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! Synchronization

MICHAEL L. ScotT
University of Rochester, Rochester, NY, USA

Synonyms
Fences; Multiprocessor synchronization; Mutual exclu-
sion; Process synchronization

Definition

Synchronization is the use of language or library mech-
anisms to constrain the ordering (interleaving) of
instructions performed by separate threads, to preclude
orderings that lead to incorrect or undesired results.

Discussion

In a parallel program, the instructions of any given
thread appear to occur in sequential order (at least from
that thread’s point of view), but if the threads run inde-
pendently, their sequences of instructions may inter-
leave arbitrarily, and many of the possible interleavings

may produce incorrect results. As a trivial example, con-
sider a global counter incremented by multiple threads.
Each thread loads the counter into a register, increments
the register, and writes the updated value back to mem-
ory. If two threads load the same value before either
stores it back, updates may be lost:

c == 0
Thread 1: Thread 2:
rl := ¢
rl:= c
++rl
++rl
c :=1rl
c :=rl
c ==1

Synchronization serves to preclude invalid thread
interleavings. It is commonly divided into the subtasks
of atomicity and condition synchronization. Atomicity
ensures that a given sequence of instructions, typi-
cally performed by a single thread, appears to all other
threads as if it had executed indivisibly - not inter-
leaved with anything else. In the example above, one
would typically specify that the load-increment-store
instruction sequence should execute atomically.

Condition synchronization forces a thread to wait,
before performing an operation on shared data, until
some desired precondition is true. In the example above,
one might want to wait until all threads had performed
their increments before reading the final count.

While it is tempting to suspect that condition syn-
chronization subsumes atomicity (make the precondi-
tion be that no other thread is currently executing a
conflicting operation), atomicity is in fact considerably
harder, because it requires consensus among all com-
peting threads: they must all agree as to which will
proceed and which will wait. Put another way, condi-
tion synchronization delays a thread until some locally
observable condition is seen to be true; atomicity is a
property of the system as a whole.

Like many aspects of parallel computing, syn-
chronization looks different in shared-memory and
message-passing systems. In the latter, synchronization
is generally subsumed in the message-passing meth-
ods; in a shared-memory system, it typically employs a
separate set of methods.
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Shared-memory implementations of synchroniza-
tion can be categorized as busy-wait (spinning), or
scheduler-based. The former actively consume processor
cycles until the running thread is able to proceed. The
latter deschedule the current thread, allowing the pro-
cessor to be used by other threads, with the expectation
that future activity by one of those threads will make
the original thread runnable again. Because it avoids the
cost of two context switches, busy-wait synchronization
is typically faster than scheduler-based synchronization
when the expected wait time is short and when the
processor is not needed for other purposes. Scheduler-
based synchronization is typically faster when expected
wait times are long; it is necessary when the num-
ber of threads exceeds the number of processors (else
quantum-long delays or even deadlock can occur). In
the typical implementation, busy-wait synchronization
is built on top of whatever hardware instructions exe-
cute atomically. Scheduler-based synchronization, in
turn, is built on top of busy-wait synchronization, which
is used to protect the scheduler’s own data structures
(see entries on Scheduling Algorithms and on Processes,
Tasks, and Threads).

In the earliest multiprocessors, load and store were
the only memory-access instructions guaranteed to
be atomic, and busy-wait synchronization was imple-
mented using these. Modern machines provide a vari-
ety of atomic read-modify-write (RMW) instructions,
which serve to update a memory location atom-
ically. These significantly simplify the implementa-
tion of synchronization. Common RMW instructions
include:

Test-and-set (1) sets the Boolean variable at location /
to true, and returns the previous value.

Swap (I, v) stores the value v to location I and returns
the previous value.

Atomic-¢ (I, v) replaces the value o at location [ with
¢(0,v) for some simple arithmetic function ¢ (add,
sub, and, etc.).

Fetch-and-¢ (1, v) is like atomic-¢, but also returns the
previous value.

Compare-and-swap (I, 0, n) inspects the value v at
location I, and if it is equal to o, replaces it with n.

In either case, it returns the previous value, from
which one can deduce whether the replacement
occurred.

Load-linked (/) and store-conditional (I, v). The first
of these returns the value at location / and “remem-
bers” I. The second stores v to I if I has not been
modified by any other processor since a previous
load-linked by the current processor.

These instructions differ in their expressive power.
Herlihy has shown [9] that compare-and-swap (CAS)
and load-linked / store-conditional (LL/SC) are univer-
sal primitives, meaning, informally, that they can be
used to construct a non-blocking implementation of any
other RMW operation. The following code provides a
simple implementation of fetch-and-¢ using CAS.

val old :=
loop
val new := phi(old);

*1;

val found := CAS(1l, old, new);
if (old == found) break;
old := found;

If the test on line 5 of this code fails, it must be because
some other thread successfully modified * 1. The system
as a whole has made forward progress, but the current
thread must try again.

As discussed in the entry on Non-blocking Algo-
rithms, this simple implementation is lock-free but not
wait-free. There are stronger (but slower and more
complex) non-blocking implementations in which each
thread is guaranteed to make forward progress in a
bounded number of its own instructions.

In any distributed system, and in most modern
shared memory systems, instructions executed by a
given thread are not, in general, guaranteed to be seen
in sequential order by other threads, and instructions
of any two threads are not, in general, guaranteed to be
seen in the same order by all of their peers. Modern
processors typically provide so-called fence or barrier
instructions (not to be confused with the barriers dis-
cussed under Condition Synchronization below) that
force previous instructions of the current thread to be
seen by other threads before subsequent instructions of
the current thread. Implementations of synchronization
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methods typically include sufficient fences that if syn-
chronization method s; in thread #; occurs before syn-
chronization method s, in thread t,, then all instruc-
tions that precede s; in t#; will appear in t, to have
occurred before any of its own instructions that fol-
low s,. For more information, see the entry on Memory
Models. The remainder of the discussion here assumes
that memory is sequentially consistent, that is, that
instructions appear to interleave in some global total
order that is consistent with program order in every
thread.

A multi-instruction operation is said to be atomic if
appears to occur “all at once” from every other thread’s
point of view. In a sequentially consistent system, this
means that the program behaves as if the instructions
of the atomic operation were contiguous in the global
instruction interleaving. More specifically, in any sys-
tem, intermediate states of the atomic operation should
never be visible to other threads, and actions of other
threads should never become visible to a given thread
in the middle of one of its own atomic operations.

The most straightforward way to implement atomic-
ity is with a mutual-exclusion (mutex) lock — an abstract
object that can be held by at most one thread at a time.
In standard usage, a thread invokes the acquire method
of the lock when it wishes to begin an atomic opera-
tion and the release method when it is done. Acquire
waits (by spinning or rescheduling) until it is safe for
the operation to proceed. The code between the acquire
and release (the body of the atomic operation) is known
as a critical section.

Critical sections that conflict with one another (typ-
ically, that access some common location, with at least
one section writing that location) must be protected
by the same lock. Programming discipline commonly
ensures this property by associating data with locks. A
thread must then acquire locks for all the data accessed
in a critical section. It may do so all at once, at the begin-
ning of the critical section, or it may do so incremen-
tally, as the need for data is encountered. Considerable
care may be required to ensure that locks are acquired in
the same order by all critical sections, to avoid deadlock.
All locks are typically held until the end of the criti-
cal section. This two-phase locking (all acquires occur

before any releases) ensures that the global set of critical
section executions remains serializable.

Relaxations of Mutual Exclusion

So-called reader-writer locks increase concurrency by
observing that it is safe for more than one thread to read
a location concurrently, so long as no thread is modi-
fying that location. Each critical section is classified as
either a reader or a writer of the data associated with a
given lock. The reader_acquire method waits until there
is no concurrent writer of the lock; the writer_acquire
method waits until there is no concurrent reader or
writer.

In a standard reader-writer lock, a thread must
know, when it first reads a location, whether it will ever
need to write that location in the current critical sec-
tion. In some contexts it may be possible to relax this
restriction. The Linux kernel, for example, provides a
sequence lock mechanism that allows a reader to abort
its peers and upgrade to writer status. Programmers are
required to follow a restrictive programming discipline
that makes critical sections “restartable,” and checks,
before any write or “dangerous” read, to see whether a
peer’s upgrade has necessitated a restart.

For data structures that are almost always read, and
very occasionally written, several operating system ker-
nels provide some variant of a mechanism known as
RCU (originally an abbreviation for read-copy update).
RCU divides execution into so-called epochs. A writer
creates a new copy of any data structure it needs to
update. It replaces the old copy with the new, typically
using a single CAS instruction. It then waits until the
end of the current epoch to be sure that all readers that
might have been using the old copy have completed
their critical sections (at which point it can reclaim the
old copy, or perform other actions that depend on the
visibility of the update). The advantage of RCU, in com-
parison to locks, is that it imposes zero overhead in the
read-only case.

For more general-purpose use, transactional mem-
ory (TM) allows arbitrary operations to be executed
atomically, with an underlying implementation based
on speculation and rollback. Originally proposed [10] as
a hardware assist for lock-free data structures — sort of
a multi-word generalization of LL/SC — TM has seen a
flurry of activity in recent years, and several hardware
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and software implementations are now widely available.
Each keeps track of the memory locations accessed by
transactions (would-be atomic operations). When two
concurrent transactions are seen to conflict, at most one
is allowed to commit; the others abort, “roll back;” and
try again, using a fully automated, transparent analogue
of the programming discipline required by sequence
locks. For further details, see the separate entry
on TM.

Fairness

Because they sometimes force multiple threads to wait,
synchronization mechanisms inevitably raise issues of
fairness. When a lock is released by the current holder,
which waiting thread should be allowed to acquire it?
In a system with reader-writer locks, should a thread be
allowed to join a group of already-active readers when
writers are already waiting? When transactions conflict
in a TM system, which should be permitted to proceed,
and which should wait or abort?

Many answers are possible. The choice among con-
flicting threads may be arbitrary, random, first-come-
first-served (FIFO), or based on some other notion
of priority. From the point of view of an individual
thread, the resulting behavior may range from poten-
tial starvation (no progress guarantees) to some sort of
proportional share of system run time. Between these
extremes, a thread may be guaranteed to run eventually
ifit is continuously ready, or if it is ready infinitely often.
Even given the possibility of starvation, the system as
a whole may be livelock-free (guaranteed to make for-
ward progress) as a result of algorithmic guarantees or
pseudo-random heuristics. (Actual livelock is generally
considered unacceptable.) Any starvation-free system is
clearly livelock free.

Simple Busy-Wait Locks
Several early locking algorithms were based on only
loads and stores, but these are mainly of historical inter-
est today. All required Q(tn) space for ¢ threads and n
locks, and w(1) (more-than-constant) time to arbitrate
among threads competing for a given lock.

In modern usage, the simplest constant-space, busy-
wait mutual exclusion lock is the test-and-set (TAS)

lock, in which a thread acquires the lock by using a
test-and-set instruction to change a Boolean flag from
false to true. Unfortunately, spinning by waiting threads
tends to induce extreme contention for the lock loca-
tion, tying up bus and memory resources needed for
productive work. On a cache-coherent machine, better
performance can be achieved with a “test-and-test-and-
set” (TATAS) lock, which reduces contention by using
ordinary load instructions to spin on a value in the local
cache so long as the lock remains held:

type lock = Boolean;

proc acquire(lock *1):
(test-and-set (1))
(*1) /* spin */ ;

while
while

proc release(lock *1):

*1 := false;

This lock works well on small machines (up to, say, four
processors).

Which waiting thread acquires a TATAS lock at
release time depends on vagaries of the hardware,
and is essentially arbitrary. Strict FIFO ordering can
be achieved with a ticket lock, which uses fetch-and-
increment (FAI) and a pair of counters for constant
space and (per-thread) time. To acquire the lock, a
thread atomically performs an FAI on the “next avail-
able” counter and waits for the “now serving” counter
to equal the value returned. To release the lock, a thread
increments its own ticket, and stores the result to the
“now serving” counter. While arguably fairer than a
TATAS lock, the ticket lock is more prone to perfor-
mance anomalies on a multiprogrammed system: if any
waiting thread is preempted, all threads behind it in line
will be delayed until it is scheduled back in.

Scalable Busy-Wait Locks

On a machine with more than a handful of processors,
TATAS and ticket locks scale poorly, with time per criti-
cal section growing linearly with the number of waiting
threads. Anderson [1] showed that exponential backoft
(reminiscent of the Ethernet contention-control algo-
rithm) could substantially improve the performance of
TATAS locks. Mellor-Crummey and Scott [17] showed
similar results for linear backoff in ticket locks (where
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a thread can easily deduce its distance from the head of
the line).

To eliminate contention entirely, waiting threads can
be linked into an explicit queue, with each thread spin-
ning on a separate location that will be modified when
the thread ahead of it in line completes its critical sec-
tion. Mellor-Crummey and Scott showed how to imple-
ment such queues in total space O(t + n) for ¢ threads
and n locks; their MCS lock is widely used in large-
scale systems. Craig [4] and, independently, Landin
and Hagersten [16] developed an alternative CLH lock
that links the queue in the opposite direction and per-
forms slightly faster on some cache-coherent machines.
Auslander et al. developed a variant of the MCS
lock that is API-compatible with traditional TATAS
locks [3]. Kontothanassis et al. [14] and He et al. [8]
developed variants of the MCS and CLH locks that
avoid performance anomalies due to preemption of
threads waiting in line.

Scheduler-Based Locks

A busy-wait lock wastes processor resources when
expected wait times are long. It may also cause perfor-
mance anomalies or deadlock in a multiprogrammed
system. The simplest solution is to yield the proces-
sor in the body of the spin loop, effectively moving
the current thread to the end of the scheduler’s ready
list and allowing other threads to run. More com-
monly, scheduler-based locks are designed to deschedule
the waiting thread, moving it (atomically) from the
ready list to a separate queue associated with the lock.
The release method then moves one waiting thread from
the lock queue to the ready list. To minimize over-
head when waiting times are short, implementations
of scheduler-based synchronization commonly spin for
a small, bounded amount of time before invoking the
scheduler and yielding the processor. This strategy is
often known as spin-then-wait.

It is tempting to assume that busy-wait condition
synchronization can be implemented trivially with a
Boolean flag: a waiting thread spins until the flag is true;
a thread that satisfies the condition sets the flag to true.
On most modern machines, however, additional fence

instructions are required both in the satisfying thread,
to ensure that its prior writes are visible to other threads,
and in the waiting thread, to ensure that its subsequent
reads do not occur until after the spin completes. And
even on a sequentially consistent machine, special steps
are required to ensure that the compiler does not violate
the programmer’s expectations by reordering instruc-
tions within threads.

In some programming languages and systems, a
variable may be made suitable for condition synchro-
nization by labeling it volatile (or, in C++0X,
atomic<>). The compiler will insert appropriate
fences at reads and writes of volatile variables, and
will refrain from reordering them with respect to other
instructions.

Some other systems provide special event objects,
with methods to set and await them. Semaphores and
monitors, described in the following two subsections,
can be used for both mutual exclusion and condition
synchronization.

In systems with dynamically varying concurrency,
the fork and join methods used to create threads and
to verify their completion can be considered a form of
condition synchronization. (These are, in fact, the prin-
cipal form of synchronization in systems like Cilk and
OpenMP))

Barriers

One form of condition synchronization is particularly
common in data-parallel applications, where threads
iterate together through a potentially large number of
algorithmic phases. A synchronization barrier, used to
separate phases, guarantees that no thread continues to
phase n + 1 until all threads have finished phase ».

In most (though not all) implementations, the bar-
rier provides a single method, composed internally of
an arrival phase that counts the number of threads that
have reached the barrier (typically via a log-depth tree)
and a departure phase in which permission to continue
is broadcast back to all threads. In a so-called fuzzy
barrier [6], these arrival and departure phases may be
separate methods. In between, a thread may perform
any instructions that neither depend on the arrival of
other threads nor are required by other threads prior to
their departure. Such instructions can serve to “smooth
out” phase-by-phase imbalances in the work assigned
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to different threads, thereby reducing overall wait time.
Wait time may also be reduced by an adaptive barrier [7,
19], which completes the arrival phase in constant time
after the arrival of the final thread.

Unfortunately, when ¢ threads arrive more or less
simultaneously, no barrier implementation using ordi-
nary loads, stores, and RMW instructions can complete
the arrival phase in less than Q(logt) time. Given the
importance of barriers in scientific applications, some
supercomputers have provided special near-constant-
time hardware barriers. In some cases the same hard-
ware has supported a fast eureka method, in which
one thread can announce an event to all others in
constant time.

First proposed by Dijkstra in 1965 [5] and still widely
used today, semaphores support both mutual exclusion
and condition synchronization. A general semaphoreis a
nonnegative counter with an initial value and two meth-
ods, known as V and P. The V method increases the
value of the semaphore by one. The P method waits for
the value to be positive and then decreases it by one.
A binary semaphore has values restricted to zero and
one (it is customarily initialized to one), and serves as a
mutual exclusion lock. The P method acquires the lock;
the V method releases the lock. Programming discipline
is required to ensure that P and V methods occur in
matching pairs.

The typical implementation of semaphores pairs the
counter with a queue of waiting threads. The V method
checks to see whether the counter is currently zero. If so,
it checks to see whether any threads are waiting in the
queue and, if there are, moves one of them to the ready
list. If the counter is already positive (in which case the
queue is guaranteed to be empty) or if the counter is
zero but the queue is empty, V simply increments the
counter. The P method also checks to see whether the
counter is zero. If so, it places the current thread on
the queue and calls the scheduler to yield the processor.
Otherwise it decrements the counter.

General semaphores can be used to represent
resources of which there is a limited number, but more
than one. Examples include I/O devices, communica-
tion channels, or free or full slots in a fixed-length buffer.
Most operating systems provide semaphores as part of
the kernel APIL.

While semaphores remain the most widely used
scheduler-based shared-memory synchronization mech-
anism, they suffer from several limitations. In particu-
lar, the association between a binary semaphore (mutex
lock) and the data it protects is solely a matter of con-
vention, as is the paired usage of P and V methods.
Early experience with semaphores, combined with the
development of language-level abstraction mechanisms
in the 1970s, led several developers to suggest build-
ing higher-level synchronization abstractions into pro-
gramming languages. These efforts culminated in the
definition of monitors [12], variants of which appear in
many languages and systems.

A monitor is a data abstraction (a module or
class) with an implicit mutex lock and an optional
set of condition variables. Each entry (method) of the
monitor automatically acquires and releases the mutex
lock; entry invocations thus exclude one another in
time. Programmers typically devise, for each monitor,
a program-specific invariant that captures the mutual
consistency of the monitor’s state (data members -
fields). The invariant is assumed to be true at the begin-
ning of each entry invocation, and must be true again at
the end.

Condition variables support a pair of methods
superficially analogous to P and V; in Hoare’s origi-
nal formulation, these were known as wait and signal.
Unlike P and V, these methods are memory-less: a signal
invocation is a no-op if no thread is currently waiting.

For each reason that a thread might need to wait
within a monitor, the programmer declares a sepa-
rate condition variable. When it waits on a condition,
the thread releases exclusion on the monitor. The pro-
grammer must thus ensure that the invariant is true
immediately prior to every wait invocation.

Semantic Details

The details of monitors vary significantly from one lan-
guage to another. The most significant issues, discussed
in the paragraphs below, are commonly known as the
nested monitor problem and the modeling of signals as
hints vs. absolutes. More minor issues include language
syntax, alternative names for signal and wait, the mod-
eling of condition variables in the type system, and the
prioritization of threads waiting for conditions or for
access to the mutex lock.
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The nested monitor problem arises when an entry of
one monitor invokes an entry of another monitor, and
the second entry waits on a condition variable. Should
the wait method release exclusion on the outer monitor?
If it does, there is no guarantee that the outer moni-
tor will be available again when execution is ready to
resume in the inner call. If it does not, the program-
mer must take care to ensure that the thread that will
perform the matching signal invocation does not need
to go through the outer monitor in order to reach the
inner one. A variety of solutions to this problem have
been proposed; the most common is to leave the outer
monitor locked.

Signal methods in Hoare’s original formulation were
defined to transfer monitor exclusion directly from the
signaler to the waiter, with no intervening execution.
The purpose of this convention was to guarantee that
the condition represented by the signal was still true
when the waiter resumed. Unfortunately, the conven-
tion often has the side effect of inducing extra context
switches, and requires that the monitor invariant be
true immediately prior to every signal invocation. Most
modern monitor variants follow the lead of Mesa [15] in
declaring that a signal is merely a hint, and that a waiting
process must double-check the condition before contin-
uing execution. In effect, code that would be written

if (!condition)
cond var.wait () ;

in a Hoare monitor is written

while (!condition)

cond var.wait () ;

in a Mesa monitor. To make it easier to write programs
in which a condition variable “covers” a set of pos-
sible conditions (particularly when signals are hints),
many monitor variants provide a signal-all or broadcast
method that awakens all threads waiting on a condition,
rather than only one.

In a system in which threads interact by exchanging
messages, rather than by sharing variables, synchro-
nization is generally implicit in the send and receive
methods. A receive method typically blocks until an
appropriate message is available (a matching send has

been performed). Blocking semantics for send methods
vary from one system to another:

Asynchronous send - In some systems, a sender con-
tinues execution immediately after invoking a send
method, and the underlying system takes responsi-
bility for delivering the message. While often desir-
able, this behavior complicates the delivery of failure
notifications, and may be limited by finite buffering
capacity.

Synchronous send - In other systems — notably those
based on Hoare’s Communicating Sequential Pro-
cesses (CSP) [13] - a sender waits until its message
has been received.

Remote-invocation send - In yet other systems, a send
method has both ingoing and outcoming parame-
ters; the sender waits until a reply is received from
its peer.

Distributed Locking

Libraries, languages, and applications commonly imple-
ment higher-level distributed locks or transactions on
top of message passing. The most common lock imple-
mentation is analogous to the MCS lock: acquired
requests are sent to a lock manager thread. If the lock
is available, the manager responds directly; otherwise it
forwards the request to the last thread currently wait-
ing in line. The release method sends a message to the
manager or, if a forwarding request has already been
received, to the next thread in line for the lock. Races
in which the manager forwards a request at the same
time the last lock holder sends it a release are trivially
resolved by statically choosing one of the two (per-
haps the lock holder) to inform the next thread in line.
Distributed transaction systems are substantially more
complex.

Rendezvous and Remote Procedure Call

In some systems, a message must be received explic-
itly by an already existing thread. In other systems,
a thread is created by the underlying system to han-
dle each arriving message. Either of these options -
explicit or implicit receipt — can be paired with any of the
three send options described above. The combination
of remote-invocation send with implicit receipt is often
called remote procedure call (RPC). The combination of
remote-invocation send with explicit receipt is known
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as rendezvous. Interestingly, if all shared data is encap-
sulated in monitors, one can model - or implement -
each monitor with a manager thread that executes entry
calls one at a time. Each such call then constitutes a
rendezvous between the sender and the monitor.
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Bibliographic Notes

The study of synchronization began in earnest with
Dijkstras “Cooperating Sequential Processes” mono-
graph of 1965 [5]. Andrews and Schneider provide an
excellent survey of synchronization mechanisms circa
1983 [2]. Mellor-Crummey and Scott describe and com-
pare a variety of busy-wait spin locks and barriers, and
introduce the MCS lock [17]. More extensive coverage
of synchronization can be found in Chapter 12 of Scott’s
programming languages text [18], or in the recent texts
of Herlihy and Shavit [11] and Taubenfeld [20].
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