
!Alert-on-Update: A Communication Aid
for Shared Memory Multiprocessors

Michael F. Spear, Arrvindh Shriraman, Hemayet Hossain,
Sandhya Dwarkadas, and Michael L. Scott

University of Rochester
www.cs.rochester.edu/research/synchronization/

The Key Idea
Simple HW mechanism to asynchronously notify
program of eviction/invalidation of pre-specified
cache lines. Used (in our experiments) to enable
fast, non-blocking software transactional memory.

! !Mark object header for conflict detection

! Mark transaction descriptor for immediate
aborts

! Keep estimate of cache capacity; scale back
gradually on overflow

! Defer aborts for memory management,
logging, etc.Hardware Mechanism

! !!Instructions to mark cache lines,
establish/re-enable handler

! Spontaneous user-space subroutine call when
marked line is invalidated, evicted or
(optionally) written

! Implemented in private L1 or (with thread
IDs) shared L2—one bit per line per context

! Alerts masked while in handler; delivered on
re-enable

! Special registers hold address of line and
type of alert (may say “lost while masked”)

! Virtualization: clear AOU bits on context
switch; invoke handler on reschedule: does
full validation, remarks desired lines Other Uses of AOU

! !!!Active messages

! Fast mutex: thread switch on failed acquire;
alert on availability

! Fall rollback in NB algs

! ABA avoidance

! Debugger watchpoints

! Code security: buffer overflow protection
(Cf. DieHard), read-only fields

! Software transactional memory (STM—the
focus here)

Simics/GEMS
evaluation:
!16-way CMP; 1.2GHz
in-order single-issue
processor; AOU in
64KB 4-way split L1
w/ 64-byte blocks, 1
cycle latency, & 32-
entry VB; 8MB 8-
way unified L2 w/
64-byte blocks & 20
cycle latency

For Further Information

! !“Hardware Acceleration of Software
Transactional Memory.” Shriraman,
Marathe, Dwarkadas, Scott, !Eisenstat,
Heriot, Scherer, & Spear. URCS TR
887, Dec.’05; TRANSACT’06.

! “Nonblocking Transactions Without
Indirection Using Alert-on-Update.”
Spear, Shriraman, Dalessandro,
Dwarkadas, & Scott. SPAA’07.

! !“An Integrated Hardware-Software
Approach to Flexible Transactional
Memory.” Shriraman, Spear, Hossain,
Dwarkadas, & Scott. ISCA’07

! !!Must prevent erroneous behavior due to
inconsistent reads in doomed transactions

! Major contributor to cost of correct STM

! Example:

! What happens if T2 commits changes
to A and B here ?

!object A {
 shared bool Bf_is_pointer;
}
object B {
 union { int n; int* p; } f;
}
T1: atomic {
 open A;
 bool b = A.Bf_is_pointer;

 open B;
 if (b) *B.f = 3;
}

Alternative Solutions
! Sandboxing

» needs language/compiler support; infeasible for C/C++

» Cf: HASTM [Saha et al., MICRO'06]

! Immutable clones, validate on open
» visible readers: validation cheap but visibility expensive

» invisible readers: validation quadratic [RSTM]
» AOU (or HASTM): visibility cheap, validation free

[RTM-Lite]

! In-place update, validate object on access, validate
all on open

» even if cheap, per-read object validation adds up

» during log application, must block
[Redo-Lock] or steal [AOU-1]

– nonblocking implementation easy with AOU

– very complex without; see Marathe & Moir poster

» For bounded transactions, AOU also enables elision
of per-object validation, using immediate aborts
[AOU-N]

! Coarse-grain locks [CGL]—basis for compoarison

SW Transactional Memory
! !Alternative to locks

» system optimistically pursues concurrent
atomic tasks

» rolls back and retries on conflict

! May be blocking or nonblocking
» NB SW typically uses indirection to install new

object versions by swinging pointers

AOU for STM

The Validation Problem

mls
PPoPP '07

