
J. Parallel Distrib. Comput. 70 (2010) 1068–1084
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Implementation tradeoffs in the design of flexible transactional
memory supportI

Arrvindh Shriraman ∗, Sandhya Dwarkadas, Michael L. Scott
Department of Computer Science, University of Rochester, United States

a r t i c l e i n f o

Article history:
Available online 21 March 2010

Keywords:
Synchronization
Atomicity
Transactional memory
Version management
Conflict detection
FlexTM

a b s t r a c t

We present FlexTM (FLEXible Transactional Memory), a high performance TM framework that allows
software to determine when (eagerly, lazily, or in a mixed fashion) and how to manage conflicts,
while employing hardware to manage transactional state and to track conflicts. FlexTM coordinates
four decoupled hardware mechanisms: read and write signatures, which summarize per-thread access
sets; per-thread conflict summary tables (CSTs), which identify the processors with which conflicts have
occurred; Programmable Data Isolation, which buffers speculative updates in the local cache and uses an
overflow table to handle unbounded updates; and Alert-On-Update, which notifies a thread immediately
when a specified location is written by another processor. The CSTs enable an STM-inspired commit
protocol that manages conflicts in a decentralized manner (no global arbitration) and allows parallel
commits.
We explore the implementation tradeoffs associated with FlexTM’s versioning and conflict detection

mechanisms. Our results demonstrate that FlexTM exhibits ∼5× speedup over high-quality software
TMs, and ∼1.8× speedup over hybrid TMs (those with software always in the loop), with no loss in
policy flexibility. We find that the distributed commit protocol improves performance by 2%–14% over
an aggressive centralized arbiter mechanism that also allows parallel commits. Finally, we compare the
use of an aggressive hardware controller (as used in the base FlexTM design) to manage and to access
any speculative transaction state overflowed from the cache, to a hardware–software approach dubbed
FlexTM-S (FlexTM-Streamlined), where softwaremanages the overflow region but uses ametadata cache
to accelerate speculative data replacements and their subsequent accesses.We demonstrate that FlexTM-
S’s performance is within 10% of FlexTM’s despite its substantially simpler virtualization mechanism.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

TransactionalMemory (TM) addresses one of the key challenges
of programmingmulti-core systems: the complexity of lock-based
synchronization. At a high level, the programmer or compiler labels
sections of the code in a single thread as atomic. The underlying
system is expected to execute this code in an all-or-nothing
manner, and in isolation from other transactions, while exploiting
as much concurrency as possible.
Most TM systems execute transactions speculatively, and must

thus be prepared for data conflicts, when concurrent transactions
access the same location and at least one of the accesses is a

I This work was supported in part by NSF grants CCF-0702505, CCR-0204344,
CNS-0411127, CNS-0615139, CNS-0834451, and CNS-0509270; NIH grants 5 R21
GM079259-02 and 1 R21 HG004648-01; an IBM Faculty Partnership Award;
equipment support from Sun Microsystems Laboratories; and financial support
from Intel and Microsoft.
∗ Corresponding author.
E-mail addresses: ashriram@cs.rochester.edu (A. Shriraman),

sandhya@cs.rochester.edu (S. Dwarkadas), scott@cs.rochester.edu (M.L. Scott).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.03.006
write. A conflict detection mechanism is needed to identify such
conflicts so that the system can ensure that transactions do not
perform erroneous externally visible actions as a result of an
inconsistent view. The conflict resolution time decides when the
detected conflicts (if they still persist) are managed. To resolve
conflicts, a conflict manager is responsible for the policy used
to arbitrate among conflicting transactions and decide which
should abort. Most TM systems blend detection and resolution:
pessimistic (eager) systems perform both as soon as possible;
optimistic (lazy) systems delay conflict resolution until commit
time (although theymay detect conflicts earlier). TM systemsmust
also perform version management, either buffering new values in
private locations (a redo log) and making them visible at commit
time, or buffering old values (an undo log) and restoring them
on aborts. In the taxonomy of Moore et al. [31], undo logs are
considered an orthogonal form of eagerness (they put updates in
the ‘‘right’’ location optimistically); redo logs are considered lazy.
The mechanisms required for conflict detection, conflict

resolution and management, and version management can be
implemented in hardware (HTM) [1,19,21,31,32], software (STM)
[14,15,20,27,33], or some hybrid of the two in a hardware-
accelerated TM (HaTM) [13,23,30,39]. Full hardware systems are

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:ashriram@cs.rochester.edu
mailto:sandhya@cs.rochester.edu
mailto:scott@cs.rochester.edu
http://dx.doi.org/10.1016/j.jpdc.2010.03.006


A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084 1069
typically inflexible in policy, with fixed choices for eagerness of
conflict resolution, strategies for conflict arbitration and back-off,
and eagerness of versioning.
Software-only systems are typically slow by comparison, at

least in the common case. Several systems [7,39,46] have advo-
cated decoupling the hardware components of TM, giving each a
well-defined API that allows them to be implemented and invoked
independently. Hill et al. [22] argue that decouplingmakes it easier
to refine an architecture incrementally. At ISCA’07 [39], we argued
that decoupling helps to separate policy from mechanism, allow-
ing software to choose a policy dynamically. Both groups suggest
that decoupling may allow TM components to be used for non-
transactional purposes [22] [39, TR version].
Several papers have identified performance pathologies with

certain policy choices (eagerness of conflict resolution; manage-
ment policy and back-off strategy) in certain applications [5,37,
39,42]. RTM [39] promotes policy flexibility by decoupling ver-
sion management from conflict detection and management—
specifically, by separating data and metadata, and performing
conflict detection only on the latter. While RTM’s conflict detec-
tion mechanism enforces immediate conflict resolution, software
can choose (by controlling the timing of metadata inspection and
updates) when conflicts are resolved. Unfortunately, metadata
management imposes noticeable performance overheads and
complicates the programming interface [39].
The FlexTM approach.We propose FlexTM (FLEXible Transactional
Memory) [40], a TM design that separates conflict detection from
resolution and management, and leaves software in charge of
the latter. Simply put, hardware always detects conflicts eagerly
during the execution of a transaction and records them, but
software chooses when to notice and what to do about it. Unlike
proposed eager systems, FlexTM allows conflicting transactions to
execute concurrently to uncover potential parallelism and unlike
proposed lazy systems, FlexTM does not postpone detection to the
commit stage, permitting a lightweight commit. FlexTM employs
a set of decoupled (separable) hardware primitives to support
version management and conflict detection without the need for
sophisticated software metadata, which improves performance.
Specifically, FlexTM deploys four hardware mechanisms:

(1) Bloom filter signatures (as in Bulk [7] and LogTM-SE [46]) to
track and summarize a transaction’s read and write sets; (2) Con-
flict Summary Tables (CSTs) to concisely capture conflicts between
transactions; (3) the versioning systemof RTM (programmable data
isolation—PDI), augmented with a hardware controller to maintain
the cache overflows in a pre-allocated region; and (4) RTM’s Alert-
On-Updatemechanism to help transactions respond to changes in
their status. The hardware structures are fully visible and under
software controls which enables FlexTM to handle context switch-
ing and paging.
A key contribution of FlexTM is a commit protocol that

arbitrates between transactions in a distributed fashion, allows
parallel commits of an arbitrary number of transactions, and
imposes performance penalties proportional to the number of
transaction conflicts. The protocol enables lazy conflict resolution
without commit tokens [19], broadcast of write sets [7,19], or
ticket-based serialization [9]. To our knowledge, FlexTM is the
first hardware TM in which the decision to commit or abort can
be an entirely local operation, even when performed lazily by an
arbitrary number of threads in parallel.
Simplifying the overflow mechanism. In FlexTM [40], a notable
source of complexity is that a hardware controller is used to
manage transactional state evicted from the cache. Hardware is
expected to maintain the overflowed cache blocks in an overflow
table and has to perform all the management tasks (i.e., insert,
remove, lookup, commit).
We also investigate a hardware–software approach to handling
overflowed state. Specifically, we develop light-weight fine-grain
address remapping support. On an overflow, software sets up the
buffer space and provides hardware fast access to the metadata
(which provides the address of the buffer space allocated for
the original location) via a metadata cache (SM-cache). Hardware
uses this information to write back and access the block from
the buffer space region. The extra hardware needed for overflow
management is limited to the SM-cache, installed as a lookaside on
the L1 miss path. We evaluate this simplified overflowmechanism
in an alternative TM system, FlexTM-S (FlexTM-Streamlined).
Simplifying conflict resolution. In order to support Lazy conflict
resolution, the conflict detection and versioning mechanisms
must handle potentially multiple (as many as there are sharers)
copies of transactional data. In conjunction with FlexTM-S, we
explore mixed conflict resolution, which resolves write–write
conflicts eagerlywhile allowing lazy read–write conflict resolution
[38,41]. Mixed resolution enables FlexTM-S to employ a simpler
versioning mechanism (only one speculative data version like
Eager detection) and to precisely identify writer conflicts (only one
writer like Eager detection).
We have implemented FlexTM on a 16-core (1 thread/core)

CMP prototype on the Simics/GEMS simulation framework. We
interface the private L1s with the shared L2 using a directory-
based protocol. We investigate performance using the STAMP [30]
and STMBench7 [18] workload suite. Our results suggest that
FlexTM’s performance is comparable to that of fixed-policy HTMs,
and 1.8× and 5× better than that of hybrid TMs and plain STMs,
respectively. We demonstrate that the CST-based commit process
in FlexTM can avoid significant latency and serialization penalties
associated with globally-arbitrated commit mechanisms in other
lazy systems. Finally, comparing with various virtualization
techniques, we demonstrate that the more complexity-effective
FlexTM-S suffers modest performance loss compared to FlexTM
(<10%) and performs much better ('2×) compared to other
previously proposed virtualization designs [30,11].

2. Related work

Larus and Rajwar [24] provide an excellent summary of
transactional memory research up to Fall 2006. We first categorize
the design space for both versioning and conflict detection
mechanisms, indicating the relation of FlexTM to other proposed
protocols.
Most HTM designs have similar approaches to small transac-

tions, exploiting coherence for conflict detection and (possibly)
the cache hardware for versioning. However, overflowed state in-
troduces virtualization challenges, and proposed implementations
vary significantly. HTMs need to address two requirements to sup-
port overflowed state: (1) a conflict detection mechanism to track
concurrent accesses and conflicts for locations evicted out of the
caches and coherence framework and (2) a versioning mechanism
to maintain new and old values of data.
Conflict detection. TM systems need a mechanism to track the
locations read and written by a transaction and to ensure that
there is no overlap of a transaction’s accesses with the write set
of a concurrent transaction. The implementation choices can be
broadly classified as:

• Software Instrumentation: The TM runtime system can be
implemented as a set of software barriers on load and store
instructions. These barriers gather information about the
accesses, maintain the data structures (e.g., transaction read
and write sets), and query the data structures to perform
conflict detection. They verify that an accessed location has
not changed, and ensure that an aborted transaction does not



1070 A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084
perform any externally visible actions prior to discovering its
status. In addition to imposing the instrumentation overhead
that limits gains from concurrency, the barriers add to cache
pressure since they access additionalmetadata on eachmemory
access.
• Hardware Acceleration: Hardware support can remove the
bottlenecks associated with software instrumentation by using
the cache to track accesses and piggybacking on coherence to
detect conflicts. There are tradeoffs associated with different
hardware options: Bloom-filter based signatures [7,46] are
simple to design but are prone to false-positive based
performance problems. Per-location metadata [6] is precise
but requires support at all levels in the memory hierarchy
and modifications to the coherence protocol. Cache tag bits
either require a software algorithm [13] or a complex hardware
controller [1] to handle evictions.
• Virtual Memory: OS page tables include protection bits to
implement process isolation. TM systems can exploit these
protection bits to set up read-only and read/write permissions
at a page granularity and trap concurrent accesses to detect
conflicts [10,11]. The major performance overheads involved
are the TLB shootdowns and OS intervention required.

Versioning. The conflict resolution policy governs the choice of
versioning mechanism. Lazy allows concurrent transactions to
read or write a shared location, thus necessitating a redo log in
order to avoid irreversible actions, while Eager detects conflicts
prior to the access, thereby accommodating both forms of logging.
The undo log is used to restore values if a transaction aborts,
while the redo log is used to copy-update the original locations on
commit; these actions need to occur in an atomic manner for all
the locations in the log. Most importantly, since a redo log buffers
new values, it needs to intervene on all other accesses to ensure
that a thread reads its own writes; this dictates the data structure
used to maintain the new values (typically a hash table). An undo
log approach can make do with a simpler data structure (e.g., a
dynamically resizable array or vector) and typically does not need
to optimize the access cost since it is traversed only on an abort.
Like conflict detection, versioning can be implemented either

with software handlers, hardware acceleration, or virtual memory
(i.e., translation information in the page tables) with performance
and complexity tradeoffs similar to conflict detection. The software
approach adds barriers to all writes (to set up the log data
structures) and possibly to all reads (to return values buffered in
a redo log) and leads to significant degradation in performance.
Thehardware approach adds significant complexity, includingnew
state machines that interact in a non-trivial manner with the
existing memory hierarchy. The virtual memory approach reuses
existing hardware and OS support, but suffers the performance
overheads of having to perform page granularity cloning and
buffering. An important difference between the mechanisms that
implement versioning and conflict detection is that versioning
deals with data values (no false positives or negatives) and cannot
trade precision for complexity-effectiveness as conflict detection
can (e.g., using signatures).
Table 1 specifies the mechanism used by various extant TM

systems. UTM [1] and VTM [32] both implement overflow support
for redo logs. On a cache miss in UTM, a hardware controller walks
an uncacheable in-memory data structure that specifies access
permissions. VTM employs tables maintained in software and uses
software routines to walk the table only on cache misses if an
overflow signature indicates that the block has been speculatively
modified. VTM and UTM support only eager resolution of conflicts.
XTM [11] and PTM [10] use virtual memory, and accept the costs
of coarse granularity and OS overhead.
Table 1
Virtualization in TM.

System Conflict resolution Conflict detection Versioning

UTM [1] Eager H (controller) H (undo log)
VTM [32] Eager H (microcode) S (redo log)
XTM [11] Eager/Lazy VM VM (redo log)
PTM-Select [10] Eager H (controller) VM (undo log)
LogTM-SE [46] Eager H (Signature) H (undo log)
TokenTM [6] Eager H (ECC) H (undo log)

Hybrid systems

SigTM [30] Eager/Lazy H (signature) S (redo log)
UFO_TM [2] Eager H (ECC) S (undo log)
HyTM [13] Eager S S (undo log)
RTM [39] Eager/Lazy S S (redo log)
FlexTM [40] Eager/Lazy H (signature) H/S (redo log)

H — Hardware Acceleration; S — Software Instrumentation; VM— Virtual Memory.
Hybrids (other than SigTM) use a best-effort HTM for small transactions.

LogTM-SE [46] integrates the undo log mechanism of LogTM
[31] with Bulk-style signatures [7]. It supports efficient virtualiza-
tion (i.e., context switches and paging), but this is closely tied to
eager versioning (undo logs), which cannot support Lazy systems.
Since LogTM-SE does not allow transactions to abort one another,
it is possible for running transactions to ‘‘convoy’’ behind a sus-
pended transaction. Like LogTM-SE, TokenTM [6] uses undo logs to
implement versioning, but implements conflict detection using a
hardware token scheme.
Hybrid TMs [13,23] allow hardware to handle common-case

bounded transactions and fall back to software for transactions
that overflow time and space resources. To allow hardware and
software transactions to co-exist, hybrid TMs must maintain
metadata compatible with the fallback STM and use policies
compatible with the underlying HTM. SigTM [30] employs
hardware signatures for conflict detection but uses a (always on)
TL2 [14] style software redo log for versioning. Like hybrid systems,
it suffers from per-access metadata bookkeeping overheads.
It restricts conflict management policy (specifically, only self
aborts) and requires expensive commit-time arbitration on every
speculatively written location.
RTM [39] explored hardware acceleration of STM. Specifically,

it introduced (1) Alert-On-Update (AOU), which triggers a software
handler when pre-specified lines are modified remotely, and
(2) Programmable Data Isolation (PDI), which buffers speculative
writes in (temporarily incoherent) local caches. Unfortunately,
to decouple version management from conflict detection and
management, RTM software had to segregate data and metadata,
retaining much of the bookkeeping cost of all-software TM
systems.

3. FlexTM architecture

FlexTM provides hardware mechanisms for access tracking,
conflict tracking, versioning, and explicit aborts.We describe these
separately and then discuss how they work together. Fig. 2 shows
all the hardware components we add to the system.

3.1. Access tracking: signatures

Like Bulk [7], LogTM-SE [46], and SigTM [30], FlexTM uses
Bloom filter signatures [3] to summarize the read and write sets
of transactions in a concise but conservative fashion (i.e., false
positives but no false negatives). Signatures decouple conflict
detection from critical L1 tag arrays and enable remote requests
to test for conflicts using local processor state without walking in-
memory structures, as might be required in UTM [1] and VTM [32]
in the case of overflow. Every FlexTM processor maintains a
read signature (Rsig ) and a write signature (Wsig ) for the current



A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084 1071
Fig. 1. Dashed boxes enclose the MESI and PDI subsets of the state space. Notation on transitions is conventional: the part before the slash is the triggering message; after
is the resulting action (‘–’ means none). GETS indicates a request for a valid sharable copy; GETX for an exclusive copy; TGETX for a copy that can be speculatively updated
with TStore. X stands for the set {GETX, TGETX}. ‘‘Flush’’ indicates a data block response to the requestor and directory. S indicates a Sharedmessage; T a Threatenedmessage.
Plain, they indicate a response by the local processor to the remote requestor; parenthesized, they indicate the message that accompanies the response to a request. An
overbar means logically ‘‘not signaled’’.
transaction. The signatures are updated by the processor on
transactional loads and stores. They allow the controller to detect
conflicts when it receives a remote coherence request.

3.2. Conflict tracking: CSTs

Existing proposals for both Eager [1,31] and Lazy [30,7,19]
systems track conflicts on a cache-line-by-cache-line basis.
FlexTM, by contrast, tracks conflicts on a processor-by-processor
basis (virtualized to thread-by-thread). Specifically, each processor
has three Conflict Summary Tables (CSTs), each of which contains
one bit for every other processor in the system. Named R–W,W–R,
and W–W, the CSTs indicate that a local read (R) or write (W)
has conflicted with a read or write (as suggested by the name)
on the corresponding remote processor. The W–R and W–W lists
at a processor P represent the transactions that might need to be
aborted when the transaction at P wants to commit. The R–W list
helps disambiguate abort triggers; if an abort is initiated by a
processor not marked in the CST, the transaction can safely avoid
the abort. On each coherence request, the controller reads the
local Wsig and Rsig , sets the local CSTs accordingly, and includes
information in its response that allows the requestor to set its own
CSTs to match. While CSTs can be read and written independently,
they do require interfacing with a mechanism to detect conflicts
when they occur. In FlexTM, we use signatures to detect conflicts,
but the CSTs could be adapted to interfacewith any of the hardware
metadata schemes discussed in Section 2.

3.3. Versioning support: PDI

RTM [39] proposed programmable data isolation (PDI) that
allowed software to exploit incoherence (when desired). It
proposed a Transactional-MESI (TMESI) snooping protocol that
supported multiple speculative writers and exploited the inherent
buffering capabilities of private caches to isolate the potentially
multiple speculative copies. Programs use explicit TLoad and
TStore instructions to inform the hardware of transactional
memory operations: TStore requests isolation of a speculative
write, whose value will not propagate to other processors until
commit time. TLoad allows local caching of (non-speculative
versions of) remotely TStored lines. When speculatively modified
state fits in the private cache, PDI avoids the latency and bandwidth
penalties of logging.
FlexTM adapts TMESI to a directory protocol and simplifies the

management of speculative reads, adding only two new stable
states to the base MESI protocol, rather than the five employed
in RTM. The TMESI protocol is derived from the SGI ORIGIN
2000 [25] with support for silent evictions. Directory information
is maintained at the L2. Details appear in Fig. 1.
Local L1 controllers respond to both the requestor and the

directory (to indicate whether the cache line has been dropped or
retained). Requestors issue a GETS on a read (Load/TLoad) miss in
order to get a copy of the data, a GETX on a normal write (Store)
miss/upgrade in order to gain exclusive access and anupdated copy
(in case of a miss), and a TGETX on a transactional store (TStore)
miss/upgrade.
A TStore results in a transition to the TMI state in the L1 cache

(encoded by setting both the T bit and the MESI dirty bit — Fig. 2).
A TMI line reverts to M on commit (propagating the speculative
modifications) and to I on abort (discarding speculative values). On
the first TStore to a line in M, TMESI writes back the modified line
to L2 to ensure subsequent Loads get the latest non-speculative
version. To the directory, the local TMI state is analogous to the
conventional E state. The directory realizes that the processor can
transition toM (silent upgrade) or I (silent eviction), and any data
request needs to be forwarded to the processor to detect the latest
state. The only modification required at the directory is the ability
to support multiple speculative writers. We do this by extending
the existing support for multiple sharers and use the modified
bit to distinguish between the possibility of multiple readers and
multiple writers.
We add requestors to the sharer list when they issue a TGETX

request and ping all of them on other requests. On remote requests
for a TMI line, the L1 controller sends a Threatened response.
In addition to transitioning the cache line to TMI, a TStore also

updates the Wsig . TLoad likewise updates the Rsig . TLoads when
threatened move to the TI state, encoded by setting the T bit when
in the I (invalid) state. TI lines must revert to I on commit or abort,
because if a remote processor commits its speculative TMI block,
the local copy could go stale. The TI state appears as a conventional



1072 A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084
Fig. 2. FlexTM architecture overview (dark lines surround FlexTM-specific state).

sharer to the directory. (Note that a TLoad from E or S can never
be threatened; the remote transition to TMI would have moved
the line to I. Unlike RTM, which keeps track of transactional read
sets within the cache state, FlexTM is able to eliminate RTM’s extra
states by using separate read signatures.)
FlexTM enforces the single-writer or multiple-reader invariant

for non-transactional lines. For transactional lines, it ensures that
(1) TStores can only update lines in TMI state, and (2) TLoads that
are threatened can cache the block only in TI state. Software is
expected to ensure that at most one of the conflicting transactions
commits. It can restore coherence to the system by triggering
an Abort on the remote transaction’s cache, without having to
re-acquire exclusive access to store sets. Previous lazy protocols
[7,19] forward invalidation messages to the sharers of the store
set and enforce coherence invariants at commit time. In contrast,
TMESI forwards invalidationmessages at the time of the individual
TStores, and arranges for concurrent transactional readers (writers)
to use the TI (TMI) state; software can then control when (and if)
invalidation takes place and without the need for bulk coherence
messages.
Transaction commit is requested with a special variant of the

CAS (compare-and-swap) instruction. Like a normal CAS, CAS-
Commit fails if it does not find an expected value inmemory. It also
fails if the caller’s W–W or W–R CST is nonzero. As a side effect
of success, it simultaneously reverts all local TMI and TI lines to
M and I, respectively (achieved by flash clearing the T bits). On
failure, CAS-Commit leaves transactional state intact in the cache.
Software can clean up transactional state by issuing an Abort to the
controller, which then reverts all TMI and TI lines to I (achieved by
conditionally clearing the M bits based on the T bits and then flash
clearing the T bits).
Conflict detection. On forwarded L1 requests from the directory,
the local cache controller tests its read and write signatures and
appends an appropriate message type to its response, as shown in
the table in Fig. 1. Threatened indicates a write conflict (hit in the
Wsig ), Exposed-Read indicates a read conflict (hit in the Rsig ), and
Shared or Invalidated indicates no conflict. On amiss in theWsig , the
result from testing the Rsig is used; on a miss in both, the L1 cache
responds as in normal MESI. The local controller also piggybacks a
data response if the block is currently in M state. When it sends
a Threatened or Exposed-Read message, a responder sets the bit
corresponding to the requestor in its R–W,W–W, orW–R CSTs, as
appropriate. The requestor likewise sets the bit corresponding to
the responder in its own CSTs, as appropriate, when it receives the
response.

3.4. Explicit aborts: AOU

The Alert-On-Update (AOU) mechanism, borrowed from RTM
[39], supports synchronous notification of conflicts. To use AOU, a
program marks (ALoads) one or more cache lines, and the cache
controller effects a subroutine call to a user-specified handler if
the marked line is invalidated. Alert traps require simple additions
to the processor pipeline. Modern processors already include trap
signals between the Load-Store-Unit (LSU) and Trap-Logic-Unit
(TLU) [48]. AOU adds an extra message to this interface and an
extra mark bit, ‘A’, to each line in the L1 cache. (An overview
of the FlexTM hardware required in the processor core, the L1
controller, and the L2 controller appears in Fig. 2.) RTM used
AOU to detect software-induced changes to (a) transaction status
words (indicating an abort) and (b) the metadata associated with
objects accessed in a transaction (indicating conflicts). FlexTM
requires AOU support for only one cache line (the transaction
status word; see Section 4.1) and can therefore use the simplified
hardware mechanism (avoiding the bit per cache tag) as proposed
in [43]. More general AOU support might still be useful for non-
transactional purposes.

3.5. Extending FlexTM

Support for Multi-threading. Multi-threaded cores pose two main
challenges to FlexTM: each thread’s transactional state needs to be
disambiguated from other threads on the same core, and conflicts
need to be detected among these threads.
To disambiguate each thread’s transaction state, per-thread

signatures, CSTs, AOU, and PDI control registers must be included.
Similarly, the alert bit per cache line must be replicated.
Speculatively written state is more challenging—a cache block can
buffer only a single thread’s speculative write and a conventional
L1 cache is allowed to buffer one copy of a cache block. To permit
each thread to cache speculatively modified data, wemust include
a thread id along with the ‘‘T’’-bit, and use it to indicate which
thread speculatively wrote the specific block. We could then allow
each L1 set to buffer multiple versions of the same cache block,
or alternatively, we could buffer only a single version of the
cache block in the L1 for one of the hardware threads and use
the overflow mechanisms discussed in Section 5 to maintain the
other versions in each thread’s private overflow region. Overflow
handling must also be modified to allow per thread state.
Conflict detection between the hardware threads is challenging

to handle because there are no coherence accesses within a core.
Fortunately, each hardware thread’s signature is maintained in the
same core and we can query the signatures of other threads to
detect conflicts.
Snooping protocols. Accommodating broadcast snooping protocols
within FlexTM is straightforward. Consider a protocol in which the
L1 cache broadcasts its requests to other L1s and to the shared
L2 cache on an ordered network. The additional state required
by FlexTM remains the same. The only change required is to
the L1 cache response mechanism. Typically snooping protocols
implement responsemessages using awired-OR signal that cannot
identify the sharing processors. We would need to include extra
signal lines to encode the actual identities.
Nesting. While FlexTM allows operations to escape transactional
semantics with normal loads and stores, it handles nested



A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084 1073
Table 2
Alert-on-update software interface.

Registers
%aou_handlerPC: Address of the handler to be called on a user-space alert
%aou_oldPC: PC immediately prior to the call to %aou_handlerPC
%aou_alertAddress: Address of the line whose status change caused the alert
%aou_alertType: Remote_write, lost_alert, or capacity/conflict eviction
Instructions
set_handler %r Move %r into %aou_handlerPC
clear_handler Clear %aou_handlerPC and flash-clear the alert bits for all cache lines
aload [%r1], %r2 Load the word at address %r1 into register %r2, and set the alert bit(s) for the corresponding cache line
arelease %r Unset the alert bit for the cache line that corresponds to the address in register %r
arelease_all Flash-clear alert bits on all cache lines
Table 3
Programmable-data-isolation software interface.

Registers
%t_in_flight: A bit to indicate that a transaction is currently executing
Instructions
begin_t Set the %t_in_flight register to indicate the start of a transaction
tstore [%r1], %r2 Write the value in register %r2 to the word at address %r1; isolate the line (TMI state)
tload [%r1], %r2 Read the word at address %r1, place the value in register %r2, and tag the line as transactional
abort Discard all isolated (TMI or TI) lines; clear all transactional tags and reset the %t_in_flight register
cas-commit [%r1], %r2, %r3 Compare %r2 to the word at address %r1; if they match, commit all isolated writes (TMI lines) and store %r3

to the word; otherwise discard all isolated writes; in either case, clear all transactional tags, discard all
isolated reads (TI lines), and reset the %t_in_flight register
transactions via the subsumption model. The key challenge to
supporting true nesting is disambiguating between the hardware
state (e.g., speculative lines in the cache) of each nested level. We
could include limited support for nesting using techniques such as
split hardware transactions [26] but their performance overheads
need further investigation.

4. Hardware/software interface

In this section, we discuss the interface provided by each
FlexTM component, provide the pseudo-code for the main TM
runtime macros, and discuss their usage.
Tables 2 and 3 list the instructions and registers required by

the AOU and PDI mechanisms. AOU’s interface includes special
registers to hold the address of the user-mode handler and a
description of the current alert; and instructions to set and unset
the user-mode handler and to mark and unmark cache lines
(i.e., to set and clear their alert bits). PDI’s interface includes
support for speculative reads (TLoads) and writes (TStores), which
are interpreted as speculative when the hardware transaction bit
(%hardware_t) is set. CAS-Commit enables the software runtime
to couple the logical commit of the transaction in software
with the committing of the speculative hardware state. The CAS-
Commit instruction performs the usual function of compare-and-
swap. In addition, if the CAS succeeds, TMI lines revert toM, making
their data visible to other readers through normal coherence
actions. If the CAS fails, the buffered state remains in the local
cache for software to handle appropriately. Buffered state can be
eliminated and coherence restored by issuing an Abort.
CSTs and signatures are treated as registers that can be loaded

from and stored to memory. Software can set them up to operate
in two modes (Eager or Lazy) for each types of conflict (W–W or
W–R or R–W ). In eager mode, a conflicting coherence message
updates the CST and triggers the handler; in Lazy mode, a conflict
updates the CST but does not trigger the handler — software reads
the CSTs when it desires.

4.1. Bounded transactions

In this section, we discuss the execution of transactions with
bounded access sets that fit within an OS quantum. We assume
Table 4
Transaction Descriptor contents. All fields except TSW and State are cached in
hardware registers for transactions running.

Name Description

TSW active / committed / aborted
State running / suspended
Rsig ,Wsig Signatures
R–W,W–R,W–W Conflict Summary Tables
OT Pointer to Overflow Table descriptor
AbortPC Handler address for AOU on TSW
CMPC Handler address for Eager conflicts
E/L Eager(1)/Lazy(0) conflict resolution

a subsumption model for nesting, with support for transactional
pause [47], which suspends a transaction in order to perform non-
transactional activity.
A FlexTM transaction is represented by a software descriptor

(Table 4). This descriptor includes a statusword, space for buffering
the hardware state when paused (CSTs, Signatures, and Overflow
control registers), pointers to the abort (AbortPC) and contention
management handlers (CMPC), and a field to specify the conflict
resolution mode of the transaction.
A transaction is delimited by BEGIN_TRANSACTION and

END_TRANSACTION macros (see Fig. 3). BEGIN_TRANSACTION
establishes the conflict and abort handlers for the transaction,
checkpoints the processor registers, configures per-transaction
metadata, sets the transaction status word (TSW) to active,
and ALoads that word (for notification of aborts). Some of these
operations are not intrinsically required and can be set up
for the entire lifetime of a thread (e.g., AbortPC and CMPC).
END_TRANSACTION aborts conflicting transactions and tries to
atomically update the status word from active to committed
using CAS-Commit.
Within a transaction, the processor issues TLoads and TStores

when it expects transactional semantics, and conventional loads
and stores when it wishes to bypass those semantics. TLoads
and TStores are interpreted as speculative when the hardware
transaction bit (%hardware_t) is set. This convention facilitates
code sharing between transactional and non-transactional pro-
gram fragments. Ordinary loads and stores can be requestedwithin
a transaction; these could beused to implement escape actions, up-
date software metadata, or reduce the cost of thread-private up-
dates in transactions that overflow cache resources. In order to



1074 A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084
Fig. 3. Pseudocode of BEGIN_TRANSACTION and END_TRANSACTION (for Lazy transactions).
avoid the need for compiler generation of the TLoads and TStores,
our prototype implementation follows typical HTM practice and
interprets ordinary loads and stores as TLoads and TStores when
they occur within a transaction.
Transactions of a given application can employ either Eager or

Lazy conflict resolution. In Eager mode, when conflicts appear
through responsemessages (i.e., Threatened and Exposed-Read), the
processor effects a subroutine call to the handler specified by CMPC.
The conflict manager either stalls the requesting transaction or
aborts one of the conflicting transactions. The remote transaction
can be aborted by atomically CASing its TSW from active to
aborted, thereby triggering an alert (since the TSW is always
ALoaded). FlexTM supports a wide variety of conflict management
policies (even policies that desire the ability to synchronously
abort a remote transaction). When an Eager transaction reaches
its commit point, its CSTs will be empty, since all prior conflicts
will have been resolved. It attempts to commit by executing a
CAS-Commit on its TSW. If the CAS-Commit succeeds (replacing
activewith committed), the hardware flash-commits all locally
buffered (TMI) state. The CAS-Commit will fail leaving the buffered
state local if the CAS does not find the expected value (a remote
transaction managed to abort the committing transaction before
the CAS-Commit could complete).
In Lazy mode, transactions are not alerted into the conflict

manager. The hardware simply updates requestor and responder
CSTs. To ensure serialization, a Lazy transaction must, prior to
committing, abort every concurrent transaction that conflicts with
its write-set. It does so using the END_TRANSACTION() routine
shown in Fig. 3.
All of the work for the END_TRANSACTION() routine occurs in

software, with no need for global arbitration [7,9,19], blocking of
other transactions [19], or special hardware states. The routine
begins by using a copy and clear instruction (e.g., clruw on the
SPARC) to atomically access its own W–R and W–W. In lines 3–6
of Fig. 3, for each of the bits that was set, transaction T aborts the
corresponding transaction R by atomically changing R’s TSW from
active to aborted. Transaction R, of course, could try to CAS-
Commit its TSW and race with T , but since both operations occur
onR’s TSW, conventional cache coherence guarantees serialization.
After T has successfully aborted all conflicting peers, it performs a
CAS-Commit on its own status word. If the CAS-Commit fails and
the failure can be attributed to a non-zeroW–R orW–W (i.e., new
conflicts), the END_TRANSACTION() routine is restarted. In the case
of a R–W conflict, no action is needed since T is the reader and
is about to serialize before the writer (i.e., the two transactions
can commit concurrently). Software mechanisms can be used to
disambiguate conflicts and avoid spurious aborts when the writer
commits.
The contention management policy (line 4) in the commit pro-

cess is responsible for providing various progress and performance
guarantees. The TM system can choose to plug in an application-
specific policy. For example, if we used a Timestampmanager [36],
then it will ensure livelock freedom. More recently, EazyHTM [45]
has exploited CST-like bitmaps to accelerate a pure-HTM’s commit,
but does not allow pluggable policies. FlexTM’s commit operation
is entirely in software and its latency is proportional to the number
of conflicting transactions — in the absence of conflicts there is no
overhead. Even in the presence of conflicts, aborting each conflict-
ing transaction consumes only the latency of a single CAS operation
(at most a coherence operation).

4.2. Mixed conflict resolution

While Lazy conflict resolution generally provides the best
performance with its ability to exploit concurrency and ensure
progress [41], it does introduce certain challenges. In particular,
it requires a multiple-writer and/or multiple reader protocol that
makes notable additions to a basic MESI protocol. Multiple L1’s
need to be able to concurrently cache a block and read and write it
(quite different from the basic ‘‘S’’ and ‘‘M’’ states). This is a source
of additional complexity over an Eager system and could prove to
be a barrier to adoption.
Furthermore, write–write conflicts need to be conservatively

treated as dueling read–write and write-read conflicts since
conflicts are detected using coherence actions and a transaction
that obtains permissions to write a block can also read it (the
read will not result in a coherence action). It is therefore not
possible to allow both transactions to concurrently commit (one
of them has to abort). While commit-time conflict resolution in
Lazy mode does try to ensure forward progress by ensuring that
the winning transaction is one that is already ready to commit, for
some workloads, it could also lead to significant levels of wasted
work due to delayed aborts (see the results for STMBench7 in our
work from ICS’09 [41]).
To avoid thewastedwork and to simplify the design, we extend

FlexTM to support the Mixed-mode conflict resolution [38,41]. In
Mixedmode,whenwrite–write conflicts appear (a TStore operation
receives a threatened response), the processor effects a call to
the contention manager. On read–write or write-read conflicts,
the hardware records the conflict in the CSTs and allows the
transaction to proceed. When the transaction reaches its commit
point, it needs to take care of only W–R conflicts (using an
algorithm similar to Fig. 3), as itsW–W CST will be empty. Mixed
mode tries to save wasted work on write–write conflicts and
to exploit the parallelism present in W–R and R–W conflicts.
However, it is also possible that since Mixed resolves write–write
conflicts eagerly, the transaction that wins the conflict and
progresses will subsequently abort, thereby wasting work.
Mixed mode has more modest versioning requirements com-

pared to Lazy mode. A system that supports only Mixed mode
and Eager mode can simplify the coherence protocol and over-
flowmechanisms. Briefly,Mixedmaintains the singlewriter and/or
multiple reader invariant: it allows only one writer for a cache
block (unlike Lazy mode) although the writer can co-exist with
concurrent readers (unlike Eagermode). At any given instant, there
is only one speculative copy accessed by the single writer and/or a
non-speculative version accessed by the concurrent readers. This
simplifies the design of the TMI state in the TMESI protocol. Only
one of the L1 caches in the system can have the line in TMI (not
unlike the ‘‘M’’ state in MESI).
The more stream-lined version of FlexTM (FlexTM-S) that we

evaluate supports only Mixed and Eager modes. In Section 5.3:



A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084 1075
FlexTM-S we demonstrate another advantage of supporting only
Mixed and Eager modes: since they restrict the number of
speculativewriters to atmost one,writer conflictsmaybeprecisely
identified.

4.3. Strong isolation

As implied in Fig. 1, transactional and ordinary loads and stores
to the same location can occur concurrently. While we are disin-
clined to require strong isolation [4] as part of the user program-
ming model (it’s hard to implement on legacy hardware, and is of
questionable value to the programmer [12]), it can be supported
at essentially no cost in HTM systems (FlexTM among them), and
we see no harm in providing it. If the GETX request resulting
from a non-transactional write miss hits in the responder’s Rsig or
Wsig , it aborts the responder’s transaction, so the non-transactional
write appears to serialize before the (retried) transaction. A non-
transactional read, likewise, serializes before any concurrent trans-
actions, because transactional writes remain invisible to remote
processors until commit time (in order to enforce coherence, the
corresponding cache line, which is threatened in the response, is
uncached).

5. Unbounded space support

For common case transactions that do not overflow the cache,
signatures, CSTs, and PDI avoid the need for logging or other per-
access software overhead. To provide the illusion of unbounded
space, however, FlexTM must provide mechanisms to handle
transactional state evicted from the L1 cache. Cache evictionsmust
be handled carefully. First, signatures rely on forwarded requests
from the directory to trigger lookups and provide conservative
conflict hints (Threatened and Exposed-Read messages). Second,
TMI lines holding speculative values need to be buffered and can-
not be merged into the shared level of the cache. We first describe
our approach to handling coherence-based conflict detection for
evicted lines, followed by two alternative schemes for versioning
of evicted TMI lines.

5.1. Eviction of transactionally read lines

Conventional MESI performs silent eviction of E and S lines
to avoid the bandwidth overhead of notifying the directory. In
FlexTM, silent evictions of E, S, and TI lines also serve to ensure that
a processor continues to receive the coherence requests it needs
to detect conflicts. (Directory information is updated only in the
wake of L1 responses to L2 requests, at which point any conflict
is sure to have been noticed.) When evicting a cache block in M,
FlexTM updates the L2 copy but does not remove the processor
from the sharer list if there is a hit in the local signature. Processor
sharer information can, however, be lost due to L2 evictions. To
preserve the access conflict tracking mechanism, L2 misses result
in querying all L1 signatures in order to recreate the sharer list. This
scheme is much like the sticky bits used in LogTM [31].

5.2. Overflow table (OT) controller design

FlexTM employs a per-thread overflow table (OT) to buffer
evicted TMI lines. The OT is organized as a hash table in virtual
memory. It is accessed both by software and by an OT controller
that sits on the L1 miss path. The latter implements (1) fast
lookups on cache misses, allowing software to be oblivious to the
overflowed status of a cache line, and (2) fast cleanup and atomic
commit of overflowed state.
The controller registers required for OT support appear in

Fig. 2. They include a thread identifier, a signature (Osig ) for the
overflowed cache lines, a count of the number of such lines, a
committed/speculative flag, and parameters (virtual and physical
base address, number of sets andways) used to index into the table.
On the first overflow of a TMI cache line, the processor traps

to a software handler, which allocates an OT, fills the registers
in the OT controller, and returns control to the transaction. To
minimize the state required for lookups, the OT controller requires
the OS to ensure that OTs of active transactions lie in physically
contiguous memory. If an active transaction’s OT is swapped out,
then the OS invalidates the Base-Address register in the controller.
If subsequent activity requires the OT, the hardware traps to a
software routine that re-establishes a mapping. The hardware
needs to ensure that new TMI lines aren’t evicted during OT set-
up; the L1 cache controller could support this by ensuring that at
least one entry in the set is free for non-TMI lines.
On a subsequent TMI eviction, the OT controller calculates the

set index using the physical address of the line, accesses the set
tags of the OT region to find an empty way, and writes the data
block back to the OT instead of the L2. The controller tags the line
with both its physical address (used for associative lookup) and
its virtual address (used to accommodate page-in at commit time;
see below). The controller also adds the physical address to the
overflow signature (Osig ) and increments the overflow count.
The Osig summarizes the entries in the OT and provides quick

lookaside for L1misses. All L1misses check theOsig and hits trigger
an OT lookup in parallel with the L2 access. If the block is found
in the OT, the hardware fetches it and overrides the L2 response.
Osig is also needed to ensure atomic write-back of data buffered
in the OT. When a transaction commits, it exposes the Osig to
forwarded coherence requests. Coherence requests that hit in the
Osig indicate that buffered data in the OT are possibly being copied
back to the original location. The response to the request can be
dealt with in twoways: the controller could either perform lookup
in the OT and respond with the data block or it could NACK the
request until copyback completes; our current implementation
does the latter.
In addition to functions previously described, the CAS-Commit

operation sets the Committed bit in the controller’s OT state. This
indicates that the OT content should be visible, activating NACKs
or lookups. At the same time, the controller initiates a microcoded
copyback operation. To accommodate page evictions of the original
locations, OT tags include the virtual addresses of cache blocks.
These addresses are used during copyback to ensure automatic
page-in of any nonresident pages.
There are no constraints on the order inwhich lines from the OT

are copied back to their natural locations. This stands in contrast
to time-based logs [31], which must proceed in reverse order of
insertion. Remote requests need to check only committed OTs
(since speculative lines are private) and for only a brief span of time
(duringOT copy-back). On aborts, theOT is reclaimed, to be cleaned
up for use by another transaction. The next overflowed transaction
allocates a new OT. When an OT overflows a way, the hardware
generates a trap to the OS, which expands the OT appropriately.
Although we require that OTs be physically contiguous for sim-

plicity, they can themselves be paged. A more ambitious FlexTM
design could allow physically non-contiguous OTs, with controller
access mediated by more complex mapping information. With the
addition of the OT controller, software is involved only for the allo-
cation and deallocation of theOT structure. Indirection to theOT on
misses, while unavoidable, is performed in hardware rather than in
software, thereby reducing the resulting overheads. Furthermore,
FlexTM’s copyback is performed by the controller and occurs in
parallel with other useful work on the processor.

5.3. Software metadata cache (SM-Cache) approach

The OT controller mechanism just described consists of a hard-
ware state machine that maintains a write buffer (organized as a



1076 A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084
Fig. 4. Metadata for pages that have overflowed state.

hash table) in a software-allocated region. There is implementation
complexity associatedwith the statemachine that searches (writes
back and reloads) and accesses data blocks without any help from
software.
In this section,we propose amore streamlinedmechanismused

in the FlexTM-S design. We move the actions of maintaining the
data structure and performing the redo on commit to software,
replacing the hash table with buffer pages and introducing a
metadata cache that enables hardware to access the buffer pages
without software intervention. Fig. 4 shows the per-page software
metadata, which specifies the buffer-page address and for each
cache block, the writer transaction id (Tx_id) and a ‘‘V/I’’ bit to
indicate if the buffer block is buffering valid data. To convey the
metadata information to hardware and accelerate repeated block
accesses, we install a metadata cache (SM-cache) on the L1 miss
path (see Fig. 5).
When a speculatively written cache line is evicted, the cache

controller looks up the SM-cache for the metadata and uses the
buffer page address to index into the TLB (for the buffer page’s
physical address1) for writeback redirection. Multiple transactions
that are possibly writing different cache blocks on the same page
can share the same buffer page. A miss in the SM-cache triggers
a software handler that allocates the buffer page metadata and
reloads the SM-cache. To provide the commit handler with the
virtual address of the cache block to be written back, every SM-
cache entry includes this information and is virtually indexed (note
that the data cache is still physically indexed). While the entire
buffer page is allocated when a single cache block in the original
page is evicted, the individual buffer page cache blocks are used
only as and when further evictions occur. This ensures that the
overflow mechanism adds overhead proportional to the number
of cache blocks that are evicted (similar to the OT controller
mechanism). In contrast to this design, other page-based overflow
mechanisms (e.g., XTM [11] and PTM [10]) clone the entire page if
at least a single cache block on the page is evicted.
With data buffered, L1 misses now need to ensure that data is

obtained from the appropriate location (buffer page or original). As
in the OT controller design, we use an overflow signature (Osig ) to
summarize addresses of evicted blocks and elide metadata checks.
L1 misses check the Osig , and signature hits require a metadata
check. If the metadata indicates that transaction T accessing the
location had written the block (i.e., V/I bit is 1 and Tx_id = T),
then hardware fetches the buffer block and overrides the L2
response. It also unsets the V/I bit to indicate that the buffer block
is no longer valid (block is present in the cache). Otherwise, the
coherence response message dictates the action. On eviction of

1 Virtual page synonyms are cases where multiple virtual pages point to the
same physical frame and a thread can access the same location with different
virtual addresses. To resolve these, since software knows about the pages that are
synonyms, it ensures that the SM-cache is loaded with the same metadata for all
the virtual synonym pages.
a speculatively written cache line that another transaction has
written and overflowed as well (i.e., V/I bit is 1 and Tx_id = X,
X 6= T), a handler is invoked that either allocates a new buffer
page and refills the SM-cache or resolves the conflict immediately.
The former design supports multiple writers to the same location
(and enables Lazy conflict resolution), while the latter forces eager
write–write conflict resolution, but enables a simpler design. The
Tx_id field supports precise detection of writer conflicts (see the
FlexTM-S design below).
When a transaction commits, it copy-updates the original

locations using software routines. To ensure atomicity, the
transaction updates its status word to inform concurrent accesses
to hold off until the copy-back completes. It then iterates through
the metadata of the various buffer pages in the working set and
copies back the cache blocks that it has written.
SM-Cache. The SM-cache stores metadata that hardware can use
to accelerate block access and cache evictions without software
intervention. It resides on the L1 miss path. On an Osig hit the SM-
cache is looked up in parallel with the L2 lookup (see Fig. 5). SM-
cache misses are handled entirely by software handlers that index
into it using the virtual page address. The L1 controller also uses a
similar technique to obtain metadata for redirecting evictions and
reloads.
Themetadatamay be concurrently updated if different specula-

tive cache blocks in the page are evicted atmultiple processor sites.
To ensure metadata consistency, the SM-cache participates in co-
herence using the physical address of the metadata. This physical
address tag is inaccessible to software and is automatically filled
by the hardware when an entry is allocated. The dual-tagging of
the SM-cache introduces the possibility that the two tags (virtual
address of page and physical address of metadata) might not map
to the same set index. We solve this with tag array pointers [17].
FlexTM-S. To evaluate the performance of the SM-cache approach,
we developed FlexTM-S. For bounded transactions, it leverages
the hardware presented in Section 3, but it omits support for
Lazy conflict resolution.
Compared to FlexTM, FlexTM-S (1) simplifies hardware support

for the versioning mechanism by trading in FlexTM’s overflow
hardware controller for an SM-cache (software metadata cache)
and (2) allows precise detection of conflicting writers. By
restricting support to Mixed and Eager modes, i.e., allowing only
one speculative writer, the coherence protocol is also simplified.
To ensure low overhead for detecting conflicting readers,

FlexTM-S uses the Rsig for both overflowed and cached state.
To identify writer transactions, it uses a two-level scheme: if
the speculative state resides in the cache, the response message
from the conflicting processor identifies the transaction (the CST
bits will identify the conflicter’s id). If the speculative state has
been evicted then the Osig membership tests will indicate the
possibility of a conflict. This type of conflict is also encoded
in the response message. If an Osig conflict is indicated, the
requester checks themetadata for precise disambiguation, thereby
eliminating false positives. Since a block can be written by only
one transaction (Mixed/Eager invariant), the Tx_id in the metadata
precisely identifies thewriter. If themetadata indicates no conflict,
software loads the SM-cache instructing hardware to ignore the
Osig response and allows the transaction to proceed. Thus the
metadata for versioning helps to disambiguatewriter transactions,
which (1) helps identify the conflicting writer precisely and
(2) allows progress of non-conflicting transactions, which would
have otherwise required contention management (in Eager mode)
due to signature false-positives.

5.4. Handling OS page evictions

The two challenges left to consider are (1) eviction of a page
from physical memory and reuse of its frame for a different page



A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084 1077
Fig. 5. Simplified overflow support with SM-cache. Dashed lines surround the new extension that replaces the OT controller (see Fig. 2).
in the application, and (2) when a page is re-mapped to a different
frame. Since signatures are built using physical addresses, (1) can
lead to false positives, which can cause spurious aborts but not
correctness issues. In a more ambitious design, we could address
these challenges with virtual address-based conflict detection for
non-resident pages.
For (2) we adapt a solution first proposed in LogTM-SE [46].

At the time of the unmap, active transactions are interrupted
both for TLB entry shootdown (already required) and to flush
TMI lines to the OT. When the page is assigned to a new frame,
the OS interrupts all the threads that mapped the page and tests
each thread’s Rsig , Wsig , and Osig for the old address of each
block. If the block is present, the new address is inserted into
the signatures. Fortunately, since a typical page (4/8 KB) contains
only about 64–128 cache lines, this does not impose significant
overhead compared to the cost of page eviction. Finally, there are
differences in the support required from the paging mechanism
for the OT controller approach and the SM-Cache approach. The
former indexes into the overflow table using the physical address
and requires the paging mechanism to update the tags in the
table entries with the new physical address. The latter needs no
additional support since it uses the virtual address of the buffer
page, and at the time of writeback indexes into the TLB to obtain
the current physical address.

6. Context switch support

STMs provide effective virtualization support because they
maintain conflict detection and versioning state in virtualizable
locations and use software routines to manipulate them. For
common case transactions, FlexTMuses scalable hardware support
to bookkeep the state associatedwith access permissions, conflicts,
and versioningwhile controlling policy in software. In the presence
of context switches, FlexTM detaches the transactional state of
suspended threads from the hardware and manages it using
software routines. This enables support for transactions to extend
across context switches (i.e., to be unbounded in time [1]).
Ideally, only threads whose accesses overlap with the read

and write set of suspended transactions should bear the software
routine overhead. Both FlexTM and FlexTM-S handle context
switches in a similar manner. To remember the accesses of
descheduled threads, FlexTM maintains two summary signatures,
RSsig andWSsig , at the directory of the system. When suspending a
thread in the middle of a transaction, the OS unions (i.e., ORs) the
signatures (Rsig andWsig ) of the suspended thread into the current
RSsig andWSsig installed at the directory.2

2 FlexTM updates RSsig andWSsig using a Sig message that uses the L1 coherence
request network to write the uncached memory-mapped registers. The directory
Once the RSsig andWSsig are up to date, the OS invokes hardware
routines to merge the current transaction’s hardware state into
virtual memory. This hardware state consists of (1) the TMI lines
in the local cache, (2) the overflow hardware registers, (3) the
current Rsig and Wsig , and (4) the CSTs. After saving this state (in
the order listed), the OS issues an abort instruction, causing the
cache controller to revert all TMI and TI lines to I, and to clear
the signatures, CSTs, and overflow controller registers. This ensures
that any subsequent conflicting accesswillmiss in the L1 cache and
generate a directory request. In other words, for any given location,
the first conflict between the running thread and a local descheduled
thread always results in an L1 miss. The L2 controller consults the
summary signatures on each suchmiss, and traps to softwarewhen
a conflict is detected. A TStore to a line inM state generates awrite-
back (see Fig. 1) that also tests the RSsig andWSsig for conflicts. This
resolves the corner case in which a suspended transaction TLoaded
a line in M state and a new transaction on the same processor
TStores it.
On summary signature hits, a software handler mimics hard-

ware operations on a per-thread basis, testing signature mem-
bership and updating the CSTs of suspended transactions. When
using the SM-cache design, the software metadata from version-
ing can be used to precisely identify the writer conflict. No spe-
cial instructions are required, since the CSTs and signatures of
descheduled threads are all visible in virtual memory. Neverthe-
less, updates need to be performed atomically to ensure consis-
tency when multiple active transactions conflict with a common
descheduled transaction and update the CSTs concurrently. The
OS helps the handler distinguish among transactions running on
different processors. It maintains a global conflict management ta-
ble (CMT), indexed by processor id, with the following invariant: if
transaction T is active, and has executed on processor P , irrespective of
the state of the thread (suspended/running), the transaction descriptor
will be included in P’s portion of the CMT. The handler uses the pro-
cessor ids in its CST to index into the CMT and to iterate through
transaction descriptors, testing the saved signatures for conflicts,
updating the saved CSTs (if running in lazymode), or invoking con-
flict management (if running in eagermode). Similar perusal of the
CMT occurs at commit time if running in lazy mode. As always,
we abort a transaction by writing its TSW. If the remote transac-
tion is running, an alert is triggered since it would have previously
ALoaded its TSW. Otherwise, the OS virtualizes the AOU operation
by causing the transaction to wake up in a software handler that
checks and re-ALoads the TSW.

updates the summary signatures and returns an ACK on the forwarding network.
This avoids races between the ACK and remote requests that were forwarded to the
suspending thread/processor before the summary signatures were updated.



1078 A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084
The directory needs to ensure that sticky bits are retained
when a transaction is suspended. Along with RSsig and WSsig , the
directory maintains a bitmap indicating the processors on which
transactions are currently descheduled (the ‘‘Cores Summary’’
register in Fig. 2). When the directory would normally remove a
processor from the sharers list (because a response to a coherence
request indicates that the line is no longer cached), the directory
refrains from doing so if the processor is in the Cores Summary list
and the line hits in RSsig orWSsig . This ensures that the L1 continues
to receive coherence messages for lines accessed by descheduled
transactions. It will need these messages if the thread is switched
back in, even if it never reloads the line.
When re-scheduling a thread, if the thread is being scheduled

back to the same processor from which it was switched out,
the thread’s Rsig , Wsig , CST, and OT registers are restored on
the processor. The OS then re-calculates the summary signatures
that correspond to the currently switched out threads with
active transactions and re-installs them at the directory. Thread
migration is a little more complex, since FlexTM performs write
buffering and does not re-acquire ownership of previously written
cache lines. To avoid the inherent complexity, FlexTM adopts a
simple policy for migration: abort and restart.
Unlike LogTM-SE [46], FlexTM is able to place the summary

signature at the directory rather than on the path of every L1
access. This avoids the need for interprocessor interrupts to install
summary signatures. Since speculative state is flushed from the
local cache when descheduling a transaction, the first access to a
conflicting line after rescheduling is guaranteed to miss, and the
conflict will be caught by the summary signature at the directory.
Because it is able to abort remote transactions using AOU, FlexTM
also avoids the problem of potential convoying behind suspended
transactions.

7. Area analysis

In this section, we briefly summarize the area overheads of
FlexTM. Further details can be found in a technical report [40].
Area estimates appear in Table 5. We consider processors from
a uniform (65 nm) technology generation to better understand
microarchitectural tradeoffs. Processor component sizes were
estimated using published die images. FlexTM component areas
were estimated using CACTI 6.
Only for the 8-way multithreaded Niagara-2 do the Rsig and

Wsig have a noticeable area impact: 2.2%; on Merom and Power6
they add only ∼0.1%. CACTI indicates that the signatures should
be readable and writable in less than the L1 access latency. These
results appear to be consistent with those of Sanchez et al. [35].
The CSTs for their part are full-map bit-vector registers (as wide as
the number of processors), and we need only three per hardware
context. We do not expect the extra state bits in the L1 to affect the
access latency because (a) they have minimal impact on the cache
area and (b) the state array is typically accessed in parallel with the
higher latency data array.
Finally, we compare the OT controller to the metadata cache

(SM-cache) approach. While the SM-cache is significantly more
area hungry than the controller, it is a regular memory structure
rather than a state machine. The SM-cache needs a separate
hardware cache to store the metadata while the OT controller’s
metadata (i.e., hash-table index entries) contend with regular data
for L2 cache space. Overall, the OT controller adds less than 0.5%
to core area. Its state machine is similar to Niagara-2’s Translation-
Storage-Buffer walker [48]. Niagara-2, with its 16-byte data cache
line, presents a worst-case design point for the SM-cache. The
small cache line leads to high overhead in page-level metadata,
since there are more cache blocks per page (4×more than Merom
or Power6) and per-cache line metadata, since the per-cache line
Table 5
Area estimation.

Processor Merom [34] Power6 [16] Niagara-2 [48]

Actual Die

SMT (threads) 1 2 8
Core (mm2) 31.5 53 11.7
L1 D (mm2) 1.8 2.6 0.4

CACTI Prediction

Rsig+Wsig (mm2) 0.033 0.066 0.26
RSsig+WSsig (mm2) 0.033 0.033 0.033
CSTs (registers) 3 6 24
Extra state bits 2 (TA) 3 (TA, ID) 5 (TA ID)
% Core increase 0.6% 0.59% 2.6%
% L1 Dcache increase 0.35% 0.29% 3.9%
OT controller (mm2) 0.16 0.24 0.035
32 entry SM-Cache (mm2) 0.27 0.27 0.96

ID — SMT context of ‘TMI’ line.

entry (17 bits) is a significant fraction of cache line size (16
bytes). Straightforward optimizations thatwould save area include
organizing the metadata to represent a larger than cache line
region.
Overall, with either FlexTM (which includes the OT controller)

or FlexTM-S (which includes the SM-cache) the overheads imposed
on out-of-order CMP cores (Merom and Power6) are well under
1%–2%. In the case of Niagara-2 (high core multithreading and
small cache lines), FlexTM add-ons require a ∼2.6% area increase
while FlexTM-S’s add-ons require a∼10% area increase.

8. FlexTM evaluation

8.1. Evaluation framework

Weevaluate FlexTM through full system simulation of a 16-way
chip multiprocessor (CMP), with private L1 caches and a shared L2
(see Table 6(a)), on the GEMS/Simics infrastructure [29]. We added
support for the FlexTM instructions using the standard Simics
‘‘magic instruction’’ interface. Our base protocol is an adaptation of
the SGI ORIGIN 2000 [25] for a CMP, extended to support FlexTM’s
requirements: signatures, CSTs, PDI, and AOU. Software routines
(setjmp) were used to checkpoint registers.
Simics allows us to run an unmodified Solaris 9 kernel. Simics

also provides a ‘‘user-mode-change’’ and ‘‘exception-handler’’
interface, which we use to trap user-kernel mode crossings. On
crossings, we suspend the current transaction mode and allow
the OS to handle TLB misses, register-window overflow, and other
kernel activities required by an active user context in the midst
of a transaction. On transfer back from the kernel, we deliver any
alert signals received during the kernel routine, triggering the alert
handler if needed.
We evaluate FlexTM using the seven benchmarks listed in

Table 6(b). Workload set 1 is a set of microbenchmarks obtained
from the RSTM package [49] and Workload set 2 consists of
applications from STAMP [30]3 and STMBench7 [18]. Kmeans
and Labyrinth spend 60%–65% of their time in transactions; all
other applications spend over 98% of time in transactions. In the
microbenchmark tests, we execute a fixed number of transactions
in a single thread to warm up the structure, then fork off threads
to perform the timed transactions. For the STAMP workloads and
STMBench7 we use the input setup described in Table 7. In Bayes
and Labyrinth we added padding to a few data structures to
eliminate frequent false conflicts.

3 We left out SSCA since it did not exercise the TM components. It has small
transactions and small working sets and is highly data parallel.



A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084 1079
Table 6
Experimental setup.

(a) Target system parameters

16-way CMP, Private L1, Shared L2

Processor Cores 16 1.2 GHz in-order, single issue; non-memory
IPC = 1

L1 Cache 32 KB 2-way split, 64-byte blocks, 1 cycle,
32 entry victim buffer, 2 kbit signature [7, S14]

L2 Cache 8 MB, 8-way, 4 banks, 64-byte blocks, 20 cycle
Memory 2 GB, 250 cycle latency
Interconnect 4-ary tree, 1 cycle, 64-byte links

Central Arbiter (Section 8.3)

Arbiter Lat. 30 cycles [8]
Commit Msg. Lat. 16 cycles/link

Commit messages also use the 4-ary tree.

(b) Workload description

Benchmark Inst/tx Wrset Rdset CST
conflicts
per-tx

Avg.
per-tx
W–W

Avg.
per-tx
R–W

Workload set 1

HashTable 110 2 5 0 0 0
RBTree 1000 3 25 1 0 1.8
LFUCache 125 1 2 6 0.8 0.8
RandomGraph 11K 9 60 5 0.6 3

Workload set 2

Bayes 70K 150 225 3 0 1.7
Delaunay 12K 20 83 1 0.10 1.1
Genome 1.8K 9 49 0 0 0
Intruder 410 14 41 2 0 1.4
Kmeans 130 4 19 0 0 0
Labyrinth 180K 190 160 3 0 2
Vacation 5.5K 12 89 1 0 1.6
STMBench7 105K 110 490 1 0.1 1.1

Setup: 16 threads with lazy conflict resolution; Inst/Tx-Instructions per transaction.
K—Kilo.
Wrset (Rdset ): Number of written (read) cache lines.
CST conflicts per tx: Number of CST bits set. Median number of conflicting
transactions encountered.
Average per-txW–W (R–W): Avg. number of common locations between pair-wise
conflicting transactions.

Table 7
Workload inputs.

Benchmark Inputs

Workload set 1

HashTable 1/3rd lookup, 1/3rd insert, 1/3rd delete
RBTree 1/3rd lookup, 1/3rd insert, 1/3rd delete
LFUCache 100% insert operation
RandomGraph 1/3rdlookup, 1/3rd insert, 1/3rd delete

Workload set 2

Bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2
Delaunay -a20 -i inputs/633.2
Genome -g256 -s16 -n16384
Intruder -a10 -l16 -n4096 -s1
Kmeans -m10 -n10 -t0.05 -i inputs/random2048-d16-c16.txt
Labyrinth -i random-x48-y48-z3-n64
Vacation -n4 -q45 -u90 -r1048576 -t4194304
STMBench7 Reads-60%, Writes-40%. Short Traversals-40%. Long Traversals

5%, Ops.-45%, Mods. 10%

As Table 6(b) shows, the workloads we evaluate have varied
dynamic characteristics. Delaunay and Genome perform a large
amount of work per memory access and represent workloads in
which time spent in the TM runtime is small compared to overall
transaction latency. Kmeans is essentially data parallel and, along
with the HashTable microbenchmark, represents workloads that
are highly scalable with no noticeable level of conflicts. Intruder
also has small transactions, but there is a high level of conflicts
due to the presence of dueling write–write conflicts. The short
transactions in HashTable, KMeans, and Intruder suggest that TM
runtime overheads (if any) may become a significant fraction of
total transaction latency. LFUCache and Randomgraph have a large
number of conflicts and do not scale; any pathologies introduced
by the TM runtime itself [6] are likely to be exposed. Bayes,
Labyrinth, and Vacation have moderate working set sizes and
significant levels of read–write conflicts due to the use of tree-like
data structures. RBTree is a microbenchmark version of Vacation.
STMBench7 is themost sophisticated application in our suite. It has
a variedmix of large and small transactions with varying types and
levels of conflicts [18].
Evaluation dimensions. We have designed the experiments to
address the following questions

• How does FlexTM perform relative to hybrid TMs, hardware-
accelerated STMs, and STMs?
• How does FlexTM’s CST-based parallel commit compare to a
centralized hardware arbiter design?
• How do the virtualization mechanisms deployed in FlexTM and
FlexTM-S compare to previously proposed software instrumen-
tation (SigTM [30]) and virtual memory-based implementa-
tions [11]?

8.2. FlexTM vs. hybrid TMs and STMs

Result 1. Separable hardware support for conflict detection, conflict
tracking, and versioning can provide significant acceleration for
software controlled TMs; eliminating software bookkeeping from the
common case critical path is essential to realizing the full benefits of
hardware acceleration.

Runtime systems.We evaluate FlexTM and compare it against two
different sets of hybrid TMs and STMs with two different sets of
workloads.
Workload set 1 (WS1) interfaces with three TM systems:

(1) FlexTM; (2) RTM-F [39], a hardware accelerated STM system;
and (3) RSTM [28], a non-blocking STM for legacy hardware
(configured to use invisible readers, with self validation for conflict
detection). Workload set 2 (WS2), which uses a different API,
interfaces with (1) FlexTM, (2) TL2, a blocking STM for legacy
hardware [14], and (3) SigTM [30], a hybrid TM derived from TL2
that uses hardware to accelerate conflict detection. FlexTM, the
hybrids (SigTM and RTM-F), and the STMs (RSTM and TL2) have
all been set up to perform Lazy conflict resolution.
We use the ‘‘Polka’’ conflict manager [36] in FlexTM, RTM-F,

SigTM, and RSTM. TL2 limits the choice of contentionmanager and
uses a timestampmanagerwith backoff.While all runtime systems
execute on our simulated hardware, RSTM and TL2 make no use of
FlexTM’s extensions. RTM-F uses only PDI andAOU, and SigTMuses
only the signatures (Rsig and Wsig ). FlexTM uses all the presented
mechanisms. Average speedups reported are geometric means.
Results. Fig. 6 shows the performance (transactions/sec) normal-
ized to sequential thread performance for 1 thread runs. This
demonstrates that the overheads of FlexTM are minimal. For small
transactions (e.g., Hashtable) there is some overhead ('15%) for
the checkpointing of processor registers, which FlexTM performs
in software — it could take advantage of checkpointing hardware
if it exists.
We study scaling and performance with 16 thread runs (Fig. 7).

To illustrate the usefulness of CSTs (see the table in Fig. 7), we
also report the number of conflicts encountered and resolved by
an average transaction—the number of bits set in the W–R and
W–W CST registers.
The performance of both STMs suffer from the bookkeeping

required to track data versions, detect conflicts, and guarantee a



1080 A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084
(a) Workload set 1. (b) Workload set 2.

Fig. 6. Throughput (transactions/106 cycles), normalized to sequential thread. All performance bars use 1 thread.
(a) Workload set 1. (b) Workload set 2.

Fig. 7. Throughput (transactions/106 cycles), normalized to sequential thread. All performance bars use 16 threads.
consistent view of memory (validation). RTM-F exploits AOU and
PDI to eliminate validation and copying overhead, but still incurs
bookkeeping that accounts for 40%–50% of execution time. SigTM
uses signatures for conflict detection but performs versioning
entirely in software. On average, the overhead of software-
based versioning is smaller than that of software-based conflict
detection, but it still accounts for as much as 30% of execution time
for some workloads (e.g., STMBench7). Because it supports only
lazy conflict detection, SigTM has simpler software metadata than
RTM-F. RTM-F tracks conflicts for each individual transactional
location and could vary the eagerness on a per-location basis.
FlexTM’s hardware tracks conflicts, buffers speculative state,

and ensures consistency in a manner transparent to software,
resulting in single thread performance close to that of sequen-
tial thread performance. FlexTM’s main overhead, register check-
pointing, involves spilling of local registers into the stack and is
nearly constant across thread levels. Eliminating per-access soft-
ware overheads (metadata tracking, validation, and copying) al-
lows FlexTM to realize the full potential of hardware acceleration,
with an average speedup of 2× over RTM-F and 5.5× over RSTMon
WS1. OnWS2, FlexTM has an average speedup of 1.7× over SigTM
and 4.5× over TL2.
HashTable and RBTree both scale well and have significant

speedup over sequential thread performance, 10.3× and 8.3×
respectively. In RSTM, validation and copying account for 22% of
execution time in HashTable and 50% in RBTree; metadata man-
agement accounts for 40% and 30%, respectively. RTM-F manages
to eliminate the validation cost and copying cost, but unfortunately
the metadata management hinders performance improvement.
FlexTM streamlines transaction execution and provides 2.8× and
8.3× speedup over RTM-F and RSTM respectively.
LFUCache and RandomGraph do not scale (no performance

improvement compared to sequential thread performance). In
LFUCache, conflict for popular keys in the Zipf distribution forces
transactions to serialize. Stalled writers lead to extra aborts with
larger numbers of threads, but performance eventually stabilizes
for all TM systems. In RandomGraph, larger numbers of conflicts
between transactions updating the same region in the graph cause
all TM systems to experience significant levels of wasted work.
The average RandomGraph transaction reads ∼60 cache lines
and writes ∼9 cache lines. In RSTM, read-set validation accounts
for 80% of execution time. RTM-F eliminates this overhead, after
which per-access bookkeeping accounts for 60% of execution time.
FlexTM eliminates this overhead as well, to achieve 2.7× the
performance of RTM-F.
In applications with large access set sizes (i.e., Vacation, Bayes,

Labyrinth, and STMBench7), TL2 suffers from the bookkeeping
required prior to the first read (i.e., for checking write sets),
after each read, and at commit time (for validation) [14]. This
instrumentation accounts for'40% of transaction execution time.
SigTM uses signatures-based conflict detection to eliminate this
overhead. Unfortunately, both TL2 and SigTM suffer from another
source of overhead: given lazy conflict resolution, reads need to
search the redo log to see previouswrites by their own transaction.
Furthermore, the software commit protocol needs to lock the
metadata, perform the copyback, and then release the locks.
FlexTM eliminates the cost of versioning and conflict detection and
improves performance significantly, averaging 2.1× speedup over
SigTM and 4.8× over TL2.
Genome and Delaunay are workloads with a large ratio be-

tween the transaction size and the number of accesses. TL2’s in-
strumentation on the reads does add significant overhead and
affects its scalability—only 3.4× and 2.1× speedup (at 16 threads)
over sequential thread performance for Genome and Delaunay re-
spectively. SigTM eliminates the conflict detection overhead and
significantly improves performance—an average of 2.4× improve-
ment over TL2. FlexTM, in spite of the additional hardware support,



A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084 1081
improves performance by 22%, since the versioning overheads ac-
count for a smaller fraction of overall transactional execution.
Finally, Kmeans and Intruder have unusually small transactions.

Software handlers add significant overhead in TL2. In Kmeans,
SigTM eliminates conflict detection overhead to improve perfor-
mance by 2.7× over TL2. Since thewrite sets are small, eliminating
the versioning overheads in FlexTM only improves performance
a further 24%. Intruder has a high level of conflicts, and doesn’t
scale well, with a 1.6× speedup for FlexTM over sequential thread
performance (at 16 threads). Both SigTM and FlexTM eliminate
the conflict detection handlers and streamline the transactions,
which leads to a change in the conflict pattern (fewer conflicts).
This improves performance significantly—3.3× and 4.2× over TL2
for SigTM and FlexTM respectively. As in Kmeans, the versioning
overheads are smaller and FlexTM’s improvement over SigTM is
restricted to 23%.

8.3. FlexTM vs. central-arbiter Lazy HTMs

Result 2. CSTs are useful: transactions don’t often conflict and even
when they do the number of conflicts per transaction is less than
the total number of active transactions. FlexTM’s distributed commit
demonstrates better performance than a centralized arbiter.

As shown in Table 6(b), the number of conflicts encountered
by a transaction is small compared to the total number of con-
current transactions in the system. Even in workloads that have
a large number of conflicts (LFUCache and RandomGraph) a trans-
action typically encounters conflicts only about 30% of the time.
Scalable workloads (e.g., Vacation, Kmeans) encounter essentially
no conflicts. This clearly suggests that global arbitration and serial-
ized commits will not only waste bandwidth but also restrict con-
currency. CSTs enable local arbitration and the distributed commit
protocol allows parallel commits, thereby unlocking the full con-
currency potential of the application. Also, a transaction’s commit
overhead in FlexTM is not a constant, but rather proportional to the
number of conflicting transactions encountered.
In this set of experiments, we compare FlexTM’s distributed

commit against two schemes with centralized hardware arbiters:
Central-Serial andCentral-Parallel. In both schemes, instead of using
CSTs and requiring each transaction to ALoad its TSW, transactions
forward their Rsig andWsig to a central hardware arbiter at commit
time. The arbiter orders each commit request, and broadcasts
the Wsig to other processors. Every recipient uses the forwarded
Wsig to check for conflicts and abort its active transaction; it also
sends an ACK as a response to the arbiter. The arbiter collects all
the ACKs and then allows the committing processor to complete.
This process adds 97 cycles to a transaction, assuming unloaded
links and arbiter (latencies are listed in Table 6(a)). The Serial
version services only one commit request at a time (queuing up
any others); the Parallel services all non-conflicting transactions in
parallel (assuming infinite buffers in the arbiter). Central arbiters
are similar in spirit to BulkSC [8], but serve only to order commits;
they do not interact with the L2 directory.
We present results (see Fig. 8) for all out workloads and enu-

merate the general trends below:

• Arbitration latency for the Central commit scheme is on the
critical path of transactions. This gives rise to noticeable
overhead in the case of short transactions (e.g., HashTable,
RBTree, LFUCache, Kmeans, and Intruder). CSTs simplify the
commit process: in the absence of conflicts, a commit requires
only a singlememory operation on a transaction’s cached status
word. On these workloads, CSTs improve performance by an
average of 25% even over the aggressive Central-Parallel, which
only serializes a transaction commit if it conflicts with an
already in flight commit.
Fig. 8. FlexTM vs. centralized hardware arbiters.

• Workloads that exhibit inherent parallelism with Lazy conflict
resolution (all except LFUCache and RandomGraph) suffer from
serialization of commits in Central-Serial. Central-Serial essen-
tially queues up transaction commits and introduces the com-
mit latency of even other non-conflicting transactions onto the
critical path. The serialization of commits could also change the
conflict pattern. In someworkloads (e.g., Intruder, STMBench7),
in the presence of reader-writer conflicts as the reader trans-
action waits for predecessors to release the arbiter resource,
the reader could be aborted by the conflicting writer. In a sys-
tem that allows parallel commits, the reader could finish earlier
and elide the conflict entirely. CST-based commit provides an
average of'50% and amaximumof 112% (HashTable) improve-
ment over Central-Serial. Central-Parallel removes the serializa-
tion overhead, but still suffers from commit arbitration latency.
• In benchmarks with high conflict levels (e.g., LFUCache and
RandomGraph) that don’t inherently scale, Central’s conflict
management strategy avoids performance degradation. The
transaction being serviced by the arbiter always commits suc-
cessfully, ensuring progress and livelock freedom. The current
distributed protocol allows the possibility of livelock. However,
the CSTs streamline the commit process, narrow the vulnerabil-
ity window (to essentially the interprocessor message latency),
and eliminate the problem as effectively as Central. Lazy conflict
resolution inherently eliminates livelocks as well [41,44].

At low conflict levels, a CST-based commit requiresmostly local
operations, and its performance should be comparable to an ideal
Central-Parallel (i.e., zero message and arbitration latency). At high
conflict levels, the penalties of Central are lower compared to the
overhead of aborts and workload inherent serialization. Finally,
the influence of commit latency on performance is dependent on
transaction latency (e.g., reducing commit latency helps Central-
Parallel approach FlexTM’s throughput in HashTable but has
negligible impact on RandomGraph’s throughput).

8.4. FlexTM-S vs. other virtualization mechanisms

To study TM virtualization mechanisms, we downgrade our
private L1 caches to 32 KB 2-way. This ensures that, in spite of
the moderate write set sizes in our workloads, they experience
overflows due to associativity constraints. Every L1 has access to
a 64 entry SM-cache. Each metadata entry is 136 bytes.
We use five benchmarks in our study: Bayes, Delaunay,

Labyrinth, and Vacation from the STAMP suite, and STMBench7.
As Table 6(b) shows, these benchmarks have the largest write sets
and are most likely to generate L1 cache overflows, enabling us to
highlight tradeoffs among the various virtualization mechanisms.
The fraction of total transactions that experience overflows in
Bayes, Delaunay, Labyrinth, Vacation and STMBench7 is 11%, 8%,
25%, 9% and 32% respectively.
We compare FlexTM-S’s performance against the following

Lazy TM systems: (1) FlexTM, which employs a hardware con-
troller for overflowed state and signatures for conflict detection;



1082 A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084
Fig. 9. Throughput at 16 threads for FlexTM-S vs. other TMs, normalized to FlexTM.
(2) XTM [11], which uses virtual memory to implement all TM
operations; (3) XTM-e, which employs virtual memory support
for versioning but performs conflict detection using cache-line
granularity tag bits; and (4) SigTM [30], which uses hardware sig-
natures for conflict detection and software instrumentation for
word-granularity versioning. All systems employ the Polka [37]
contention manager.

Result 3. A software maintained metadata cache is sufficient to
provide virtualization support with negligible overhead.

As shown in Fig. 9, FlexTM-S imposes modest performance
penalty (10%) compared to FlexTM. This is encouraging since it is
vastly simpler to implement the SM-cache than the controller in
FlexTM. The SM-cache miss and copyback handlers are the main
contributors to the overhead. Unlike FlexTM and FlexTM-S, which
version only the overflowed cache lines, XTM and XTM-e suffers
from the overhead of page-granularity versioning. XTM’s page-
granularity conflict detection also leads to excessive aborts. XTM
and XTM-e both rely on heavyweight OSmechanisms; by contrast,
FlexTM-S requires only user-level interrupt handlers. Finally,
SigTM incurs significant overheaddue to software lookaside checks
to determine if an accessed location is being buffered.
We also analyzed the influence of signature false positives. In

FlexTM-S, write signature false positives can lead to increased
handler invocation for loading the SM-cache, but the software
metadata can be used to disambiguate and avoid abort penalty.
In FlexTM, signature responses are treated as true conflicts, and
cause contentionmanager invocations that could lead to excessive
aborts.We set theWsig andOsig to 32 bits (see Fig. 10) to investigate
the performance penalties of small write signatures.

Result 4. As Fig. 10 shows, FlexTM-S’s use of software metadata to
disambiguate false positives helps reduce the needed size of hardware
signatures while maintaining high performance.

9. Conclusions

FlexTM introduces Conflict Summary Tables; combines them
with Bloom filter signatures, alert-on-update, and programmable
data isolation; and virtualizes the combination across context
switches, overflow, andpage-swaps. The resulting systemprovides
Fig. 10. Signature size effect (relative to FlexTM with 2048-bitWsig ).

TM support that decouples the conflict detection mechanism from
conflict resolution time and allows software to control the latter
(i.e., Eager , Lazy or Mixed), resulting in a high performance TM
substrate on which software can dictate policy. To the best of
our knowledge, it is the first hardware TM to admit an STM-
like distributed commit protocol, allowing an unbounded number
of Lazy and/or Eager transactions to arbitrate and commit in
parallel. To virtualize transaction state, we propose two alternative
designs—an aggressive hardware controller and a complexity-
effective hardware–software design. The latter was evaluated via
the FlexTM-S TM system, which further simplifies the versioning
mechanism by supporting aMixedmode for conflict resolution.
On a variety of benchmarks, FlexTM imposes minimal TM

runtime overheads (comparable to sequential thread latency)
and attains ∼5× more performance than STM and ∼1.8× more
performance than hybrid TMs. Experiments with centralized
commit schemes indicate that FlexTM’s distributed protocol is
free from the arbitration and serialization overheads of centralized
hardware managers. Finally, comparing FlexTM-S with other
virtualizationmechanisms, we find that it is a complexity-effective
alternative with <10% performance loss compared to the base
FlexTM with full hardware-based overflow controller support.
Though we do not elaborate on the possibility here, we have

also begun to experiment with non-TM uses of our decoupled
hardware [39,40, TR version]; we expect to extend this work
by developing more general interfaces and exploring their
applications.



A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084 1083
References

[1] C.S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, S. Lie, Unbounded
transactional memory, in: Proc. of the 11th Intl. Symp. on High Performance
Computer Architecture, San Francisco, CA, February 2005, pp. 316–327.

[2] L. Baugh, N. Neelakantan, C. Zilles, Using hardwarememory protection to build
a high-performance, strongly atomic hybrid transactionalmemory, in: Proc. of
the 35th Intl. Symp. on Computer Architecture, Beijing, China, June 2008.

[3] B.H. Bloom, Space/time trade-off in hash coding with allowable errors,
Communications of the ACM 13 (7) (1970) 422–426.

[4] C. Blundell, E.C. Lewis, M.M.K. Martin, Subtleties of transactional memory
atomicity semantics, IEEE Computer Architecture Letters 5 (2) (2006).

[5] J. Bobba, K.E. Moore, H. Volos, L. Yen, M.D. Hill, M.M. Swift, D.A. Wood,
Performance pathologies in hardware transactional memory, in: Proc. of
the 34th Intl. Symp. on Computer Architecture, San Diego, CA, June 2007,
pp. 32–41.

[6] J. Bobba, N. Goyal, M.D. Hill, M.M. Swift, D.A. Wood, TokenTM: efficient
execution of large transactions with hardware transactional memory, in: Proc.
of the 35th Intl. Symp. on Computer Architecture, Beijing, China, June 2008.

[7] L. Ceze, J. Tuck, C. Cascaval, J. Torrellas, Bulk disambiguation of speculative
threads in multiprocessors, in: Proc. of the 33rd Intl. Symp. on Computer
Architecture, Boston, MA, June 2006.

[8] L. Ceze, J. Tuck, P. Montesinos, J. Torrellas, BulkSC: bulk enforcement of
sequential consistency, in: Proc. of the 34th Intl. Symp. on Computer
Architecture, San Diego, CA, June 2007.

[9] H. Chafi, J. Casper, B.D. Carlstrom, A. McDonald, C. Cao Minh, W. Baek,
C. Kozyrakis, K. Olukotun, A scalable, non-blocking approach to transactional
memory, in: Proc. of the 13th Intl. Symp. on High Performance Computer
Architecture, Phoenix, AZ, February 2007.

[10] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M.V. Biesbrouck,
G. Pokam, B. Calder, O. Colavin, Unbounded page-based transactionalmemory,
in: Proc. of the 12th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, October 2006, pp. 347–358.

[11] J. Chung, C. Cao Minh, A. McDonald, T. Skare, H. Chafi, B.D. Carlstrom,
C. Kozyrakis, K. Olukotun, Tradeoffs in transactional memory virtualization,
in: Proc. of the 12th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, October 2006, pp. 371–381.

[12] L. Dalessandro,M.L. Scott, Strong isolation is aweak idea, in: 4th ACMSIGPLAN
Workshop on Transactional Computing, Raleigh, NC, February 2009.

[13] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, D. Nussbaum, Hybrid
transactionalmemory, in: Proc. of the 12th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, San Jose, CA, October
2006.

[14] D. Dice, O. Shalev, N. Shavit, Transactional locking II, in: Proc. of the 20th
Intl. Symp. on Distributed Computing, Stockholm, Sweden, September 2006,
pp. 194–208.

[15] K. Fraser, T. Harris, Concurrent programmingwithout locks, ACM Transactions
on Computer Systems 25 (2) (2007) article 5.

[16] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr, G. Mittal,
E. Chan, Y. Chan, D. Plass, S. Chu, H. Le, L. Clark, J. Ripley, S. Taylor, J. Dilullo,
M. Lanzerotti, Design of the Power6 Microprocessor, in: Proc. of the Intl. Solid
State Circuits Conf., San Francisco, CA, February 2007, pp. 96–97.

[17] J.R. Goodman, Coherency for multiprocessor virtual address Caches, in: Proc.
of the 2nd Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, October 1987, pp. 72–81.

[18] R. Guerraoui, M. Kapaĺka, J. Vitek, STMBench7: a benchmark for software
transactional memory, in: Proc. of the 2nd EuroSys, Lisbon, Portugal, March
2007.

[19] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu,
H. Wijaya, C. Kozyrakis, K. Olukotun, Transactional memory coherence and
consistency, in: Proc. of the 31st Intl. Symp. on Computer Architecture,
München, Germany, June 2004.

[20] M. Herlihy, V. Luchangco, M. Moir, W.N. Scherer III, Software transactional
memory for dynamic-sized data structures, in: Proc. of the 22nd ACM Symp.
on Principles of Distributed Computing, Boston, MA, July 2003, pp. 92–101.

[21] M. Herlihy, J.E. Moss, Transactional memory: architectural support for lock-
free data structures, in: Proc. of the 20th Intl. Symp. on Computer Architecture,
San Diego, CA, May 1993. Expanded version available as CRL 92/07, DEC
Cambridge Research Laboratory, December 1992.

[22] M.D. Hill, D. Hower, K.E. Moore, M.M. Swift, H. Volos, D.A. Wood, A case for
deconstructing hardware transactional memory systems, Technical Report
1594, Dept. of Computer Sciences, Univ. of Wisconsin–Madison, 2007.

[23] S. Kumar, M. Chu, C.J. Hughes, P. Kundu, A. Nguyen, Hybrid transactional
memory, in: Proc. of the 11th ACM Symp. on Principles and Practice of Parallel
Programming, New York, NY, March 2006.

[24] J.R. Larus, R. Rajwar, Transactional Memory, in: Synthesis Lectures on
Computer Architecture, Morgan & Claypool, 2007.

[25] J. Laudon, D. Lenoski, The SGI origin: a ccNUMAhighly scalable server, in: Proc.
of the 24th Intl. Symp. on Computer Architecture, Denver, CO, June 1997.

[26] Y. Lev, J.-W. Maessen, Split hardware transaction: true nesting of transactions
using best-effort hardware transactional memory, in: Proc. of the 13th ACM
Symp. on Principles and Practice of Parallel Programming, Salt Lake City, UT,
February 2008.

[27] V.J. Marathe, W.N. Scherer III, M.L. Scott, Adaptive software transactional
memory, in: Proc. of the 19th Intl. Symp. on Distributed Computing, Cracow,
Poland, September 2005.
[28] V.J. Marathe, M.F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W.N. Scherer III,
M.L. Scott, Lowering the overhead of software transactional memory, in: Proc.
of the 1st ACM SIGPLAN Workshop on Transactional Computing, Ottawa, ON,
Canada, June 2006. Expanded version available as TR 893, Dept. of Computer
Science, Univ. of Rochester, March 2006.

[29] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu, A.R. Alameldeen,
K.E. Moore, M.D. Hill, D.A. Wood, Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset, in: ACM SIGARCH Computer
Architecture News, September 2005.

[30] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,
C. Kozyrakis, K. Olukotun, An effective hybrid transactional memory system
with strong isolation guarantees, in: Proc. of the 34th Intl. Symp. on Computer
Architecture, San Diego, CA, June 2007.

[31] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, D.A. Wood, LogTM: log-based
transactional memory, in: Proc. of the 12th Intl. Symp. on High Performance
Computer Architecture, Austin, TX, February 2006.

[32] R. Rajwar, M. Herlihy, K. Lai, Virtualizing transactionalmemory, in: Proc. of the
32nd Intl. Symp. on Computer Architecture, Madison, WI, June 2005.

[33] B. Saha, A.-R. Adl-Tabatabai, R.L. Hudson, C. Cao Minh, B. Hertzberg, McRT-
STM: a high performance software transactional memory system for a multi-
core runtime, in: Proc. of the 11th ACM Symp. on Principles and Practice of
Parallel Programming, NY, USA, March 2006.

[34] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, A. Kovacs, The
implementation of the 65 nm Dual-Core 64b merom processor, in: Proc. of
the Intl. Solid State Circuits Conf., San Francisco, CA, February 2007.

[35] D. Sanchez, L. Yen, M.D. Hill, K. Sankaralingam, Implementing signatures for
transactional memory, in: Proc. of the 40th Intl. Symp. on Microarchitecture,
Chicago, IL, December 2007.

[36] W.N. Scherer III, M.L. Scott, Advanced contention management for dynamic
software transactional memory, in: Proc. of the 24th ACM Symp. on Principles
of Distributed Computing, Las Vegas, NV, July 2005.

[37] W.N. Scherer III, M.L. Scott, Randomization in STM contention management
(poster paper), in: Proc. of the 24th ACM Symp. on Principles of Distributed
Computing, Las Vegas, NV, July 2005.

[38] M.L. Scott, Sequential specification of transactional memory semantics, in:
Workshop on 1st ACM SIGPLAN Workshop on Transactional Computing,
Ottawa, ON, Canada, June 2006.

[39] A. Shriraman, M.F. Spear, H. Hossain, S. Dwarkadas, M.L. Scott, An integrated
hardware–software approach to flexible transactionalmemory, in: Proc. of the
34th Intl. Symp. on Computer Architecture, San Diego, CA, June 2007. Earlier
but expanded version available as TR 910, Dept. of Computer Science, Univ. of
Rochester, December 2006.

[40] A. Shriraman, S. Dwarkadas, M.L. Scott, Flexible decoupled transactional
memory support, in: Proc. of the 35th Intl. Symp. on Computer Architecture,
Beijing, China, June 2008. Expanded version available as TR 925, URCS,
November 2007.

[41] A. Shriraman, S. Dwarkadas, Refereeing conflicts in hardware transactional
memory, in: Proc. of the 2009 ACM Intl. Conf. on Supercomputing, NY, USA,
June 2009.

[42] M.F. Spear, V.J. Marathe, W.N. Scherer III, M.L. Scott, Conflict detection and
validation strategies for software transactional memory, in: Proc. of the 20th
Intl. Symp. on Distributed Computing, Stockholm, Sweden, September 2006.

[43] M.F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, M.L. Scott, Alert-on-
update: a communication aid for shared memory multiprocessors (poster
paper), in: Proc. of the 12th ACM Symp. on Principles and Practice of Parallel
Programming, San Jose, CA, March 2007.

[44] M.F. Spear, L. Dalessandro, V. Marathe, M.L. Scott, A comprehensive strategy
for contentionmanagement in software transactional memory, in: Proc. of the
14th ACM Symp. on Principles and Practice of Parallel Programming, March
2009.

[45] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris,
M. Valero, EazyHTM, eager–lazy hardware transactional memory, in: Proc. of
the 42th Intl. Symp. on Microarchitecture, NY, USA, December 2009.

[46] L. Yen, J. Bobba, M.R. Marty, K.E. Moore, H. Valos, M.D. Hill, M.M. Swift,
D.A. Wood, LogTM-SE: decoupling hardware transactional memory from
Caches, in: Proc. of the 13th Intl. Symp. on High Performance Computer
Architecture, Phoenix, AZ, February 2007.

[47] C. Zilles, L. Baugh, Extending hardware transactional memory to support non-
busy waiting and non-transactional actions, in: Proc. of the 1st ACM SIGPLAN
Workshop on Transactional Computing, Ottawa, ON, Canada, June 2006.

[48] Sun Microsystems Inc, OpenSPARC T2 Core Microarchitecture Specification,
July 2005.

[49] The Rochester Software Transactional Memory Runtime, 2006, www.cs.
rochester.edu/research/synchronization/rstm/.

Arrvindh Shriraman is a graduate student in computer
science at the University of Rochester. He received his B.E.
from the University of Madras, India, and his M.S. from
the University of Rochester. His research interests include
multiprocessor system design, hardware–software inter-
face, and parallel programming models.

www.cs.rochester.edu/research/synchronization/rstm/
www.cs.rochester.edu/research/synchronization/rstm/
www.cs.rochester.edu/research/synchronization/rstm/
www.cs.rochester.edu/research/synchronization/rstm/
www.cs.rochester.edu/research/synchronization/rstm/
www.cs.rochester.edu/research/synchronization/rstm/
www.cs.rochester.edu/research/synchronization/rstm/


1084 A. Shriraman et al. / J. Parallel Distrib. Comput. 70 (2010) 1068–1084
Sandhya Dwarkadas is a Professor of Computer Science
and of Electrical and Computer Engineering at the Univer-
sity of Rochester. Her research lies at the interface of hard-
ware and software with a particular focus on concurrency,
resulting in numerous publications that cross areas within
systems. She has recently been associate editor for IEEE
Computer Architecture Letters (2006–2009), program and
general chair for ISPASS’07 and ISPASS’08 respectively, and
is a past associate editor for IEEE Transactions on Parallel
and Distributed Systems.
Michael L. Scott is a Professor and past Chair of the Com-
puter Science Department at the University of Rochester.
He is a Fellow of the ACM and the IEEE, a recipient of the
Dijkstra Prize in Distributed Computing, and author of the
textbook Programming Language Pragmatics (3rd edition,
Morgan Kaufmann, 2009). He was recently Program Chair
of TRANSACT’07 and of PPoPP’08.


	Implementation tradeoffs in the design of flexible transactional memory support
	Introduction
	Related work
	FlexTM architecture
	Access tracking: signatures
	Conflict tracking: CSTs
	Versioning support: PDI
	Explicit aborts: AOU
	Extending FlexTM

	Hardware/software interface
	Bounded transactions
	Mixed conflict resolution
	Strong isolation

	Unbounded space support
	Eviction of transactionally read lines
	Overflow table (OT) controller design
	Software metadata cache (SM-Cache) approach
	Handling OS page evictions

	Context switch support
	Area analysis
	FlexTM evaluation
	Evaluation framework
	FlexTM vs. hybrid TMs and STMs
	FlexTM vs. central-arbiter Lazy HTMs
	FlexTM-S vs. other virtualization mechanisms

	Conclusions
	References


