SPRINGER
REFERENCE

David Padua
Editor-in-Chief

Encyclopedia of
Parallel Computing

@ Springer

David Padua (Ed.)

Encyclopedia of Parallel
Computing

With 880 Figures and 98 Tables

@ Springer

Editor-in-Chief

David Padua

University of Illinois at Urbana-Champaign

Urbana, IL

USA

ISBN 978-0-387-09765-7 e-ISBN 978-0-387-09766-4

DOI10.1007/978-0-387-09766-4
Print and electronic bundle ISBN: 978-0-387-09844-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011935063
© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be
taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Synchronization

1989

! Synchronization

MICHAEL L. ScotT
University of Rochester, Rochester, NY, USA

Synonyms
Fences; Multiprocessor synchronization; Mutual exclu-
sion; Process synchronization

Definition

Synchronization is the use of language or library mech-
anisms to constrain the ordering (interleaving) of
instructions performed by separate threads, to preclude
orderings that lead to incorrect or undesired results.

Discussion

In a parallel program, the instructions of any given
thread appear to occur in sequential order (at least from
that thread’s point of view), but if the threads run inde-
pendently, their sequences of instructions may inter-
leave arbitrarily, and many of the possible interleavings

may produce incorrect results. As a trivial example, con-
sider a global counter incremented by multiple threads.
Each thread loads the counter into a register, increments
the register, and writes the updated value back to mem-
ory. If two threads load the same value before either
stores it back, updates may be lost:

c == 0
Thread 1: Thread 2:
rl := ¢
rl:= c
++rl
++rl
c :=1rl
c :=rl
c ==1

Synchronization serves to preclude invalid thread
interleavings. It is commonly divided into the subtasks
of atomicity and condition synchronization. Atomicity
ensures that a given sequence of instructions, typi-
cally performed by a single thread, appears to all other
threads as if it had executed indivisibly - not inter-
leaved with anything else. In the example above, one
would typically specify that the load-increment-store
instruction sequence should execute atomically.

Condition synchronization forces a thread to wait,
before performing an operation on shared data, until
some desired precondition is true. In the example above,
one might want to wait until all threads had performed
their increments before reading the final count.

While it is tempting to suspect that condition syn-
chronization subsumes atomicity (make the precondi-
tion be that no other thread is currently executing a
conflicting operation), atomicity is in fact considerably
harder, because it requires consensus among all com-
peting threads: they must all agree as to which will
proceed and which will wait. Put another way, condi-
tion synchronization delays a thread until some locally
observable condition is seen to be true; atomicity is a
property of the system as a whole.

Like many aspects of parallel computing, syn-
chronization looks different in shared-memory and
message-passing systems. In the latter, synchronization
is generally subsumed in the message-passing meth-
ods; in a shared-memory system, it typically employs a
separate set of methods.

http://dx.doi.org/10.1007/978-0-387-09766-4_2016
http://dx.doi.org/10.1007/978-0-387-09766-4_2216
http://dx.doi.org/10.1007/978-0-387-09766-4_2331
http://dx.doi.org/10.1007/978-0-387-09766-4_2331
http://dx.doi.org/10.1007/978-0-387-09766-4_2332

1990

Synchronization

Shared-memory implementations of synchroniza-
tion can be categorized as busy-wait (spinning), or
scheduler-based. The former actively consume processor
cycles until the running thread is able to proceed. The
latter deschedule the current thread, allowing the pro-
cessor to be used by other threads, with the expectation
that future activity by one of those threads will make
the original thread runnable again. Because it avoids the
cost of two context switches, busy-wait synchronization
is typically faster than scheduler-based synchronization
when the expected wait time is short and when the
processor is not needed for other purposes. Scheduler-
based synchronization is typically faster when expected
wait times are long; it is necessary when the num-
ber of threads exceeds the number of processors (else
quantum-long delays or even deadlock can occur). In
the typical implementation, busy-wait synchronization
is built on top of whatever hardware instructions exe-
cute atomically. Scheduler-based synchronization, in
turn, is built on top of busy-wait synchronization, which
is used to protect the scheduler’s own data structures
(see entries on Scheduling Algorithms and on Processes,
Tasks, and Threads).

In the earliest multiprocessors, load and store were
the only memory-access instructions guaranteed to
be atomic, and busy-wait synchronization was imple-
mented using these. Modern machines provide a vari-
ety of atomic read-modify-write (RMW) instructions,
which serve to update a memory location atom-
ically. These significantly simplify the implementa-
tion of synchronization. Common RMW instructions
include:

Test-and-set (1) sets the Boolean variable at location /
to true, and returns the previous value.

Swap (I, v) stores the value v to location I and returns
the previous value.

Atomic-¢ (I, v) replaces the value o at location [with
¢(0,v) for some simple arithmetic function ¢ (add,
sub, and, etc.).

Fetch-and-¢ (1, v) is like atomic-¢, but also returns the
previous value.

Compare-and-swap (I, 0, n) inspects the value v at
location I, and if it is equal to o, replaces it with n.

In either case, it returns the previous value, from
which one can deduce whether the replacement
occurred.

Load-linked (/) and store-conditional (I, v). The first
of these returns the value at location / and “remem-
bers” I. The second stores v to I if I has not been
modified by any other processor since a previous
load-linked by the current processor.

These instructions differ in their expressive power.
Herlihy has shown [9] that compare-and-swap (CAS)
and load-linked / store-conditional (LL/SC) are univer-
sal primitives, meaning, informally, that they can be
used to construct a non-blocking implementation of any
other RMW operation. The following code provides a
simple implementation of fetch-and-¢ using CAS.

val old :=
loop
val new := phi(old);

*1;

val found := CAS(1l, old, new);
if (old == found) break;
old := found;

If the test on line 5 of this code fails, it must be because
some other thread successfully modified * 1. The system
as a whole has made forward progress, but the current
thread must try again.

As discussed in the entry on Non-blocking Algo-
rithms, this simple implementation is lock-free but not
wait-free. There are stronger (but slower and more
complex) non-blocking implementations in which each
thread is guaranteed to make forward progress in a
bounded number of its own instructions.

In any distributed system, and in most modern
shared memory systems, instructions executed by a
given thread are not, in general, guaranteed to be seen
in sequential order by other threads, and instructions
of any two threads are not, in general, guaranteed to be
seen in the same order by all of their peers. Modern
processors typically provide so-called fence or barrier
instructions (not to be confused with the barriers dis-
cussed under Condition Synchronization below) that
force previous instructions of the current thread to be
seen by other threads before subsequent instructions of
the current thread. Implementations of synchronization

Synchronization

1991

methods typically include sufficient fences that if syn-
chronization method s; in thread #; occurs before syn-
chronization method s, in thread t,, then all instruc-
tions that precede s; in t#; will appear in t, to have
occurred before any of its own instructions that fol-
low s,. For more information, see the entry on Memory
Models. The remainder of the discussion here assumes
that memory is sequentially consistent, that is, that
instructions appear to interleave in some global total
order that is consistent with program order in every
thread.

A multi-instruction operation is said to be atomic if
appears to occur “all at once” from every other thread’s
point of view. In a sequentially consistent system, this
means that the program behaves as if the instructions
of the atomic operation were contiguous in the global
instruction interleaving. More specifically, in any sys-
tem, intermediate states of the atomic operation should
never be visible to other threads, and actions of other
threads should never become visible to a given thread
in the middle of one of its own atomic operations.

The most straightforward way to implement atomic-
ity is with a mutual-exclusion (mutex) lock — an abstract
object that can be held by at most one thread at a time.
In standard usage, a thread invokes the acquire method
of the lock when it wishes to begin an atomic opera-
tion and the release method when it is done. Acquire
waits (by spinning or rescheduling) until it is safe for
the operation to proceed. The code between the acquire
and release (the body of the atomic operation) is known
as a critical section.

Critical sections that conflict with one another (typ-
ically, that access some common location, with at least
one section writing that location) must be protected
by the same lock. Programming discipline commonly
ensures this property by associating data with locks. A
thread must then acquire locks for all the data accessed
in a critical section. It may do so all at once, at the begin-
ning of the critical section, or it may do so incremen-
tally, as the need for data is encountered. Considerable
care may be required to ensure that locks are acquired in
the same order by all critical sections, to avoid deadlock.
All locks are typically held until the end of the criti-
cal section. This two-phase locking (all acquires occur

before any releases) ensures that the global set of critical
section executions remains serializable.

Relaxations of Mutual Exclusion

So-called reader-writer locks increase concurrency by
observing that it is safe for more than one thread to read
a location concurrently, so long as no thread is modi-
fying that location. Each critical section is classified as
either a reader or a writer of the data associated with a
given lock. The reader_acquire method waits until there
is no concurrent writer of the lock; the writer_acquire
method waits until there is no concurrent reader or
writer.

In a standard reader-writer lock, a thread must
know, when it first reads a location, whether it will ever
need to write that location in the current critical sec-
tion. In some contexts it may be possible to relax this
restriction. The Linux kernel, for example, provides a
sequence lock mechanism that allows a reader to abort
its peers and upgrade to writer status. Programmers are
required to follow a restrictive programming discipline
that makes critical sections “restartable,” and checks,
before any write or “dangerous” read, to see whether a
peer’s upgrade has necessitated a restart.

For data structures that are almost always read, and
very occasionally written, several operating system ker-
nels provide some variant of a mechanism known as
RCU (originally an abbreviation for read-copy update).
RCU divides execution into so-called epochs. A writer
creates a new copy of any data structure it needs to
update. It replaces the old copy with the new, typically
using a single CAS instruction. It then waits until the
end of the current epoch to be sure that all readers that
might have been using the old copy have completed
their critical sections (at which point it can reclaim the
old copy, or perform other actions that depend on the
visibility of the update). The advantage of RCU, in com-
parison to locks, is that it imposes zero overhead in the
read-only case.

For more general-purpose use, transactional mem-
ory (TM) allows arbitrary operations to be executed
atomically, with an underlying implementation based
on speculation and rollback. Originally proposed [10] as
a hardware assist for lock-free data structures — sort of
a multi-word generalization of LL/SC — TM has seen a
flurry of activity in recent years, and several hardware

1992

Synchronization

and software implementations are now widely available.
Each keeps track of the memory locations accessed by
transactions (would-be atomic operations). When two
concurrent transactions are seen to conflict, at most one
is allowed to commit; the others abort, “roll back;” and
try again, using a fully automated, transparent analogue
of the programming discipline required by sequence
locks. For further details, see the separate entry
on TM.

Fairness

Because they sometimes force multiple threads to wait,
synchronization mechanisms inevitably raise issues of
fairness. When a lock is released by the current holder,
which waiting thread should be allowed to acquire it?
In a system with reader-writer locks, should a thread be
allowed to join a group of already-active readers when
writers are already waiting? When transactions conflict
in a TM system, which should be permitted to proceed,
and which should wait or abort?

Many answers are possible. The choice among con-
flicting threads may be arbitrary, random, first-come-
first-served (FIFO), or based on some other notion
of priority. From the point of view of an individual
thread, the resulting behavior may range from poten-
tial starvation (no progress guarantees) to some sort of
proportional share of system run time. Between these
extremes, a thread may be guaranteed to run eventually
ifit is continuously ready, or if it is ready infinitely often.
Even given the possibility of starvation, the system as
a whole may be livelock-free (guaranteed to make for-
ward progress) as a result of algorithmic guarantees or
pseudo-random heuristics. (Actual livelock is generally
considered unacceptable.) Any starvation-free system is
clearly livelock free.

Simple Busy-Wait Locks
Several early locking algorithms were based on only
loads and stores, but these are mainly of historical inter-
est today. All required Q(tn) space for ¢ threads and n
locks, and w(1) (more-than-constant) time to arbitrate
among threads competing for a given lock.

In modern usage, the simplest constant-space, busy-
wait mutual exclusion lock is the test-and-set (TAS)

lock, in which a thread acquires the lock by using a
test-and-set instruction to change a Boolean flag from
false to true. Unfortunately, spinning by waiting threads
tends to induce extreme contention for the lock loca-
tion, tying up bus and memory resources needed for
productive work. On a cache-coherent machine, better
performance can be achieved with a “test-and-test-and-
set” (TATAS) lock, which reduces contention by using
ordinary load instructions to spin on a value in the local
cache so long as the lock remains held:

type lock = Boolean;

proc acquire(lock *1):
(test-and-set (1))
(*1) /* spin */ ;

while
while

proc release(lock *1):

*1 := false;

This lock works well on small machines (up to, say, four
processors).

Which waiting thread acquires a TATAS lock at
release time depends on vagaries of the hardware,
and is essentially arbitrary. Strict FIFO ordering can
be achieved with a ticket lock, which uses fetch-and-
increment (FAI) and a pair of counters for constant
space and (per-thread) time. To acquire the lock, a
thread atomically performs an FAI on the “next avail-
able” counter and waits for the “now serving” counter
to equal the value returned. To release the lock, a thread
increments its own ticket, and stores the result to the
“now serving” counter. While arguably fairer than a
TATAS lock, the ticket lock is more prone to perfor-
mance anomalies on a multiprogrammed system: if any
waiting thread is preempted, all threads behind it in line
will be delayed until it is scheduled back in.

Scalable Busy-Wait Locks

On a machine with more than a handful of processors,
TATAS and ticket locks scale poorly, with time per criti-
cal section growing linearly with the number of waiting
threads. Anderson [1] showed that exponential backoft
(reminiscent of the Ethernet contention-control algo-
rithm) could substantially improve the performance of
TATAS locks. Mellor-Crummey and Scott [17] showed
similar results for linear backoff in ticket locks (where

Synchronization

1993

a thread can easily deduce its distance from the head of
the line).

To eliminate contention entirely, waiting threads can
be linked into an explicit queue, with each thread spin-
ning on a separate location that will be modified when
the thread ahead of it in line completes its critical sec-
tion. Mellor-Crummey and Scott showed how to imple-
ment such queues in total space O(t + n) for ¢ threads
and n locks; their MCS lock is widely used in large-
scale systems. Craig [4] and, independently, Landin
and Hagersten [16] developed an alternative CLH lock
that links the queue in the opposite direction and per-
forms slightly faster on some cache-coherent machines.
Auslander et al. developed a variant of the MCS
lock that is API-compatible with traditional TATAS
locks [3]. Kontothanassis et al. [14] and He et al. [8]
developed variants of the MCS and CLH locks that
avoid performance anomalies due to preemption of
threads waiting in line.

Scheduler-Based Locks

A busy-wait lock wastes processor resources when
expected wait times are long. It may also cause perfor-
mance anomalies or deadlock in a multiprogrammed
system. The simplest solution is to yield the proces-
sor in the body of the spin loop, effectively moving
the current thread to the end of the scheduler’s ready
list and allowing other threads to run. More com-
monly, scheduler-based locks are designed to deschedule
the waiting thread, moving it (atomically) from the
ready list to a separate queue associated with the lock.
The release method then moves one waiting thread from
the lock queue to the ready list. To minimize over-
head when waiting times are short, implementations
of scheduler-based synchronization commonly spin for
a small, bounded amount of time before invoking the
scheduler and yielding the processor. This strategy is
often known as spin-then-wait.

It is tempting to assume that busy-wait condition
synchronization can be implemented trivially with a
Boolean flag: a waiting thread spins until the flag is true;
a thread that satisfies the condition sets the flag to true.
On most modern machines, however, additional fence

instructions are required both in the satisfying thread,
to ensure that its prior writes are visible to other threads,
and in the waiting thread, to ensure that its subsequent
reads do not occur until after the spin completes. And
even on a sequentially consistent machine, special steps
are required to ensure that the compiler does not violate
the programmer’s expectations by reordering instruc-
tions within threads.

In some programming languages and systems, a
variable may be made suitable for condition synchro-
nization by labeling it volatile (or, in C++0X,
atomic<>). The compiler will insert appropriate
fences at reads and writes of volatile variables, and
will refrain from reordering them with respect to other
instructions.

Some other systems provide special event objects,
with methods to set and await them. Semaphores and
monitors, described in the following two subsections,
can be used for both mutual exclusion and condition
synchronization.

In systems with dynamically varying concurrency,
the fork and join methods used to create threads and
to verify their completion can be considered a form of
condition synchronization. (These are, in fact, the prin-
cipal form of synchronization in systems like Cilk and
OpenMP))

Barriers

One form of condition synchronization is particularly
common in data-parallel applications, where threads
iterate together through a potentially large number of
algorithmic phases. A synchronization barrier, used to
separate phases, guarantees that no thread continues to
phase n + 1 until all threads have finished phase ».

In most (though not all) implementations, the bar-
rier provides a single method, composed internally of
an arrival phase that counts the number of threads that
have reached the barrier (typically via a log-depth tree)
and a departure phase in which permission to continue
is broadcast back to all threads. In a so-called fuzzy
barrier [6], these arrival and departure phases may be
separate methods. In between, a thread may perform
any instructions that neither depend on the arrival of
other threads nor are required by other threads prior to
their departure. Such instructions can serve to “smooth
out” phase-by-phase imbalances in the work assigned

1994

Synchronization

to different threads, thereby reducing overall wait time.
Wait time may also be reduced by an adaptive barrier [7,
19], which completes the arrival phase in constant time
after the arrival of the final thread.

Unfortunately, when ¢ threads arrive more or less
simultaneously, no barrier implementation using ordi-
nary loads, stores, and RMW instructions can complete
the arrival phase in less than Q(logt) time. Given the
importance of barriers in scientific applications, some
supercomputers have provided special near-constant-
time hardware barriers. In some cases the same hard-
ware has supported a fast eureka method, in which
one thread can announce an event to all others in
constant time.

First proposed by Dijkstra in 1965 [5] and still widely
used today, semaphores support both mutual exclusion
and condition synchronization. A general semaphoreis a
nonnegative counter with an initial value and two meth-
ods, known as V and P. The V method increases the
value of the semaphore by one. The P method waits for
the value to be positive and then decreases it by one.
A binary semaphore has values restricted to zero and
one (it is customarily initialized to one), and serves as a
mutual exclusion lock. The P method acquires the lock;
the V method releases the lock. Programming discipline
is required to ensure that P and V methods occur in
matching pairs.

The typical implementation of semaphores pairs the
counter with a queue of waiting threads. The V method
checks to see whether the counter is currently zero. If so,
it checks to see whether any threads are waiting in the
queue and, if there are, moves one of them to the ready
list. If the counter is already positive (in which case the
queue is guaranteed to be empty) or if the counter is
zero but the queue is empty, V simply increments the
counter. The P method also checks to see whether the
counter is zero. If so, it places the current thread on
the queue and calls the scheduler to yield the processor.
Otherwise it decrements the counter.

General semaphores can be used to represent
resources of which there is a limited number, but more
than one. Examples include I/O devices, communica-
tion channels, or free or full slots in a fixed-length buffer.
Most operating systems provide semaphores as part of
the kernel APIL.

While semaphores remain the most widely used
scheduler-based shared-memory synchronization mech-
anism, they suffer from several limitations. In particu-
lar, the association between a binary semaphore (mutex
lock) and the data it protects is solely a matter of con-
vention, as is the paired usage of P and V methods.
Early experience with semaphores, combined with the
development of language-level abstraction mechanisms
in the 1970s, led several developers to suggest build-
ing higher-level synchronization abstractions into pro-
gramming languages. These efforts culminated in the
definition of monitors [12], variants of which appear in
many languages and systems.

A monitor is a data abstraction (a module or
class) with an implicit mutex lock and an optional
set of condition variables. Each entry (method) of the
monitor automatically acquires and releases the mutex
lock; entry invocations thus exclude one another in
time. Programmers typically devise, for each monitor,
a program-specific invariant that captures the mutual
consistency of the monitor’s state (data members -
fields). The invariant is assumed to be true at the begin-
ning of each entry invocation, and must be true again at
the end.

Condition variables support a pair of methods
superficially analogous to P and V; in Hoare’s origi-
nal formulation, these were known as wait and signal.
Unlike P and V, these methods are memory-less: a signal
invocation is a no-op if no thread is currently waiting.

For each reason that a thread might need to wait
within a monitor, the programmer declares a sepa-
rate condition variable. When it waits on a condition,
the thread releases exclusion on the monitor. The pro-
grammer must thus ensure that the invariant is true
immediately prior to every wait invocation.

Semantic Details

The details of monitors vary significantly from one lan-
guage to another. The most significant issues, discussed
in the paragraphs below, are commonly known as the
nested monitor problem and the modeling of signals as
hints vs. absolutes. More minor issues include language
syntax, alternative names for signal and wait, the mod-
eling of condition variables in the type system, and the
prioritization of threads waiting for conditions or for
access to the mutex lock.

Synchronization

1995

The nested monitor problem arises when an entry of
one monitor invokes an entry of another monitor, and
the second entry waits on a condition variable. Should
the wait method release exclusion on the outer monitor?
If it does, there is no guarantee that the outer moni-
tor will be available again when execution is ready to
resume in the inner call. If it does not, the program-
mer must take care to ensure that the thread that will
perform the matching signal invocation does not need
to go through the outer monitor in order to reach the
inner one. A variety of solutions to this problem have
been proposed; the most common is to leave the outer
monitor locked.

Signal methods in Hoare’s original formulation were
defined to transfer monitor exclusion directly from the
signaler to the waiter, with no intervening execution.
The purpose of this convention was to guarantee that
the condition represented by the signal was still true
when the waiter resumed. Unfortunately, the conven-
tion often has the side effect of inducing extra context
switches, and requires that the monitor invariant be
true immediately prior to every signal invocation. Most
modern monitor variants follow the lead of Mesa [15] in
declaring that a signal is merely a hint, and that a waiting
process must double-check the condition before contin-
uing execution. In effect, code that would be written

if (!condition)
cond var.wait () ;

in a Hoare monitor is written

while (!condition)

cond var.wait () ;

in a Mesa monitor. To make it easier to write programs
in which a condition variable “covers” a set of pos-
sible conditions (particularly when signals are hints),
many monitor variants provide a signal-all or broadcast
method that awakens all threads waiting on a condition,
rather than only one.

In a system in which threads interact by exchanging
messages, rather than by sharing variables, synchro-
nization is generally implicit in the send and receive
methods. A receive method typically blocks until an
appropriate message is available (a matching send has

been performed). Blocking semantics for send methods
vary from one system to another:

Asynchronous send - In some systems, a sender con-
tinues execution immediately after invoking a send
method, and the underlying system takes responsi-
bility for delivering the message. While often desir-
able, this behavior complicates the delivery of failure
notifications, and may be limited by finite buffering
capacity.

Synchronous send - In other systems — notably those
based on Hoare’s Communicating Sequential Pro-
cesses (CSP) [13] - a sender waits until its message
has been received.

Remote-invocation send - In yet other systems, a send
method has both ingoing and outcoming parame-
ters; the sender waits until a reply is received from
its peer.

Distributed Locking

Libraries, languages, and applications commonly imple-
ment higher-level distributed locks or transactions on
top of message passing. The most common lock imple-
mentation is analogous to the MCS lock: acquired
requests are sent to a lock manager thread. If the lock
is available, the manager responds directly; otherwise it
forwards the request to the last thread currently wait-
ing in line. The release method sends a message to the
manager or, if a forwarding request has already been
received, to the next thread in line for the lock. Races
in which the manager forwards a request at the same
time the last lock holder sends it a release are trivially
resolved by statically choosing one of the two (per-
haps the lock holder) to inform the next thread in line.
Distributed transaction systems are substantially more
complex.

Rendezvous and Remote Procedure Call

In some systems, a message must be received explic-
itly by an already existing thread. In other systems,
a thread is created by the underlying system to han-
dle each arriving message. Either of these options -
explicit or implicit receipt — can be paired with any of the
three send options described above. The combination
of remote-invocation send with implicit receipt is often
called remote procedure call (RPC). The combination of
remote-invocation send with explicit receipt is known

1996

System Integration

as rendezvous. Interestingly, if all shared data is encap-
sulated in monitors, one can model - or implement -
each monitor with a manager thread that executes entry
calls one at a time. Each such call then constitutes a
rendezvous between the sender and the monitor.

Related Entries

» Actors

»Cache Coherence

»Concurrent Collections Programming Model
»Deadlocks

» Memory Models

» Monitors, Axiomatic Verification of
»Non-Blocking Algorithms

»Path Expressions

»Processes, Tasks, and Threads
»Race Conditions

»Scheduling Algorithms
»Shared-Memory Multiprocessors

» Transactions, Nested

Bibliographic Notes

The study of synchronization began in earnest with
Dijkstras “Cooperating Sequential Processes” mono-
graph of 1965 [5]. Andrews and Schneider provide an
excellent survey of synchronization mechanisms circa
1983 [2]. Mellor-Crummey and Scott describe and com-
pare a variety of busy-wait spin locks and barriers, and
introduce the MCS lock [17]. More extensive coverage
of synchronization can be found in Chapter 12 of Scott’s
programming languages text [18], or in the recent texts
of Herlihy and Shavit [11] and Taubenfeld [20].

Bibliography

1. Anderson TE (Jan 1990) The performance of spin lock alternatives
for shared-memory multiprocessors. IEEE Trans Parallel Distr Sys
1(1):6-16

2. Andrews GR, Schneider FB (Mar 1983) Concepts and notations
for concurrent programming. ACM Comput Surv 15(1):3-43

3. Auslander MA, Edelsohn DJ, Krieger OY, Rosenburg BS, Wis-
niewski RW (2003) Enhancement to the MCS lock for increased
functionality and improved programmability. U.S. patent applica-
tion 20030200457, submitted 23 Oct 2003

4. Craig TS (Feb 1993) Building FIFO and priority-queueing spin
locks from atomic swap. Technical Report 93-02-02, University of
Washington Computer Science Department

5.

10.

1L

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dijkstra EW (Sept 1965) Cooperating sequential processes. Tech-
nical report, Technological University, Eindhoven, The Nether-
lands. Reprinted in Genuys F (ed) Programming Languages,
Academic Press, New York, 1968, pp 43-112. Also avail-
able at www.cs.utexas.edu/users/EWD/transcriptions/EWDO01xx/
EWD123.html.

. Gupta R (Apr 1989) The fuzzy barrier: a mechanism for high

speed synchronization of processors. Proceedings of the 3rd Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, MA, pp 54-63

. Gupta R, Hill CR (June 1989) A scalable implementation of barrier

synchronization using an adaptive combining tree. Int J Parallel
Progr 18(3):161-180

. He B, Scherer IIIl WN, Scott ML (Dec 2005) Preemption adaptivity

in time-published queuebased spin locks. Proceeding of the 2005
International Conference on High Performance Computing, Goa,
India

. Herlihy MP (Jan 1991) Wait-free synchronization. ACM Trans

Progr Lang Syst 13(1):124-149

Herlihy MP, Moss JEB (1993) Transactional memory: architec-
tural support for lock-free data structures. Proceedings of the 20th
International Symposium on Computer Architecture, San Diego,
CA, May 1993 pp 289-300

Herlihy MP, Shavit N (2008) The Art of Multiprocessor Program-
ming. Morgan Kaufmann, Burlington, MA

Hoare CAR (Oct 1974) Monitors: an operating system structuring
concept. Commun ACM 17(10):549-557

Hoare CAR (Aug 1978) Communicating sequential processes.
Commun ACM 21(8):666-677

Kontothanassis LI, Wisniewski R, Scott ML (Feb 1997) Scheduler-
conscious synchronization. ACM Trans Comput Sys 15(1):3-40
Lampson BW, Redell DD (Feb 1980) Experience with processes
and monitors in Mesa. Commun ACM 23(2):105-117

Magnussen P, Landin A, Hagersten E (Apr 1994) Queue locks
on cache coherent multiprocessors. Proceedings of the 8th
International Parallel Processing Symposium, Cancun, Mexico,
pp 165-171

Mellor-Crummey JM, Scott ML (Feb 1991) Algorithms for scalable
synchronization on sharedmemory multiprocessors. ACM Trans
Comput Syst 9(1):21-65

Scott ML (2009) Programming Language Pragmatics, 3rd edn.
Morgan Kaufmann, Burlington, MA

Scott ML, Mellor-Crummey JM (Aug 1994) Fast, contention-free
combining tree barriers. Int] Parallel Progr 22(4):449-481
Taubenfeld G (2006) Synchronization Algorithms and Concur-
rent Programming. Prentice Hall, Upper Saddle River

http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dx.doi.org/10.1007/978-0-387-09766-4_375
http://dx.doi.org/10.1007/978-0-387-09766-4_238
http://dx.doi.org/10.1007/978-0-387-09766-4_282
http://dx.doi.org/10.1007/978-0-387-09766-4_419
http://dx.doi.org/10.1007/978-0-387-09766-4_301
http://dx.doi.org/10.1007/978-0-387-09766-4_185
http://dx.doi.org/10.1007/978-0-387-09766-4_283
http://dx.doi.org/10.1007/978-0-387-09766-4_448
http://dx.doi.org/10.1007/978-0-387-09766-4_36
http://dx.doi.org/10.1007/978-0-387-09766-4_66
http://dx.doi.org/10.1007/978-0-387-09766-4_142
http://dx.doi.org/10.1007/978-0-387-09766-4_487
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

	cover
	front-matter
	EPC-FMV1.pdf
	EPC_LOC.pdf
	Dennis Abts
	Sarita V. Adve
	Gul Agha
	Jasmin Ajanovic
	Selim G. Akl
	Hasan Aktulga
	José I. Aliaga
	Eric Allen
	George Almasi
	Srinivas Aluru
	Patrick Amestoy
	Baba Arimilli
	Roger S. Armen
	Douglas Armstrong
	David I. August
	Cevdet Aykanat
	David A. Bader
	Michael Bader
	David H. Bailey
	Rajeev Balasubramonian
	Utpal Banerjee
	Alessandro Bardine
	Muthu Manikandan Baskaran
	Cédric Bastoul
	Aaron Becker
	Michael W. Berry
	Abhinav Bhatele
	Scott Biersdorff
	Gianfranco Bilardi
	Robert Bjornson
	Guy Blelloch
	Robert Bocchino
	Hans J. Boehm
	Eric J. Bohm
	Matthias Bollhöfer
	Dan Bonachea
	Pradip Bose
	Marian Brezina
	Jeff Brooks
	Holger Brunst
	Hans-Joachim Bungartz
	Michael G. Burke
	Alfredo Buttari
	Eric J. Bylaska
	Roy H. Campbell
	William Carlson
	Manuel Carro
	Ümit V. Catalyürek
	Luis H. Ceze
	Bradford L. Chamberlain
	Ernie Chan
	Rong-Guey Chang
	Barbara Chapman
	David Chase
	Daniel Chavarría-Miranda
	Norman H. Christ
	Murray Cole
	Phillip Colella
	Salvador Coll
	Guojing Cong
	James H. Cownie
	Anthony P. Craig
	Anthony Curtis
	H. J. J. van Dam
	Frederica Darema
	Alain Darte
	Raja Das
	Kaushik Datta
	Jim Davies
	James Demmel
	Monty Denneau
	Jack B. Dennis
	Mark Dewing
	Volker Diekert
	Jack Dongarra
	David Donofrio
	Ron O. Dror
	Iain Duff
	Michael Dungworth
	Sandhya Dwarkadas
	Rudolf Eigenmann
	E. N. (Mootaz) Elnozahy
	Joel Emer
	Babak Falsafi
	Paolo Faraboschi
	Paul Feautrier
	Karl Feind
	Wu-Chun Feng
	John Feo
	Jeremy T. Fineman
	Joseph A. Fisher
	Cormac Flanagan
	Jos Flich
	Christine Flood
	Michael Flynn
	Joseph Fogarty
	Pierfrancesco Foglia
	Tryggve Fossum
	Geoffrey Fox
	Martin Fränzle
	Franz Franchetti
	Stefan M. Freudenberger
	Holger Fröning
	Karl Fürlinger
	Efstratios Gallopoulos
	Alan Gara
	Pedro J. Garcia
	Michael Garland
	Klaus Grtner
	Ed Gehringer
	Robert A. van de Geijn
	Al Geist
	Thomas George
	Michael Gerndt
	Amol Ghoting
	John Gilbert
	Robert J. van Glabbeek
	Sergei Gorlatch
	Kazushige Goto
	Allan Gottlieb
	Steven Gottlieb
	N. Govind
	Susan L. Graham
	Ananth Y. Grama
	Don Grice
	Laura Grigori
	William Gropp
	Abdou Guermouche
	John A. Gunnels
	Anshul Gupta
	John L. Gustafson
	Robert H. Halstead
	Kevin Hammond
	James Harrell
	Robert Harrison
	John C. Hart
	Michael Heath
	Hermann Hellwagner
	Danny Hendler
	Bruce Hendrickson
	Robert Henschel
	Kieran T. Herley
	Maurice Herlihy
	Manuel Hermenegildo
	Oscar Hernandez
	Paul Hilfinger
	Kei Hiraki
	H. Peter Hofstee
	Chris Hsiung
	Jonathan Hu
	Thomas Huckle
	Wen-mei Hwu
	François Irigoin
	Ken'ichi Itakura
	Joseph F. JaJa
	Joefon Jann
	Karl Jansen
	Pritish Jetley
	Wibe A. de Jong
	Laxmikant V. Kalé
	Ananth Kalyanaraman
	Amir Kamil
	Krishna Kandalla
	Larry Kaplan
	Tejas S. Karkhanis
	Rajesh K. Karmani
	George Karypis
	Arun Kejariwal
	Maleq Khan
	Thilo Kielmann
	Gerry Kirschner
	Christof Klausecker
	Kathleen Knobe
	Andreas Knüpfer
	Giorgos Kollias
	K. Kowalski
	Quincey Koziol
	Dieter Kranzlmüller
	Manojkumar Krishnan
	Chi-Bang Kuan
	David J. Kuck
	Jeffery A. Kuehn
	V. S. Anil Kumar
	Kalyan Kumaran
	James La Grone
	Robert Latham
	Bruce Leasure
	Jenq-Kuen Lee
	Charles E. Leiserson
	Christian Lengauer
	Richard Lethin
	Allen Leung
	John M. Levesque
	Michael Levine
	Jean-Yves L'Excellent
	Jian Li
	Xiaoye Sherry Li
	Zhiyuan Li
	Calvin Lin
	Heshan Lin
	Hans-Wolfgang Loidl
	Rita Loogen
	Pedro López
	Geoff Lowney
	Victor Luchangco
	Piotr Luszczek
	Olav Lysne
	Xiaosong Ma
	Arthur B. Maccabe
	Kamesh Madduri
	Jan-Willem Maessen
	Konstantin Makarychev
	Junichiro Makino
	Allen D. Malony
	Madha V. Marathe
	Alberto F. Martín
	Glenn Martyna
	Eric R. May
	Sally A. McKee
	Miriam Mehl
	Benoit Meister
	Phillip Merkey
	José Meseguer
	Michael Metcalf
	Samuel Midkiff
	Kenichi Miura
	Bernd Mohr
	José E. Moreira
	Alan Morris
	J. Eliot B. Moss
	Matthias Müller
	Peter Müller
	Yoichi Muraoka
	Anca Muscholl
	Ravi Nair
	Stephen Nelson
	Mario Nemirovsky
	Ryan Newton
	Rocco De Nicola
	Alexandru Nicolau
	Jarek Nieplocha†
	Allen Nikora
	Robert W. Numrich
	Steven Oberlin
	Leonid Oliker
	David Padua
	Scott Pakin
	Bruce Palmer
	Dhabaleswar K. Panda
	Sagar Pandit
	Yale N. Patt
	Olivier Pène
	Paul Petersen
	Bernard Philippe
	Michael Philippsen
	James C. Phillips
	Andrea Pietracaprina
	Keshav Pingali
	Timothy M. Pinkston
	Eric Polizzi
	Stephen W. Poole
	Wilfred Post
	Christoph von Praun
	Franco P. Preparata
	Cosimo Antonio Prete
	Timothy Prince
	Jean-Pierre Prost
	Geppino Pucci
	Markus Püschel
	Enrique S. Quintana-Ortí
	Patrice Quinton
	Ram Rajamony
	Arun Raman
	Lawrence Rauchwerger
	James R. Reinders
	Steven P. Reinhardt
	John Reppy
	María Engracia Gómez Requena
	Daniel Ricciuto
	Rolf Riesen
	Tanguy Risset
	Yves Robert
	Arch D. Robison
	A. W. Roscoe
	Robert B. Ross
	Chris Rowen
	Duncan Roweth
	Sukyoung Ryu
	Valentina Salapura
	Joel H. Saltz
	Ahmed Sameh
	Miguel Sanchez
	Benjamin Sander
	Peter Sanders
	Davide Sangiorgi
	Vivek Sarin
	Vivek Sarkar
	Olaf Schenk
	Michael Schlansker
	Stefan Schmid
	Martin Schulz
	James L. Schwarzmeier
	Michael L. Scott
	Matous Sedlacek
	Joel Seiferas
	Frank Olaf Sem-Jacobsen
	André Seznec
	John Shalf
	Meiyue Shao
	David E. Shaw
	Xiaowei Shen
	Sameer Shende
	Galen M. Shipman
	Howard Jay Siegel
	Daniel P. Siewiorek
	Federico Silla
	Barry Smith
	Burton Smith
	Marc Snir
	Lawrence Snyder
	Marco Solinas
	Edgar Solomonik
	Matthew Sottile
	M'hamed Souli
	Wyatt Spear
	Evan W. Speight
	Mark S. Squillante
	Alexandros Stamatakis
	Guy L. Steele, Jr.
	Thomas L. Sterling
	Tjerk P. Straatsma
	Paula E. Stretz
	Thomas M. Stricker
	Jimmy Su
	Hari Subramoni
	Sayantan Sur
	John Swensen
	Hiroshi Takahara
	Michela Taufer
	Vinod Tipparaju
	Alexander Tiskin
	Josep Torrellas
	Jesper Larsson Träff
	Philip Trinder
	Raffaele Tripiccione
	Mark Tuckerman
	Ray Tuminaro
	Bora Uçar
	Marat Valiev
	Nicolas Vasilache
	Mariana Vertenstein
	Jens Volkert
	Yevgen Voronenko
	Richard W. Vuduc
	Gene Wagenbreth
	Dali Wang
	Jason Wang
	Gregory R. Watson
	Roger Wattenhofer
	Michael Wehner
	Josef Weidendorfer
	Tong Wen
	R. Clint Whaley
	Andrew B. White
	Brian Whitney
	Roland Wismüller
	Robert W. Wisniewski
	David Wohlford
	Felix Wolf
	David Wonnacott
	Patrick H. Worley
	Sudhakar Yalamanchili
	Katherine Yelick
	Pen-Chung Yew
	Bobby Dalton Young
	Cliff Young
	Gabriel Zachmann
	Field G. Van Zee
	Lixin Zhang
	Gengbin Zheng
	Hans P. Zima
	Jaroslaw Zola

	S
	S
	Scalability
	Scalable Coherent Interface (SCI)
	Definition
	Discussion
	Related Entries

	Scalasca
	Synonyms
	Definition
	Discussion
	Introduction
	Functionality
	Instrumentation
	Measurement
	Call-Path Profiling
	Wait-State Analysis
	Parallel Wait-State Search
	Wait-State Search on Clusters without Global Clock

	Future Directions
	Time-Series Call-Path Profiling
	Identifying the Root Causes of Wait-State Formation

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Scaled Speedup
	Scan for Distributed Memory, Message-Passing Systems
	Synonyms
	Definition
	Discussion
	Algorithms
	Linear Array
	Binary Tree
	Binomial Tree
	Simultaneous Trees

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Scan, Reduce and
	Scatter
	Scheduling
	Scheduling Algorithms
	Synonyms
	Definition
	Discussion
	Introduction
	Task Graphs and Scheduling
	Scheduling One-Dimensional Loops
	Scheduling Multidimensional Loops
	From Loops to Recurrences

	Scheduling Today and Future Directions
	Bibliographic Notes and Further Reading
	Bibliography

	SCI (Scalable Coherent Interface)
	Synonyms
	Definition
	Discussion
	Introduction
	Goals of SCI's Development
	Main Concepts of SCI
	Implementations and Applications of SCI
	System Area Network for Clusters
	Memory Interconnect for Cache-Coherent Multiprocessors
	I/O Subsystem Interconnect

	Concluding Remarks

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Semantic Independence
	Definition
	Discussion
	Introduction
	Central Idea and Program Example
	Formal Definition
	Independence Between Two Statements
	Mutual Independence Between More than Two Fragments
	Independence Inside a Single Statement

	Disjoint Parallelism and Its Limitations
	Practical Relevance

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Semaphores
	Sequential Consistency
	Server Farm
	Shared Interconnect
	Shared Virtual Memory
	Shared-Medium Network
	Shared-Memory Multiprocessors
	Synonyms
	Definition
	Discussion
	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SHMEM
	SIGMA-1
	Synonyms
	Definition
	Architecture
	Organization
	Packet and Instruction Architecture

	Software
	System Performance
	Discussion
	Bibliography

	SIMD (Single Instruction, Multiple Data) Machines
	SIMD Extensions
	SIMD ISA
	Single System Image
	Synonyms
	Definition
	Discussion
	Introduction
	Application User's View
	Programmer's View
	Administrator's View

	Implementation of an SSI
	Shared Memory
	Management of System Components
	Debugger Support
	Process Migration
	Stdin/Stdout
	File System
	System Calls
	Checkpoint/Restart
	Batch System
	Login Load Leveling
	System Log Management
	Software Maintenance

	Imperfect SSI
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Singular-Value Decomposition (SVD)
	Sisal
	Definition
	Discussion
	Introduction
	Language Definition
	Build-in-Place Analysis
	Update-in-Place Analysis

	Runtime System
	Performance

	Bibliographic Notes and Further Reading
	Bibliography

	Small-World Network Analysis and Partitioning (SNAP) Framework
	SNAP (Small-World Network Analysis and Partitioning) Framework
	Synonyms
	Definition
	Discussion
	Introduction
	Graph Representation
	Parallelization Strategies
	SNAP Kernels for Exploratory Network Analysis
	Community Identification Algorithmsin SNAP

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SoC (System on Chip)
	Definition
	Discussion
	Historical View
	What Is a SoC?
	Processors
	Busses
	Dedicated Components
	Other Components
	Quality Criteria
	An Example

	Why Is It a SoC ``Revolution''?
	SoC Design Methodology
	MPSoC and Future Trends

	Bibliographic Notes and Further Reading
	Bibliography

	Social Networks
	Introduction
	Background and Notation
	Petascale Computing Challenges for Social Network Problems
	Techniques
	Massive Multithreading Techniques
	Distributed Streaming Algorithms
	Dynamical Processes on Social Networks

	Conclusions
	Acknowledgments
	Bibliography

	Software Autotuning
	Software Distributed Shared Memory
	Synonyms
	Definition
	Discussion
	Introduction
	Implementation Issues
	Implementations Using Virtual Memory
	Implementations Using Instrumentation
	Language-Level Implementations

	Single- Versus Multiple-Writer Protocols
	Memory Models
	Data and Metadata Location
	Leveraging Hardware Coherence
	Leveraging Additional Hardware Support
	Sharing in the Wide Area
	Compiler and Language-Level Support
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Acknowledgment
	Bibliography

	Sorting
	Definition
	Discussion
	Introduction
	Parallel Sorting Algorithms
	Parallel Quicksort
	Bitonic Sort
	Parallel Radix Sort
	Sample Sort
	Histogram Sort

	Architectures and Theoretical Models
	Sorting Networks and Early Theoretical Models
	GPU-Based Sorting
	Shared Memory Sorting
	Distributed Memory Sorting

	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Space-Filling Curves
	Synonyms
	Definition
	Discussion
	Introduction
	Construction
	Computation of Mappings
	Examples of Space-Filling Curves
	Locality Properties of Space-Filling Curves
	High Performance Computing and Load Balancing with Space-Filling Curves

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SPAI (SParse Approximate Inverse)
	Synonyms
	Definition
	Discussion
	Introduction
	The SPAI Algorithm
	Modifications of SPAI
	Properties and Applications

	Related Entries
	Bibliographic Notes and Further Reading
	Books
	Software

	Bibliography

	Spanning Tree, Minimum Weight
	Definition
	Sequential Algorithms
	Parallel Algorithms
	Implementation of Parallel Bor'27uvka
	Edge List Representation
	Adjacency List Representation
	Flexible Adjacency List Representation

	Analysis of Implementations
	A Hybrid Parallel MST Algorithm
	Implementation with Fine-Grained Locks
	Implementation on Distributed-Memory Machines
	Experimental Results
	Bibliography

	Sparse Approximate Inverse Matrix
	Sparse Direct Methods
	Synonyms
	Definition
	Discussion
	Task Graph Model of Sparse Factorization
	Supernodes
	An Effective Parallelization Strategy
	Sparse Factorization Formulations Based on Task Roles
	Pivoting in Parallel Sparse LDLT and LU Factorization
	Parallel Solution of Triangular Systems

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Sparse Gaussian Elimination
	Sparse Iterative Methods, Preconditioners for
	SPEC Benchmarks
	Synonyms
	Definition
	Discussion
	Introduction
	SPEC HPC96
	SPEC HPC2002
	SPEC OMP2001
	SPEC MPI2007

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SPEC HPC2002
	SPEC HPC96
	SPEC MPI2007
	SPEC OMP2001
	Special-Purpose Machines
	Speculation
	Speculation, Thread-Level
	Synonyms
	Definition
	Discussion
	Basic Concepts in Thread-Level Speculation
	Classification of Thread-Level Speculation Schemes
	Buffering and Managing Speculative State
	Multiple Versions of the Same Variablein the System
	Multiple Speculative Tasks per Processor
	Multiple Versions of the Same Variablein a Single Processor
	Merging of Task State

	Detecting and Handling Dependence Violations
	Basic Concepts
	Techniques to Avoid Squashes

	Initial Efforts in Thread-Level Speculation
	Other Uses of Thread-Level Speculation
	Machines that Use Thread-Level Speculation
	Bibliography

	Speculative Multithreading (SM)
	Speculative Parallelization
	Speculative Parallelization of Loops
	Synonyms
	Definition
	Discussion
	Introduction
	Fundamentals of Loop Parallelization
	Compiler Limitation and Run-time Parallelization
	DOALL Speculative Parallelization: The LRPD Test
	DOACROSS Speculative Parallelization
	While Loop Speculative Parallelization
	Speculative Parallelization as a Parallel Programming Paradigm
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Speculative Run-Time Parallelization
	Speculative Threading
	Speculative Thread-Level Parallelization
	Speedup
	SPIKE
	Definition
	Discussion
	Introduction
	The SPIKE Algorithm: Basics
	SPIKE: A Hybrid and Polyalgorithm
	The Truncated SPIKE Scheme for Diagonally Dominant Systems
	LU/UL Strategy
	Unconventional Partitioning Schemes
	Speed-Up Performances on Small Number of Processors

	The Recursive SPIKE Scheme for Non-Diagonally Dominant Systems
	The SPIKE Solver: Current and Future Implementation

	Related Entries
	Bibliography Notes and Further Reading
	Bibliography

	Spiral
	Definition
	Discussion
	Introduction
	Algorithm Representation
	Spiral Program Generation: Overview
	Fixed Input Size: Straightline Code
	Fixed Input Size: Loop Code
	Fixed Input Size: Parallel Code
	General Input Size
	Extensions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SPMD Computational Model
	Definition of the Subject
	Introduction

	The SPMD Model
	The EPEX Programming Environment – Implementation of the SPMD Model
	Advancing into the Future: Directions, Opportunities, Challenges, and Approaches
	Summary
	Acknowledgment
	Bibliography

	SSE
	Stalemate
	State Space Search
	Stream Processing
	Stream Programming Languages
	Synonyms
	Definition
	Discussion
	Overview
	Example Programming Models
	Messaging
	Methods for Graph Wiring

	Parallelism in Stream Programs
	Optimization and Scheduling
	Program Transformation
	Algorithms
	Data Structures and Synchronization

	Relation to Other Parallel Programming Models
	Functional Reactive Programming
	Relation to Data-parallel Models
	Relation to Fork-Join Shared-Memory Parallelism

	Future Directions

	Related Entries
	Bibliography

	Strong Scaling
	Suffix Trees
	Synonyms
	Definition
	Discussion
	Introduction
	Applications
	Suffix Tree Construction
	Serial Suffix Tree Construction Algorithms
	Parallel Suffix Tree Construction
	Practical Parallel Algorithms for In-Core Strings
	Practical Parallel Algorithms for Out-of-Core Strings

	Suffix Arrays

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Superlinear Speedup
	SuperLU
	Synonyms
	Definition
	Discussion
	Introduction
	Overall Algorithm
	Simple Driver (assumes Dr = Dc = I)
	Expert Driver
	Common Features of the Three Libraries
	Supernodes in the Factors
	Sparse Matrix Data Structure
	Options Input Argument
	Performance-Tuning Parameters
	Example Programs

	Differences Between SuperLU/ SuperLU_MT and SuperLU_DIST
	Numerical Pivoting
	Sparsity-Preserving Reordering
	Task Ordering

	Parallelization and Performance
	Future Directions

	Related Entries
	Bibliography

	Supernode Partitioning
	Superscalar Processors
	Synonyms
	Definition
	Discussion
	Introduction
	Instruction-Level Parallelism and Dependences
	Register Renaming
	Speculative Execution
	Out-of-Order Execution
	Brief Early History
	Bibliography

	SWARM: A Parallel Programming Framework for Multicore Processors
	Definition
	Motivation
	Model for Multicore Architectures
	Multicore Model
	Case Study: Merge Sort

	Programming in SWARM
	Algorithm Design and Examples in SWARM
	Related Entries
	History
	Bibliography

	Switch Architecture
	Synonyms
	Definition
	Discussion
	Canonical Switch Architecture
	Alternative Switch Architectures
	Input Buffer Organization
	Pipelined Organization
	High-Radix Switch Architectures

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Switched-Medium Network
	Switching Techniques
	Definition
	Discussion
	Introduction
	A Generic Router Model
	Basic Concepts
	Basic Switching Techniques
	Circuit Switching
	Packet Switching
	Virtual Cut-Through (VCT) Switching
	Wormhole Switching

	Virtual Channels
	A Comparison of Switching Techniques

	Related Entries
	Bibliographic Notes and Further Reading
	Acknowledgments
	Bibliography

	Symmetric Multiprocessors
	Synchronization
	Synonyms
	Definition
	Discussion
	Hardware Primitives
	NB:

	Atomicity
	Relaxations of Mutual Exclusion
	Fairness
	Simple Busy-Wait Locks
	Scalable Busy-Wait Locks
	Scheduler-Based Locks

	Condition Synchronization
	Barriers

	Semaphores
	Monitors
	Semantic Details

	Message Passing
	Distributed Locking
	Rendezvous and Remote Procedure Call

	Related Entries
	Bibliographic Notes
	Bibliography

	System Integration
	System on Chip (SoC)
	Systems Biology, Network Inference in
	Synonyms
	Definition
	Discussion
	Introduction
	Information Theoretic Approaches
	Parallel Information Theoretic Approach

	Approaches Based on Bayesian Networks
	Parallel Exact Structure Learning

	Approaches Based on Differential Equations
	Parallelization of Multiple Regression Algorithms

	Future Directions

	Bibliographic Notes and Further Reading
	Bibliography

	Systolic Architecture
	Systolic Arrays
	Synonyms
	Definition
	Discussion
	Background: Motivated by Emergence of VLSI
	Concept
	Importance of Interconnect Design
	Variations
	Systolic Algorithms
	Systolic Array Machines

	Systolic Convolution Chip
	ESL Systolic Processor
	NOSC Systolic Array Test Bed
	Programmable Systolic Chip (PSC)
	Geometric Arithmetic Processor (GAPP)
	Warp and iWarp
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

