds the number

of processors, and the lock-based algorithm begins to suffer from preemption in critical

sections. As in the dual stack, we attribute this performance gain to local spinning in re-

quest nodes that reduces contention on the queue’s head and tail pointers. Performance

of the nonblocking dual queue is almost flat out to 16 threads (the size of the machine),

and reasonable well beyond that, despite an extremely high level of contention in our

benchmark; this algorithm appears to be of great potential use on any cache-coherent

machine.

3.4 A Scalable Elimination-based Exchanger

The problem of exchange channels (sometimes known as rendezvous channels)

arises in a variety of concurrent programs. In it, a thread ta with datum da that en-

ters the channel pairs up with another thread tb (with datum db) and exchanges data

such that ta returns with db and tb returns with da. More generally, 2N threads form N

pairs 〈ta1
, tb1〉, 〈ta2

, tb2〉, 〈ta3
, tb3〉, ..., 〈taN

, tbN
〉 and exchange data pairwise.

In the basic exchange problem, if no partner is available immediately, thread ta

waits until one becomes available. In the abortable exchange problem, however, ta

specifies a patience pa that represents a maximum length of time it is willing to wait for

a partner to appear; if no partner appears within pa µseconds, ta returns empty-handed.

Caution must be applied in implementations to ensure that a thread tb that sees ta just

as it “gives up” and returns failure must not return da: Exchange must be bilateral.

Exchange channels are frequently used in parallel simulations. For example, the

Promela modeling language for the SPIN model checker [Hol97] uses them to simulate

interprocess communication channels. Another typical use is in operating systems and

server software. In a system with one producer and one consumer, the producer might

work to fill a buffer with data, then exchange it with the buffer-draining consumer.

120

This simultaneously bounds memory allocation for buffers and throttles the producer

to generate data no faster than the consumer can process it.

In this section, we present a novel lock-free exchanger implementation that im-

proves performance and scalability dramatically compared to previously known imple-

mentations. Our exchanger has been adopted for inclusion in the concurrency package

of Java 6.

3.4.1 Elimination

Elimination is a technique introduced by Shavit and Touitou [ShT95] that improves

the concurrency of data structures. It exploits the observation, for example, that one

Push and one Pop, when applied with no intermediate operations to a stack data struc-

ture, yield a state identical to that from before the operations. Intuitively, then, if one

could pair up Push and Pop operations, there would be no need to reference the stack

data structure; they could “cancel each other out”. Elimination thus reduces contention

on the main data structure and allows parallel completion of operations that would oth-

erwise require accessing a common central memory location.

More formally, one may define linearization points [HeW90] for mutually-canceling

elimination operations in a manner such that no other linearization points intervene be-

tween them; since the operations effect (collectively) no change to the base data struc-

ture state, the history of operations – and its correctness – is equivalent to one in which

the two operations never happened.

Although the original eliminating stack of Shavit and Touitou [ShT95] is not lin-

earizable, follow-up work by Hendler et al. [HSY04] details one that is. Elimination

has also been used for shared counters [ABH00] and even for FIFO queues [MNS05].

121

3.4.2 Algorithm Description

Our exchanger uses a novel combination of nonblocking dual data structures and

elimination arrays to achieve high levels of concurrency. The implementation is orig-

inally based on a combination of our dual stack [ScS04b] and the eliminating stack of

Hendler et al. [HSY04], though peculiarities of the exchange channel problem limit the

visibility of this ancestry. Our exchanger is implemented in Java.

To simplify understanding, we present our exchanger algorithm in two parts. Sec-

tion 3.4.2 first illustrates a simple exchanger that satisfies the requirements for being

a lock-free dual data structure as defined in Section 3.2.5. We then describe in Sec-

tion 3.4.2 the manner in which we incorporate elimination to produce a scalable lock-

free exchanger.

A Simple Nonblocking Exchanger

The main data structure we use for the simple exchanger is a modification to the

dual stack [ScS04b]. Additionally, we use an inner node class that consists of a ref-

erence to an Object offered for exchange and an AtomicReference representing

the hole for an object. We associate one node with each thread attempting an exchange.

Exchange is accomplished by successfully executing a compare and swap, updat-

ing the hole from its initial null value to the partner’s node. In the event that a thread

has limited patience for how long to wait before abandoning an exchange, signaling

that it is no longer interested consists of executing a compare and swap on its own

hole, updating the value from null to a FAIL sentinel. If this compare and swap

succeeds, no other thread can successfully match the node; conversely, the compare

and swap can only fail if some other thread has already matched it.

From this description, one can see how to construct a simple nonblocking ex-

changer. Referencing the implementation in Listing 3.3: Upon arrival, if the top-of-

stack is null (line 07), we compare and swap our thread’s node into it (08) and wait

122

until either its patience expires (10–12) or another thread matches its node to us (09,

17). Alternatively, if the top-of-stack is non-null (19), we attempt to compare and

swap our node into the existing node’s hole (20); if successful, we then compare

and swap the top-of-stack back to null (21). Otherwise, we help remove the matched

node from the top of the stack; hence, the second compare and swap is uncondi-

tional.

In this simple exchanger, the initial linearization point for an in-progress swap is

when the compare and swap on line 08 succeeds; this inserts a reservation into the

channel for the next data item to arrive. The linearization point for a fulfilling operation

is when the compare and swap on line 20 succeeds; this breaks the waiting thread’s

spin (lines 09–16). (Alternatively, a successful compare and swap on line 11 is the

linearization point for an aborted exchange.) As it is clear that the waiter’s spin accesses

no remote memory locations and that both inserting and fulfilling reservations are lock-

free (a compare and swap in this case can only fail if another has succeeded), the

simple exchanger constitutes a lock-free implementation of the exchanger dual data

structure as defined in Section 3.2.5.

Adding Elimination

Although the simple exchanger from the previous section is nonblocking, it will not

scale very well: The top-of-stack pointer is a hotspot for contention. This scalability

problem can be resolved by adding an elimination step to the simple exchanger from

Listing 3.3. Source code for the full exchanger appears in Listing 3.4.

In order to support elimination, we replace the single top-of-stack pointer with an

arena (array) of (P+1)/2 Java SE 5.0 AtomicReferences, where P is the number

of processors in the runtime environment. Logically, the reference in position 0 is the

top-of-stack; the other references are simply locations at which elimination can occur.

123

00 Object exchange(Object x, boolean timed,
01 long patience) throws TimeoutException {
02 boolean success = false;
03 long start = System.nanotime();
04 Node mine = new Node(x);
05 for (;;) {
06 Node top = stack.getTop();
07 if (top == null) {
08 if (stack.casTop(null, mine)) {
09 while (null == mine.hole) {
10 if (timedOut(start, timed, patience) {
11 if (mine.casHole(null, FAIL))
12 throw new TimeoutException();
13 break;
14 }
15 /* else spin */
16 }
17 return mine.hole.item;
18 }
19 } else {
20 success = top.casHole(null, mine);
21 stack.casTop(top, null);
22 if (success)
23 return top.item;
24 }
25 }
26 }

Listing 3.3: A simple lock-free exchanger

Following the lead of Hendler et al.[HSY04], we incorporate elimination with back-

off when encountering contention at top-of-stack. As in their work, by only attempting

elimination under conditions of high contention, we incur no additional overhead in the

common no-contention case.

Logically, in each iteration of a main loop, we attempt an exchange in the 0th arena

position exactly as in the simple exchanger. If we successfully insert or fulfill a reserva-

tion, we proceed exactly as before. The difference, however, comes when a compare

and swap fails. Now, instead of simply retrying immediately at the top-of-stack, we

back off to attempt an exchange at a random secondary arena location. In contrast to

exchanges at arena[0], we limit the length of time we wait with a reservation in the

remainder of the arena to a value significantly smaller than our overall patience. After

canceling the secondary reservation, we return to arena[0] for another iteration of

the loop.

124

In iteration i of the main loop, the arena location at which we attempt a secondary

exchange is selected randomly from the range 1..b, where b is the lesser of i and the

arena size. Hence, the first secondary exchange is always at arena[1], but with each

iteration of the main loop, we increase the range of potential backoff locations until we

are randomly selecting a backoff location from the entire arena. Similarly, the length of

time we wait on a reservation at a backoff location is randomly selected from the range

0..2(b+k) − 1, where k is a base for the exponential backoff.

From a correctness perspective, the same linearization points as in the simple ex-

changer are again the linearization points for the eliminating exchanger; however, they

can occur at any of the arena slots, not just at a single top-of-stack. Although the elim-

inating stack can be shown to support LIFO ordering semantics, we have no particular

ordering semantics to respect in the case of an exchange channel: Any thread in the

channel is free to match to any other thread, regardless of when it entered the channel.

The use of timed backoff accentuates the probabilistic nature of limited-patience

exchange. Two threads that attempt an exchange with patience zero will only dis-

cover each other if they both happen to probe the top of the stack at almost exactly the

same time. However, with increasing patience levels, the probability decreases that they

will fail to match after temporally proximate arrivals. Other parameters that influence

this fall include the number of processors and threads, hardware instruction timings,

and the accuracy and responsiveness of timed waits. Our experimental evidence sug-

gests that in modern environments, the chance of backoff arena use causing two threads

to miss each other is far less than the probability of thread scheduling or garbage col-

lection delaying a blocked thread’s wakeup for long enough to miss a potential match.

Pragmatics

Our exchanger implementation reflects a few additional pragmatic considerations

to maintain good performance:

125

First, we use an array of AtomicReferences rather than a single Atomic-

ReferenceArray. Using a distinct reference object per slot helps avoid some false

sharing and cache contention, and places responsibility for their placement on the Java

runtime system rather than on this class.

Second, the time constants used for exponential backoff can have a significant

effect on overall throughput. We empirically chose a base value to be just faster

than the minimum observed round-trip overhead, across a set of platforms, for timed

parkNanos() calls (which temporarily remove a thread from the active scheduling

list) on already-signaled threads. By so doing, we have selected the smallest value that

does not greatly underestimate the actual wait time. Over time, future versions of this

class might be expected to use smaller base constants.

3.4.3 Experimental Results

In this section, we present an empirical analysis of our exchanger implementation.

Benchmarks

We present experimental results for two benchmarks. The first is a microbenchmark

in which threads swap data in an exchange channel as fast as they can. The second

exemplifies the way that an exchange channel might be used in a real-world application.

It consists of a parallel implementation of a solver for the traveling salesman problem,

implemented via genetic algorithms. It accepts as parameters a number of cities C,

a population size P , and a number of generations G, in each of which B breeders

mate and create B children to replace B individuals that die (the remaining P − B

individuals carry forward to the next generation). Breeders enter a central exchange

channel one or more times to find a partner with which to exchange genes (a subset

of the circuit); the number of partners ranges from four down to one in a simulated

annealing fashion. Between randomization of the order of breeders and the (semi-)

126

000 public class Exchanger<V> {
001 private static final int SIZE =
002 (Runtime.getRuntime().availableProcessors() + 1) / 2;
003 private static final long BACKOFF_BASE = 128L;
004 static final Object FAIL = new Object();
005 private final AtomicReference[] arena;
006 public Exchanger() {
007 arena = new AtomicReference[SIZE + 1];
008 for (int i = 0; i < arena.length; ++i)
009 arena[i] = new AtomicReference();
010 }
011
012 public V exchange(V x) throws InterruptedException {
013 try {
014 return (V)doExchange(x, false, 0);
015 } catch (TimeoutException cannotHappen) {
016 throw new Error(cannotHappen);
017 }
018 }
019 public V exchange(V x, long timeout, TimeUnit unit)
020 throws InterruptedException, TimeoutException {
021 return (V)doExchange(
022 x, true, unit.toNanos(timeout));
023 }
024
025 private Object doExchange(
026 Object item, boolean timed, long nanos)
027 throws InterruptedException, TimeoutException {
028 Node me = new Node(item);
029 long lastTime = (timed)? System.nanoTime() : 0;
030 int idx = 0;
031 int backoff = 0;
032
033 for (;;) {
034 AtomicReference<Node> slot =
035 (AtomicReference<Node>)arena[idx];
036
037 // If this slot is occupied, an item is waiting...
038 Node you = slot.get();
039 if (you != null) {
040 Object v = you.fillHole(item);
041 slot.compareAndSet(you, null);
042 if (v != FAIL) // ... unless it’s cancelled
043 return v;
044 }
045
046 // Try to occupy this slot
047 if (slot.compareAndSet(null, me)) {
048 Object v = ((idx == 0)?
049 me.waitForHole(timed, nanos) :
050 me.waitForHole(true, randomDelay(backoff)));
051 slot.compareAndSet(me, null);
052 if (v != FAIL)
053 return v;
054 if (Thread.interrupted())
055 throw new InterruptedException();
056 if (timed) {
057 long now = System.nanoTime();
058 nanos -= now - lastTime;
059 lastTime = now;
060 if (nanos <= 0)
061 throw new TimeoutException();
062 }

Listing 3.4: The full lock-free exchanger

127

063 me = new Node(item);
064 if (backoff < SIZE - 1)
065 ++backoff;
066 idx = 0; // Restart at top
067 }
068
069 else // Retry with a random non-top slot <= backoff
070 idx = 1 + random.nextInt(backoff + 1);
071 }
072 }
073
074 private long randomDelay(int backoff) {
075 return ((BACKOFF_BASE << backoff) - 1) &
076 random.nextInt();
077 }
078 static final class Node
079 extends AtomicReference<Object> {
080 final Object item;
081 final Thread waiter;
082 Node(Object item) {
083 this.item = item;
084 waiter = Thread.currentThread();
085 }
086
087 Object fillHole(Object val) {
088 if (compareAndSet(null, val)) {
089 LockSupport.unpark(waiter);
090 return item;
091 }
092 return FAIL;
093 }
094
095 Object waitForHole(
096 boolean timed, long nanos) {
097 long lastTime = (timed)?
098 System.nanoTime() : 0;
099 Object h;
100 while ((h = get()) == null) {
101 // If interrupted or timed out, try to
102 // cancel by CASing FAIL as hole value.
103 if (Thread.currentThread().isInterrupted() ||
104 (timed && nanos <= 0)) {
105 compareAndSet(null, FAIL);
106 } else if (!timed) {
107 LockSupport.park();
108 } else {
109 LockSupport.parkNanos(nanos);
110 long now = System.nanoTime();
111 nanos -= now - lastTime;
112 lastTime = now;
113 }
114 }
115 return h;
116 }
117 }
118 }

Listing 3.4: (continued)

128

nondeterministic manner in which pairings happen in the exchange channel, we achieve

a diverse set of matings with high probability.

Methodology

All results were obtained on our 16-processor SunFire 6800. We tested each bench-

mark with both our new exchanger and the Java SE 5.0 java.util.concurrent.Exchanger7

in Sun’s Java SE 5.0 HotSpot VM, ranging from 2 to 32 threads. For both tests, we

compute the average of three test runs.

For the traveling salesman application, we used 100 cities, a population of 1000

chromosomes, and 200 breeders. We measure the total wall-clock time required to

complete 20000 generations and calculate the total number of generations per second

achieved at each thread level.

Figure 3.3 displays throughput and the rate at which exchanges are successful for

our microbenchmark analysis of exchangers. Figure 3.4 presents total running time, as

a function of the number of threads, and the generation completion throughput for our

parallel genetic algorithm-based traveling salesman solver.

Discussion

As can be seen from the top half of Figure 3.3, our exchanger outperforms the

Java SE 5.0 Exchanger by a factor of two at two threads up to a factor of 50 by 10

threads. The performance of the Java SE 5.0 Exchanger degrades as the number of

threads participating in swaps increases. This lack of scalability may be attributed in

part to the coarse-grained locking strategy. Another explanation for this difference may

be seen in the bottom half of Figure 3.3. While our nonblocking exchanger is able

7Actually, the Java SE 5.0 Exchanger contains a flaw in which a wake-up signal is sometimes deliv-
ered to the wrong thread, forcing a would-be exchanger to time out before noticing it has been matched.
For our tests, we compare instead to a modified version that corrects this issue.

129

10000

100000

1e+06

5 10 15 20 25 30
threads

Exchanges/s [Patience: 0.5 ms]

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

5 10 15 20 25 30
threads

Success rate [Patience: 0.5 ms]

J5 Exchanger New Exchanger

Figure 3.3: Exchanger performance evaluation: Microbenchmarked throughput (top)
and success rate (bottom). Note that the throughput graph is in log scale.

to maintain nearly 100% success in exchange operations, the Java SE 5.0 Exchanger

gets dramatically worse as the number of active threads increases, particularly in the

presence of preemption (beyond 16 threads).

130

0
100
200
300
400
500
600
700

5 10 15 20 25 30 35
threads

TSPExchangerTest: Execution time (seconds)

0
20
40
60
80

100
120
140
160
180

5 10 15 20 25 30 35
threads

TSPExchangerTest: Generations/second

J5 Exchanger New Exchanger

Figure 3.4: Exchanger performance evaluation: Traveling salesman benchmark. Total
Execution Time (top) and Generations per second throughput (bottom).

For the traveling salesman application, we see no difference in the total running time

(Figure 3.4 top) at two threads, but by 10 threads the difference in running time is nearly

a factor of five. When we look at the throughput rate of computation (generations per

second) in the bottom half of Figure 3.4, we see that again, our exchanger scales more-

131

or-less linearly up to 8 threads, and continues to gain parallel speedup through 12, but

the Java SE 5.0 Exchanger degrades in performance as the number of threads increases.

The drop-off in throughput for our exchanger we see beginning at 16 threads reflects

the impact of preemption in slowing down exchanges and inter-generation barriers

Field Notes: Multi-party Exchange

Consider the exchanger used with more than two threads. In our parallel traveling

salesman implementation (pseudocode for a piece of which appears in Listing 3.5),

each thread is assigned a certain number of individuals to breed, and the breedings are

conducted in parallel. As mentioned earlier, each breeding consists of swapping genes

with a partner found from a central exchange channel.

With two threads, no complications arise, but beginning at four, a problem appears

wherein all but one thread can meet up enough times to finish breeding, leaving one

thread high and dry. Consider the following example, in which four threads (T1..T4)

each have three elements (a, b, c) to swap. Suppose that swaps occur according to the

following schedule:

〈T1(a), T2(a)〉

〈T1(b), T3(a)〉

〈T2(b), T3(b)〉

〈T1(c), T2(c)〉

〈T3(c), T4(a)〉

Now, T4 still needs to swap b and c, but has no one left to swap with. Although one

could use a barrier between trips to the exchanger to keep threads synchronized, this

would be an exceedingly high-overhead solution; it would hurt scalability and perfor-

mance. Further, it would result in more deterministic pairings between threads in our

traveling salesman application, which is undesirable in genetic algorithms.

132

for (int 1 = 0; i < numToBreed; i++) {
Chromosome parent = individuals[breeders[first+i]];
try {
Chromosome child = new Chromosome(parent);

1 Chromosome peer = x.exchange(child, 100,
TimeUnit.MICROSECONDS);

children[i] = child.reproduceWith(peer, random);
} catch (TimeoutException e) {

2 if (1 == barrier.getPartiesRemaining()) {
// No peers left, so we mate with ourselves

3 mateWithSelf(i, numToBreed, children);
break;

}
4 // Spurious failure; retry the breeding

--i;
}

}
barrier.await();

Listing 3.5: Multi-party exchange in the traveling salesman problem

Instead, we detect this case by limiting how long would-be breeders wait in the

exchange channel. If they time out from the breeding (*1*), we enter a catch block

where we check a barrier to see if we’re the only ones left (*2*). If not, we retry

the breeding (*4*); otherwise, we know that we’re the only thread left and we simply

recombine within the breeders we have left (*3*).

It is unfortunate that an external checking idiom is required to make use of the ex-

change channel with multiple threads. Our traveling salesman benchmark already needs

a barrier to ensure that one generation completes before the next begins, so this adds

little overhead in our specific case. However, the same cannot be readily guaranteed

across all potential multi-party swap applications.

On the other hand, suppose we had a channel that allows an exchange party to be

one of two colors (red or blue) and that constrains exchanges to being between parties

of dissimilar color. Such an exchanger could be built, for example, as a shared-memory

implementation of generalized input-output guards [Ber80] for Hoare’s Communicat-

ing Sequential Processes (CSP) [Hoa78]. Then, by assigning RED to threads with odd

ID and BLUE to threads with even ID, we could simplify the code as shown in List-

ing 3.6.

133

for (int 1 = 0; i < numToBreed; i++) {
Chromosome parent = individuals[breeders[first+i]];
Chromosome child = new Chromosome(parent);
Exchanger.Color clr = ((1 == tid & 1) ? RED : BLUE;
Chromosome peer = x.exchange(child, clr);
children[i] = child.reproduceWith(peer, random);

}

Listing 3.6: Multi-party exchange with a red-blue exchanger

Note that we no longer need timeout: Assuming the number of threads and breeders

are both even, an equal number will swap with red as with blue; stranded exchanges

are no longer possible. (The slightly reduced non-determinism in breeding seems a

small price to pay for simpler code and for eliminating the determinism that occurs

when a thread must breed with itself.) A red-blue exchanger also generalizes producer-

consumer buffer exchange to multiple producers and multiple consumers. By simply

marking producers blue and consumers red, swaps will always consist of a producer

receiving an empty buffer and a consumer receiving a full one.

Implementing a red-blue exchanger would be a relatively straightforward exten-

sion to our code. In particular, rather than assuming that any pair of threads match in

arena[0], we could switch to a full implementation of a dual stack, using Push()

for red threads and Pop() for blue. We would similarly need to update elimination in

the nonzero arena slots. No other changes to our algorithm would be needed, however,

to support bi-chromatic exchange.

3.5 Scalable Synchronous Queues

A synchronous queue (perhaps better known as a “synchronous channel”) is one

in which each producer presenting an item (via a put operation) must wait for a con-

sumer to take this item, and vice versa. For decades, synchronous queues have played

a prominent role in both the theory and practice of concurrent programming. They con-

stitute the central synchronization primitive of Hoare’s CSP [Hoa78] and of languages

134

derived from it, and are closely related to the rendezvous of Ada. They are also widely

used in message-passing software and in hand-off designs [And91].

Unfortunately, the design-level tractability of synchronous queues has often come at

the price of poor performance. “Textbook” algorithms for implementing synchronous

queues contain a series of potential contention or blocking points in every put or

take. (We consider in this paper only those synchronous queues operating within

a single multithreaded program; not across multiple processes or distributed nodes.)

For example, Listing 3.7 shows one of the most commonly used implementations, due

to Hanson [Han97], which uses three separate semaphores.

Such heavy synchronization burdens are especially significant on contemporary

multiprocessors and their operating systems, in which the blocking and unblocking of

threads tend to be very expensive operations. Moreover, even a series of uncontended

semaphore operations usually requires enough costly machine-level atomic and barrier

(fence) instructions to incur substantial overhead.

It is also difficult to extend this and other “classic” synchronous queue algorithms to

support other common operations. These include poll, which takes an item only if a

00 public class HansonSQ<E> {
01 E item = null;
02 Semaphore sync = new Semaphore(0);
03 Semaphore send = new Semaphore(1);
04 Semaphore recv = new Semaphore(0);
05
06 public E take() {
07 recv.acquire();
08 E x = item;
09 sync.release();
10 send.release();
11 return x;
12 }
13
14 public void put(E x) {
15 send.acquire();
16 item = x;
17 recv.release();
18 sync.acquire();
19 }
20 }

Listing 3.7: Hanson’s synchronous queue

135

producer is already present, and offer which fails unless a consumer is waiting. Sim-

ilarly, many applications require the ability to time out if producers or consumers do

not appear within a certain patience interval or if the waiting thread is asynchronously

interrupted. One of the java.util.concurrent.ThreadPoolExecutor implementations uses

all of these capabilities: Producers deliver tasks to waiting worker threads if immedi-

ately available, but otherwise create new worker threads. Conversely, worker threads

terminate themselves if no work appears within a given keep-alive period (or if the pool

is shut down).

Additionally, applications using synchronous queues vary in their need for fairness:

Given multiple waiting producers, it may or may not be important to an application

whether the one waiting the longest (or shortest) will be the next to pair up with the

next arriving consumer (and vice versa). Since these choices amount to application-

level policy decisions, algorithms and implementations should minimize imposed con-

straints. For example, while fairness is often considered a virtue, a thread pool normally

runs better if the most-recently-used waiting worker thread is usually the next to receive

new work, due to footprint retained in the cache and VM system.

In the remainder of this section, we present synchronous queue algorithms that com-

bine a rich programming interface with very low intrinsic overhead. More specifically,

our algorithms avoid all blocking other than that which is intrinsic to the notion of

synchronous handoff: A producer thread must wait until a consumer appears (and vice-

versa), but there is no other way for one thread’s delay to impede another’s progress.

We describe two algorithmic variants: a fair algorithm that ensures strict FIFO order-

ing and an unfair algorithm that is actually based on a LIFO stack. Our synchronous

queues have been adopted for inclusion in the concurrency package of Java 6.

136

00 public class NaiveSQ<E> {
01 boolean putting = false;
02 E item = null;
03
04 public synchronized E take() {
05 while (item == null)
06 wait();
07 E e = item;
08 item = null;
09 notifyAll();
10 return e;
11 }
12
13 public synchronized void put(E e) {
14 if (e == null) return;
15 while (putting)
16 wait();
17 putting = true;
18 item = e;
19 notifyAll();
20 while (item != null)
21 wait();
22 putting = false;
23 notifyAll();
24 }
25 }

Listing 3.8: Naive synchronous queue

3.5.1 Algorithm Descriptions

Classic Synchronous Queues

Perhaps the simplest implementation of synchronous queues is the naive monitor-

based algorithm that appears in Listing 3.8. In this implementation, a single monitor

serializes access to a single item and to a putting flag that indicates whether a pro-

ducer has currently supplied data. Producers wait for the flag to be clear (lines 15–16),

set the flag (17), insert an item (18), and then wait until a consumer takes the data

(20–21). Consumers await the presence of an item (05–06), take it (07), and mark it

as taken (08) before returning. At each point where their actions might potentially un-

block another thread, producer and consumer threads awaken all possible candidates

(09, 20, 24). Unfortunately, this approach results in a number of wake-ups quadratic in

the number of waiting producer and consumer threads; coupled with the high cost of

blocking or unblocking a thread, this results in very poor performance.

137

Hanson’s synchronous queue (Listing 3.7) improves upon the naive approach by

using semaphores to target wake-ups to only the single producer or consumer thread

that an operation has unblocked. However, as noted in Section 3.5, it still incurs the

overhead of three separate synchronization events per transfer for each of the producer

and consumer; further, it normally blocks at least once per put or take operation. It is

possible to streamline some of these synchronization points in common execution sce-

narios by using a fast-path acquire sequence [Lam87]. Such a version appears in early

releases of the dl.util.concurrent package, which later evolved into java.util.concurrent.

However, such minor incremental changes improve performance by only a few percent

in most applications.

The Java SE 5.0 Synchronous Queue

The Java SE 5.0 synchronous queue (Listing 3.9) uses a pair of queues (in fair

mode; stacks for unfair mode) to separately hold waiting producers and consumers.

This approach improves considerably on semaphore-based approaches. First, in the

case where a consumer finds a waiting producer or a producer finds a waiting con-

sumer, the new arrival needs to perform only one synchronization operation, acquiring

a lock that protects both queues (line 18 or 33). Even if no counterpart is waiting, the

only additional synchronization required is to await one (25 or 40). A complete handoff

thus requires only three synchronization operations, compared to six incurred by Han-

son’s algorithm. In particular, using a queue instead of a semaphore allows producers

to publish data items as they arrive (line 21) instead of having to first wake up from

blocking on a semaphore; consumers need not wait.

138

00 public class Java5SQ<E> {
01 ReentrantLock qlock = new ReentrantLock();
02 Queue waitingProducers = new Queue();
03 Queue waitingConsumers = new Queue();
04
05 static class Node
06 extends AbstractQueuedSynchronizer {
07 E item;
08 Node next;
09
10 Node(Object x) { item = x; }
11 void waitForTake() { /* (uses AQS) */ }
12 E waitForPut() { /* (uses AQS) */ }
13 }
14
15 public void put(E e) {
16 Node node;
17 boolean mustWait;
18 qlock.lock();
19 node = waitingConsumers.pop();
20 if ((mustWait = (node == null)))
21 node = waitingProducers.push(e);
22 qlock.unlock();
23
24 if (mustWait)
25 node.waitForTake();
26 else
27 node.item = e;
28 }
29
30 public E take() {
31 Node node;
32 boolean mustWait;
33 qlock.lock();
34 node = waitingProducers.pop();
35 if ((mustWait = (node == null)))
36 node = waitingConsumers.push(null);
37 qlock.unlock();
38
39 if (mustWait)
40 return node.waitForPut();
41 else
42 return node.item;
43 }
44 }

Listing 3.9: The Java SE 5.0 SynchronousQueue class, fair (queue-based) version. The
unfair version uses stacks instead of queues, but is otherwise identical. (For clarity, we
have omitted timeout, details of the way in which AbstractQueuedSynchronizers are
used, and code to generalize waitingProducers and waitingConsumers to either stacks
or queues.)

139

Combining Dual Data Structures with

Synchronous Queues

A key limitation of the Java SE 5.0 SynchronousQueue class is its reliance on a

single lock to protect both queues. Coarse-grained synchronization of this form is well

known for introducing serialization bottlenecks. By creating nonblocking implementa-

tions, we eliminate this impediment to scalability.

Our new algorithms add support for timeout and for bidirectional synchronous wait-

ing to our previous nonblocking dual queue and dual stack algorithms [ScS04b]. We

describe the new algorithms in three steps. First, Section 3.5.1 reviews our earlier dual

stack and dual queue and presents the modifications needed to make them synchronous.

Second, Section 3.5.1 sketches the manner in which we add timeout support. Finally,

Section 3.5.1 discusses additional pragmatic issues. Throughout the discussion, we

present fragments of code to illustrate particular features; full source appears at the

end of this section in Listing 3.14 and online at http://gee.cs.oswego.edu/

cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/

SynchronousQueue.java.

Basic Synchronous Dual Queues and Stacks

Our dual stack and dual queue algorithms from Section 3.3 already block when a

consumer arrives before a producer; extending them to support synchronous handoff is

thus a matter of arranging for producers to block until a consumer arrives. We can do

this in the synchronous dual queue by simply having a producer block on its data pointer

until a consumer updates it to null (implicitly claiming the data). For the synchronous

dual stack, we extend the annihilating approach to include fulfilling requests that pair

with data at the top of the stack in the same manner that fulfilling data nodes pair with

requests.

140

00 class Node { E data; Node next; ... }
01
02 void enqueue(E e) {
03 Node offer = new Node(e, Data);
04
05 while (true) {
06 Node t = tail;
07 Node h = head;
08 if (h == t || !t.isRequest()) {
09 Node n = t.next;
10 if (t == tail) {
11 if (null != n) {
12 casTail(t, n);
13 } else if (t.casNext(n, offer)) {
14 casTail(t, offer);
15 while (offer.data == e)
16 /* spin */;
17 h = head;
18 if (offer == h.next)
19 casHead(h, offer);
20 return;
21 }
22 }
23 } else {
24 Node n = h.next;
25 if (t != tail || h != head || n == null)
26 continue; // inconsistent snapshot
27 boolean success = n.casData(null, e);
28 casHead(h, n);
29 if (success)
30 return;
31 }
32 }
33 }

Listing 3.10: Synchronous dual queue: Spin-based enqueue. Dequeue is symmetric
except for the direction of data transfer. (For clarity, code to support timeout is omitted.)

The Synchronous Dual Queue

Listing 3.10 shows the enqueuemethod of the synchronous dual queue. (Dequeue

is symmetric except for the direction of data transfer.) To enqueue, we first read the

head and tail pointers of the queue (lines 06–07). From here, there are two main cases.

The first occurs when the queue is empty (h == t) or contains data (line 08). We read

the next pointer for the tail-most node in the queue (09). If all values read are mutually

consistent (10) and the queue’s tail pointer is current (11), we attempt to insert our of-

fering at the tail of the queue (13–14). If successful, we wait until a consumer signals

that it has claimed our data (15–16), which it does by updating our node’s data pointer

141

to null. Then we help remove our node from the head of the queue and return (18–20).

The initial linearization point for this code path occurs at line 13 when we successfully

insert our offering into the queue; the final linearization point occurs when we notice at

line 15 that our data has been taken.

The other case occurs when the queue consists of reservations (requests for data).

In this case, we first read the head node’s successor (24) and verify consistency (25).

Then, we attempt to supply our data to the head-most reservation (27). If this suc-

ceeds, we dequeue the reservation (28) and return (30). If it fails, we need to go to the

next reservation, so we dequeue the head-most one anyway (28) and retry the entire

operation (32, 05). The linearization point for this code path occurs when we success-

fully supply data to a waiting consumer at line 27; this also corresponds to the final

linearization point for the consumer.

The Synchronous Dual Stack

Code for the synchronous dual stack’s push operation appears in Listing 3.11.

(Pop is symmetric except for the direction of data transfer.) We begin by reading the

node at the top of the stack (line 06). The three main conditional branches (beginning

at lines 07, 17, and 26) correspond to the type of node we find.

The first case occurs when the stack is empty or contains only data (line 07). We

attempt to insert a new datum (09), and wait for a consumer to claim our data (11–12)

before returning. The initial linearization point for this code path occurs when we push

our datum at line 09; the final linearization point occurs when our data has been taken

at line 11.

The second case occurs when the stack contains (only) requests for data (17). We

attempt to place a fulfilling datum on the top of the stack (19); if we succeed, any other

thread that wishes to perform an operation must now help us fulfill the request before

proceeding to its own work. We then read our way down the stack to find the successor

142

00 class Node { E data; Node next, match; ... }
01
02 void push(E e) {
03 Node f, d = new Node(e, Data);
04
05 while (true) {
06 Node h = head;
07 if (null == h || h.isData()) {
08 d.next = h;
09 if (!casHead(h, d))
10 continue;
11 while (d.match == null)
12 /* spin */;
13 h = head;
14 if (null != h && d == h.next)
15 casHead(h, d.next);
16 return;
17 } else if (h.isRequest()) {
18 f = new Node(e, Data | Fulfilling, h);
19 if (!casHead(h, f))
20 continue;
21 h = f.next;
22 Node n = h.next;
23 h.casMatch(null, f);
24 casHead(f, n);
25 return;
26 } else { // h is fulfilling
27 Node n = h.next;
28 Node nn = n.next;
29 n.casMatch(null, h);
30 casHead(h, nn);
31 }
32 }
33 }

Listing 3.11: Synchronous dual stack: Spin-based annihilating push. Pop is symmetric
except for the direction of data transfer. (For clarity, code for timeout is omitted.)

node to the reservation we’re fulfilling (21–22) and mark the reservation fulfilled (23).

Note that our compare and swap could fail if another thread helps us and performs

it first. Finally, we pop both the reservation and our fulfilling node from the stack (24)

and return. The linearization point for this code path is at line 19, when we push our

fulfilling datum above a reservation; it corresponds to the final linearization point for a

pop operation.

The remaining case occurs when we find another thread’s fulfilling datum or request

node (26) at the top of the stack. We must complete the pairing and annihilation of the

top two stack nodes before we can continue our own work. We first read our way down

the stack to find the data or request node for which the fulfillment node is present (27–

143

28) and then we mark the underlying node as fulfilled (29) and pop the paired nodes

from the stack (30).

Supporting Timeout

Although the algorithms presented in Section 3.5.1 are complete implementations

of synchronous queues, real systems require the ability to specify limited patience so

that a producer (or consumer) can time out if no consumer (producer) arrives soon

enough to take (provide) our datum. As we noted earlier, Hanson’s synchronous queue

offers no simple way to do this. A key benefit of our new algorithms is that they support

timeout in a relatively straightforward manner.

In the synchronous dual queue, recall that a producer blocks on its data pointer if it

finds data in the queue. A consumer that finds the producer’s data node head-most in the

queue attempts an atomic update to clear the data pointer. If the compare and swap

fails, the consumer assumes that another consumer has taken this datum, so it helps

clear the producer’s data node from the queue. To support timeout, therefore, it suffices

for the producer to clear its own data pointer and leave; when a consumer eventually

finds the abandoned node, it will remove it through the existing helping mechanism. To

resolve the race wherein the producer attempts to time out at the same time as a con-

sumer attempts to claim its data, the producer needs to clear its data node pointer with

an atomic compare and swap. Similarly, a consumer waiting on the data pointer

in a reservation node needs to compare and swap it to a special ABANDONED sen-

tinel value and the next producer that finds its request will helpfully remove it from the

queue.

Supporting timeout in the synchronous dual stack is similar to supporting it in the

synchronous dual queue, but annihilation complicates matters somewhat. Specifically,

if a request or data node times out, then a fulfilling node can eventually rest just above

it in the stack. When this happens, the abandoned node must be deleted from mid-stack

so that the fulfilling node can pair to a request below it (and other threads need to be

144

aware of this need when helping). But what if it was the last data or request node in the

stack? We now have a stack consisting of just a fulfillment node. As this case is easy

to detect, we handle it by atomically setting the stack pointer to null (which can also be

helped by other threads) and having the fulfilling thread start over. Finally, we adopt

the requirement that the fulfilling thread cannot time out so long as it has a fulfilling

node atop the stack.

Pragmatics

Our synchronous queue implementations reflect a few additional pragmatic con-

siderations to maintain good performance. First, because Java does not allow one to

set flag bits in pointers, we add a word to nodes in our synchronous queues within

which we mark mode bits. We chose this technique over two primary alternatives.

The class java.util.concurrent.AtomicMarkableReference allows direct association of

tag bits with a pointer, but exhibits very poor performance. Using run-time type iden-

tification (RTTI) to distinguish between multiple subclasses of the Node classes would

similarly allow us to embed tag bits in the object type information. While this approach

performs well in isolation, it increases long-term pressure on the JVM’s memory al-

location and garbage collection routines by requiring construction of a new node after

each contention failure.

Adding timeout support to the original dual stack and dual queue [ScS04b] requires

careful management of memory ownership to ensure that cancelled nodes are reclaimed

properly. Java’s garbage collection removes this burden from the implementations we

present in this paper. On the other hand, we must take care to “forget” references

to data, nodes, and threads that might be retained for a long time by blocked threads

(preventing the garbage collector from reclaiming them).

For sake of clarity, the synchronous queues we described earlier in this section

blocked with busy-wait spinning to await a counterpart consumer. In practice, how-

ever, busy-wait is useless overhead on a uniprocessor and can be of limited value on

145

00 void clean(Node s) {
01 Node past = s.next;
02 if (past != null && past.isCancelled())
03 past = past.next;
04
05 Node p;
06 while ((p = head) != null && p != past &&
07 p.isCancelled())
08 casHead(p, p.next);
09
10 while (p != null && p != past) {
11 Node n = p.next;
12 if (n != null && n.isCancelled())
13 p.casNext(n, n.next);
14 else
15 p = n;
16 }
17 }

Listing 3.12: Synchronous dual stack: Cleaning cancelled nodes (unfair mode)

even a small-scale multiprocessor. Alternatives include descheduling a thread until it is

signaled, or yielding the processor within a spin loop [KLM91]. In practice, we mainly

choose the spin-then-yield approach, using the park and unpark methods contained

in java.util.concurrent.locks.LockSupport [Lea05] to remove threads from and restore

threads to the ready list. On multiprocessors (only), nodes next in line for fulfillment

spin briefly (about one-quarter the time of a typical context-switch) before parking. On

very busy synchronous queues, spinning can dramatically improve throughput because

it handles the case of a near-simultaneous “fly-by” between a producer and consumer

without stalling either. On less busy queues, the amount of spinning is small enough

not to be noticeable.

Finally, the simplest approach to supporting timeout involves marking nodes can-

celled and abandoning them for another thread to eventually unlink and reclaim. If,

however, items are offered at a very high rate, but with a very low timeout patience, this

“abandonment” cleaning strategy can result in a long-term build-up of cancelled nodes,

exhausting memory supplies and degrading performance. It is important to effect a

more sophisticated cleaning strategy.

146

In our implementation, we perform cleaning differently in stacks (unfair mode) and

queues. Listing 3.12 displays the cleaning strategy for stacks; the parameter s is a

cancelled node that needs to be unlinked. This implementation potentially requires

an O(N) traversal to unlink the node at the bottom of the stack; however, it can run

concurrently with other threads’ stack access.

We work our way from the top of the stack to the first node we see past s, clean-

ing cancelled nodes as we go. Cleanup occurs in two main phases. First, we remove

cancelled nodes from the top of the stack (06–08), then we remove internal nodes (10–

15). We note that our technique for removing internal nodes from the list is dependent

on garbage collection: A node C unlinked from the list by being bypassed can be re-

linked to the list if its predecessor B becomes cancelled and another thread concurrently

links B’s predecessor A to C. Resolving this race condition requires complicated pro-

tocols [ScS01]. In a garbage-collected language, by contrast, unlinked nodes remain

unreclaimed while references are extant.

In contrast with our cleaning strategy for stacks, for queues we usually remove a

node in O(1) time when it is cancelled. However, at any given time, the last node

inserted in the list cannot be deleted (because there is no obvious way to update the tail

pointer backwards). To accommodate the case where a node is “pinned” at the tail of

the queue, we save a reference to its predecessor (in a cleanMe field of the queue)

after first unlinking any node that was previously saved. Since only one node can be

pinned at any time, at least one of the node to be unlinked and the cached node can

always be reclaimed.

Listing 3.13 presents our cleaning strategy for queues. In this code, s is a cancelled

node that needs to be unlinked, and pred is the node known to precede it in the queue.

We begin by reading the first two nodes in the queue (lines 02–03) and unlinking any

cancelled nodes from the head of the queue (04–07). Then, we check to see if the

queue is empty (08–10), or has a lagging tail pointer (11–17), before checking whether

s is the tail-most node. Assuming it is not pinned as the tail node, we unlink s unless

147

00 void clean(Node pred, Node s) {
01 while (pred.next == s) {
02 Node h = head;
03 Node hn = h.next;
04 if (hn != null && hn.isCancelled()) {
05 advanceHead(h, hn);
06 continue;
07 }
08 Node t = tail;
09 if (t == h)
10 return;
11 Node tn = t.next;
12 if (t != tail)
13 continue;
14 if (tn != null) {
15 advanceTail(t, tn);
16 continue;
17 }
18 if (s != t) {
19 Node sn = s.next;
20 if (sn == s || pred.casNext(s, sn))
21 return;
22 }
23 Node dp = cleanMe;
24 if (dp != null) {
25 Node d = dp.next;
26 Node dn;
27 if (d == null || d == dp ||
28 !d.isCancelled() ||
29 (d != t && (dn = d.next) != null &&
30 dn != d && dp.casNext(d, dn)))
31 casCleanMe(dp, null);
32 if (dp == pred)
33 return;
34 } else if (casCleanMe(null, pred))
35 return;
36 }
37 }

Listing 3.13: Synchronous dual queue: Cleaning cancelled nodes (fair mode)

another thread has already done so (18–22). The check in line 20 (sn == s) queries

whether a cancelled node has been removed from the list: We link a cancelled node’s

next pointer back to itself to flag this state.

If s is pinned, we read the currently saved node cleanMe (23). If no node was

saved, we save a reference to s predecessor and are done (34–35). Otherwise, we

must first remove cleanMe’s cancelled successor (25). If that successor is gone (27,

d == null) or no longer in the list (27, d == dp; recall that nodes unlinked from

the list have their next pointers aimed back at themselves), or uncancelled (28), we

148

simply clear out the cleanMe field. Else, if the successor is not currently tail-most

(29), and is still in the list (30, dn != d), we remove it (30, casNext call).

3.5.2 Experimental Results

Benchmarks

We present results for several microbenchmarks and one “real world” scenario. The

microbenchmarks employ threads that produce and consume as fast as they can; this

represents the limiting case of producer–consumer applications as the cost to process

elements approaches zero. We consider producer-consumer ratios of 1 : N , N : 1,

and N : N . Separately, we stress the timeout code by dynamically adjusting patience

between the longest that fails and the shortest that succeeds.

Our “real world” scenario instantiates synchronous queues as the core of the Java SE

5.0 class java.util.concurrent.ThreadPoolExecutor, which in turn forms the backbone

of many Java-based server applications. Our benchmark produces tasks to be run by a

pool of worker threads managed by the ThreadPoolExecutor.

Methodology

We obtained results on an AMD V40z with 4 2.4GHz Opteron processors and on

our SunFire 6800, using Sun’s Java SE 5.0 HotSpot VM and from 2 to 64 threads. We

tested each benchmark with both the fair and unfair (stack-based) versions of the Java

SE 5.0 java.util.concurrent.SynchronousQueue and our new nonblocking algorithms.

For tests that do not require timeout, we additionally test with Hanson’s synchronous

queue. Our new algorithms are labeled “NewSynchQueue6” in the graphs.

Figure 3.5 displays the rate at which data is transferred from multiple producers to

multiple consumers; Figure 3.6 displays the rate at which data is transfered from a sin-

gle producer to multiple consumers; Figure 3.7 displays the rate at which a single con-

sumer receives data from multiple producers. Figure 3.8 displays the handoff attempt

149

import java.util.concurrent.locks.*;
import java.util.concurrent.atomic.*;
import java.util.concurrent.*;
import java.util.*;

public class NewSynchQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
private static final long serialVersionUID = -3223113410248163686L;

/**
* Shared internal API for dual stacks and queues.
*/
static abstract class Transferer {

abstract Object transfer(Object e, boolean timed, long nanos);
}

static final int NCPUS = Runtime.getRuntime().availableProcessors();
static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
static final int maxUntimedSpins = maxTimedSpins * 16;
static final long spinForTimeoutThreshold = 1000L;

/** Dual stack */
static final class TransferStack extends Transferer {

/* Modes for SNodes, ORed together in node fields */
/** Node represents an unfulfilled consumer */
static final int REQUEST = 0;
/** Node represents an unfulfilled producer */
static final int DATA = 1;
/** Node is fulfilling another unfulfilled DATA or REQUEST */
static final int FULFILLING = 2;

/** Return true if m has fulfilling bit set */
static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }

/** Node class for TransferStacks. */
static final class SNode {

volatile SNode next; // next node in stack
volatile SNode match; // the node matched to this
volatile Thread waiter; // to control park/unpark
Object item; // data; or null for REQUESTs
int mode;
// Note: item and mode fields don’t need to be volatile
// since they are always written before, and read after,
// other volatile/atomic operations.

SNode(Object item) {
this.item = item;

}

static final AtomicReferenceFieldUpdater<SNode, SNode>
nextUpdater = AtomicReferenceFieldUpdater.newUpdater
(SNode.class, SNode.class, "next");

boolean casNext(SNode cmp, SNode val) {
return (cmp == next &&

nextUpdater.compareAndSet(this, cmp, val));
}

Listing 3.14: The full synchronous queue

150

static final AtomicReferenceFieldUpdater<SNode, SNode>
matchUpdater = AtomicReferenceFieldUpdater.newUpdater
(SNode.class, SNode.class, "match");

/**
* Tries to match node s to this node, if so, waking up thread.
* Fulfillers call tryMatch to identify their waiters.
* Waiters block until they have been matched.
*
* @param s the node to match
* @return true if successfully matched to s
*/

boolean tryMatch(SNode s) {
if (match == null &&

matchUpdater.compareAndSet(this, null, s)) {
Thread w = waiter;
if (w != null) { // waiters need at most one unpark

waiter = null;
LockSupport.unpark(w);

}
return true;

}
return match == s;

}

/**
* Tries to cancel a wait by matching node to itself.
*/

void tryCancel() {
matchUpdater.compareAndSet(this, null, this);

}

boolean isCancelled() {
return match == this;

}
}

/** The head (top) of the stack */
volatile SNode head;

static final AtomicReferenceFieldUpdater<TransferStack, SNode>
headUpdater = AtomicReferenceFieldUpdater.newUpdater
(TransferStack.class, SNode.class, "head");

boolean casHead(SNode h, SNode nh) {
return h == head && headUpdater.compareAndSet(this, h, nh);

}

/**
* Creates or resets fields of a node. Called only from transfer
* where the node to push on stack is lazily created and
* reused when possible to help reduce intervals between reads
* and CASes of head and to avoid surges of garbage when CASes
* to push nodes fail due to contention.
*/

static SNode snode(SNode s, Object e, SNode next, int mode) {
if (s == null) s = new SNode(e);
s.mode = mode;
s.next = next;
return s;

}

Listing 3.14: (continued)

151

/**
* Puts or takes an item.
*/

Object transfer(Object e, boolean timed, long nanos) {

SNode s = null; // constructed/reused as needed
int mode = (e == null)? REQUEST : DATA;

for (;;) {
SNode h = head;
if (h == null || h.mode == mode) { // empty or same-mode

if (timed && nanos <= 0) { // can’t wait
if (h != null && h.isCancelled())

casHead(h, h.next); // pop cancelled node
else

return null;
} else if (casHead(h, s = snode(s, e, h, mode))) {

SNode m = awaitFulfill(s, timed, nanos);
if (m == s) { // wait was cancelled

clean(s);
return null;

}
if ((h = head) != null && h.next == s)

casHead(h, s.next); // help s’s fulfiller
return mode == REQUEST? m.item : s.item;

}
} else if (!isFulfilling(h.mode)) { // try to fulfill

if (h.isCancelled()) // already cancelled
casHead(h, h.next); // pop and retry

else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
for (;;) { // loop until matched or waiters disappear

SNode m = s.next; // m is s’s match
if (m == null) { // all waiters are gone

casHead(s, null); // pop fulfill node
s = null; // use new node next time
break; // restart main loop

}
SNode mn = m.next;
if (m.tryMatch(s)) {

casHead(s, mn); // pop both s and m
return (mode == REQUEST)? m.item : s.item;

} else // lost match
s.casNext(m, mn); // help unlink

}
}

} else { // help a fulfiller
SNode m = h.next; // m is h’s match
if (m == null) // waiter is gone

casHead(h, null); // pop fulfilling node
else {

SNode mn = m.next;
if (m.tryMatch(h)) // help match

casHead(h, mn); // pop both h and m
else // lost match

h.casNext(m, mn); // help unlink
}

}
}

}

Listing 3.14: (continued)

152

/**
* Spins/blocks until node s is matched by a fulfill operation.
*
* @param s the waiting node
* @param timed true if timed wait
* @param nanos timeout value
* @return matched node, or s if cancelled
*/

SNode awaitFulfill(SNode s, boolean timed, long nanos) {
/*
* When a node/thread is about to block, it sets its waiter
* field and then rechecks state at least one more time
* before actually parking, thus covering race vs
* fulfiller noticing that waiter is non-null so should be
* woken.
*
* When invoked by nodes that appear at the point of call
* to be at the head of the stack, calls to park are
* preceded by spins to avoid blocking when producers and
* consumers are arriving very close in time. This can
* happen enough to bother only on multiprocessors.
*
* The order of checks for returning out of main loop
* reflects fact that interrupts have precedence over
* normal returns, which have precedence over
* timeouts. (So, on timeout, one last check for match is
* done before giving up.) Except that calls from untimed
* SynchronousQueue.{poll/offer} don’t check interrupts
* and don’t wait at all, so are trapped in transfer
* method rather than calling awaitFulfill.
*/

long lastTime = (timed)? System.nanoTime() : 0;
Thread w = Thread.currentThread();
SNode h = head;
int spins = (shouldSpin(s)?

(timed? maxTimedSpins : maxUntimedSpins) : 0);
for (;;) {

if (w.isInterrupted())
s.tryCancel();

SNode m = s.match;
if (m != null)

return m;
if (timed) {

long now = System.nanoTime();
nanos -= now - lastTime;
lastTime = now;
if (nanos <= 0) {

s.tryCancel();
continue;

}
}
if (spins > 0)

spins = shouldSpin(s)? (spins-1) : 0;
else if (s.waiter == null)

s.waiter = w; // establish waiter so can park next iter
else if (!timed)

LockSupport.park();
else if (nanos > spinForTimeoutThreshold)

LockSupport.parkNanos(nanos);
}

}

Listing 3.14: (continued)

153

/**
* Returns true if node s is at head or there is an active
* fulfiller.
*/

boolean shouldSpin(SNode s) {
SNode h = head;
return (h == s || h == null || isFulfilling(h.mode));

}

/**
* Unlinks s from the stack.
*/

void clean(SNode s) {
s.item = null; // forget item
s.waiter = null; // forget thread

SNode past = s.next;
if (past != null && past.isCancelled())

past = past.next;

// Absorb cancelled nodes at head
SNode p;
while ((p = head) != null && p != past && p.isCancelled())

casHead(p, p.next);

// Unsplice embedded nodes
while (p != null && p != past) {

SNode n = p.next;
if (n != null && n.isCancelled())

p.casNext(n, n.next);
else

p = n;
}

}
}

/** Dual Queue */
static final class TransferQueue extends Transferer {

/** Node class for TransferQueue. */
static final class QNode {

volatile QNode next; // next node in queue
volatile Object item; // CAS’ed to or from null
volatile Thread waiter; // to control park/unpark
final boolean isData;

QNode(Object item, boolean isData) {
this.item = item;
this.isData = isData;

}

static final AtomicReferenceFieldUpdater<QNode, QNode>
nextUpdater = AtomicReferenceFieldUpdater.newUpdater
(QNode.class, QNode.class, "next");

boolean casNext(QNode cmp, QNode val) {
return (next == cmp &&

nextUpdater.compareAndSet(this, cmp, val));
}

static final AtomicReferenceFieldUpdater<QNode, Object>
itemUpdater = AtomicReferenceFieldUpdater.newUpdater
(QNode.class, Object.class, "item");

Listing 3.14: (continued)

154

boolean casItem(Object cmp, Object val) {
return (item == cmp &&

itemUpdater.compareAndSet(this, cmp, val));
}

/**
* Tries to cancel by CAS’ing ref to this as item.
*/

void tryCancel(Object cmp) {
itemUpdater.compareAndSet(this, cmp, this);

}

boolean isCancelled() {
return item == this;

}

/**
* Returns true if this node is known to be off the queue
* because its next pointer has been forgotten due to
* an advanceHead operation.
*/

boolean isOffList() {
return next == this;

}
}

/** Head of queue */
transient volatile QNode head;
/** Tail of queue */
transient volatile QNode tail;
/**
* Reference to a cancelled node that might not yet have been
* unlinked from queue because it was the last inserted node
* when it cancelled.
*/

transient volatile QNode cleanMe;

TransferQueue() {
QNode h = new QNode(null, false); // initialize to dummy node.
head = h;
tail = h;

}

static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
headUpdater = AtomicReferenceFieldUpdater.newUpdater
(TransferQueue.class, QNode.class, "head");

/**
* Tries to cas nh as new head; if successful, unlink
* old head’s next node to avoid garbage retention.
*/

void advanceHead(QNode h, QNode nh) {
if (h == head && headUpdater.compareAndSet(this, h, nh))

h.next = h; // forget old next
}

static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
tailUpdater = AtomicReferenceFieldUpdater.newUpdater
(TransferQueue.class, QNode.class, "tail");

Listing 3.14: (continued)

155

/**
* Tries to cas nt as new tail.
*/

void advanceTail(QNode t, QNode nt) {
if (tail == t)

tailUpdater.compareAndSet(this, t, nt);
}

static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
(TransferQueue.class, QNode.class, "cleanMe");

/**
* Tries to CAS cleanMe slot.
*/

boolean casCleanMe(QNode cmp, QNode val) {
return (cleanMe == cmp &&

cleanMeUpdater.compareAndSet(this, cmp, val));
}

/**
* Puts or takes an item.
*/

Object transfer(Object e, boolean timed, long nanos) {
/* Basic algorithm is to loop trying to take either of
* two actions:
*
* 1. If queue apparently empty or holding same-mode nodes,
* try to add node to queue of waiters, wait to be
* fulfilled (or cancelled) and return matching item.
*
* 2. If queue apparently contains waiting items, and this
* call is of complementary mode, try to fulfill by CAS’ing
* item field of waiting node and dequeuing it, and then
* returning matching item.
*
* In each case, along the way, check for and try to help
* advance head and tail on behalf of other stalled/slow
* threads.
*
* The loop starts off with a null check guarding against
* seeing uninitialized head or tail values. This never
* happens in current SynchronousQueue, but could if
* callers held non-volatile/final ref to the
* transferer. The check is here anyway because it places
* null checks at top of loop, which is usually faster
* than having them implicitly interspersed.
*/

QNode s = null; // constructed/reused as needed
boolean isData = (e != null);

for (;;) {
QNode t = tail;
QNode h = head;
if (t == null || h == null) // saw uninitialized value

continue; // spin

Listing 3.14: (continued)

156

if (h == t || t.isData == isData) { // empty or same-mode
QNode tn = t.next;
if (t != tail) // inconsistent read

continue;
if (tn != null) { // lagging tail

advanceTail(t, tn);
continue;

}
if (timed && nanos <= 0) // can’t wait

return null;
if (s == null)

s = new QNode(e, isData);
if (!t.casNext(null, s)) // failed to link in

continue;

advanceTail(t, s); // swing tail and wait
Object x = awaitFulfill(s, e, timed, nanos);
if (x == s) { // wait was cancelled

clean(t, s);
return null;

}

if (!s.isOffList()) { // not already unlinked
advanceHead(t, s); // unlink if head
if (x != null) // and forget fields

s.item = s;
s.waiter = null;

}
return (x != null)? x : e;

} else { // complementary-mode
QNode m = h.next; // node to fulfill
if (t != tail || m == null || h != head)

continue; // inconsistent read

Object x = m.item;
if (isData == (x != null) || // m already fulfilled

x == m || // m cancelled
!m.casItem(x, e)) { // lost CAS
advanceHead(h, m); // dequeue and retry
continue;

}

advanceHead(h, m); // successfully fulfilled
LockSupport.unpark(m.waiter);
return (x != null)? x : e;

}
}

}

Listing 3.14: (continued)

157

/**
* Spins/blocks until node s is fulfilled.
*
* @param s the waiting node
* @param e the comparison value for checking match
* @param timed true if timed wait
* @param nanos timeout value
* @return matched item, or s if cancelled
*/

Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
/* Same idea as TransferStack.awaitFulfill */
long lastTime = (timed)? System.nanoTime() : 0;
Thread w = Thread.currentThread();
int spins = ((head.next == s) ?

(timed? maxTimedSpins : maxUntimedSpins) : 0);
for (;;) {

if (w.isInterrupted())
s.tryCancel(e);

Object x = s.item;
if (x != e)

return x;
if (timed) {

long now = System.nanoTime();
nanos -= now - lastTime;
lastTime = now;
if (nanos <= 0) {

s.tryCancel(e);
continue;

}
}
if (spins > 0)

--spins;
else if (s.waiter == null)

s.waiter = w;
else if (!timed)

LockSupport.park();
else if (nanos > spinForTimeoutThreshold)

LockSupport.parkNanos(nanos);
}

}

Listing 3.14: (continued)

rate, given very limited patience for producers and consumers. Figure 3.9 presents

execution time per task for our ThreadPoolExecutor benchmark.

Discussion

As can be seen from Figure 3.5, Hanson’s synchronous queue and the Java SE 5.0

fair-mode synchronous queue both perform relatively poorly, taking 4 (Opteron) to 8

(SunFire) times as long to effect a transfer relative to the faster algorithms. The unfair

(stack-based) Java SE 5.0 synchronous queue in turn incurs twice the overhead of either

158

/**
* Gets rid of cancelled node s with original predecessor pred.
*/

void clean(QNode pred, QNode s) {
s.waiter = null; // forget thread
/*
* At any given time, exactly one node on list cannot be
* deleted -- the last inserted node. To accommodate this,
* if we cannot delete s, we save its predecessor as
* "cleanMe", deleting the previously saved version
* first. At least one of node s or the node previously
* saved can always be deleted, so this always terminates.
*/

while (pred.next == s) { // Return early if already unlinked
QNode h = head;
QNode hn = h.next; // Absorb cancelled first node as head
if (hn != null && hn.isCancelled()) {

advanceHead(h, hn);
continue;

}
QNode t = tail; // Ensure consistent read for tail
if (t == h)

return;
QNode tn = t.next;
if (t != tail)

continue;
if (tn != null) {

advanceTail(t, tn);
continue;

}
if (s != t) { // If not tail, try to unsplice

QNode sn = s.next;
if (sn == s || pred.casNext(s, sn))

return;
}
QNode dp = cleanMe;
if (dp != null) { // Try unlinking previous cancelled node

QNode d = dp.next;
QNode dn;
if (d == null || // d is gone or

d == dp || // d is off list or
!d.isCancelled() || // d not cancelled or
(d != t && // d not tail and
(dn = d.next) != null && // has successor
dn != d && // that is on list
dp.casNext(d, dn))) // d unspliced
casCleanMe(dp, null);

if (dp == pred)
return; // s is already saved node

} else if (casCleanMe(null, pred))
return; // Postpone cleaning s

}
}

}

Listing 3.14: (continued)

159

private transient volatile Transferer transferer;
public NewSynchQueue() {

this(false);
}
public NewSynchQueue(boolean fair) {

transferer = (fair)? new TransferQueue() : new TransferStack();
}

public void put(E o) throws InterruptedException {
if (o == null) throw new NullPointerException();
if (transferer.transfer(o, false, 0) == null)

throw new InterruptedException();
}

public boolean offer(E o, long timeout, TimeUnit unit)
throws InterruptedException {
if (o == null) throw new NullPointerException();
if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)

return true;
if (!Thread.interrupted())

return false;
throw new InterruptedException();

}

public boolean offer(E e) {
if (e == null) throw new NullPointerException();
return transferer.transfer(e, true, 0) != null;

}

public E take() throws InterruptedException {
Object e = transferer.transfer(null, false, 0);
if (e != null)

return (E)e;
throw new InterruptedException();

}

public E poll(long timeout, TimeUnit unit) throws InterruptedException {
Object e = transferer.transfer(null, true, unit.toNanos(timeout));
if (e != null || !Thread.interrupted())

return (E)e;
throw new InterruptedException();

}

public E poll() {
return (E)transferer.transfer(null, true, 0);

}

// Remaining methods are stubbed BlockingQueue interface calls
// and bits needed to cope with the Java SE 5.0 serialization
// strategy. As these are not germane to the algorithm itself,
// we omit them from this listing.

}

Listing 3.14: (continued)

160

Producer-Consumer [SunFire]

0

10000

20000

30000

40000

50000

60000

1 2 3 4 6 8 12 16 24 32 48 64

Pairs

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Producer-Consumer [Opteron]

0

5000

10000

15000

20000

25000

30000

1 2 3 4 6 8 12 16 24 32 48 64

Pairs

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Figure 3.5: Synchronous handoff: N : N producers : consumers

161

Single Producer [SunFire]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 5 8 12 18 27 41 62

Consumers

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Single Producer [Opteron]

0

5000

10000

15000

20000

25000

1 2 3 5 8 12 18 27 41 62

Consumers

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Figure 3.6: Synchronous handoff: 1 : N producers : consumers

162

Single Consumer [SunFire]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 5 8 12 18 27 41 62

Producers

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Single Consumer [Opteron]

0

5000

10000

15000

20000

25000

1 2 3 5 8 12 18 27 41 62

Producers

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Figure 3.7: Synchronous handoff: N : 1 producers : consumers

163

Timeout Producer-Consumer [SunFire]

0

50000

100000

150000

200000

250000

300000

1 2 3 4 6 8 12 16 24 32 48 64

Pairs

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair)

 New SynchQueue New SynchQueue (fair)

Timeout Producer-Consumer [Opteron]

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 6 8 12 16 24 32 48 64

Pairs

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair)

 New SynchQueue New SynchQueue (fair)

Figure 3.8: Synchronous handoff: Low patience transfers

164

CachedThreadPool [SunFire]

0

10000

20000

30000

40000

50000

60000

1 2 3 4 6 8 12 16 24 32 48 64

threads

ns
/ta

sk

 SynchronousQueue SynchronousQueue (fair)

 New SynchQueue New SynchQueue (fair)

CachedThreadPool [Opteron]

0

5000

10000

15000

20000

25000

30000

1 2 3 4 6 8 12 16 24 32 48 64

threads

ns
/ta

sk

 SynchronousQueue SynchronousQueue (fair)

 New SynchQueue New SynchQueue (fair)

Figure 3.9: Synchronous queue: ThreadPoolExecutor benchmark

165

the fair or unfair version of our new algorithm, both versions of which are comparable

in performance. The main reason that the Java SE 5.0 fair-mode queue is so much

slower than unfair is that the fair-mode version uses a fair-mode entry lock to ensure

FIFO wait ordering. This causes pile-ups that block the threads that will fulfill waiting

threads. This difference supports our claim that blocking and contention surrounding

the synchronization state of synchronous queues are major impediments to scalability.

When a single producer struggles to satisfy multiple consumers (Figure 3.6), or

a single consumer struggles to receive data from multiple producers (Figure 3.7), the

disadvantages of Hanson’s synchronous queue are accentuated. Because the singleton

necessarily blocks for every operation, the time it takes to produce or consume data

increases noticeably. Our new synchronous queue consistently outperforms the Java

SE 5.0 implementation (fair vs. fair and unfair vs. unfair) at all levels of concurrency.

The dynamic timeout test (Figure 3.8) reveals another deficiency in the Java SE

5.0 SynchronousQueue implementation: Fair mode has a pathologically bad response

to timeout, due mainly to the cost of time-out in its fair-mode reentrant locks. Mean-

while, either version of our new algorithm outperforms the unfair-mode Java SE 5.0

SynchronousQueue by a factor of five.

Finally, in Figure 3.9, we see that the performance differentials we observe in

java.util.concurrent.SynchronousQueue translate directly into overhead in the java.util.

concurrent.ThreadPoolExecutor: Our new fair version outperforms the Java SE 5.0

implementation by factors of 14 (SunFire) and 6 (Opteron); our unfair version outper-

forms Java SE 5.0 by a factor of three on both platforms. Interestingly, the relative per-

formance of fair and unfair versions of our new algorithm differs between the SunFire

and Opteron platforms. Generally, unfair mode tends to improve locality by keeping

some threads “hot” and others buried at the bottom of the stack. Conversely, however,

it tends to increase the number of times threads are scheduled and descheduled. On the

SunFire platform, context switches have a higher relative overhead compared to other

factors; this is why our fair synchronous queue eventually catches and surpasses the

166

unfair version’s performance. By way of comparison, the cost of context switches is

relatively smaller on the Opteron platform, so the trade-off tips in favor of increased

locality and the unfair version performs best.

Across all benchmarks, our fair synchronous queue universally outperforms all

other fair synchronous queues and our unfair synchronous queue outperforms all other

unfair synchronous queues, regardless of preemption or the level of concurrency.

3.6 Conclusions

Linearizability is central to the study of concurrent data structures. It has histor-

ically been limited by its restriction to methods that are total. We have shown how

to encompass partial methods by separating them into first-class request and followup

operations. By so doing, we obtain meaningful definitions of wait-free, lock-free, and

obstruction-free implementations of concurrent objects with condition synchronization.

We have presented concrete lock-free implementations of a dual stack and a dual

queue. Performance results on a commercial multiprocessor suggest that dualism can

yield significant performance gains over naive retry on failure. The dual queue, in

particular, appears to be an eminently useful algorithm, outperforming the M&S queue

(with retry on failure) in our experiments by almost a factor of two for large thread

counts.

We have further presented a novel lock-free exchange channel that achieves very

high scalability through the use of elimination. In a head-to-head microbenchmark

comparison, our algorithm outperforms the Java SE 5.0 Exchanger by a factor of two

at two threads and a factor of 50 at 10 threads. We have further shown that this per-

formance differential spells the difference between performance degradation and linear

parallel speedup in a genetic algorithm-based traveling salesman application. Our ex-

change channel has been adopted for inclusion in Java 6.

167

Finally, we have presented two new lock-free synchronous queue implementations

that outperform all previously known algorithms by a wide margin. In striking contrast

to previous implementations, there is little performance cost for fairness. Again, in

head-to-head comparisons, our algorithms consistently outperform the Java SE 5.0 Syn-

chronousQueue (formerly the fastest known implementation of a synchronous queue)

by a factor of three in unfair mode and up to a factor of 14 in fair mode. We have fur-

ther shown that this performance differential translates directly to factors of two and ten

when substituting our new synchronous queue in for the core of the Java SE 5.0 Thread-

PoolExecutor, which is itself at the heart of many Java-based server implementations.

Our new synchronous queues have also been adopted for inclusion in Java 6.

That our new lock-free synchronous queue implementations are more scalable than

the Java SE 5.0 SynchronousQueue class is unsurprising: Nonblocking algorithms often

scale far better than corresponding lock-based algorithms. More surprisingly, our new

implementations are faster even at low levels of contention; nonblocking algorithms of-

ten exhibit greater base-case overhead than do lock-based equivalents. We unreservedly

recommend our new algorithms anywhere synchronous handoff is used.

3.7 Future work

Our relaxation of linearizability and nonblocking progress conditions has led di-

rectly to algorithms that improve, sometimes dramatically, upon the performance of

previously known implementations. Nonetheless, we believe that work in this area is

just beginning. In particular, nonblocking dual data structures could undoubtedly be

developed for double-ended queues, priority queues, sets, dictionaries, and other ab-

stractions. Each of these may in turn have variants that embody different policies as

to which of several pending requests to fulfill when a matching operation makes a pre-

condition true. One could imagine, for example, a stack that grants pending requests

in FIFO order, or (conceivably) a queue that grants them in LIFO order. More plau-

168

sibly, one could imagine an arbitrary system of thread priorities, in which a matching

operation fulfills the highest priority pending request.

Another candidate for future work is extending the use of elimination – as in the

exchanger – with other algorithms. In particular, incorporating elimination with our

synchronous queues could further improve their performance and scalability.

169

4 Software Transactional Memory

4.1 Introduction

In the introduction to Chapter 3, we mentioned that nonblocking algorithms are no-

toriously difficult to design and implement. Realistically, only experts in the field are

able to produce them. It is telling, perhaps, that in the last two years at least three pa-

pers have been published on data structures as fundamental as queues [ScS04b; LaS04;

DDG04]. What then is the rank-and-file programmer to do?

An alternative to creating ad hoc implementations of each data structure is to use

a general purpose universal construction that allows them to be created mechanically.

The term software transactional memory (STM) was coined by Shavit and Toui-

tou [ShT97] as a software-only implementation of a hardware-based scheme proposed

by Herlihy and Moss [HeM93]. Although early STM systems were primarily aca-

demic curiosities, more modern systems [Fra04; HaF03; HLM03b] have reduced run-

time overheads sufficiently to outperform coarse-grained locks when several threads

are active.

STM-based algorithms can generally be expected to be slower than either ad hoc

nonblocking algorithms or fine-grained lock-based code. At the same time, they are as

easy to use as coarse-grain locks: One simply brackets the code that needs to be atomic.

170

In fact, STM systems allow correct sequential code to be converted, mechanically, into

highly concurrent correct nonblocking code. Further, algorithms based on nonblock-

ing STMs avoid many problems commonly associated with locks: deadlock, priority

inversion, convoying, and preemption and fault vulnerability.

The remainder of this chapter is organized as follows. Section 4.2 traces a his-

tory of universal constructions and transactional memories. Then, in Section 4.3, we

present the dynamic software transactional memory (DSTM) system of Herlihy et

al. [HLM03b]. A novel feature of DSTM is its use of modular contention managers

that negotiate the interplay between competing transactions’ needs to access individual

objects in memory. We say that contention management policies are modular because

the programmer can swap in at runtime whichever one is most desirable and effective

for the current software and hardware environment. In Section 4.4, we analyze over

a dozen and a half distinct policies for contention management in order to provide a

preliminary characterization of how one might want to choose a policy. Finally, we

conclude in Section 4.5.

4.2 Literature Review

In this section, we trace an overview of the history of universal constructions and

transactional memory systems.

4.2.1 Early Work: The Origins of Universal Constructions

The first universal constructions are due to Herlihy [Her90; Her93]. His simple

lock-free protocol consists of three steps. First, the thread uses the load linked

instruction to read a global pointer to the object to be updated. Next, the thread copies

the entire object, validates the private copy, and applies sequential updates to it. Finally,

it uses the store conditional instruction to swing the global pointer to its local

171

copy. If this succeeds, the operation is complete; otherwise, some other thread has

succeeded and the thread needs to retry.

In this same paper, Herlihy also presents a wait-free extension to his lock-free al-

gorithm. In it, an array has an entry for each thread; each entry includes an abstract

representation of the type of operations to be performed on the data structure. When a

thread wishes to perform an operation, it first registers its request by filling its array en-

try. It then walks through the entire array, attempting active operations for all threads.

This approach, which Herlihy terms operation combining, is an early example of what

has come to be known as a helping mechanism.

Herlihy’s constructions work well for small objects and small numbers of threads,

though the lock-free construction augmented with exponential backoff between at-

tempts outperforms the wait-free version. However, the amount of copying required

renders these constructions useful only for small objects. Another problem with Her-

lihy’s protocols is that unsuccessful update attempts waste large amounts of resources

by potentially allowing up to N − 1 (where N is the total number of threads) attempts

to fail for each one that succeeds.

One attempt to address these issues is due to Alemany and Felten [AlF92]. They

attempt to conserve resources by bounding the number of threads that can concurrently

attempt an update on the object to a small constant k. This is done by adding a shared

counter to the object. Threads atomically increment the counter before reading the

global pointer to the object; they then spin so long as the counter is greater than k. As

threads complete each attempt, they decrement the counter to allow other threads to

attempt their own updates. It may seem that if all k “enabled” threads are preempted

or otherwise delayed, then this protocol would not guarantee lock-freedom. Indeed,

Alemany and Felten require support from the operating system to decrement the counter

each time an enabled thread is delayed and re-increment it each time the thread’s delay

ends. In exchange for this system requirement, they achieve a moderate performance

improvement.

172

Anderson and Moir [AnM97] replace use of the shared counter with a more sophis-

ticated k-exclusion algorithm to achieve similar gains in performance by bounding the

level of contention that wait-free algorithms must handle.

Another limitation of Herlihy’s construction is that all operations conflict with each

other, regardless of whether they overlap in terms of which portions of the object they

update. Barnes’s lock-free construction [Bar93] addresses this problem with a tech-

nique he names caching. In his approach, the object is carved up into small cells. This

technique has four steps. First, a thread completes its operation on a cached copy of

each cell that it needs to modify. Caches are copied from the “live” object, then re-read

to ensure consistency. Second, it verifies that the cells have not been changed from the

cached version, aborting and starting over if they have. Third, it registers a claim on

each updated cell, and finally each claimed cell is replaced with an updated version.

Claims are registered in a strictly ascending order (based on a unique key assigned to

each cell) in order to prevent livelock. If a claim is found at any time in a needed cell,

threads can help each other by completing the updates needed by the thread that in-

stalled the claim. This helping mechanism is often described as “recursive” because in

the thread of helping one thread, another conflict that requires further helping could be

discovered. Other disadvantages of this approach include the requirement that each cell

be exactly the same size and that each cell contain additional space for the claim data

structure.

4.2.2 Hardware-based Transaction Support

All of the techniques described thus far exhibit noticeable performance degrada-

tion compared to simpler lock-based schemes. One attempt to rectify this is Herlihy

and Moss’ transactional memory [HeM93]. Theirs is a hardware scheme in which data

structure operations are encapsulated into transactions, groups of memory updates that

collectively represent the operation. A special transactional cache holds tentative up-

173

dates to data as well as memory locations that have been transactionally read (but not

updated). The cache coherence mechanism is then extended such that so long as the

transactionally cached data are not invalidated, the transaction can continue. Once the

updates are completed, a commit instruction releases them to other processors. One

particularly interesting feature of this scheme is that data can be transactionally loaded

with hints that it is intended for either read-only or full read-write access; read-only

access allows operations to proceed concurrently if neither updates a particular value.

While they can proceed concurrently even without hints, hints can help reduce the cost

of loading and then upgrading data.

Although Herlihy and Moss are frequently cited as the first to propose transactional

memory, an earlier description of an architecture that explicitly supports transactions as

a mechanism for parallelizing code is due to Knight [Kni86]. His work, however, is tar-

geted at parallelizing Lisp on Lisp Machine hardware, and is not generally applicable.

In particular, it requires strict serialization on the order in which transactions commit.

An even earlier scheme is due to Stonebraker [Sto84]. This system implements

transactions by providing hardware support for locking at page-level granularity. As

such it is not really suitable for fine-level manipulation of data structures in the manner

in which transactional memory is now perceived as being most useful. A subsequent

scheme by Chang and Mergen [ChM88] shrinks the granularity from full pages to seg-

ments within a page; however, it still imposes the restriction that only one transaction

at a time can access any portion of the page for write access. This scheme was imple-

mented in a commercial processor: the IBM PC/RT.

4.2.3 Software-based Transactional Approaches

In response to the need for special hardware support required by Herlihy and Moss’

scheme [HeM93], researchers began looking for software-based approaches to trans-

actional memory. The first of these is due to Shavit and Touitou [ShT97], who coined

174

the term software transactional memory (STM). Their scheme is static in that transac-

tions consist of updates to predetermined locations, in some predefined order. Further,

only transactional memory locations, which have additional ownership data added in,

can be updated by transactions. As in Barnes’s method [Bar93], transactions consist

of claiming a sequence of memory locations, validating each location, then updating

memory locations once validated; once all memory locations are claimed, the transac-

tion is guaranteed to complete.

To avoid the recursive helping of Barnes’s approach, Shavit and Touitou use what

they call non-redundant helping. In this scheme, if a transaction encounters conflict

while attempting to claim its list of nodes, it releases all claimed nodes before attempt-

ing to help the other thread. Importantly, it will only try to help one other thread behind

which its own transaction is blocked; if it encounters contention on this secondary

transaction, it simply gives up helping. Either way, the transaction then retries its own

operation after completing any helping steps. Because locations are acquired in canon-

ical order, at most N − 1 threads can be helping another thread at any time.

Where Shavit and Touitou’s approach is lock-free, the group update mechanism

of Afek et al. [ADT95] is wait-free. In their methodology, a thread first performs a

breadth-first search of a binary tree in order to claim a vacant node. It then “climbs”

the tree, atomically merging the queue-ordered lists for pairs of child nodes into a

single queue of operations at each step. Then, when it reaches the root of the tree, it

performs operations from the head of the queue until its operation has been performed

and the result status recorded. As in the approach of Shavit and Touitou, this approach is

limited to static transactions in which the sequence of memory operations is known in

advance. However, their approach adds the distinct advantage that the time complexity

of executing a transaction is dependent on contention rather than on the total number of

threads.

Anderson and Moir address two limitations of Herlihy’s original scheme. First,

only a single object could be accessed within the context of a transaction. Anderson

175

and Moir’s multi-object scheme [AnM95b] uses a multiword store conditional

operation to simultaneously install multiple locally-updated versions of objects in a sin-

gle atomic operation. Second, their large object scheme [AnM95a] attacks the problem

of heavy copying overhead in Herlihy’s proposal. Rather than requiring users to ex-

plicitly fragment objects into cells, this scheme attempts to provide the illusion that all

memory for an object is contained in a single sequential array. Special Read() and

Write() methods translate from “array” indices to the particular block in which the

word of interest resides; each group of BLOCK SIZE words is mapped to a different

block. Wait-free and lock-free constructions are then built out of multiword store

conditional operations on extended-length (BLOCK SIZE) words. The large ob-

ject scheme avoids copying data and has Ω(W) time complexity for W -word load

linked and store conditional operations.

The first dynamic transactional memory implementation is due to Moir [Moi97].

By comparison with static transactions, dynamic transactions allow access to arbitrary

blocks chosen while the transaction proceeds. However, Moir’s scheme does not allow

inclusion of additional blocks once the STM is initialized. In this protocol, each thread

has a predefined number of blocks (the exact number is picked to be high enough to sup-

port any transaction needed for the object), and builds up copies of object pieces in these

blocks. Conflict between transactions is noted when copying out the block as this thread

marks a transaction as the current “owner” of a chunk of the object. Finally, when all

updates are prepared in the thread’s blocks, a multiword compare and swap oper-

ation effects the transaction. This multiword compare and swap implementation,

while being lock-free, establishes sufficient communication with a transaction handler

to optionally allow wait-free transactions.

176

4.2.4 Multiword Atomic Update Implementations

An interesting hardware-based scheme is due to Stone et al. [SSH93]. Like Herlihy

and Moss’ transactional memory [HeM93], their “Oklahoma Update” is an extension to

cache coherence protocols. However, rather than supporting full transactional seman-

tics, they seek merely to provide multi-word atomic updates. We discuss their scheme

here because modifications to a number of memory locations, combined with a caching

algorithm, such as Barnes’s [Bar93] or Moir’s [Moi97], can be used to effect a uni-

versal construction. The implementation of their scheme consists of adding support

for multiple reservation stations to the data cache, each of which can hold a tentative

update to a cache line. As in load linked/store conditional, conflicts on a

cache line invalidate the stored data. Once a program has added updates for all data that

it wishes to update, a single write-if-reserved instruction releases all updates,

effectively implementing a multi-word load linked/store conditional: Ei-

ther all updates are immediately effective, or none of them are.

Another parallel between the Oklahoma Update and Herlihy and Moss’s transac-

tional memory is that the hardware updates to support it have not been met with great

enthusiasm by hardware vendors. Again, researchers have turned to software-based

implementations. The first of these is due to Israeli and Rappoport [IsR94]. They pro-

pose a technique that provides a property they name disjoint access parallelism. In it,

multiple concurrent operations that do not overlap on any memory addresses are able

to proceed in parallel. Their NCAS 1 protocols are built out of three successive layers.

The bottom layer is an implementation of LL/SC, based on compare and swap

in which each targetable memory location is extended with an additional bit for each

thread. LL in this scheme sets the thread-specific bit for the current thread and retrieves

the current contents of the memory. SC checks that the bit is still set, and if so, attempts

to update the entire block of memory to the new value and clear all thread bits. In this

1Even though some protocols provide multiword LL/SC implementations, I will refer to them as
NCAS. The N indicates that some number of words larger than 1 may be updated.

177

way, a successful update by one thread inherently prevents any other pending thread

updates from succeeding. The middle layer is a weakened NCAS that relaxes the se-

mantics somewhat by allowing a “component CAS” to succeed if the target memory

address already matches its new value and by allowing updates to a prefix of variables

to be made even if not all component compare and swap memory locations match

their expected values. The top layer is then built from this weakened NCAS.

Although technically correct, Israeli and Rappoport’s scheme suffers from two se-

rious drawbacks. First, only special memory locations may be the target of an NCAS

owing to the need for a per-thread bit in support of the LL/SC implementation. (It is

unclear whether this requirement still holds on hardware with native LL/SC support.)

More importantly, the bootstrapped character of their implementation results in a pro-

tocol that is impractically slow.

Afek et al. [AMT97] present a multi-object, wait-free NCAS implementation. In

their scheme, to claim k memory locations, a thread first claims the lower k − 1 recur-

sively with the same scheme, and so on down to the 2-location claim, which is handled

separately. It then marks the top node as a “parent claim”; each memory location can

be claimed as either a child or a parent claim. (If the appropriate claim type is already

in use, a thread must help the thread that has installed the claim.) Their protocol then

assesses the conflict graph between updates, a directed graph in which edges between

nodes indicate conflicts between updates (from child claim to parent claim). They then

use a node coloring scheme to establish a partial order between conflicting updates

(non-conflicting updates are not ordered). Once this “locking order” is finally estab-

lished, updates can be processed.

Anderson et al. [ARJ97] give a wait-free NCAS implementation based on a novel

helping mechanism that they name incremental helping. In incremental helping, a

thread t1 first describes its intended update in a shared announcement variable. If t1

finds plans for another thread t2 in the announcement variable, t1 helps t2 before per-

178

forming its own update. This ensures that a thread will help at most one other thread,

but is not disjoint-access parallel due to overlapped use of the announcement variable.

Moir [Moi00] relaxes the heavyweight load linked/store conditional

used as the basis for an earlier universal construction [AnM95a] in order to improve

its efficiency. Specifically, he observes that many of the values used by the LL portion

of the load linked/store conditional are never used, so he devises a way to

generate them only as needed.

Attiya and Dagan [AtD01] present an algorithm that implements binary load

linked/store conditional (load linked/store conditional on two

locations) from unary load linked/store conditional instructions. They do

this by considering the conflict graph induced over multiple binary load linked/

store conditional operations, where nodes represent memory locations and edges

represent updates over pairs of memory locations. For conflicts that are a simple path,

they adapt the Cole and Vishkin’s [CoV86] deterministic coin tossing technique to

break up the graph so that updates can proceed. For more complex conflict graphs,

they introduce a synchronization procedure that reduces the graph to a series of paths.

Although this algorithm does not directly support NCAS operations, it can be used as a

foundation for techniques that do. For example, an early version of Attiya and Dagan’s

protocol forms the base case for the NCAS implementation of Afek et al. [AMT97]

discussed previously.

Harris, Fraser and Pratt [HFP02] propose an NCAS implementation that is based on

a two-layer scheme. First, they build a double-compare-single-swap (DCSS)

primitive from standard compare and swap operations. Then, they create a descrip-

tor that holds each of the N component compare and swaps. Threads proceed to

walk through each component compare and swap, conditionally replacing the con-

tents of each target memory address with a pointer to the descriptor if a status word

in the descriptor indicates that the update is still in progress. If another descriptor is

encountered when doing this update, the thread pauses to perform recursive helping (as

179

introduced by Barnes [Bar93]). If a data value replaced by a pointer to the descriptor

doesn’t match the expected value, the entire update is aborted and the old values are

compare and swap’ed back; otherwise, once all data values are replaced by point-

ers to the descriptor, the update status is marked as successful and the new values are

compare and swap’ed in. This scheme has two major advantages. First, it uses no

additional storage for memory that can be subject to NCAS, and can thus operate on

arbitrary memory locations. Second, it performs comparably to fine-grained locking in

benchmark testing conducted by Harris et al.

4.2.5 Using Locks as the Basis of Transactions

Yet another approach to creating universal constructions consists of letting program-

mers write their code to use locks, and then uses the locking as a hook upon which to

build nonblocking implementations. The first scheme along these lines that we consider

is due to Turek, Shasha, and Prakash [TSP92]. In their scheme, explicit replacements

are given for reads, writes, locking actions, and unlocking actions. Specifically, when a

thread “acquires” a lock, its operation is helped by other threads that wish to access the

same lock. Cyclic data dependencies can only arise if the original lock-based protocol

admitted deadlock. A direct consequence of this is that the sequence of operations that

constitute a transaction must be explicitly spelled out such that any thread can, at any

time, determine what a lock-holder’s next step will be. This transaction information

plus an encoded instruction pointer are stored in a data structure; threads acquire the

lock by CAS’ing a shared data value from nil to a pointer to this structure.

A more recent approach is due to Rajwar and Goodman [RaG02]. They base their

technique on the observation that programmers often use coarse-grained locking to be

sure “all bases are covered” and that programs can often run correctly even if the lock

is never acquired. Hence, the conservative locking strategies that programmers often

use to ensure correctness can frequently be elided dynamically [RaG01], provided that

180

one can detect and roll back concurrent updates that would have been prevented had

the locking been performed. They build on this work on speculative lock elision by

automatically wrapping transactions around the critical sections of sequences of in-

structions detected at runtime as locks. (Their hardware proposal is geared primarily

towards identification of TAS and TATAS locks; however, were such a scheme actually

implemented in hardware, it seems plausible that explicit lock and unlock instruc-

tions would be added to ease the cost of lock recognition.) While inside a transaction,

standard data cache techniques ensure that a thread has sole access to the cache lines

that hold the data it plans to update and standard cache invalidation provides a hook

that allows conflict between transactions to be detected. To resolve conflict, they use a

logical timestamping technique in which transactions win conflicts over younger coun-

terparts; this guarantees that a transaction will eventually be the oldest outstanding one,

and hence, systems-wide progress. 2

Another hardware-based approach that aims to improve performance by converting

lock-based to nonblocking code is due to Martı́nez and Torellas [MaT02]. Their pro-

posal uses thread-level speculation (TLS) to speculatively ignore barriers, locks, and

flags. As with Rajwar and Goodman’s work, special hardware is used to check for

conflict between speculatively and non-speculatively executing threads. Compared to

Rajwar and Goodman’s work, this proposal requires considerably more hardware in-

vestment, and is only applicable to multithreaded machines; Rajwar and Goodman’s

work is more generally applicable. Martı́nez and Torellas define a safe thread that

is always able to execute non-speculatively; this asymmetry guarantees progress sys-

temwide, though it admits starvation of individual operations unless each thread of

execution “gets a turn” to be the safe thread.

Oplinger and Lam propose more explicit TLS-based transactions [OpL02]. In their

model, programmers explicitly code fine-grained transactional software operations and

2This use of timestamps is virtually identical to the way they are used in Alemany and Felten’s
work [AlF92].

181

aborted

Data

Data

start

old object

new object

transaction

Locator
TMObject

Figure 4.1: Transactional object structure

mark the points at which they have succeeded or failed. In a technique they name pro-

cedural speculation, transactions are executed in TLS hardware; speculation rollback

mechanisms automatically effect transaction rollback on abortion.

4.3 Dynamic Software Transactional Memory

The DSTM system of Herlihy et al. [HLM03b] is an object-based software transac-

tional memory (STM) system. Its transactions operate on blocks of memory. Typically,

each block corresponds to one Java object. Each transaction performs a standard se-

quence of steps: initialize; open and update one or more objects (possibly choosing

later objects based on data in earlier objects); attempt to commit; if committing fails,

retry. Objects can be opened for full read-write access, read-only access, or for tempo-

rary access (where the object can later be discarded if changes to by other transactions

won’t affect the viability of current one).

Under the hood, each object is represented by a TMObject data structure that con-

sists of a pointer to a Locator object. The Locator in turn has pointers to the transaction

that created it, together with old and new data object pointers (see Figure 4.1).

Transaction Descriptors consist of a read set to track objects that have been ac-

cessed in read-only mode and a word that reflects the transaction’s current status:

aborted, active, or committed.

When a transaction attempts to access an object (for read-only permission), we first

read the Locator pointer in the TMObject. We then read the status word for the Loca-

182

active

Data

committed

Data

Data

old object

new object

transaction

old object

new object

transaction

start

old Locator

new Locator

TMObject
copy

Figure 4.2: Opening a TMObject after a recent commit

active

Data

aborted

Data

Data

old object

new object

transaction

old object

new object

transaction

start

old Locator

new Locator

TMObject

copy

Figure 4.3: Opening a TMObject after a recent abort

tor’s transaction Descriptor to determine whether the old or the new data object pointer

is current: If the status word is committed the new object is current (Figure 4.2);

otherwise the old one is (Figure 4.3). Next, we build a new Locator that points to our

transaction and has the active version of the data as its old object. We copy the data for

the new object and then atomically update the TMObject to point to our new Locator.

Finally, we store the new Locator and its corresponding TMObject in our Descriptor’s

read set.

To acquire read-write permissions for an accessed object, we build a new Locator

that points to our Descriptor and has the current version of the data as its old object.

We instantiate a new object with a copy of the target object’s data and then atomically

update the TMObject to point to our new Locator; this implicitly aborts the competing

transaction by guaranteeing that any attempt it makes to commit will fail.

183

We validate the viability of a transaction by verifying that each Locator in the read

set is still current for the appropriate TMObject. Validating already-accessed objects

with each new object accessed or acquired ensures that a transaction never sees mu-

tually inconsistent data; hence, programming transactions for DSTM is equivalent to

sequential programming from the user’s perspective.

To commit a transaction, we atomically update its Descriptor’s status word from

active to committed. If successful, this update signals that all of the transaction’s

updated TMObjects are now current.

With this implementation, only one transaction at a time can acquire an object for

write access because a TMObject can point to only one transaction’s Locator. If an-

other transaction wishes to access an already-acquired object, it must first atomically

update the “enemy” transaction’s status field from active to aborted. We invoke a

contention manager to decide whether to abort the enemy transaction or delay our own.

4.3.1 Visible and Invisible Reads

In the original version of the DSTM, read-only access to objects is achieved by stor-

ing TMObject→Locator mappings in a private read set. At validation time, a conflict is

detected if the current and stored Locators do not match. We dub this implementation

invisible because it associates no artifact from the reading transaction with the object. A

competing transaction attempting to acquire the object for write access cannot tell that

readers exist, so there is no “hook” through which contention management can address

a potential conflict.

Alternatively, read-only accesses can be made visible by adding the Descriptor to

a linked list of readers associated with the TMObject. This implementation adds over-

head to both read and write operations: A writer that wishes to acquire the object must

explicitly abort each reader in the list. In exchange, we gain the ability to explicitly

manage conflicts between readers and writers, to abort doomed readers early, and to

184

skip incremental validation of accessed objects when accessing or acquiring a new ob-

ject.

4.3.2 Benchmarks

In this chapter, we present experimental results with seven different benchmarks.

Three implementations of an integer set (IntSet, IntSetUpgrade, RBTreeTMNodeStyle)

are drawn from the original DSTM paper [HLM03b]. These three repeatedly but ran-

domly insert or delete integers in the range 0. . . 255. The first two implementations are

based on a sorted linked list. In IntSet, every object is acquired for write access; every

pair of transactions necessarily conflict. IntSetUpgrade initially accesses objects read-

only and acquires them in read/write mode as needed. This allows some concurrency

between transactions, but a transaction that performs a write earlier in the list will abort

a longer-running transaction.

RBTreeTMNodeStyle, like IntSetUpgrade, upgrades access as needed; however,

it implements the integer set with a red-black tree. It has two principle differences

from the IntSet benchmarks, however. First, modified objects can be in completely

different sub-branches of the tree; many transactions can execute in parallel without

affecting each other. Second, the process of rebalancing the tree after an insert or

delete operation works upwards to the root of the tree. Hence, a transaction coming

up can meet one heading down; the resulting cyclic dependencies will tend to punish

contention management schemes that are overly reluctant to abort a competitor.

The fourth benchmark (Stack) is a concurrent stack that supports push and pop

transactions. Similarly, the fifth (Counter) is a simple concurrent counter. Transactions

in these two benchmarks are notable for being very short; that every pair is in conflict

is a secondary consideration.

Transactions in the sixth benchmark (ArrayCounter) consist of either ordered incre-

ments or decrements in an array of 256 counters. Increment transactions update each

185

counter in turn, starting at 0 and working toward 255 in ascending order before com-

mitting; decrements reverse the order. Not only do every pair of transactions conflict

with each other, but an increment and a decrement are very likely to repeatedly en-

counter each other somewhere in the middle of the array. We designed ArrayCounter

as a “torture test” to stress contention managers’ ability to avoid livelock.

By far the most complex benchmark we test with, the seventh (LFUCache) simu-

lates cache replacement in an HTTP web proxy using the least-frequently used (LFU)

algorithm [RoD90]. Briefly, the LFU algorithm assumes that frequency (rather than

recency) of web page access is the best predictor for whether a web page is likely to be

accessed again in the future (and thus, worth caching).

The simulation uses a two-part data structure to emulate the cache. The first part is a

lookup table of 2048 integers, each of which represents the hash code for an individual

HTML page. These are stored as a single array of TMObjects. Each contains the key

value for the object (an integer in our simulation) and a pointer to the page’s location in

the main portion of the cache. The pointers are null if the page is not currently cached.

The second, main part of the cache consists of a fixed size priority queue heap of

255 entries (a binary tree, 8 layers deep), with lower frequency values near the root.

Each priority queue heap node contains a frequency (total number of times the cached

page has been accessed) and a page hash code (effectively, a backpointer to the lookup

table). The priority queue heap is inverse: Lower frequency values are generally closer

to the root than higher values.

Worker threads repeatedly access a page. To approximate the workload for a real

web cache, we pick pages randomly from a Zipf distribution with exponent 2. So, for

page i, the cumulative probability pc(i) ∝
∑

0<j≤i j
−2. We precompute this distribution

(normalized to a sum of one million) so that a page can be chosen with a flat random

number.

The algorithm for “accessing a page” first finds the page in the lookup table and

reads its heap pointer. If that pointer is non-null, we increment the frequency count for

186

the cache entry in the heap and then reheapify the cache using backpointers to update

lookup table entries for data that moves. If the heap pointer is null, we replace the root

node of the heap (guaranteed by heap properties to be least-frequently accessed) with a

node for the newly accessed page. In order to induce hysteresis and give pages a chance

to accumulate cache hits, we perform a modified reheapification in which the new node

switches place with any children that have the same frequency count (of one).

The Zipf distribution we use for page access will tend to cluster most hits into only

a few pages, which will quickly reach the leaves of the priority queue heap. Thereafter,

some parallelism results from threads hitting different pages, but most transactions will

tend to be in conflict. Reheapification of the priority queue heap can be expected to

be fairly rare, so like the Stack and Counter benchmark, most transactions will be very

short. Even for transactions that do cause reheapification, object access is always from

the tree of the priority queue heap down towards the leaves; this unidirectional access

pattern means that transactions will not repeatedly “bump into” each other.

4.3.3 Experimental Methodology

All results presented in this chapter were obtained on a SunFire 6800, a cache-

coherent multiprocessor with 16 1.2GHz UltraSPARC III processors. Except where

otherwise noted, we tested in Sun’s Java 1.5 beta 1 HotSpot JVM, augmented with a

JSR 166 update jar file from Doug Lea’s web site [Lea].

Our benchmark testing consists of running a variable number of threads, each ex-

ecuting random transactions in one of the benchmarks from Section 4.3.2. In each

case, if a transaction fails to commit, the thread immediately retries it; otherwise, it

selects and executes a new random transaction without delay. In particular, we use no

non-critical work for these experiments as was done in Chapter 2.

Operations in these benchmarks have been artificially restricted to exacerbate con-

tention between transactions and highlight differences between contention managers

187

(described in detail in Section 4.4). For example, in the integer set benchmarks, only

integers in the range 0. . . 255 are inserted or deleted; a greater range would decrease the

probability of transactional conflict – particularly in the case of RBTreeTMNodeStyle.

4.4 Contention Management

One of my primary contributions to the original DSTM system was to augment

it with a modular interface for “plug-in” contention managers that separate issues of

progress from the correctness of a given data structure. The central goal of a good

contention manager is to mediate transactions’ conflicting needs to access data objects.

A key benefit of obstruction-freedom is that it allows programmers to separate con-

cerns of progress from those of correctness. In particular, obstruction-free algorithms

have no hard and fast progress requirements when more than one thread is execut-

ing concurrently; this allows the use of heuristics that exploit information about time,

runtime load, the hardware and software environments, or even the specific types of

transactions being executed – practical sources of information that have been largely

ignored in the literature on lock-free synchronization. A contention manager, then,

wraps a collection of heuristics into a single policy that aims to maximize throughput

at some reasonable level of fairness, balancing the complexity of the decision-making

process against the runtime overhead it incurs.

Any obstruction-free algorithm can be augmented with a variety of contention man-

agement policies. For example, the Adaptive STM [MSS05] implements the same

contention management interface as DSTM, so it can use the same managers. Other

algorithms, such as the obstruction-free deque of Herlihy et al. [HLM03a] are more re-

stricted: Because individual operations do not create any visible interim state, threads

cannot identify the peers with which they are competing. This precludes use of some of

the more context-sensitive policies detailed below, but other options remain viable: No

special information about competitors is required, for example, to employ exponential

188

backoff on each failed attempt to complete an operation. DSTM includes a particularly

rich set of information-providing “hooks”, yielding a vast design space for contention

management policies.

The correctness requirement for contention managers is simple and quite weak. In-

formally, any active transaction that asks sufficiently many times must eventually get

permission to abort a conflicting transaction. More precisely, every call to a contention

manager method eventually returns (unless the invoking thread stops taking steps for

some reason), and every transaction that repeatedly requests to abort another trans-

action is eventually granted permission to do so. This requirement is needed to pre-

serve obstruction-freedom: A transaction T that is forever denied permission to abort

a conflicting transaction will never commit even if it runs by itself. 3 If the conflicting

transaction is also continually requesting permission to abort T , and incorrectly being

denied this permission, the situation is akin to deadlock. Conversely, if T is eventually

allowed to abort any conflicting transaction, then T will eventually commit if it runs by

itself for long enough.

At one extreme, a policy that never aborts an “enemy” transaction 4 can lead to dead-

lock in the event of priority inversion or mutual blocking, to starvation if a transaction

deterministically encounters enemies, and to a major loss of performance in the face

of page faults and preemptive scheduling. At the other extreme, a policy that always

aborts an enemy may also lead to starvation, or to livelock if transactions repeatedly

restart and then at the same step encounter and abort each other. A good contention

manager must lie somewhere in between, aborting enemy transactions often enough to

tolerate page faults and preemption, yet seldom enough to make starvation unlikely in

practice. The contention manager’s duty is to ensure progress; we say that it does so

3Here and elsewhere “runs by itself” means that no concurrent transaction takes a step, not that no
concurrent transaction exists.

4Never aborting an enemy violates the requirements we just presented for a policy to ensure
obstruction-freedom; however, it is useful to consider for illustrative purposes.

189

out-of-band because its code is orthogonal to that of the transactions it manages, and

neither contributes to their conceptual complexity nor affects their correctness.

4.4.1 The Contention Management Interface

DSTM’s contention management interface [ScS04a] comprises notification meth-

ods, “hooks” for various events that transpire during the processing of transactions; and

a request method that asks the manager to decide whether enemy transactions should

be aborted. Notifications include:

• Beginning a transaction

• Successfully committing a transaction

• Failing to commit a transaction

• Self-abortion of a transaction

• Beginning an attempt to open an object (for read-only, temporary, or read-write

access)

• Successfully opening an object (3 variants)

• Failing to open an object (3 variants) due to failed transaction validation

• Successfully changing to read-only, temporary, or read-write access an object

already open in another mode (6 total variants)

Each thread has its own instance of a contention manager; contention management

is distributed rather than centralized. By tracking the notification messages that oc-

cur in the processing of a transaction, a contention manager assembles information

that allows it to decide whether aborting a competing transaction will improve over-

all throughput. Although in principle there is no reason different threads cannot have

190

contention managers of different types, in practice, we believe that cooperative imple-

mentation of policy distributed across all managers is key to their effectiveness; having

managers trying to effect multiple policies concurrently subverts this benefit.

4.4.2 Contention Management Policies

In this section, we enumerate a series of example policies that one might use for con-

tention management. Because the design space for contention managers is extremely

wide and because there is little prior work to guide us in this area, we have focused in

these early studies on the “broad brush” technique of covering many widely different

policy options. We anticipate that subsequent studies will narrow in for more detailed

analysis of individual policies that we have identified here.

The policies described in this section reflect both our initial study of contention

management [ScS04a] and a follow-on study that incorporated lessons learned from

it [ScS05].

Aggressive

The Aggressive manager ignores all notification methods, and always chooses to

abort an enemy transaction at conflict time. Although this makes it highly prone to

livelock, it forms a useful baseline against which to compare other policies.

Polite

The Polite contention manager 5 uses exponential backoff to resolve conflicts en-

countered when opening objects. Upon detecting contention, it spins for a period of

time randomly selected from the range 1 . . . 2nk ns, where n is the number of retries

5Before we modularized its contention management interface, DSTM always used this scheme for
conflict resolution.

191

that have been necessary so far for access to an object, and k is an architectural tuning

constant (4 works well on our machine). After a maximum of 22 retries, the polite man-

ager unconditionally aborts an enemy transaction. One might expect the Polite manager

to be particularly vulnerable to performance loss due to preemption and page faults.

Randomized

A very simple contention manager, the Randomized policy ignores all notification

methods. When it encounters contention, it flips a coin to decide between aborting

the other transaction and waiting for a random interval of up to a certain length. The

coin’s bias and the maximum waiting interval are tunable parameters; we used 50% and

64 ns, respectively. Note that DSTM transactions coupled with this policy are “merely”

probabilistically obstruction-free: Executions exist in which the coin comes up “wait”

infinitely often. But with probability 1, they do not happen in practice.

Karma

The Karma manager attempts to judge the amount of work that a transaction has

done so far when deciding whether to abort it. Although it is hard to estimate the

amount of work that a transaction performs on the data contained in an object, the

number of objects the transaction has opened may be viewed as a rough indication

of investment. For system throughput, aborting a transaction that has just started is

preferable to aborting one that is in the final stages of an update spanning tens (or

hundreds) of objects.

The Karma manager tracks the cumulative number of objects opened by a transac-

tion as its priority. More specifically, it resets the priority of the current thread to zero

when a transaction commits and increments that priority when the thread successfully

opens an object. When a thread encounters a conflict, the manager compares priorities

and aborts the enemy if the current thread’s priority is higher. Otherwise, the manager

192

waits for a fixed amount of time to see if the enemy has finished. Once the number of

retries plus the thread’s current priority exceeds the enemy’s priority, the manager kills

the enemy transaction.

What about the thread whose transaction was aborted and has to start over? In a

way, we owe it a karmic debt: It was killed before it had a chance to finish its work.

We thus allow it to keep the priority (“karma”) that it had accumulated before being

killed, so it will have a better chance of being able to finish its work in its “next life”.

Note that every thread necessarily gains at least one point in each unsuccessful attempt.

This allows short transactions to gain enough priority to compete with others of much

greater lengths.

Eruption

The Eruption manager is similar to the Karma manager in that both use the number

of opened objects as a rough measure of investment. It resolves conflicts, however, by

increasing pressure on the transactions that a blocked transaction is waiting on, eventu-

ally causing them to “erupt” through to completion. Each time an object is successfully

opened, the transaction gains one point of “momentum” (priority). When a transaction

finds itself blocked by one of higher priority, it adds its momentum to the conflicting

transaction and then waits for it to complete. Like the Karma manager, Eruption waits

for time proportional to the difference in priorities before killing an enemy transaction.

The reasoning behind this management policy is that if a particular transaction is

blocking resources critical to many other transactions, it will gain all of their priority

in addition to its own and thus be much more likely to finish quickly and stop blocking

the others. Hence, resources critical to many transactions will be held (ideally) for

short periods of time. Note that while a transaction is blocked, other transactions can

accumulate behind to increase its priority enough to outweigh the transaction behind

which it is blocked.

193

In addition to the Karma manager, Eruption draws on Tune et al.’s QOldDep and

QCons techniques for marking instructions in the issue queue of a superscalar out-of-

order microprocessor to predict instructions most likely to lie on the critical path of

execution [TLT01].

KillBlocked

Adapted from McWherter et al.’s POW lock prioritization policy [MSA04], the

KillBlocked manager is less complex than Karma or Eruption, and features rapid elim-

ination of cyclic blocking. The manager marks a transaction as blocked when first no-

tified of an (unsuccessful) non-initial attempt to open an object. The manager aborts an

enemy transaction whenever (a) the enemy is also blocked, or (b) a maximum waiting

time has expired.

Kindergarten

Based loosely on the conflict resolution rule in Chandy and Misra’ Drinking Philoso-

phers problem [ChM84], the Kindergarten manager encourages transactions to take

turns accessing an object. For each transaction T , the manager maintains a list (ini-

tially empty) of enemy transactions in favor of which T has previously aborted. At

conflict time, the manager checks the enemy transaction and aborts it if present in the

list; otherwise it adds the enemy to the list and backs off for a short length of time. It

also stores the enemy’s hash code 6 as the transaction on which T is currently wait-

ing. If after a fixed number of backoff intervals it is still waiting on the same enemy,

the Kindergarten manager aborts transaction T . When the calling thread retries T , the

Kindergarten manager will find the enemy in its list and abort it.

6obtained from the Java method Object.hashCode()

194

Timestamp

The Timestamp manager is an attempt to be as fair as possible to transactions. The

manager records the current time at the beginning of each transaction. When it encoun-

ters contention between transaction T and some enemy E, it compares timestamps.

If T ’s timestamp is earlier, the manager aborts E. Otherwise, it begins waiting for a

series of fixed intervals. After half the maximum number of these intervals, it flags

E’s transaction as potentially defunct. After the maximum number of intervals, if E’s

defunct flag has been set all along, the T aborts E. If E’s flag has ever been reset,

however, the manager doubles T ’s wait period and restarts. Meanwhile, if E performs

any transaction-related operations, its manager will see and clear the defunct flag.

Timestamp’s goal is to avoid aborting an earlier-started transaction regardless of

how slowly it runs or how much work it performs. The defunct flag provides a feedback

mechanism for the other transaction to enable us to distinguish a dead or preempted

transaction from one that is still active. Of course, using timestamps to resolve con-

tention is hardly new; similar algorithms have been in use in the database community

for at least a quarter-century [BeG80].

QueueOnBlock

The QueueOnBlock manager reacts to contention by linking itself into a queue

hosted by the enemy transaction. It then spins on a “finished” flag that is eventually

set by the enemy transaction’s manager at completion time. Alternatively, if it has

waited for too long, it aborts the enemy transaction and continues; this is necessary to

preserve obstruction freedom. For its part, the enemy transaction walks through the

queue setting flags for competitors when it is either finished or aborted. Note that not

all of these competitors need have been waiting for the same object. If more than one

was, any that lose the race to next open it will enqueue themselves with the winner.

195

Clearly, QueueOnBlock does not effectively deal with object dependency cycles:

At least one transaction must time out before any can progress. On the other hand, if

the object access pattern is free of such dependencies, this manager will usually avoid

aborting another transaction.

PublishedTimestamp

In our initial assessment, we found that a major disadvantage of the Timestamp pro-

tocol in the length of time it needs to abort an inactive (usually preempted) transaction.

To remedy this, we leverage a heuristic [HS05] that provides a high quality estimate of

whether a thread is currently active. Adapting the heuristic to this setting, transactions

update a “recency” timestamp with every notification event or query message. A thread

is presumed active unless its recency timestamp lags the global system time by some

threshold.

PublishedTimestamp aborts an enemy transaction E whose recency timestamp is

old enough to exceed E’s inactivity threshold. This inactivity threshold is reset to an

initial value (1µs) each time a thread’s transaction commits successfully. When an

aborted transaction restarts, we double its threshold (up to a maximum of 215µs).

Just as in the Timestamp manager, a transaction will abort any transaction it meets

whose base timestamp is newer than its own. The base timestamp is reset to the system

time iff the previous transaction committed successfully.

Polka

In our initial studies, we found that Karma and Polite were frequently among the

best performing contention managers, though neither gave reasonable performance on

all benchmarks. To create a combination manager that merges their best features, we

combine Polite’s randomized exponential backoff with Karma’s priority accumulation

mechanism. The result, Polka (named for the managers it joins), backs off for a number

196

of intervals equal to the difference in priorities between the transaction and its enemy.

Unlike Karma, however, the length of these backoff intervals increases exponentially.

As we will note in the experimental portion of this Section, our results suggest

that writes are considerably more important than reads for many of our benchmarks.

Accordingly, the Polka manager unconditionally aborts a group of (visible) readers that

hold an object needed for read-write access.

4.4.3 Experimental Results

In our initial assessment of contention manager performance, we ran each bench-

mark–manager pairing with both visible and invisible read implementations. For each

combination, we varied the level of concurrency from 1 to 128 threads, running indi-

vidual tests for 10 seconds. We present results averaged across three test runs.

Figures 4.4–4.8 show averaged results for the counter and LFUCache benchmarks,

the read-black tree-based integer set benchmark, and the two linked list-based integer

set benchmarks. Each graph is shown both in total and zoomed in on the first 16 threads

(where multiprogramming does not occur).

Second-round Experiment Results

In our second round of experiments, we ran each benchmark–manager pairing with

both visible and invisible read implementations. For each combination, we varied the

level of concurrency from 1 to 48 threads, running individual tests for 10 seconds. We

present results averaged across three test runs.

Figures 4.9 and 4.10 display throughput for the various benchmarks. For the bench-

marks that acquire all objects for read-write access (Figure 4.9), differences in overhead

for supporting the two types of reads are minimal; we show only invisible reads.

197

0

200000

400000

600000

800000

1e+06

20 40 60 80 100 120
threads

Tx/s (Counter) [Invisible Reads]

0

200000

400000

600000

800000

1e+06

2 4 6 8 10 12 14 16
threads

Tx/s (Counter) [Invisible Reads]

0
200000
400000
600000
800000
1e+06

1.2e+06

20 40 60 80 100 120
threads

Tx/s (Counter) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0
200000
400000
600000
800000
1e+06

1.2e+06

2 4 6 8 10 12 14 16
threads

Tx/s (Counter) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 4.4: Counter benchmark performance

4.4.4 Discussion

Initial Experiment Discussion

From figures 4.4 – 4.8, we see that contention management is extremely important

to achieving good performance from the DSTM system. In particular, for all bench-

marks except IntSetUpgrade, the difference in performance between best- and worst-

performing managers is at least a factor of 10. Upon closer inspection, we see that

different contention management policies work better for different benchmark appli-

cations, and that no single manager provides all-around best results. However, the

group of managers that yield top performance is fairly small: Polite does well for many

benchmarks, but Karma, Eruption, and Kindergarten yield good performance in each

case where Polite does less well.

The choice between visible and invisible reads, however, is not nearly as difficult.

While visible reads outperform invisible reads with the IntSet benchmarks, invisible

198

0
100000
200000
300000
400000
500000
600000

20 40 60 80 100 120
threads

Tx/s (LFUCache) [Invisible Reads]

0
100000
200000
300000
400000
500000
600000

2 4 6 8 10 12 14 16
threads

Tx/s (LFUCache) [Invisible Reads]

0
100000
200000
300000
400000
500000
600000

20 40 60 80 100 120
threads

Tx/s (LFUCache) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0
100000
200000
300000
400000
500000
600000

2 4 6 8 10 12 14 16
threads

Tx/s (LFUCache) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 4.5: LFUCache benchmark performance

reads only outperform visible reads with very high levels of contention in the RBTree

benchmark.

Second-round Experiment Discussion

The throughput graphs in Figures 4.9 and 4.10 illustrate that the choice of con-

tention manager is crucial. Except with invisible reads in the IntSetUpgrade bench-

mark, the difference between a top-performing and a bottom-performing manager is at

least a factor of 4.

For each of the write-access benchmarks (Figure 4.9), every pair of transactions

conflict, so the best possible result is to achieve flat throughput irrespective of the num-

ber of threads. As is clearly visible, the Polka manager comes very close to achieving

this goal for Stack and IntSet, and delivers by far the best performance for the Array-

Counter benchmark.

199

0
50000

100000
150000
200000
250000
300000

20 40 60 80 100 120
threads

Tx/s (RBTree) [Invisible Reads]

0
50000

100000
150000
200000
250000
300000

2 4 6 8 10 12 14 16
threads

Tx/s (RBTree) [Invisible Reads]

0

40000

80000

120000

160000

200000

20 40 60 80 100 120
threads

Tx/s (RBTree) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0

40000

80000

120000

160000

200000

2 4 6 8 10 12 14 16
threads

Tx/s (RBTree) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 4.6: RBTree benchmark performance

For these benchmarks, good performance requires one transaction to dominate the

others long enough to finish. Karma and Eruption perform well precisely because of

their priority accumulation mechanisms. However, good performance also requires

transactions to avoid memory interconnect contention caused by repeated writes to a

cache line. Polka’s increasing backoff periods effect this second requirement in a man-

ner analogous to the way that TATAS spin locks with exponential backoff outperform

those without [And90].

We confirm this hypothesis by comparing Polka to an equivalent manager (Karm-

exp, not shown) in which the backoff periods are fixed, but the number of them needed

to “overtake” an enemy transaction increases exponentially as a function of the differ-

ence in priorities. Even though the same length of time overall must elapse before a

transaction is able to abort its enemy, and all other management behavior is identical,

Karmexp livelocks on the ArrayCounter benchmark.

200

0
5000

10000
15000
20000
25000
30000
35000

20 40 60 80 100 120
threads

Tx/s (IntSet) [Invisible Reads]

0
5000

10000
15000
20000
25000
30000
35000

2 4 6 8 10 12 14 16
threads

Tx/s (IntSet) [Invisible Reads]

0
5000

10000
15000
20000
25000
30000
35000
40000

20 40 60 80 100 120
threads

Tx/s (IntSet) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0
5000

10000
15000
20000
25000
30000
35000
40000

2 4 6 8 10 12 14 16
threads

Tx/s (IntSet) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 4.7: IntSet benchmark performance

LFUCache Throughput Great disparity between managers can be found in the LFU-

Cache benchmark. In this benchmark, the vast majority of transactions consist of read-

ing a pointer then incrementing a counter for a leaf node in the priority queue heap.

As such, LFUCache is heavily write-dominated, and yields results similar to the write-

access benchmarks. The results show greater “spread” however, because LFUCache

offers more concurrency than the purely write-access benchmarks. The second-place

finish of Kindergarten may be attributed to its strong ability to force threads to take

turns accessing the leaf nodes. The difference between visible and invisible reads is

very small, yielding further evidence that write performance is the dominant concern in

this benchmark.

Red-Black Tree Throughput A typical transaction in the RBTree benchmark con-

sists of accessing objects in read-only mode from the root of the tree down to an in-

sertion/deletion point, then performing fix-ups that restore balance to the tree, working

201

0
500

1000
1500
2000
2500
3000
3500
4000

20 40 60 80 100 120
threads

Tx/s (IntSetUpgrade) [Invisible Reads]

0
500

1000
1500
2000
2500
3000
3500
4000

2 4 6 8 10 12 14 16
threads

Tx/s (IntSetUpgrade) [Invisible Reads]

0
5000

10000
15000
20000
25000
30000
35000

20 40 60 80 100 120
threads

Tx/s (IntSetUpgrade) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0
5000

10000
15000
20000
25000
30000
35000

2 4 6 8 10 12 14 16
threads

Tx/s (IntSetUpgrade) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 4.8: IntSetUpgrade benchmark performance

upward toward the root and acquiring objects as needed. Hence, any transaction acquir-

ing objects is nearly done: the writes are much more important than the reads. Further,

when a writer aborts a reader, it is likely to re-encounter that reader on its way back

toward the root unless it finishes quickly.

Individual tree nodes tend to become localized hot-spots of contention as a transac-

tion coming up from one child node meets another that came up from the other child

or a reader working its way down the tree. This is why the Eruption manager performs

so well here: not only does it have a strong mechanism for selecting one transaction

over the others, but its priority transfer mechanism gives a boost to the winner for

any subsequent conflicts with the loser. By comparison, Karma’s priority retention al-

lows two similarly-weighted transactions to repeatedly fight each time they meet. The

Timestamp manager performs similarly to Eruption because its resolution mechanism

ensures that conflict between any pair of transactions is always resolved the same way.

202

0

200000

400000

600000

800000

1e+06

5 10 15 20 25 30 35 40 45

threads

Tx/s (Stack) [Invisible Reads]

0

5000

10000

15000

20000

25000

30000

35000

5 10 15 20 25 30 35 40 45

threads

Tx/s (IntSet) [Invisible Reads]

0

2000

4000

6000

8000

5 10 15 20 25 30 35 40 45

threads

Tx/s (ArrayCounter) [Invisible Reads]

Timestamp
Polite

Kindergarten
PublishedTimestamp

Polka
Eruption

Karma

Figure 4.9: Benchmarks with only write accesses: throughput by thread count

Comparing read implementations, we observe that up through 4 threads, throughput

is far stronger with visible than invisible reads. We attribute this to validation overhead:

with invisible reads, each time a transaction accesses or acquires a new object, it must

first re-validate each object it had previously accessed for read-only access. Hence,

203

0

100000

200000

300000

400000

500000

600000

5 10 15 20 25 30 35 40 45

threads

Tx/s (LFUCache) [Invisible Reads]

0

100000

200000

300000

400000

500000

600000

5 10 15 20 25 30 35 40 45

threads

Tx/s (LFUCache) [Visible Reads]

0

50000

100000

150000

200000

250000

300000

5 10 15 20 25 30 35 40 45

threads

Tx/s (RBTreeTMNodeStyle) [Invisible Reads]

0

40000

80000

120000

160000

5 10 15 20 25 30 35 40 45

threads

Tx/s (RBTreeTMNodeStyle) [Visible Reads]

0

1000

2000

3000

4000

5 10 15 20 25 30 35 40 45

threads

Tx/s (IntSetUpgrade) [Invisible Reads]

Timestamp
Polite

Kindergarten
PublishedTimestamp

Polka
Eruption

Karma

0

10000

20000

30000

40000

5 10 15 20 25 30 35 40 45

threads

Tx/s (IntSetUpgrade) [Visible Reads]

Timestamp
Polite

Kindergarten
PublishedTimestamp

Polka
Eruption

Karma

Figure 4.10: LFUCache, RBTree, IntSetUpgrade throughput results: invisible (left)
and visible (right) reads. Note that Y-axis scales differ considerably for the RB-
TreeTMNodeStyle and IntSetUpgrade benchmarks.

validation overhead is quadratic in the number of read objects (V = O(R(R + W))

for R read-access objects and W read-write access objects). By comparison, visible

reads reduce this overhead to O(R). Beyond 4 threads, contention increases enough

that validation overhead pales in comparison .

Considering specific managers, the preeminence of writes greatly hurts the Times-

tamp manager in particular: With visible reads, a transaction that is nearly complete

must wait behind a reader even if it needs only one final object in write mode. We

204

confirmed this by creating a Timestamp variant that unconditionally aborts readers; it

yields top-notch performance on the RBTree benchmark.

IntSetUpgrade Throughput In the IntSetUpgrade benchmark, as in the red-black

tree, transactions consist of a series of reads followed by a limited number (1) of writes.

Once again, we see that validation overhead incurs a large throughput penalty for invis-

ible reads.

With invisible reads, transactions are only aware of other transactions when they

attempt to open an object that the other has acquired for read-write access. Here, vir-

tually any delay, such as that inherent to the function-call overhead of checking to see

whether the other transaction should be aborted, is sufficient to allow it to finish. As

expected, the difference in throughput between managers is minimal.

With visible reads, the Karma and Eruption managers allow a long transaction (e.g.,

one that makes a change near the end of a list) to acquire enough priority that writers are

likely to wait before aborting them. This allows both transactions to complete without

restarting. If shorter transactions were to complete first, longer transactions would have

to restart. In summary, Karma and Eruption gain a small edge by helping to ensure that

transactions complete in reverse size order, and the Timestamp variants suffer greatly

from the randomness of which transaction happens to be older. Polite, Polka, and

Kindergarten, meanwhile, back off for long enough to give longer transactions a better

chance to complete, but do not directly ensure this ordering.

Throughput Results Summary No single manager outperforms all others in every

benchmark, but Polka achieves good throughput even in the cases where it is outper-

formed. As the first manager we have seen that does so, it embodies a good choice for

a default contention manager.

As we see from the RBTree and IntSetUpgrade benchmarks, the tradeoff between

visible and visible reads remains somewhat application-specific: Visible reads greatly

205

reduce the validation overhead when accessing or acquiring new objects, but they re-

quire bookkeeping updates to the object that can exacerbate contention for the memory

interconnect.

4.4.5 Prioritized Contention Management

In this Section we introduce the prioritized contention management problem, wherein

each thread has a base priority Pb that ranks its overall importance relative to other

threads. Following Waldspurger and Weihl [WaW94], we aim for proportional-share

management, where each thread’s cumulative throughput is proportional to its base

priority: Over any given period of time, a thread with base priority 3 should ideally

complete 50% more work than one with base priority 2.

There is in general no clear way to add priorities to lock-free algorithms: The desire

to guarantee progress of at least one thread and the desire to enable a higher-priority

thread to “push” lower-priority threads out of its way are difficult at best to reconcile.

By comparison, prioritization is a natural fit for obstruction-freedom and DSTM; pri-

oritizing the contention managers presented below was relatively straightforward. The

modularity and fine-grained control offered by the contention management interface are

an inherent benefit of DSTM and obstruction freedom. Herlihy et al. argue the same

point in their DSTM paper [HLM03b].

Karma, Eruption, and Polka

Prioritized variants of these managers add Pb (instead of 1) to a transaction’s priority

whenever it successfully opens an object. This adjusts the rate at which the transaction

“catches up” to a competitor by the ratio of base priorities for the two transactions.

206

Timestamp and PublishedTimestamp

Prioritized versions of these managers retain their transaction’s timestamp through

Pb committed transactions. Essentially, they are allowed to act as the oldest extant

transaction several times in a row.

Kindergarten

To prioritize the Kindergarten manager, we randomize updates to the list of trans-

actions in favor of which a thread has aborted to probability Pb(t)/[Pb(t) + Pb(e)] for a

transaction with base priority Pb(t) and an enemy with base priority Pb(e). Intuitively,

rather than “taking turns” equally for an object, this randomization biases turns in favor

of the higher-priority transaction. Because a thread could infinitely often decline to

update the list, this policy is probabilistically obstruction-free.

Experimental Results

To evaluate our prioritization schemes, we ran combinations of benchmarks, man-

agers, and read implementations for 16 seconds. We present results for a single typical

test run, showing the individual cumulative throughput for each of 4 or 8 threads as a

function of elapsed time. We graph results for two configurations: 8 threads at different

priorities from 1. . . 8, and 4 threads initially at priorities 1. . . 4, but inverting to priori-

ties 4. . . 1 midway through the test. For these tests, the ideal result would be to have

throughput “fan out” keeping the gaps between adjacent threads the same and keeping

all threads in priority order. In the 4-thread cases, after the midpoint, the change in

priorities should ideally make the curves “fan in” and meet at a single point at the end

of the test run.

Figure 4.11 shows results for the effectiveness of our prioritization adaptations on

the IntSet benchmark. Figure 4.12 shows selected results for prioritized contention

managers with other benchmarks.

207

0
5000

10000
15000
20000
25000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Eruption)

0
10000
20000
30000
40000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Eruption)

0
5000

10000
15000
20000
25000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Karma)

0
10000
20000
30000
40000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Karma)

0

10000

20000

30000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Kindergarten)

0
10000
20000
30000
40000
50000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Kindergarten)

0
20000
40000
60000
80000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Polka)

0

40000

80000

120000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Polka)

0
5000

10000
15000
20000
25000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/PublishedTimestamp)

0

10000

20000

30000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/PublishedTimestamp)

0

10000

20000

30000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Timestamp)

Thread 7 (priority 8)
Thread 6 (priority 7)
Thread 5 (priority 6)
Thread 4 (priority 5)
Thread 3 (priority 4)
Thread 2 (priority 3)
Thread 1 (priority 2)
Thread 0 (priority 1)

0

15000

30000

45000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Timestamp)

Thread 3 (priority 4)
Thread 2 (priority 3)
Thread 1 (priority 2)
Thread 0 (priority 1)

Figure 4.11: Prioritization of the IntSet benchmark: Thread throughput by time. Left:
8 threads with priorities 1. . . 8. Right: 4 threads with priorities 1. . . 4, inverted to 4. . . 1
halfway through.

208

0
2000
4000
6000
8000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx (IntSetUpgrade/Kindergarten) [Invisible]

0
20000
40000
60000
80000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx (IntSetUpgrade/PublishedTimestamp) [Visible]

0

400000

800000

1.2e+06

2 4 6 8 10 12 14 16

seconds

Cumulative Tx (LFUCache/Polka) [Invisible]

0

400000

800000

1.2e+06

2 4 6 8 10 12 14 16

seconds

Cumulative Tx (LFUCache/Eruption) [Visible]

0
100000
200000
300000
400000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx (RBTreeTMNodeStyle/Karma) [Visible]

0

200000

400000

600000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx (RBTreeTMNodeStyle/Polite) [Invisible]

0
400000
800000

1.2e+06
1.6e+06

2 4 6 8 10 12 14 16

seconds

Cumulative Tx (Stack/Timestamp) [Invisible]

Thread 7 (priority 8)
Thread 6 (priority 7)
Thread 5 (priority 6)
Thread 4 (priority 5)
Thread 3 (priority 4)
Thread 2 (priority 3)
Thread 1 (priority 2)
Thread 0 (priority 1)

0

1.5e+06

3e+06

4.5e+06

2 4 6 8 10 12 14 16

seconds

Cumulative Tx (Stack/Polka) [Visible]

Thread 3 (priority 4)
Thread 2 (priority 3)
Thread 1 (priority 2)
Thread 0 (priority 1)

Figure 4.12: Prioritized contention management: other benchmarks. Left: 8 threads
with priorities 1. . . 8. Right: 4 threads with priorities 1. . . 4, inverted to 4. . . 1 halfway
through.

Discussion

Examining Figure 4.11, we see that the absolute prioritization of the Timestamp

protocols yields almost perfect fairness. Eruption, Karma, and Kindergarten, however,

only effect their priorities when they directly interact with other threads; consequently,

they are dependent on the sequence of transactions that they happen to encounter. Yet

all of these managers do very well at prioritization in comparison to Polka. Ironically,

the same ability to separate transactions temporally that gives Polka its strong perfor-

mance on many of the benchmarks limits the extent to which transactions encounter

209

(and thus can influence) each other. This manifests as smaller spread but much higher

throughput with Polka: note the difference in Y-axis scale.

We present selected prioritization results in Figure 4.12. A fundamental limita-

tion to our techniques for prioritization is that by relying on contention management

to effect priorities, we have no ability to discriminate between transactions that do not

encounter each other. Hence, it makes sense that the results for IntSetUpgrade and RB-

Tree (which have an inherently higher level of concurrency than the IntSet benchmark)

do not show the same spreading of throughput, though individual thread priority trends

are somewhat apparent. The behavior of the Polite manager with RBTree is typical

of reasonably fair, but unprioritized managers. We speculate that using priorities to

control when a transaction may begin its attempt might improve priority adherence.

For the LFUCache and Stack benchmarks, individual transactions can be so short

that lower-priority transactions may complete in the time it takes for a higher-priority

transaction to notice and decide to abort them. This tendency manifests as a large

deviation from the desired priorities.

4.4.6 Randomized Contention Management

Many researchers have found randomization to be a powerful technique for break-

ing up repetitive patterns of pathological behaviors that hinder performance [MoR95].

We evaluate this potential by randomizing facets of the Karma manager from Sec-

tion 4.4.2; we chose Karma for this study because it frequently yields strong perfor-

mance and because it has multiple facets that can be randomized.

Randomized Abortion

In response to a shouldAbort query, the basic Karma manager returns true

when the difference ∆ between the current and enemy transactions’ accumulated pri-

orities is less than the number of times the current transaction has attempted to open an

210

object. We randomize this abortion decision with a sigmoid function that returns true

with probability biased to the higher-priority transaction: (1 + e−
1

2
∆)−1.

Randomized Backoff

The original Karma scheme backs off for a fixed period of time T between attempts

to acquire an object. Randomized, we instead sleep for a uniform random amount of

time between 0 and 2T .

Randomized Gain

The basic Karma manager gains one point of priority with each object that it suc-

cessfully opens. Randomized, we instead gain as priority an integer randomly selected

from the uniform interval 0 . . . 200.

Experimental Results

For these tests, we implemented all eight combinations of randomizing three facets

of the Karma manager. We ran each variant for a total of 10 seconds. Tests in this sec-

tion were run with Sun’s Java SE 5.0 HotSpot VM. We display throughput results for

eight threads: Previous experiments suggest that eight threads is enough for inter-thread

contention to affect scalability in the benchmarks, yet few enough that limited scala-

bility of the benchmarks themselves does not skew the results. Figure 4.13 displays

throughput results for the various benchmarks.

Discussion

As we see from Figure 4.13, some combination of randomization improves through-

put in every benchmark. In the ArrayCounter, IntSetUpgrade, and IntSet benchmarks,

randomizing just abortion decisions yields the best performance. Randomizing both

211

ArrayCounter (8 threads, invisible reads)

0

500

1000

1500

2000

2500

3000

 Ka
rm

a

 RAG
Ka

rm
a

 RAK
arm

a

 RBA
GKa

rm
a

 RBA
Ka

rm
a

 RBK
arm

a

 RGBK
arm

a

 RGKa
rm

a

Tx
/S

ec

RBTreeTMNodeStyle (8 threads, invisible reads)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

 Ka
rm

a

 RAG
Ka

rm
a

 RAK
arm

a

 RBA
GKa

rm
a

 RBA
Ka

rm
a

 RBK
arm

a

 RGBK
arm

a

 RGKa
rm

a

Tx
/S

ec

IntSetUpgrade (8 threads, invisible reads)

2950

3000

3050

3100

3150

3200

3250

3300

 Ka
rm

a

 RAG
Ka

rm
a

 RAK
arm

a

 RBA
GKa

rm
a

 RBA
Ka

rm
a

 RBK
arm

a

 RGBK
arm

a

 RGKa
rm

a

Tx
/S

ec

IntSet (8 threads, invisible reads)

0

5000

10000

15000

20000

25000

 Ka
rm

a

 RAG
Ka

rm
a

 RAK
arm

a

 RBA
GKa

rm
a

 RBA
Ka

rm
a

 RBK
arm

a

 RGBK
arm

a

 RGKa
rm

a

Tx
/S

ec

LFUCache (8 threads, invisible reads)

0

50000

100000

150000

200000

250000

300000

350000

 Ka
rm

a

 RAG
Ka

rm
a

 RAK
arm

a

 RBA
GKa

rm
a

 RBA
Ka

rm
a

 RBK
arm

a

 RGBK
arm

a

 RGKa
rm

a

Tx
/S

ec

Stack (8 threads, invisible reads)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

 Ka
rm

a

 RAG
Ka

rm
a

 RAK
arm

a

 RBA
GKa

rm
a

 RBA
Ka

rm
a

 RBK
arm

a

 RGBK
arm

a

 RGKa
rm

a

Tx
/S

ec

Figure 4.13: Randomization of the “Karma” contention manager: Throughput results
for 8 threads and each combination of randomizing backoff (B), abortion (A) decisions,
and/or gain (G) upon opening an object (ordered alphabetically)

212

abortion and backoff gives very poor performance in ArrayCounter and RBTree; yet,

it improves performance for LFUCache and Stack. Randomizing gain improves per-

formance both alone, and in every combination with other types of randomization, for

LFUCache and RBTree.

Randomizing abortion is particularly helpful for the ArrayCounter, IntSet, and IntSe-

tUpgrade benchmarks. Why is this the case? One possible explanation is that random-

izing abortion decisions is very powerful for breaking up semi-deterministic livelock

patterns. Such livelocking patterns are particularly visible in ArrayCounter: an incre-

ment and a decrement that start at roughly the same time are very likely to have similar

or identical priorities when they meet; they are thus prone to mutual abortion.

The combination of randomizing backoff and abortion produces great variance in

how long a thread waits to abort an enemy transaction. In times when this wait period is

shortened, a longer enemy transaction will have less of a chance to complete; transac-

tions in RBTree and ArrayCounter are particularly long. In times when this wait period

is lengthened, multiple shorter enemy transactions can complete, competing with one

fewer enemy. Indeed, LFUCache and Stack transactions are very short; and with higher

thread counts (not shown due to space limitations), this combination is less effective.

There is no obvious analogous deterministic pathology associated with transaction

priority levels. While backoff randomization helps in locking algorithms that have

multiple contenders (which can get into simultaneous retry pathology), this problem

does not arise in the 2-transaction case. Instead, one continues oblivious to the conflict

and the other backs off. This is why randomizing backoff yields comparatively little

direct benefit.

4.5 Conclusions

The dynamic software transactional memory (DSTM) system of Herlihy et al. is

a Java-based system that supports relatively straightforward programming of a wide

213

variety of dynamic-sized data structures. An attractive feature of DSTM is the abil-

ity for one transaction to detect conflict with another and decide whether to proceed

immediately or to pause briefly that the other transaction might complete. We imple-

mented a modular interface that allows these policy decisions to be made by modular

contention managers that can be “plugged in” without affecting the transaction code or

its correctness.

We have further experimented with a wide variety of contention management poli-

cies embodied in contention managers. Testing with a variety of benchmarks and two

different implementations of read-only transactional access to objects, we have found

that different contention management policies work better for different benchmark ap-

plications, and that the performance they yield differs by at least a factor of ten. This

clearly demonstrates the importance of contention management.

We have examined in greater detail several managers that we found to be frequent

top performers, and leveraged this analysis to create a single default contention man-

agement scheme, Polka, that gives top or near-top performance across a wide variety

of benchmarks. We have also introduced the study of fairness and demonstrated simple

techniques that enable proportional-share variants of previous contention managers.

From our analysis of the behavior of contention managers with various benchmarks,

we conclude that visible reads yield a large performance benefit due to the lower cost

of read-object validation when write contention is low. With sufficiently high write

contention, however, the writes to shared memory cache lines needed to add a transac-

tion to a object’s readers list degrade performance by introducing memory interconnect

contention, and invisible reads become desirable.

214

5 Contributions and Future Work

Parallelism and synchronization, once the domain of high-end scientific and systems

programming, have moved into mainstream computing. Having hit the power wall,

processor manufacturers are moving to multiple cores per processor and multiple pro-

cessors per machine in order to slake users’ thirst for faster and faster hardware. This

change in runtime environments forces a corresponding change in user-level software:

High-performance synchronization is critical to software performance. Where scientific

computing, dedicated servers, and operating systems could generally count on preemp-

tion being limited or nonexistent, users typically run multiple programs concurrently.

Preemption tolerance is thus far more necessary in user-level concurrent software sys-

tems than in domains where synchronization has been used historically. At the same

time, however, advanced synchronization techniques have historically been too difficult

for most programmers to use.

This dissertation explored a variety of techniques to improve the degree of preemp-

tion tolerance and ease of use of traditional lock-based systems. These contributions

can be broadly divided into three categories:

(I) Improving the preemption tolerance of lock-based software systems by developing

high-performance mutual exclusion algorithms that are less sensitive to preemp-

tion than traditional algorithms.

215

(II) Extending the theory and practice of nonblocking algorithms to include algorithms

that require condition synchronization.

(III) Improving the performance and general utility of transactional memory systems

by introducing explicit, orthogonal contention management that can be adapted

to the current runtime environment without requiring modifications to the under-

lying code for transactions or the transaction system.

5.1 Contributions in Preemption Tolerant Locks

Key conceptual contributions of this dissertation in the area of preemption tolerance

in lock-based systems, described in Chapter 2, include:

• Queue-based mutual exclusion algorithms based on the MCS and CLH locks

that support timeout, and a queue-based mutual exclusion algorithm based on the

MCS lock that supports nonblocking timeout.

• A time-publishing heuristic for effectively estimating whether another thread is

currently preempted and that requires no special hardware or operating system

support.

• Queue-based mutual exclusion algorithms based on the MCS and CLH locks that

use this heuristic to effect strong levels of preemption tolerance.

To evaluate these conceptual contributions, we developed concrete implementations

of each lock algorithm on multiple hardware platforms. These implementations are

publicly available online from http://www.cs.rochester.edu/u/scott/

synchronization. To assess their performance, we additionally developed a pa-

rameterized test harness that simulates real systems’ lock usage.

Before this work, locking was divided into two camps: TATAS locks that do not

scale beyond 16-20 processors; and queue-based locks that cannot tolerate preemption

216

and did not support timeout. This work was the first to demonstrate scalable try locks

that support timeout on large machines, especially in the presence of preemption.

5.2 Contributions in Nonblocking Synchronization

Key conceptual contributions of this dissertation in the area of nonblocking syn-

chronization, described in Chapter 3, include:

• A design methodology, dual data structures, that supports concurrent objects with

condition synchronization via standard linearizability theory.

• Lock-free dual stack and dual queue implementations that outperform the best

previously known algorithms under conditions of heavy consumption coupled to

limited production.

• Lock-free exchangers and synchronous queues that build on our lock-free dual

stack and dual queue implementations to provide high-performance implementa-

tions of standard concurrency constructs.

To evaluate these conceptual contributions, we developed concrete implementations

of each algorithm on multiple hardware platforms. The dual stack and dual queue are

publicly available online from http://www.cs.rochester.edu/u/scott/

synchronization; the exchanger and synchronous queues have been adopted as

part of the Java 6 concurrency library. We also developed benchmark applications to

evaluate the performance of these algorithms.

Before this work, there was no meaningful characterization of nonblocking con-

current objects with partial methods. The best-performing algorithms known for syn-

chronous queues and exchange channels achieved little parallel speedup; our nonblock-

ing algorithms outperform them by factors of 14 and 50, respectively, at only moderate

levels of concurrency.

217

5.3 Contributions in Transactional Memory

Key conceptual contributions of this dissertation in the area of transactional mem-

ory, described in Chapter 4, include:

• A library of contention managers that demonstrate the breadth of the design space

for contention management policies, which allow conflict resolution in nonblock-

ing algorithms to be tailored to the current runtime environment. Of particular

note are:

Karma, which introduces a mechanism that couples runtime priority to the

amount of energy (time) the system has invested in a transaction.

Eruption, which prioritizes operations that hold resources that are bottle-

necks in the critical path across many transactions.

Kindergarten, which forces strict turn-taking between threads that execute

transactions that require common resources.

Polka, which adds exponential backoff to “Karma” and yields very good

performance in practical systems.

PublishedTimestamp, which uses our preemption-detection heuristic to

effect oldest-active-operation-first prioritization for conflict resolution.

• A case study on randomization in the “Karma” policy.

• A demonstration of proportional-share prioritization in contention management.

To evaluate these conceptual contributions, we extended the dynamic software trans-

actional memory (DSTM) system of Herlihy et al.[HLM03b] with a modular plug-in

interface for contention management. We also produced concrete realizations of each

policy and a test harness and a series of microbenchmarks by which to evaluate their

218

performance. Attesting to the importance of conflict resolution, the difference in per-

formance between top-tier and lesser contention management policies exceeds an order

of magnitude in every benchmark we have examined. Since this work, modular con-

tention managers have been used in several STM systems [MSS05; HMS06; SMD05;

GHP05].

Before this work, research attention was focused on correctness and performance

of transactional memory systems; contention management was at best an afterthought

in them.

5.4 Future Research Directions

The work conducted for this dissertation suggests many opportunities for further

research in several directions. We highlight several such opportunities in the remainder

of this Section.

5.4.1 Expanding Algorithmic Techniques

Our work in dual data structures has produced several new algorithms, but highly

scalable versions of many more data structures could be useful in practice. In particular,

semaphores, skip lists, hash tables and tree-based priority queues all seem to be strong

candidates for adaptation to the dual data structure modality. Similarly, the elimination

technique seems particularly well-suited for use in synchronous queues.

5.4.2 New Algorithms for New Hardware

Hardware designers are increasingly adopting simultaneous multithreading (SMT)

and chip multiprocessing (CMP) to improve performance of hardware systems. How-

ever, systems with multiple such chips have highly non-uniform communication over-

head between pairs of execution contexts. Where in previous hardware environments

219

a factor of five difference in communication time might have been observed, SMT and

CMP systems can easily have an order of magnitude greater differential. This in turn

provides an opportunity to create new algorithms that carefully restrict communication

dependencies so as to minimize the total communication time involved in executing

operations. Particularly in synchronization algorithms, where communication time is

the main overhead for a well-tuned implementation, this opens a whole new field for

exploration.

5.4.3 Hardware/Software Interaction

The vast majority of research in algorithms published in the last 40 years has been

restricted to algorithms implementable in current hardware environments, with existing

primitives. Yet, virtually infinite possibilities exist for what manner of primitives can be

supported in hardware. Exploring the improvements in algorithm efficiency and com-

plexity that could be obtained if, for example, a double-compare and swap (DCAS)

primitive were available seems a fertile area for additional investigation. For a queue-

based lock with timeout, for example, DCAS could potentially reduce the complexity

of timeout to just a few lines of code. Similarly, in the DSTM system from Section 4.3,

several candidate optimizations are possible given a high-performance DCAS opera-

tion:

• Reuse of committed Locators and theft of Locators from active transactions in

order to reduce memory churn and allocation overhead.

• Joining a list of visible readers for a transactional object without needing to allo-

cate a new Locator.

• Simplified early release from the list of visible readers for a transactional object.

• Parallel acquisition of transactional objects in lazy acquire mode.

220

• Parallel abortion of visible readers for a transactional object when acquiring it for

read/write access.

5.5 Concluding Remarks

Over about the last 40 years, concurrency has evolved from a protective mecha-

nism in the design of device drivers in operating systems, to an academic curiosity, to

a mechanism for supporting multitasking and multiprogramming in operating systems,

to a tool for obtaining parallel speedup in server applications and scientific comput-

ing. It is now in the process of becoming fundamental to everyday end-user software.

This evolution is rife with challenges and opportunities to design high-performance

concurrent algorithms. Although software is increasingly concurrent, most software

today relies strictly on traditional locks for synchronization, and years of programmer

effort have been devoted to fine-tuning intricate systems of locks. Although advanced

synchronization techniques are notoriously difficult for most programmers, the algo-

rithms and systems presented in this dissertation provide a toolbox of “off-the-shelf”

components that can be readily used. Nonetheless, producing the next generation of

high-performance concurrent systems remains an open challenge.

221

Bibliography

[ADT95] Yehuda Afek, D. Dauber, and Dan Touitou. Wait-Free Made Fast. In Pro-

ceedings of the Twenty-Seventh ACM Symposium on Theory of Computing, pages

538–547, 1995.

[AMT97] Yehuda Afek, Michael Merritt, Gadi Taubenfeld, and Dan Touitou. Disen-

tangling Multi-Object Operations. In Proceedings of the Sixteenth ACM Sympo-

sium on Principles of Distributed Computing, pages 111–120., August 1997.

[ADF00] Ole Agesen, David L. Detlefs, Christine H. Flood, Alexander T. Garthwaite,

Paul A. Martin, Nir N. Shavit, and Guy L. Steele, Jr. DCAS-Based Concurrent

Deques. In Proceedings of the Twelfth Annual ACM Symposium on Parallel Al-

gorithms and Architectures, pages 137–146, Bar Harbor, Maine, United States,

2000.

[ADG99] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knioppel, Y. S. Ramakr-

ishna, and Derek White. An Efficient Meta-Lock for Implementing Ubiquitous

Synchronization. In OOPSLA ’99 Conference Proceedings, pages 207–222, Den-

ver, CO, November 1999. In ACM SIGPLAN Notices 34:10 (October 1999).

[ABH00] William Aiello, Costas Busch, Maurice Herlihy, Marios Mavronicolas, Nir

Shavit, and Dan Touitou. Supporting Increment and Decrement Operations in

Balancing Networks. In Chicago Journal of Theoretical Computer Science, De-

cember 2000. Originally presented at the Sixteenth International Symposium on

222

Theoretical Aspects of Computer Science, Trier, Germany, March 1999, and pub-

lished in Lecture Notes in Computer Science, Vol. 1563, pp. 393-403.

[ACS99] Jonathan Aldrich, Craig Chambers, Emin Gün Sirer, and Susan J. Eggers.

Static Analyses for Eliminating Unnecessary Synchronization from Java Pro-

grams. In Static Analysis Symposium, pages 19–38, 1999.

[AlF92] J. Alemany and E. W. Felten. Performance Issues in Non-blocking Synchro-

nization on Shared-Memory Multiprocessors. In Proceedings of the Eleventh

ACM Symposium on Principles of Distributed Computing, Vancouver, BC,

Canada, August 1992.

[AnK01] James Anderson and Yong-Jik Kim. Shared-Memory Mutual Exclusion: Ma-

jor Research Trends Since 1986. June 2001. submitted for publication.

[And90] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-

Memory Multiprocessors. IEEE Transactions on Parallel and Distributed Sys-

tems, 1(1):6–16, January 1990.

[ABL92] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler

Activations: Effective Kernel Support for the User-Level Management of Paral-

lelism. ACM Transactions on Computer Systems, 10(1):53–79, February 1992.

[AnM95a] James H. Anderson and Mark Moir. Universal Constructions for Large

Objects. In Proceedings of the Ninth International Workshop on Distributed Al-

gorithms, pages 168–182, Mont Saint-Michel, France, September, 1995. Lecture

Notes in Computer Science #972, Springer-Verlag.

[AnM95b] James H. Anderson and Mark Moir. Universal Constructions for Multi-

Object Operations. In Proceedings of the Fourteenth ACM Symposium on Princi-

ples of Distributed Computing, pages 184–193, Ottawa, Canada, August 1995.

223

[ARJ97] James Anderson, Srikanth Ramamurthy, and Rohit Jain. Implementing Wait-

Free Objects on Priority-Based Systems. In Proceedings of the Sixteenth ACM

Symposium on Principles of Distributed Computing, pages 229–238, August

1997.

[AnM97] James Anderson and Mark Moir. Using Local-Spin k-Exclusion Algorithms

to Improve Wait-Free Object Implementations. Distributed Computing, 11(1):1–

20, December 1997.

[And91] G. R. Andrews. Concurrent Programming: Principles and Practice. Ben-

jamin/Cummings, Redwood City, CA, 1991.

[ABD92] J. Arnold, D. Buell, and E. Davis. SPLASH II. In Proceedings of the Fourth

Annual ACM Symposium on Parallel Algorithms and Architectures, San Diego,

CA, June – July 1992.

[AtD01] Hagit Attiya and Eyal Dagan. Improved Implementations of Binary Universal

Operations. Journal of the ACM, 48(5):1013–1037, 2001.

[BBN87] BBN Advanced Computers Inc. Chrysalis Programmers Manual. Version

3.0, Cambridge, MA, April 1987.

[BBN86] BBN Laboratories. Butterfly Parallel Processor Overview. BBN Report

#6148, Version 1, Cambridge, MA, March 1986.

[BKM98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin

Locks: Featherweight Synchronization for Java. In Proceedings of the SIGPLAN

1998 Conference on Programming Language Design and Implementation, pages

258–268, Montréal, PQ, Canada, June 1998. In ACM SIGPLAN Notices 33:5

(May 1998).

224

[Bar93] Greg Barnes. A Method for Implementing Lock-Free Shared Data Structures.

In Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 261–270, Velen, Germany, June – July 1993.

[Ber80] A. J. Bernstein. Output Guards and Nondeterminism in ‘Communicating Se-

quential Processes’. ACM Transactions on Programming Languages and Systems,

2(2):234–238, April 1980.

[BeG80] Philip A. Bernstein and Nathan Goodman. Timestamp-Based Algorithms

for Concurrency Control in Distributed Database Systems. In Proceedings of the

Sixth VLDB, pages 285–300, Montreal, Canada, October 1980.

[Bla90] D. L. Black. Scheduling Support for Concurrency and Parallelism in the Mach

Operating System. Computer, 23(5):35–43, May 1990.

[BoH99] Jeff Bogda and Urs Hölzle. Removing Unnecessary Synchronization in Java.

In OOPSLA ’99 Conference Proceedings, pages 35–46, Denver, CO, November

1999. In ACM SIGPLAN Notices 34:10 (October 1999).

[BLS96] P. Bohannon, D. Lieuwen, and A. Silberschatz. Recovering Scalable Spin

Locks. Technical Report 112580-960626-04, Bell Laboratories, June 1996.

[Bur81] J. E. Burns. Symmetry in Systems of Asynchronous Processes. In Proceedings

of the 1981 Symposium on Foundations of Computer Science, pages 179–184,

1981.

[ChM84] K. M. Chandy and J. Misra. The Drinking Philosophers Problem. ACM

Transactions on Programming Languages and Systems, 6(4):632–646, October

1984.

[ChM88] A. Chang and M. Mergen. 801 Storage: Architecture and Programming.

ACM Transactions on Computer Systems, 6(1):28–50, February 1988. Origi-

225

nally presented at the Eleventh ACM Symposium on Operating Systems Principles,

November 1987.

[CoV86] R. Cole and U. Vishkin. Deterministic Coin Tossing with Applications to

Optimal Parallel List Ranking. Information and Control, 70(1):32–53, July 1986.

[Cra93a] Travis S. Craig. Building FIFO and Priority-Queueing Spin Locks from

Atomic Swap. TR 93-02-02, Department of Computer Science, University of

Washington, February 1993.

[Cra93b] Travis S. Craig. Queuing Spin Lock Algorithms to Support Timing Pre-

dictability. In Proceedings of the Fourteenth IEEE Real-Time Systems Symposium,

pages 148–157, Raleigh-Durham, NC, December 1993.

[DFG00] David Detlefs, Christine H. Flood, Alex Garthwaite, Paul Martin, Nir Shavit,

and Guy L. Steele, Jr. Even Better DCAS-Based Concurrent Deques. In Pro-

ceedings of the Fourteenth International Symposium on Distributed Computing

on Distributed Computing, pages 59–73, 2000.

[Dic01] D. Dice. Implementing Fast Java Monitors with Relaxed Locks. In Proceed-

ings of the Java Virtual Machine Research and Technology Symposium, pages

79–90, Monterey, CA, April 2001.

[Dij65] E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control.

Communications of the ACM, 8(9):569, September 1965.

[Dij72] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. In

C. A. R. Hoare and R. H. Perrott, editor, Operating Systems Techniques, num-

ber 9 in A. P. I. C. Studies in Data Processing, pages 72–93. Academic Press,

London, 1972. Also Acta Informatica 1 (1971), pp 115-138.

226

[DiR99] Pedro C. Diniz and Martin C. Rinard. Synchronization Transformations for

Parallel Computing. Concurrency — Practice and Experience, 11(13):773–802,

1999.

[DDG04] Simon Doherty, David L. Detlefs, Lindsay Grove, Christine H. Flood, Vic-

tor Luchangco, Paul A. Martin, Mark Moir, Nir Shavit, and Guy L. Steele, Jr.

DCAS Is Not a Silver Bullet for Nonblocking Algorithm Design. In Proceed-

ings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and

Architectures, pages 216–224, Barcelona, Spain, June 2004.

[ELS88] J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly Parallel

UNIX Systems. In Proceedings of the USENIX Workshop on Unix and Supercom-

puters, Pittsburgh, PA, September 1988.

[FKR00] Robert P. Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and

David Tarditi. Marmot: An Optimizing Compiler for Java. Software — Practice

and Experience, 30(3):199–232, 2000.

[FRK02] H. Franke, R. Russel, and M. Kirkwood. Fuss, Futexes and Furwocks: Fast

Userlevel Locking in Linux. In Proceedings of the Ottawa Linux Symposium, June

2002.

[Fra04] Keir Fraser. Practical Lock-Freedom. Ph. D. dissertation, UCAM-CL-TR-579,

Computer Laboratory, University of Cambridge, February 2004.

[Fu97] Shiwa S. Fu and Nian-Feng Tzeng. A Circular List-Based Mutual Exclusion

Scheme for Large Shared-Memory Multiprocessors. IEEE Transactions on Par-

allel and Distributed Systems, 8(6):628–639, 1997.

[GRS00] Sanjay Ghemawat, Keith H. Randall, and Daniel J. Scales. Field Analysis:

Getting Useful and Low-cost Interprocedural Information. In Proceedings of the

SIGPLAN 2000 Conference on Programming Language Design and Implementa-

tion, pages 334–344, Vancouver, BC, Canada, June 2000.

227

[GVW89] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient Synchronization

Primitives for Large-Scale Cache-Coherent Multiprocessors. In Proceedings of

the Third International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 64–75, Boston, MA, April 1989.

[GrT90] G. Graunke and S. Thakkar. Synchronization Algorithms for Shared-Memory

Multiprocessors. Computer, 23(6):60–69, June 1990.

[GHP05] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic Con-

tention Management in SXM. In Proceedings of the Nineteenth International

Symposium on Distributed Computing, Cracow, Poland, September 2005.

[Han97] David R. Hanson. C Interfaces and Implementations: Techniques for Creating

Reusable Software. Addison-Wesley, Menlo Park, CA, 1997.

[Har01] Timothy L. Harris. A Pragmatic Implementation of Non-Blocking Linked-

Lists. In Proceedings of the Fifteenth International Symposium on Distributed

Computing, pages 300–314, Lisboa, Portugal, October 2001.

[HFP02] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A Practical Multi-Word

Compare-And-Swap Operation. In Proceedings of the Sixteenth International

Symposium on Distributed Computing, 2002.

[HaF03] Tim Harris and Keir Fraser. Language Support for Lightweight Transactions.

In OOPSLA 2003 Conference Proceedings, Anaheim, CA, October 2003.

[HS05] Bijun He, William N. Scherer III, and Michael L. Scott. Preemption Adaptivity

in Time-Published Queue-Based Spin locks. In Proceedings of the 2005 Interna-

tional Conference on High Performance Computing, Goa, India, December 2005.

Earlier but expanded version available as TR 867, URCS Department, University

of Rochester, May 2005.

228

[HHL05] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, Nir Shavit,

and William N. Scherer, III. A Lazy Concurrent List-based Set Algorithm. In

Ninth International Conference on Principles of Distributed Systems, Pisa, Italy,

December 2005.

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A Scalable Lock-Free

Stack Algorithm. In Proceedings of the Sixteenth Annual ACM Symposium on

Parallelism in Algorithms and Architectures, pages 206–215, Barcelona, Spain,

June 2004.

[HMS06] Christopher Heriot, Virendra Marathe, Michael F. Spear, Athul Acharya,

Sandhya Dwarkadas, David Eisenstat, William N. Scherer III, Michael L.

Scott, and Arrvindh Shriraman. Low-Overhead Software Transactional Mem-

ory for C++. Technical Report, Department of Computer Science, University of

Rochester, January 2006. In preparation.

[HLM02] Maurice Herlihy, Victor Luchangco, and and Mark Moir. The Repeat Of-

fender Problem: A Mechanism for Supporting Dynamic-Sized, Lock-Free Data

Structures. In Proceedings of the Sixteenth International Symposium on Dis-

tributed Computing, Toulouse, France, October 2002.

[HLM03a] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-Free

Synchronization: Double-Ended Queues as an Example. In Proceedings of the

Twenty-Third International Conference on Distributed Computing Systems, Prov-

idence, RI, May, 2003.

[HLM03b] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer

III. Software Transactional Memory for Dynamic-sized Data Structures. In Pro-

ceedings of the Twenty-Second ACM Symposium on Principles of Distributed

Computing, pages 92–101, Boston, MA, July 2003.

229

[Her90] M. Herlihy. A Methodology for Implementing Highly Concurrent Data Struc-

tures. In Proceedings of the Second ACM Symposium on Principles and Practice

of Parallel Programming, pages 197–206, Seattle, WA, March 1990.

[HeW90] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for

Concurrent Objects. ACM Transactions on Programming Languages and Systems,

12(3):463–492, July 1990.

[Her91] M. Herlihy. Wait-Free Synchronization. ACM Transactions on Programming

Languages and Systems, 13(1):124–149, January 1991.

[Her93] Maurice Herlihy. A Methodology for Implementing Highly Concurrent Data

Objects. ACM Transactions on Programming Languages and Systems, 15(5):745–

770, November 1993.

[HeM93] M. Herlihy and J. E. Moss. Transactional Memory: Architectural Support for

Lock-Free Data Structures. In Proceedings of the Twentieth International Sym-

posium on Computer Architecture, pages 289–300, San Diego, CA, May 1993.

Expanded version available as CRL 92/07, DEC Cambridge Research Laboratory,

December 1992.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications of

the ACM, 21(8):666–677, August 1978.

[Hol97] Gerald J. Holzmann. The Model Checker SPIN. IEEE Transactions on Soft-

ware Engineering, 23(5), May 1997.

[HuS98] T.-L. Huang and C. H. Shann. A comment on ‘A Circular List-based Mutual

Exclusion Scheme for Large Shared-Memory Multiprocessors’. IEEE Transac-

tions on Parallel and Distributed Systems, 9(4):414–415, 1998.

230

[Hua99] Ting-Lu Huang. Fast and Fair Mutual Exclusion for Shared Memory Systems.

In Proceedings of the 1999 International Conference on Distributed Computing

Systems, pages 224–231, Los Alamitos, CA, May/June 1999.

[IBM01] IBM Corporation. AIX 5L Differences Guide, Version 5.0. 2001.

[IsR94] Amos Israeli and Lihu Rappoport. Disjoint-Access Parallel Implementations

of Strong Shared Memory Primitives. In Proceedings of the Thirteenth ACM

Symposium on Principles of Distributed Computing, pages 151–160, Los Angeles,

CA, August 1994.

[Jay03] Prasad Jayanti. Adaptive and Efficient Abortable Mutual Exclusion. In Pro-

ceedings of the Twenty-Second ACM Symposium on Principles of Distributed

Computing, pages 295–304, Boston, MA, July 2003.

[JoH97] T. Johnson and K. Harathi. A Prioritized Multiprocessor Spin Lock. IEEE

Transactions on Parallel and Distributed Systems, 8(9):926–933, 1997.

[KBG97] Alain Kägi, Doug Burger, and James R. Goodman. Efficient Synchroniza-

tion: Let Them Eat QOLB. In Proceedings of the Twenty-Fourth International

Symposium on Computer Architecture, Denver, CO, June 1997.

[KLM91] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical Studies of

Competitive Spinning for a Shared-Memory Multiprocessor. In Proceedings of

the Thirteenth ACM Symposium on Operating Systems Principles, pages 41–55,

Pacific Grove, CA, October 1991.

[Ken92] Kendall Square Research. KSR1 Principles of Operation. Waltham MA,

1992.

[Kni86] Thomas F. Knight. An Architecture for Mostly Functional Languages. In Pro-

ceedings of the ACM Conference on LISP and Functional Programming, pages

105–112, Cambridge, MA, August 1986.

231

[Knu66] D. E. Knuth. Additional Comments on a Problem in Concurrent Programming

Control. Communications of the ACM, 9(5):321–322, May 1966.

[KWS97] Leonidas I. Kontothanassis, Robert W. Wisniewski, and Michael L. Scott.

Scheduler-Conscious Synchronization. ACM Transactions on Computer Systems,

15(1):3–40, February 1997.

[KSU93] O. Krieger, M. Stumm, and R. Unrau. A Fair Fast Scalable Reader-Writer

Lock. In Proceedings of the 1993 International Conference on Parallel Process-

ing, pages II:201–204, St. Charles, IL, August 1993.

[KJC99] Sanjeev Kumar, Dongming Jiang, Rohit Chandra, and Jaswinder Pal Singh.

Evaluating Synchronization on Shared Address Space Multiprocessors: Method-

ology and Performance. In Proceedings of the 1999 ACM SIGMETRICS Inter-

national Conference on Measurement and Modeling of Computer Systems, pages

23–34, Atlanta, GA, May 1999.

[LaS04] Edya Ladan-Mozes and Nir Shavit. An Optimistic Approach to Lock-Free

FIFO Queues. In Proceedings of the Eighteenth International Symposium on Dis-

tributed Computing, Amsterdam, The Netherlands, October 2004.

[Lam74] L. Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem.

Communications of the ACM, 17(8):453–455, August 1974.

[Lam87] L. Lamport. A Fast Mutual Exclusion Algorithm. ACM Transactions on

Computer Systems, 5(1):1–11, February 1987.

[Lea05] Doug Lea. The java.util.concurrent Synchronizer Framework. Science of

Computer Programming, 58(3):293–309, December 2005.

[Lea] Doug Lea. Concurrency JSR-166 Interest Site.

http://gee.cs.oswego.edu/dl/concurrency-interest/.

232

[LLG90] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The

Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In

Proceedings of the Seventeenth International Symposium on Computer Architec-

ture, pages 148–159, Seattle, WA, May 1990.

[LLG92] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hen-

nessy, M. Horowitz, and M. S. Lam. The Stanford Dash Multiprocessor. Com-

puter, 25(3):63–79, March 1992.

[LiA94] Beng-Hong Lim and Anant Agarwal. Reactive Synchronization Algorithms

for Multiprocessors. In Proceedings of the Sixth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

25–35, San Jose, CA, October 1994.

[Luc02] Victor Luchangco. Personal communication. Sun Microsystems Laboratories,

Boston, MA, January, 2002.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San

Francisco, CA, 1996.

[MLH94] Peter Magnussen, Anders Landin, and Erik Hagersten. Queue Locks on

Cache Coherent Multiprocessors. In Proceedings of the Eighth International Par-

allel Processing Symposium, pages 165–171, Cancun, Mexico, April 1994. Ex-

panded version available as “Efficient Software Synchronization on Large Cache

Coherent Multiprocessors”, SICS Research Report T94:07, Swedish Institute of

Computer Science, February 1994.

[MSS04] Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Design

Tradeoffs in Modern Software Transactional Memory Systems. In Proceedings

of the Seventh Workshop on Languages, Compilers, and Run-time Systems for

Scalable Computers, Houston, TX, October 2004.

233

[MSS05] Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Adaptive

Software Transactional Memory. In Proceedings of the Nineteenth International

Symposium on Distributed Computing, Cracow, Poland, September 2005.

[Mar91] Evangelos P. Markatos. Multiprocessor Synchronization Primitives with Pri-

orities. In Proceedings of the Eighth IEEE Workshop on Real-Time Operating

Systems and Software, pages 1–7, Atlanta, GA, May 1991. In conjunction with

the Seventeenth IFAC/IFIP Workshop on Real-Time Programming, and published

in the Newsletter of the IEEE Computer Society Technical Committee on Real-

Time Systems 7:4 (Fall 1991).

[MSL91] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P.

Markatos. First-Class User-Level Threads. In Proceedings of the Thirteenth ACM

Symposium on Operating Systems Principles, pages 110–121, Pacific Grove, CA,

October 1991.

[MaT02] José F. Martı́nez and Josep Torrellas. Speculative Synchronization: Applying

Thread-Level Speculation to Explicitly Parallel Applications. In Proceedings of

the Tenth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 18–29, San Jose, CA, October 2002.

[MAK01] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russel, D. Sarma, and

M. Soni. Read-Copy Update. In Proceedings of the Ottawa Linux Symposium,

July 2001.

[MSA04] David T. McWherter, Bianca Schroeder, Anastassia Ailamaki, and Mor

Harchol-Balter. Priority Mechanisms for OLTP and Transactional Web Appli-

cations. In Proceedings of the Twentieth International Conference on Data Engi-

neering, Boston, MA, March/April 2004.

234

[MeS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable

Synchronization on Shared-Memory Multiprocessors. ACM Transactions on

Computer Systems, 9(1):21–65, February 1991.

[Mic02] Maged M. Michael. High Performance Dynamic Lock-Free Hash Tables and

List-Based Sets. In Proceedings of the Fourteenth Annual ACM Symposium on

Parallel Algorithms and Architectures, pages 73–82, Winnipeg, MB, Canada, Au-

gust 2002.

[Mic03] Maged M. Michael. CAS-Based Lock-Free Algorithm for Shared Deques.

Proceedings of the Ninth European Conference on Parallel Processing (EURO-

PAR), 2790:651–660, Springer-Verlag, August 2003.

[Mic04] Maged M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-

Free Objects. IEEE Transactions on Parallel and Distributed Systems, 15(8),

August 2004.

[MiS96] Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-

Blocking and Blocking Concurrent Queue Algorithms. In Proceedings of the

Fifteenth ACM Symposium on Principles of Distributed Computing, pages 267–

275, Philadelphia, PA, May 1996.

[MiS98] Maged M. Michael and Michael L. Scott. Nonblocking Algorithms and

Preemption-Safe Locking on Multiprogrammed Shared Memory Multiprocessors.

Journal of Parallel and Distributed Computing, 51:1–26, 1998.

[Moi00] Mark Moir. Laziness Pays! Using Lazy Synchronization Mechanisms to

Improve Non-Blocking Constructions. In Proceedings of the Nineteenth ACM

Symposium on Principles of Distributed Computing, Portland, OR, July 2000.

[MNS05] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using Elimina-

tion to Implement Scalable and Lock-Free FIFO Queues. In Proceedings of the

235

Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architec-

tures, pages 253–262, Las Vegas, NV, July 2005.

[Moi97] Mark Moir. Transparent Support for Wait-Free Transactions. In Proceedings

of the Eleventh International Workshop on Distributed Algorithms, 1997.

[MoR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-

bridge University Press, New York, NY, August 1995.

[OpL02] Jeffrey Oplinger and Monica S. Lam. Enhancing Software Reliability with

Speculative Threads. In Proceedings of the Tenth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

184–196, San Jose, CA, October 2002.

[OrO00] Vitaly Oratovsky and Michael O’Donnell. Personal communication. Mercury

Computer Corp., February 2000.

[Ous82] John K. Ousterhout. Scheduling Techniques for Concurrent Systems. In Pro-

ceedings of the Third International Conference on Distributed Computing Sys-

tems, pages 22–30, Miami/Ft. Lauderdale, FL, October 1982.

[P1590] P1596 Working Group of the IEEE Computer Society Microprocessor Stan-

dards Committee. SCI (Scalable Coherent Interface): An Overview of Extended

Cache-Coherence Protocols. Draft 0.59 P1596/Part III-D, February 1990.

[Pap79] C. H. Papadimitriou. The Serializability of Concurrent Database Updates.

Journal of the ACM, 26(4):631–653, October 1979.

[Pet81] G. L. Peterson. Myths About the Mutual Exclusion Problem. Information

Processing Letters, 12(3):115–116, June 1981.

[PfN85] G. F. Pfister and V. Alan Norton. ‘Hot Spot’ Contention and Combining

in Multistage Interconnection Networks. IEEE Transactions on Computers, C-

34(10):943–948, October 1985.

236

[PLJ94] Sundeep Prakash, Yann Hang Lee, and Theodore Johnson. A Nonblocking

Algorithm for Shared Queues Using Compare-and-Swap. IEEE Transactions on

Computers, 43(5):548–559, May 1994.

[Pug90] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Commu-

nications of the ACM, 33(6):668–676, June 1990.

[RaH03] Zoran Radović and Erik Hagersten. Hierarchical Backoff Locks for Nonuni-

form Communication Architectures. In Proc of the Ninth International Sympo-

sium on High Performance Computer Architecture, pages 241–252, Anaheim,

CA, February 2003.

[RaG01] Ravi Rajwar and James R. Goodman. Speculative Lock Elision: Enabling

Highly Concurrent Multithreaded Execution. In Proceedings of the Thirty-Fourth

International Symposium on Microarchitecture, Austin, TX, December 2001.

[RaG02] Ravi Rajwar and James R. Goodman. Transactional Lock-Free Execution of

Lock-Based Programs. In Proceedings of the Tenth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

5–17, San Jose, CA, October 2002.

[Ray86] M. Raynal. Algorithms for Mutual Exclusion, MIT Press Series in Scientific

Computation. MIT Press, Cambridge, MA, 1986. Translated from the French by

D. Beeson.

[RoD90] John T. Robinson and Murthy V. Devarakonda. Data Cache Management

Using Frequency-Based Replacement. In Proceedings of the 1990 ACM SIG-

METRICS International Conference on Measurement and Modeling of Computer

Systems, pages 134–142, Boulder, CO, May 1990.

[Ruf00] Erik Ruf. Effective Synchronization Removal for Java. In Proceedings of the

SIGPLAN 2000 Conference on Programming Language Design and Implementa-

tion, pages 208–218, Vancouver, BC, Canada, June 2000.

237

[ScS04a] William N. Scherer III and Michael L. Scott. Contention Management in

Dynamic Software Transactional Memory. In Proceedings of the ACM PODC

Workshop on Concurrency and Synchronization in Java Programs, St. John’s, NL,

Canada, July 2004.

[ScS04b] William N. Scherer III and Michael L. Scott. Nonblocking Concurrent Ob-

jects with Condition Synchronization. In Proceedings of the Eighteenth Inter-

national Symposium on Distributed Computing, Amsterdam, The Netherlands,

October 2004.

[ScS05] William N. Scherer III and Michael L. Scott. Advanced Contention Manage-

ment for Dynamic Software Transactional Memory. In Proceedings of the Twenty-

Fourth ACM Symposium on Principles of Distributed Computing, Las Vegas, NV,

July 2005.

[ScS01] Michael L. Scott and William N. Scherer III. Scalable Queue-Based Spin

Locks with Timeout. In Proceedings of the Eighth ACM Symposium on Principles

and Practice of Parallel Programming, Snowbird, UT, June 2001.

[Sco02] Michael L. Scott. Non-blocking Timeout in Scalable Queue-based Spin

Locks. In Proceedings of the Twenty-Second ACM Symposium on Principles of

Distributed Computing, pages 31–40, Monterey, CA, July 2002.

[ShS03] Ori Shalev and Nir Shavit. Split-Ordered Lists: Lock-Free Extensible Hash

Tables. In Proceedings of the Twenty-Second ACM Symposium on Principles of

Distributed Computing, pages 102–111, Boston, Massachusetts, 2003.

[SHC00] Chien-Hua Shann, Ting-Lu Huang, and Cheng Chen. A Practical Nonblock-

ing Queue Algorithm Using Compare-and-Swap. In Proceedings of the Seventh

International Conference on Parallel and Distributed Computing Systems, page

470ff, Iwate, Japan, July 2000.

238

[ShT95] Nir Shavit and Dan Touitou. Elimination Trees and the Construction of Pools

and Stacks. In Proceedings of the Seventh Annual ACM Symposium on Parallel

Algorithms and Architectures, Santa Barbara, CA, July 1995.

[ShT97] Nir Shavit and Dan Touitou. Software Transactional Memory. Distributed

Computing, 10(2):99–116, February 1997. Originally presented at the Fourteenth

ACM Symposium on Principles of Distributed Computing, August 1995.

[ShZ99] Nir Shavit and Asaph Zemach. Scalable Concurrent Priority Queue Algo-

rithms. In Proceedings of the Eighteenth ACM Symposium on Principles of Dis-

tributed Computing, pages 113–122, Atlanta, Georgia, United States, 1999.

[SMD05] Arrvindh Shriraman, Virendra J. Marathe, Sandhya Dwarkadas, Michael L.

Scott, David Eisenstat, Christopher Heriot, William N. Scherer III, and Michael

F. Spear. Hardware Acceleration of Software Transactional Memory. TR 887,

Department of Computer Science, University of Rochester, December 2005. Con-

densed version submitted for publication.

[Sto92] J. M. Stone. A Non-Blocking Compare-and-Swap Algorithm for a Shared Cir-

cular Queue. In S. Txafestas and others, editors, Parallel and Distributed Comput-

ing in Engineering Systems, pages 147–152. Elsevier Science Publishers, 1992.

[SSH93] Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John Turek. Mul-

tiple Reservations and the Oklahoma Update. IEEE Parallel and Distributed Tech-

nology, 1(4):58–71, November 1993.

[Sto84] Michael Stonebraker. Virtual Memory Transaction Management. ACM

SIGOPS Operating Systems Review, 18(2):8–16, 1984.

[SuT02] H. Sundell and P. Tsigas. NOBLE: A Non-Blocking Inter-Process Communi-

cation Library. In Proceedings of the Sixth Workshop on Languages, Compilers,

and Run-time Systems for Scalable Computers, Washington, DC, March 2002.

239

Also TR 2002-02, Chalmers University of Technology and Göteborg University,

Göteborg, Sweden.

[SuT03] Hakan Sundell and Philippas Tsigas. Fast and Lock-Free Concurrent Priority

Queues for Multi-Thread Systems. In Proceedings of the 2003 International Par-

allel and Distributed Processing Symposium, page 84ff, Nice, France, April 2003.

Extended version available as Technical Report 2003-01, Chalmers University of

Technology and Göteborg University, Göteborg, Sweden.

[TaS97] H. Takada and K. Sakamura. A Novel Approach to Multiprogrammed Mul-

tiprocessor Synchronization for Real-Time Kernels. In Proceedings of the Eigh-

teenth IEEE Real-Time Systems Symposium, pages 134–143, San Francisco, CA,

December 1997.

[Tre86] R. Kent Treiber. Systems Programming: Coping with Parallelism. RJ 5118,

IBM Almaden Research Center, April 1986.

[TsZ01] Philippas Tsigas and Yi Zhang. A Simple, Fast and Scalable Non-Blocking

Concurrent FIFO Queue for Shared Memory Multiprocessor Systems. In Pro-

ceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 134–143, Aldemar, Crete, Greece, July 2001.

[TLT01] Eric Tune, Dongning Liang, Dean M. Tullsen, and Brad Calder. Dynamic

Prediction of Critical Path Instructions. In Proceedings of the Seventh Interna-

tional Symposium on High Performance Computer Architecture, pages 185–196,

January 2001.

[TSP92] John Turek, Dennis Shasha, and Sundeep Prakash. Locking Without Block-

ing: Making Lock Based Concurrent Data Structure Algorithms Nonblocking.

In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 212–222, Vancouver, BC, Canada, August

1992.

240

[Val94] John D. Valois. Implementing Lock-Free Queues. In Proceedings of the Sev-

enth International Conference on Parallel and Distributed Computing Systems,

Las Vegas, NV, October 1994.

[Val95] John D. Valois. Lock-Free Linked Lists Using Compare-and-Swap. In Pro-

ceedings of the Fourteenth ACM Symposium on Principles of Distributed Com-

puting, pages 214–222, Ottawa, Canada, August 1995.

[WaW94] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible

Proportional-Share Resource Management. In Proceedings of the First Sympo-

sium on Operating Systems Design and Implementation, Monterey, CA, Novem-

ber 1994.

[WTS96] Cai-Dong Wang, Hiroaki Takada, and Ken Sakamura. Priority Inheritance

Spin Locks for Multiprocessor Real-Time Systems. In Proceedings of the 1996

International Symposium on Parallel Architectures, Algorithms, and Networks,

pages 70–76, Bejing, China, June 1996.

[WKS94] Robert W. Wisniewski, Leonidas I. Kontothanassis, and Michael L. Scott.

Scalable Spin Locks for Multiprogrammed Systems. In Proceedings of the Eighth

International Parallel Processing Symposium, pages 583–589, Cancun, Mexico,

April 1994.

[WKS95] Robert W. Wisniewski, Leonidas I. Kontothanassis, and Michael L. Scott.

High Performance Synchronization Algorithms for Multiprogrammed Multipro-

cessors. In Proceedings of the Fifth ACM Symposium on Principles and Practice

of Parallel Programming, pages 199–206, Santa Barbara, CA, July 1995.

[WOT95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,

and Anoop Gupta. Methodological Considerations and Characterization of the

SPLASH-2 Parallel Application Suite. In Proceedings of the Twenty-Second In-

241

ternational Symposium on Computer Architecture, Santa Margherita Ligure, Italy,

June 1995.

[ZhN04] Haoqiang Zheng and Jason Nieh. SWAP: A Scheduler With Automatic Pro-

cess Dependency Detection. In Proceedings of the First Symposium on Networked

Systems Design and Implementation, pages 183–196, San Francisco, CA, March

2004.

242

A Publications

1. W. N. Scherer III, D. Lea, and M. L. Scott. Scalable Synchronous Queues.

In 11th ACM Symposium on Principles and Practice of Parallel Programming

(PPoPP 2006), Manhattan, NY, March 2006.

2. S. Heller, M. Herlihy, V. Luchangco, M. Moir, N. Shavit, and W. N. Scherer III.

A Lazy Concurrent List-Based Set Algorithm. In 9th International Conference of

Principles of Distributed Systems (OPODIS 2005), Pisa, Italy, December 2005.

3. W. N. Scherer III, D. Lea, and M. L. Scott. A Scalable Elimination-based Ex-

change Channel. In OOPSLA Workshop on Synchronization and Concurrency

in Object Oriented Languages (SCOOL 2005) held in conjunction with the 20th

ACM Symp. on Object-Oriented Programming, Systems, Languages and Appli-

cations (OOPSLA 2005), San Diego, CA, October 2005.

4. V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software Trans-

actional Memory. In 18th Annual Conference on DIStributed Computing (DISC

2005), Cracow, Poland, September, 2005. An earlier version appears as Technical

Report URCS-TR868, Department of Computer Science, University of Rochester,

May 2005.

243

5. B. He, W. N. Scherer III, and M. L. Scott. Preemption Adaptivity in Time-

Published Queue-Based Spin Locks. In 12th Annual IEEE International Con-

ference on High Performance Computing (HiPC 2005), Goa, India, December

2005. An earlier version appears as Technical Report URCS-TR867, Department

of Computer Science, University of Rochester, May 2005.

6. W. N. Scherer III and M. L. Scott. Advanced Contention Management for Dy-

namic Software Transactional Memory. In 24th ACM Symposium on Principles

of Distributed Computing (PODC’05), Las Vegas, NV, July 2005.

7. W. N. Scherer III and M. L. Scott. Randomization in STM Contention Man-

agement (poster paper). In 24th ACM Symposium on Principles of Distributed

Computing (PODC’05), Las Vegas, NV, July 2005.

8. V. J. Marathe, W. N. Scherer III, and M. L. Scott. Design Tradeoffs in Mod-

ern Software Transactional Memory Systems. In 7th Workshop on Languages,

Compilers, and Run-time Support for Scalable Systems (LCR’04), Houston, TX,

October 2004.

9. W. N. Scherer III and M. L. Scott. Nonblocking Concurrent Objects with Con-

dition Synchronization. In 18th Annual Conference on DIStributed Computing

(DISC’04), Amsterdam, The Netherlands, October 2004.

10. W. N. Scherer III and M. L. Scott. Contention Management in Dynamic Software

Transactional Memory. In PODC Workshop on Concurrency and Synchroniza-

tion in Java Programs held in conjunction with the 23rd ACM Symposium on

Principles of Distributed Computing (PODC’04), St. Johns, NL, Canada, July

2004.

11. M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Trans-

actional Memory for Supporting Dynamic-Sized Data Structures. In 22nd ACM

244

Symposium on Principles of Distributed Computing (PODC’03), Boston, MA,

July 2003.

12. M. L. Scott and W. N. Scherer III. Scalable Queue-Based Spin Locks with Time-

out. In 8th ACM Symposium on Principles and Practice of Parallel Programming

(PPoPP’01), Snowbird, UT, June 2001.

View publication statsView publication stats

https://www.researchgate.net/publication/267179742

