
Brief Announcement: Privatization Techniques
for Software Transactional Memory∗

Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott

Department of Computer Science, University of Rochester
{spear, vmarathe, luked, scott}@cs.rochester.edu

Categories and Subject Descriptors:
D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming

General Terms: algorithms, performance

Keywords: synchronization, software transactional memory,
privatization

1. INTRODUCTION
Transactional memory (TM) allows the programmer to encap-

sulate arbitrary memory operations into a singletransaction that
appears to beatomic andisolated from other transactions. In addi-
tion, TM systems must generally address the possibility that shared
data may be accessedoutside a transaction. Thestrong isolation
model [1,3] guarantees that transactions are isolated fromnontrans-
actional (“naked”) loads and stores, as well as other transactions.
Due to the perceived high overheads for achieving strong isola-
tion in software TM systems (STMs), the so-calledweak isolation
model, which guarantees isolation only among transactions, is also
considered by some as an acceptable alternative.

Under weak isolation, a simple programming model issingle
lock atomicity: “a program executesas if all transactions were
protected by a single, program-wide mutual exclusion lock”[3,
pp. 20]. In traditional lock-based code, races between critical sec-
tions and naked loads and stores are usually considered program
bugs. In a TM system with weak isolation, races between transac-
tional and nontransactional accesses are likewise bugs.

The obvious way to cope with weak isolation is to ensure that no
object is accessed by transactional and nontransactional code at the
same time. That is, program logic must partition objects, ateach
point in time, into those that areshared, with access mediated by
transactions, and those that areprivate to some thread. A transac-
tion may modify shared state in such a way that (once the transac-
tion commits) no future successful transaction will accessa certain
set of objects. Thisprivatization, which serves to improve perfor-
mance (by eliminating often significant overheads of transactional
accesses) and to escape the prohibition against irreversible actions
(e.g. I/O) within transactions, is semantically straightforward un-
der the single lock atomicity model. Unfortunately, as we illustrate
in Section 2, many STM implementations fail to guarantee correct
program behavior in the presence of privatization.

∗This work was supported in part by NSF grants CNS-0411127 andCNS-0615139,
equipment support from Sun Microsystems Laboratories, andfinancial support from
Intel and Microsoft.

Copyright is held by the author/owner(s).
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
ACM 978-1-59593-616-5/07/0008.

Our work presents the first comprehensive study of privatization,
including manifestations of (Section 2), and solutions to (Section 3)
the problem (more detailed description appears in our technical re-
port [4]). We describe tradeoffs among solutions for several differ-
ent kinds of STMs, including systems based on indirection, undo
logs, and redo logs.

2. THE PRIVATIZATION PROBLEM
Some recent work has recognized and addressed parts of the pri-

vatization problem, but none, to our knowledge, has examined all
aspects of the problem. Larus and Rajwar [3, pp. 22-23] explain
one half of the problem: how a privatizer might fail to see prior
transactional updates, or might see updates made (temporarily) by
a doomed transaction. Wang et al. [5, pp. 6-7] consider the possi-
bility of erroneous behavior in a doomed transaction due to non-
transactional updates made by a privatizing thread. Neither work
discusses the other subproblem.

Transactions Cause Incorrect Private Reads.
In a typical STM system, nontransactional reads of privatized

objects are not coordinated with concurrent transactions that may
optimistically modify these privatized objects. As a result, private
reads may return object values that are mutually inconsistent with
other privately accessed objects. In redo-log based STMs, atrans-
action makes its speculative updates to a private write log.These
updates are copied back,non-atomically, to the target objects when
the transaction commits. As a result, a thread may privatizea group
of objects (being modified by a committed transaction that isstill
doing its copyback) and read mutually inconsistent values of these
objects in the nontransactional code.

In undo-log based STMs, a transaction makes its speculativeup-
dates directly to the target objects while maintaining a logof old
values to be restored if the transaction subsequently aborts. Most
STM implementations permit optimistic execution of transactions,
wherein a doomed transaction may continue execution, but isguar-
anteed never to commit. In such an environment, a committing
privatizer may implicitly abort a conflicting transaction due to its
privatization operation (a write to some object/s that effectively pri-
vatizes a group of objects), and subsequent nontransacitonal code
may read object values that were speculatively modified by the
doomed transaction, which has yet to abort and roll back.

Indirection-based STMs have the same problem as undo-log based
STMs: A writer transaction creates a clone of a target objectand
makes all modifications to the clone. The clone doesn’t become the
object’s logical value until the writer commits, but may become vis-
ible to nontransactional code as soon as the writer acquires(locks)
the object. As a result, a privatizing thread may access logically
unreachable versions of objects speculatively modified by doomed
transactions.



Private Writes Cause Incorrect Transactional Actions.
Nontransactional writes of privatized objects may not be coordi-

nated with concurrent transactions that optimistically access these
privatized objects. In an undo-log or redo-log based STM,post-
validation (verification that transactional metadata of the object be-
ing accessed is mutually consistent with all prior accessesof ob-
jects in the transaction) on every read of an object does not help
the transactional runtime detect that the object was modified by a
private (nontransactional) write. This is because the private write
does not modify object metadata. As a result, the transaction may
read mutually inconsistent data, although corresponding transac-
tional metadata is still consistent.

An indirection-based STM’s transactions typically assumethat
readable objects are immutable, since modifications are always made
to clones. However, nontransactional writes happen “in-place” on
current logical versions of objects, not their clones. As a result,
a transactional read may return the value of a private write,thus
leading to the transaction observing inconsistent data.

A private write on an object by a thread may also be lost if a
doomed transaction writes to that object. The doomed transaction,
during its roll back, overwrites the private updates made bythe
privatizing thread to restore a stale value in the object.

3. PRIVATIZATION SOLUTIONS
We have considered several solutions to privatization. Dueto

space restrictions we overview the most interesting ones here (see
our technical report [4] for a comprehensive discussion).

Explicit Fences.
Fence operations force a privatizing thread to wait until itis safe

to continue. There are several possible implementations.
We can trivially ensure privatization safety by waiting, atthe

privatizer’s commit point, for all active transactions to commit or
abort, and finish any necessary cleanup – thetransactional fence.

A transactional fence induces unnecessary delays for non-over-
lapping transactions. Note that a privatizer is guaranteednot to
interfere with transactions that have started validation after the pri-
vatizer commits. We use the termvalidation fence to describe an
operation wherein a privatizer waits for all threads to either be out-
side a transaction, or begin validation of the current transaction.
Latency of a validation fence is expected to be much lower than a
transactional fence, particularly in case of long transactions. How-
ever, the validation fence does not guarantee post- abort orcommit
cleanup of all objects that may be privately accessed. To prevent
incorrect behavior of nontransactional code, the privatizing thread
must inspect (and possibly clean up) the metadata associated with
an object at the time of the first private access. This imposesover-
heads on nontransactional code.

The best features of the validation and transactional fences can
be combined in STMs that employ global timestamp based trans-
action consistency checks [2, 5]. We call this aglobal timestamp
fence. If every transactionTk commits at a unique timeCk (as
indicated by a global clock), then the timestamp fence can beim-
plemented by maintaining a global list of active transactions and a
global indication of the time at which the most recent transaction
committed. During execution,Tk validates when it observes a new
value for the last commit timeC. It then writes the valueC into its
slot in the global list. It removes itself from the list aftercomplet-
ing any post-commit or post-abort cleanup. To perform a fence,Tk

waits until every entry in the list carries a timestamp≥ Ck. In sys-
tems without a global timestamp, the effect of a timestamp fence
can be achieved with two consecutive validation fences.

Nonblocking Privatization.
Fence-based privatization techniques are fundamentally block-

ing. To eliminate blocking, the runtime must abandon fences. As
a result, nontransactional code must inspect object metadata, not
just on the first post-privatization access to each object, but for all
accesses to each object. This is because a concurrent doomedtrans-
action may modify a privatized object after the object was accessed
by the privatizer. The doomed transaction does not identifythat
it is doomed and thus may make a privatized object inconsistent.
Without metadata inspection, the privatizer might then access the
object in its inconsistent state.

On the other side of the interaction, a doomed transaction may
observe private writes performed by nontransactional code, caus-
ing erroneous behavior. Our solution is to perform full validation
(of the entire read/write set of the transaction) whenever aprivatiz-
ing thread commits. A privatizer increments a globalprivatization
counter (pcount) after committing. During post-validation of ev-
ery shared access, transactions verify thatpcount has not changed.
Transactions perform full validation wheneverpcount changes. Fur-
thermore, threads must pollpcount both before and after full vali-
dation, and must revalidate ifpcount changes. Our observation is
that if pcount changed, a privatizer must have committed during the
validation, and the validating transaction must revalidate to ensure
that there was no conflict.

While many overheads of nonblocking privatization can be miti-
gated through API or compiler support, the cost of contention on a
global shared counter and corresponding full validation ofall con-
current transactions is unfortunate. There is however an elegant
simplification to STMs that employ global timestamps. When a
privatizer commits, all objects written by the privatizerwithin the
transaction are given the timestamp as their version number. We
propose that the privatizer write the same timestamp as the version
of any object it accesses outside the transaction. This ensures that
no concurrent transaction will access these objects. The privatizer
must of course clean up any object that is owned by another trans-
action. With this mechanism, nopcount, and hence no superfluous
validation of concurrent transactions, is needed.

In the longer version of this paper [4] we present a preliminary
performance evaluation of the different privatization techniques,
as well as a programmer-centric taxonomy for privatization-safe
STMs that embodies a tradeoff between programming complexity
and performance.

4. REFERENCES
[1] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of

Transactional Memory Atomicity Semantics.ACM SIGARCH
Computer Architecture News, 5(2), Nov. 2006.

[2] D. Dice, O. Shalev, and N. Shavit. Transactional LockingII.
In Proc. of the 20th Intl. Symp. on Distributed Computing,
Sep. 2006.

[3] J. R. Larus and R. Rajwar.Transactional Memory. Synthesis
Lectures on Computer Architecture. Morgan & Claypool,
2007.

[4] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott.
Privatization Techniques for Software Transactional Memory.
Tr 915, Dept. of Computer Science, Univ. of Rochester, Feb.
2007.

[5] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabatabai. Code Generation and Optimization for
Transactional Memory Constructs in an Unmanaged
Language. InProc. of the Intl. Symp. on Code Generation and
Optimization, Mar. 2007.


