Brief Announcement: Privatization Techniques
for Software Transactional Memory:-

Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott

Department of Computer Science, University of Rochester
{spear, vmarathe, luked, scott}@cs.rochester.edu

Categoriesand Subject Descriptors:
D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming

General Terms: algorithms, performance

Keywords. synchronization, software transactional memory,
privatization

1. INTRODUCTION

Transactional memory (TM) allows the programmer to encap-
sulate arbitrary memory operations into a singlansaction that
appears to batomic andisolated from other transactions. In addi-
tion, TM systems must generally address the possibilityghared
data may be accessedtside a transaction. Thetrong isolation
model [1,3] guarantees that transactions are isolated fimmrans-
actional (“naked”) loads and stores, as well as other tictimszs.
Due to the perceived high overheads for achieving stronfadiso
tion in software TM systems (STMs), the so-calleebk isolation
model, which guarantees isolation only among transactisraso
considered by some as an acceptable alternative.

Under weak isolation, a simple programming modekiisgle
lock atomicity: “a program executess if all transactions were
protected by a single, program-wide mutual exclusion lofX”
pp. 20]. In traditional lock-based code, races betweeirtatisec-
tions and naked loads and stores are usually consideredapnog
bugs. In a TM system with weak isolation, races between a@ans
tional and nontransactional accesses are likewise bugs.

The obvious way to cope with weak isolation is to ensure tbat n
object is accessed by transactional and nontransactiodelat the
same time. That is, program logic must partition objectseaath
point in time, into those that amhared, with access mediated by
transactions, and those that arévate to some thread. A transac-
tion may modify shared state in such a way that (once thedns
tion commits) no future successful transaction will aca@esertain
set of objects. Thigrivatization, which serves to improve perfor-
mance (by eliminating often significant overheads of tratisaal
accesses) and to escape the prohibition against irreleesitions
(e.g. I/0O) within transactions, is semantically straightfard un-
der the single lock atomicity model. Unfortunately, as viesirate
in Section 2, many STM implementations fail to guaranteeewir
program behavior in the presence of privatization.

*This work was supported in part by NSF grants CNS-0411127GN8-0615139,
equipment support from Sun Microsystems Laboratories,far@hcial support from
Intel and Microsoft.

Copyright is held by the author/owner(s).
PODC’07, August 12—15, 2007, Portland, Oregon, USA.
ACM 978-1-59593-616-5/07/0008.

Our work presents the first comprehensive study of privéitna
including manifestations of (Section 2), and solutions3edtion 3)
the problem (more detailed description appears in our teehre-
port [4]). We describe tradeoffs among solutions for sevdiffer-
ent kinds of STMs, including systems based on indirectiovou
logs, and redo logs.

2. THE PRIVATIZATION PROBLEM

Some recent work has recognized and addressed parts ofthe pr
vatization problem, but none, to our knowledge, has exathale
aspects of the problem. Larus and Rajwar [3, pp. 22-23] @xpla
one half of the problem: how a privatizer might fail to seeopri
transactional updates, or might see updates made (teriipphsr
a doomed transaction. Wang et al. [5, pp. 6-7] consider tlssipo
bility of erroneous behavior in a doomed transaction duedwo-n
transactional updates made by a privatizing thread. Neitloek
discusses the other subproblem.

Transactions Cause Incorrect Private Reads.

In a typical STM system, nontransactional reads of prieatiz
objects are not coordinated with concurrent transactibas rnay
optimistically modify these privatized objects. As a reésplivate
reads may return object values that are mutually inconsistéth
other privately accessed objects. In redo-log based STMana-
action makes its speculative updates to a private write Tdese
updates are copied baatgn-atomically, to the target objects when
the transaction commits. As a result, a thread may privatigeup
of objects (being modified by a committed transaction thatils
doing its copyback) and read mutually inconsistent valddhese
objects in the nontransactional code.

In undo-log based STMs, a transaction makes its speculapive
dates directly to the target objects while maintaining adb@ld
values to be restored if the transaction subsequently sabdost
STM implementations permit optimistic execution of tractgans,
wherein a doomed transaction may continue execution, lyutas
anteed never to commit. In such an environment, a committing
privatizer may implicitly abort a conflicting transactiomel to its
privatization operation (a write to some object/s thateffely pri-
vatizes a group of objects), and subsequent nontransaticode
may read object values that were speculatively modified lgy th
doomed transaction, which has yet to abort and roll back.

Indirection-based STMs have the same problem as undo-kegdba
STMs: A writer transaction creates a clone of a target okgect
makes all modifications to the clone. The clone doesn’t bectima
object’s logical value until the writer commits, but may bete vis-
ible to nontransactional code as soon as the writer acq(loeks)
the object. As a result, a privatizing thread may accessdiyi
unreachable versions of objects speculatively modifieddnnted
transactions.

Private Writes Cause Incorrect Transactional Actions.
Nontransactional writes of privatized objects may not berdi
nated with concurrent transactions that optimisticallgess these

privatized objects. In an undo-log or redo-log based Spb¥-
validation (verification that transactional metadata of the object be-
ing accessed is mutually consistent with all prior acces$eash-
jects in the transaction) on every read of an object does eipt h
the transactional runtime detect that the object was mabifiea
private (nontransactional) write. This is because thegpewvrite
does not modify object metadata. As a result, the transactiay
read mutually inconsistent data, although correspondiagstc-
tional metadata is still consistent.

An indirection-based STM'’s transactions typically assutimeat
readable objects are immutable, since modifications ar@ewade
to clones. However, nontransactional writes happen “ae@l on
current logical versions of objects, not their clones. Assuit,
a transactional read may return the value of a private wiites
leading to the transaction observing inconsistent data.

A private write on an object by a thread may also be lost if a
doomed transaction writes to that object. The doomed trdiosga
during its roll back, overwrites the private updates madethsy
privatizing thread to restore a stale value in the object.

3. PRIVATIZATION SOLUTIONS

We have considered several solutions to privatization. Bue
space restrictions we overview the most interesting ones (xee
our technical report [4] for a comprehensive discussion).

Explicit Fences.

Fence operations force a privatizing thread to wait unt# gafe
to continue. There are several possible implementations.

We can trivially ensure privatization safety by waiting, tae
privatizer's commit point, for all active transactions tonemit or
abort, and finish any necessary cleanup -tthesactional fence.

A transactional fence induces unnecessary delays for men-o
lapping transactions. Note that a privatizer is guarantegidto
interfere with transactions that have started validatitberahe pri-
vatizer commits. We use the tervalidation fence to describe an
operation wherein a privatizer waits for all threads to eithe out-
side a transaction, or begin validation of the current taatien.
Latency of a validation fence is expected to be much lowen tha
transactional fence, particularly in case of long trarisast How-
ever, the validation fence does not guarantee post- abodromit
cleanup of all objects that may be privately accessed. Teepte
incorrect behavior of nontransactional code, the privagjizhread
must inspect (and possibly clean up) the metadata assteigiie
an object at the time of the first private access. This imposes
heads on nontransactional code.

The best features of the validation and transactional fecea
be combined in STMs that employ global timestamp based-trans
action consistency checks [2,5]. We call thiglabal timestamp
fence. If every transactioril; commits at a unique timé€;, (as
indicated by a global clock), then the timestamp fence caimbe
plemented by maintaining a global list of active transadiand a
global indication of the time at which the most recent tratisa
committed. During executior?;; validates when it observes a new
value for the last commit tim€'. It then writes the valu€' into its
slot in the global list. It removes itself from the list afteomplet-
ing any post-commit or post-abort cleanup. To perform adeig
waits until every entry in the list carries a timestatpCy.. In sys-
tems without a global timestamp, the effect of a timestarmzde
can be achieved with two consecutive validation fences.

Nonblocking Privatization.

Fence-based privatization techniques are fundamentéilgkb
ing. To eliminate blocking, the runtime must abandon fendes
a result, nontransactional code must inspect object metadat
just on the first post-privatization access to each objedtfdr all
accesses to each object. This is because a concurrent do@msd
action may modify a privatized object after the object waseased
by the privatizer. The doomed transaction does not iderkift
it is doomed and thus may make a privatized object incoriste
Without metadata inspection, the privatizer might thereascthe
object in its inconsistent state.

On the other side of the interaction, a doomed transaction ma
observe private writes performed by nontransactional codas-
ing erroneous behavior. Our solution is to perform full dalion
(of the entire read/write set of the transaction) whenevaieatiz-
ing thread commits. A privatizer increments a glopebatization
counter (pcount) after committing. During post-validation of ev-
ery shared access, transactions verify fltaunt has not changed.
Transactions perform full validation wheneyeount changes. Fur-
thermore, threads must paltount both before and after full vali-
dation, and must revalidate count changes. Our observation is
that if pcount changed, a privatizer must have committed during the
validation, and the validating transaction must revakdatensure
that there was no conflict.

While many overheads of nonblocking privatization can bg-mi
gated through API or compiler support, the cost of contentin a
global shared counter and corresponding full validatioalb€on-
current transactions is unfortunate. There is however agagit
simplification to STMs that employ global timestamps. When a
privatizer commits, all objects written by the privatiasithin the
transaction are given the timestamp as their version number. We
propose that the privatizer write the same timestamp asetson
of any object it accesses outside the transaction. Thigesshat
no concurrent transaction will access these objects. Tiwatjzer
must of course clean up any object that is owned by anothes-tra
action. With this mechanism, nount, and hence no superfluous
validation of concurrent transactions, is needed.

In the longer version of this paper [4] we present a prelimina
performance evaluation of the different privatizationheiues,
as well as a programmer-centric taxonomy for privatizataie
STMs that embodies a tradeoff between programming contglexi
and performance.

4. REFERENCES

[1] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtletie$ o

Transactional Memory Atomicity Semantic&CM SIGARCH

Computer Architecture News, 5(2), Nov. 2006.

D. Dice, O. Shalev, and N. Shavit. Transactional Lockihg

In Proc. of the 20th Intl. Symp. on Distributed Computing,

Sep. 2006.

[3] J. R. Larus and R. Rajwafransactional Memory. Synthesis

Lectures on Computer Architecture. Morgan & Claypool,

2007.

M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott

Privatization Techniques for Software Transactional Megmo

Tr 915, Dept. of Computer Science, Univ. of Rochester, Feb.

2007.

[5] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabatabai. Code Generation and Optimization for
Transactional Memory Constructs in an Unmanaged
Language. IrProc. of the Intl. Symp. on Code Generation and
Optimization, Mar. 2007.

(2]

[4]

