
Dynamic Enforcement of Determinism
in a Parallel Scripting Language

Li Lu
University of Rochester
llu@cs.rochester.edu

Weixing Ji
Beijing Institute of Technology

jwx@bit.edu.cn

Michael L. Scott
University of Rochester
scott@cs.rochester.edu

Abstract
Determinism is an appealing property for parallel programs, as it
simplifies understanding, reasoning and debugging. It is particu-
larly appealing in dynamic (scripting) languages, where ease of
programming is a dominant design goal. Some existing parallel lan-
guages use the type system to enforce determinism statically, but
this is not generally practical for dynamic languages. In this paper,
we describe how determinism can be obtained—and dynamically
enforced/verified—for appropriate extensions to a parallel scripting
language. Specifically, we introduce the constructs of Determinis-
tic Parallel Ruby (DPR), together with a run-time system (TARDIS)
that verifies properties required for determinism, including correct
usage of reductions and commutative operators, and the mutual in-
dependence (data-race freedom) of concurrent tasks. Experimental
results confirm that DPR can provide scalable performance on mul-
ticore machines and that the overhead of TARDIS is low enough for
practical testing. In particular, TARDIS significantly outperforms
alternative data-race detectors with comparable functionality. We
conclude with a discussion of future directions in the dynamic en-
forcement of determinism.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programing; D.3.2
[Programming Languages]: Language Classifications—Concurrent,
distributed, and parallel languages, Ruby; D.2.5 [Software Engi-
neering]: Testing and Debugging—Diagnostics

General Terms Design, Languages, Reliability

Keywords Determinism, deterministic parallelism, data races,
scripting language

1. Introduction
Deterministic parallel programming [3] is an increasingly popular
approach to multithreaded systems. While the exact definition of
determinism varies from system to system [22], the key idea is
that the run-time behavior of a parallel program (or at least the
“important” aspects of its run-time behavior) should not depend
on the thread interleavings chosen by the underlying scheduler.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, June 09–11 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594300

We believe determinism to be particularly appealing for dy-
namic “scripting” languages—Python, Ruby, Javascript, etc. Raw
performance has never been a primary goal in these languages, but
it seems inevitable that implementations for future many-core ma-
chines will need to be successfully multithreaded. At the same time,
the emphasis on ease of programming suggests that the tradeoff be-
tween simplicity and generality will be biased toward simplicity,
where determinism is an ideal fit.

In general, determinism can be obtained either by eliminating
races (both data races and synchronization races) in the source pro-
gram (“language level” determinism), or by ensuring that races are
always resolved “the same way” at run time (“system level” deter-
minism). While the latter approach is undeniably useful for debug-
ging, it does not assist with program understanding. We therefore
focus on the former.

Language-level determinism rules out many historically impor-
tant programming idioms, but it leaves many others intact, and
it offers significant conceptual benefits, eliminating many of the
most pernicious kinds of bugs, and allowing human readers to
more easily predict a program’s behavior from its source code. Us-
ing well-known constructs from previous parallel languages, we
have defined a language dialect we call Deterministic Parallel Ruby
(DPR). Our goal is not to invent the ideal language, but rather
to demonstrate that determinism can easily be embedded and dy-
namically verified in a parallel scripting language. The flexible
syntax of Ruby—in particular, its easy manipulation of lambda
expressions—makes it an ideal vehicle for this work.

The most basic parallel constructs in DPR are co-begin and
unordered iterators, which create properly nested “split-merge”
tasks. We interpret the use of these constructs as an assertion on
the programmer’s part that the tasks are independent—an assertion
we need to check at run time. By default, we regard two tasks as
independent if neither writes a location (object field) that the other
reads or writes. A violation of this rule (a data race) constitutes a
conflict because writes do not commute with either reads or writes:
conflicting accesses that occur in a different order are likely to lead
to an observably different execution history [22].

But not always. One of the principal problems with a read-
write notion of conflict is that data races are defined at a very low
level of abstraction. Scripting programs often manipulate higher-
level objects, some of whose operations commute semantically
even though they comprise ostensibly conflicting reads and writes.
To raise the level of abstraction in DPR, we support a variety of
built-in reduction objects. We also provide a general mechanism to
define the commutativity relationships among (atomically invoked)
methods of arbitrary classes. A set, for example, might indicate
that insert operations commute with other inserts (and likewise

removes with removes and lookups with lookups), but none of the
operations (in the general case) commutes with the other two.1

In addition to split-merge tasks, reductions, and atomic commu-
tative operations, DPR also provides futures and pipelines. In gen-
eral, invocation of a future function might be taken as an assertion
that the call is independent of the caller’s continuation, up to the
point of use; for simplicity, we infer the stronger assertion that the
function is pure. Pipelines, for their part, allow us to accommodate
the equivalent of loop-carried dependences: they constitute an as-
sertion that for elements of a stream, each pipeline stage is indepen-
dent of the subsequent stage for the preceding element, the previous
stage for the following element, and so forth. In ongoing work (not
discussed here), we are exploring parallel implementations of oper-
ations on built-in classes, and mechanisms to accommodate limited
(structured) nondeterminism, including arbitrary choice from a set
and atomic handling of asynchronous events.

Our focus on shared-memory multithreading is a deliberate al-
ternative to the process-fork–based parallelism more commonly
used in scripting languages today. Multithreading incurs certain
synchronization overheads (e.g., on metadata access) that are
avoided by processes with separate virtual machines. At the same
time, it avoids copy-in/copy-out and process start-up overheads,
allowing us to consider finer-grain parallelization. It also enables
certain forms of fine-grain interaction—e.g., in reductions. Most
importantly (though this is a subjective judgment), many program-
mers appear to find it conceptually cleaner. We expect the syn-
chronization overheads to decrease over time, with improvements
in virtual machines. Our experimental results were collected on
JRuby, whose threads currently display significantly better scala-
bility than those of the standard C Ruby VM.

Other groups have added deterministic parallelism to scripting
languages via speculative parallelization of semantically sequen-
tial code [8] or via high-level parallel primitives (built-in parallel
arrays) [13]. Our approach is distinguished by its use of general-
purpose constructs to express nested, independent tasks. Among
our constructs, only reductions and other high-level operations can
induce a synchronization race, and for these the commutativity
rules ensure that the race has no impact on program-level seman-
tics. Enforcement of determinism in DPR thus amounts to verifying
that (a) there are no (low-level) data races and (b) higher-level op-
erations are called concurrently only when they commute.

1.1 Log-Based Data Race Detection
Data races are increasingly seen as bugs in parallel programs, es-
pecially among authors who favor deterministic parallel program-
ming. Data race detectors are thus increasingly popular tools. Many
existing detectors track the happens-before relationship, looking
for unordered conflicting accesses [7, 10, 12, 24, 25]. Some track
lock sets, looking for conflicting accesses not covered by a common
lock [31, 38]. Still others take a hybrid approach [6, 26, 36, 37]. In
general, data race detection introduces significant run-time over-
head. Recent work has suggested that this overhead might be re-
duced by crowdsourcing [18].

Most existing detectors assume a set of threads that remains
largely static over the history of the program. Such detectors can
be used for fine-grain task-based programs, but only at the risk of
possible false negatives: data races may be missed if they occur
between tasks that happen, in a given execution, to be performed
by the same “worker” thread. Conversely, lock-set–based detectors
may suffer from false positives: they may announce a potential
data race when conflicting accesses share no common lock, even

1 We could also distinguish among operations based on argument values—
allowing, for example, an insert of 5 to commute with a lookup of 3. In our
current work we reason based on method names alone.

if program logic ensures through other means that the accesses can
never occur concurrently.

In principle, task independence can be guaranteed by the type
system [4] or by explicit assignment of “ownership” [15], but we
believe the resulting complexity to be inappropriate for scripting—
hence the desire for dynamic data race detection. Similarly, both
false negatives and false positives may be acceptable when search-
ing for suspected bugs in a complex system, but for DPR we aim to
transparently confirm the absence of races; for this task we take as
given that the detector must be precise: it should identify all (and
only) those conflicting operations that are logically concurrent (un-
ordered by happens-before) in a given program execution—even if
those operations occur in the same worker thread.

The Nondeterminator race detector for Cilk (without locks) [11]
is both sound (no false positives) and complete (no false negatives),
but runs sequentially; an extension to accommodate locks is also se-
quential, and no longer sound [5]. Mellor-Crummey’s offset-span
labeling [23] provides a space-efficient alternative to vector clocks
for fine-grain split-merge programs, but was also implemented se-
quentially. The state of the art would appear to be the Habañero
Java SPD3 detector [27], which runs in parallel and provides pre-
cise (sound and complete) data race detection for arbitrary split-
merge (async-finish) programs.2

Like most recent race detectors, SPD3 relies on shadow mem-
ory to store metadata for each shared memory location. On each
read and write, the detector accesses the metadata to reason about
conflicting operations. Unfortunately, this access generally requires
synchronization across threads, leading to cache misses that may
limit scalability even when threads access disjoint sets of object
fields. By contrast, our run-time system, TARDIS [16], logs refer-
ences locally in each concurrent task, and intersects these logs at
merge points.

Log-based detection has two key advantages over shadow mem-
ory. First, as we show in Section 4, it can provide a significant per-
formance advantage. Second, it is easily extended to accommodate
higher-level operations. Several past researchers, including Schon-
berg [32] and Ronsse et al. [29, 30] have described trace-based
race detectors for general, fork-join programs. These systems rea-
son about concurrency among thread traces by tracking happens-
before. In TARDIS, we observe that split-merge parallelism makes
trace (access-set)–based race detection significantly more attractive
than it is in the general case: given that tasks are properly nested,
the total number of intersection and merge operations is guaran-
teed to be linear (rather than quadratic) in the number of tasks in
the program.

1.2 Higher-Level Operations
With appropriate restrictions on usage, the determinism of reduc-
tions, atomic commutative operations, futures, and pipelines can all
be checked via extensions to log-based data-race detection.

Reduction operations, though they have their own special syn-
tax, are treated as a subcase of atomic commutative operations (AC
ops). As in Galois [21], commutativity relationships among meth-
ods in DPR are specified by programmers. Rather than use these
relationships to infer a parallel schedule for semantically sequential
tasks, however, we use them to verify the independence of seman-
tically unordered tasks. Calls to AC ops are logged in each thread,
along with reads and writes. Two tasks are then said to be inde-
pendent if (1) they contain no conflicting pairs of reads and writes
other than those in which both accesses occur within operations

2 In recent work, concurrent with our own, the Habañero Java group has ex-
tended SPD3 to accommodate higher-level commutative operations [35].
Their implementation is based on a syntactic permission region con-
struct that allows commutativity in a shadow-memory–based system to be
checked once per region rather than once per method invocation.

that have been declared to commute with one another, and (2) they
contain no pairs of higher-level operations on the same object other
than those that have been declared to commute with one another.

This assumes, of course, that commutative operations have been
labeled correctly by the programmer. Checking of such labels is
difficult. It requires both that we formalize the notion of conflict
(e.g., via formal specification of the abstract object under construc-
tion) and that we verify that the implementation matches the speci-
fication (an undecidable property in the general case). A variety of
strategies have been suggested for checking [19, 20, 28]. They are,
for the most part, orthogonal to the work reported here. Integrating
them with TARDIS is a subject of ongoing work.

For futures, we start by performing a deep copy of all provided
arguments. We then ensure, via run-time tracing, that an executed
function performs no references outside its dynamic extent. For
pipelines, we treat each cycle of the pipeline as a set of concurrent
tasks, one for each pipeline stage, and use our existing infrastruc-
ture (for reads, writes, and higher-level operations) to verify their
independence.

We describe our Ruby extensions and their connection to deter-
minism in Section 2. Implementation details are described in Sec-
tion 3. Performance evaluation appears in Section 4. Across a va-
riety of applications, we observe a typical slowdown of 2× and a
maximum of 4× when TARDIS checking is enabled. This is too
slow to leave on in production use, but reasonable for testing, and
often significantly faster than the original version of SPD3 (for pro-
grams that the latter can accommodate). Conclusions and future
work appear in Section 5.

2. Deterministic Parallel Ruby
Our Ruby dialect adopts well-known parallel constructs from the
literature, with sufficient limitations to ensure determinism. These
constructs can be nested with each other. All of the constructs
employ existing language syntax; this allowed us, initially, to
build a library-based implementation that would run on top of any
Ruby virtual machine, either sequentially or using built-in Ruby
threads. Performance improved significantly, however, when we
implemented a lightweight task manager inside the virtual ma-
chine. All results reported in Section 4 employ such an integrated
implementation—specifically, within the JRuby [17] virtual ma-
chine.

2.1 Parallel Constructs
Independent tasks The co construct in DPR is intended for task
parallelism. It accepts an arbitrary list of lambda expressions (intro-
duced in Ruby with the -> sign); these may be executed in arbitrary
order, or in parallel:

co ->{ task1 }, ->{ task2 }, ...

The .all method is intended for data parallelism. It is remi-
niscent of the built-in .each, but like co does not imply any or-
der of execution. We provide a built-in implementation of .all for
ranges and arrays; additional implementations can be defined for
other collection types. Given an array / range r and a user-defined
code segment op, a parallel iterator will apply op to each of r’s
elements in turn:

r.all {|x| op }

Uses of both co and .all constitute an assertion on the pro-
grammer’s part that the constituent tasks are independent. With the
possible exception of reductions and atomic commutative (“AC”)
operations, as described below, independence means that no task
writes a location that another, concurrent task reads or writes. The

lack of access conflicts means that the values read—and operations
performed—by concurrent tasks will be the same across all possi-
ble interleavings: a program based on only co and .all satisfies
the strong Singleton definition of determinism [22].

Reductions Reductions are provided as a built-in class with push
and getmethods. Use of a reduction is an assertion by the program-
mer that the push calls are mutually commutative and associative,
and that they are internally synchronized for safe concurrent ac-
cess. We provide variants for addition, multiplication, minimum,
and maximum on integers; others are easily defined. Our variants
operate locally within each worker thread until the end of a parallel
construct, at which point they perform a cross-thread merge.

A simple accumulator would be created via

s = Reduction.new(Reduction::IntegerAdd)

Concurrent tasks could then safely insert new values via

s.push(val)

After all accumulating tasks have finished, the result could be
retrieved with s.get.

Assuming that push operations are indeed commutative and as-
sociative, the value retrieved by get will not depend on the order
of the calls to push. A program in which otherwise independent
tasks employ a reduction object will therefore satisfy the weaker
ExternalEvents definition of determinism [22]: synchronization or-
der and dataflow may vary from one run of the program to another
(a fact that might be visible in a debugger), but output values will
always be the same.

Atomic commutative operations (AC ops) In the base case of
independent concurrent tasks, concurrent reads of a given location
x do not conflict with one another, because they are mutually
commutative: when thread histories interleave at run time, program
behavior will not depend on which read happens first. A write to x,
on the other hand, will conflict with either a read or a write of x in
another thread (and thus violate independence) because writes do
not commute with either reads or writes: program behavior is likely
to depend on which operation happens first.

In a fashion reminiscent of boosting [14] in transactional mem-
ory systems, we can also consider the commutativity of higher-level
operations, which may conflict at the level of reads and writes with-
out compromising the determinism of the program at a higher level
of abstraction (so long as each operation executes atomically).

DPR allows the programmer to identify methods that should
be treated as higher-level operations for the purpose of conflict
detection, and exempted from checking (with one another) at the
level of reads and writes. Specifically, AC ops can be identified
using the meta-programming method setACOps:

self.setACOps :m0, :m1, ..., :mk

All AC ops are assumed to commute with one another unless
explicitly indicated otherwise with method setNoCommute:

self.setNoCommute :m0, :m1

Consider a concurrent memoization table that stores the values
computed by some expensive function f. The class definition might
look something like the code in Listing 1. The lookUpOrCompute
method will modify the table on the first call with a given key, but
the modifications will be semantically neutral, and the method can
safely be called by concurrent tasks.

Each AC op must (appear to) execute atomically. The default
way to ensure this is to bracket the body of each method with the
atomic primitive, which DPR provides (and implements with a
global lock). Alternatively, the designer of a class with AC methods

1 class ConcurrentMemoTable
2 def initialize(f)
3 @f = f
4 @table = Hash.new
5 end
6 def lookUpOrCompute(key)
7 atomic
8 val = @table[key]
9 if val == nil

10 @table[key] = val = @f.call(key)
11 end
12 return val
13 end
14 end
15 self.setACOps :lookUpOrCompute
16 end

Listing 1. AC op for a memoization table. The @ sign indicates an
instance variable (object field).

may choose a more highly concurrent implementation—e.g., one
based on fine-grain locking.

Ideally, we should like to be able to check the correctness of
commutativity annotations, but this is undecidable in general. For
now, we simply trust the annotations. As noted in Section 1, there
are several testing strategies that could, in future work, be used to
increase confidence in the annotations [19, 20, 28].

For the most part, we expect commutativity annotations to be
placed on library abstractions (sets, mappings, memoization tables,
etc.) that are written once and frequently reused. To at least a certain
extent, routine run-time checking may be less essential for such
abstractions than it is for “ordinary” code. At the same time, it
seems important to ensure that “ordinary” code does not conflict
with AC ops at the level of reads and writes—e.g., by modifying in
one thread an object that was passed by reference to an AC op in
another thread. TARDIS does perform this checking.

In keeping with the dynamic nature of Ruby, commutativity
annotations are executable rather than declarative in DPR: they can
change when a class is dynamically re-opened and extended, or a
method overridden.

Isolated futures A future is an object whose value may be com-
puted in parallel with continued execution of its creator, up until
the point that the creator (or another thread) attempts to retrieve its
value. A future in DPR may be created via:

f = Future.new(->{|x1, x2, . . .| op },
arg1, arg2, . . .)

The value of the future is retrieved with f.get(). In principle, a
future will be deterministic if it is independent of all potentially
concurrent computation. Rather than attempt to verify this indepen-
dence, we require (and check) the stronger requirement that the fu-
ture be isolated—that it represent a pure function, with arguments
passed by deep copy (cloning) to prevent concurrent modification.
Unlike the parallel tasks of co and .all, isolated futures need not
be properly nested.

Pipelines Pipelines are a natural idiom with which to write pro-
grams that perform a series of computational stages for a series of
input elements. Each stage may depend on (read values produced
by) the same stage for preceding elements or previous stages for the
current or preceding elements. If all stages execute in parallel using
successive elements, and are otherwise independent, the computa-
tion remains deterministic in the strong sense of the word. A bit
more formally, a pipeline P is modeled as a sequence of functions
〈f1, f2, ..., fn〉, each of which represents a stage of P. A (finite or

1 class MyInStream
2 def initialize
3 @data = [obj0 , obj1 , obj2 , obj3 , obj4]
4 end
5 def getAndMove
6 return @data.shift
7 end
8 end
9 class MyOutStream

10 def setAndMove(obj)
11 puts obj.to_s
12 end
13 end
14 p = ->{|x| s1} >> ->{|x| s2} >> ->{|x| s3}
15 p.setInStream(MyInStream.new)
16 p.setOutStream(MyOutStream.new)
17 p.run

Listing 2. Example for running a 3-stage pipeline. The to s
method converts an object into a string, and the puts statement
outputs the string to standard output.

obj 0! obj 1!

obj 0!

obj 2!

obj 1!

obj 0!

obj 3!

obj 2!

obj 1!

obj 4!

obj 3!

obj 2!

obj 4!

obj 3! obj 4!

Stage 1!

Stage 2!

Stage 3!

Cycle 1! Cycle 2! Cycle 3! Cycle 4! Cycle 5! Cycle 6! Cycle 7!

Figure 1. Example run of a 3-stage pipeline, on a sequence of 5
objects {obj0, obj1, obj2, obj3, obj4}.

infinite) input sequence S is modeled as 〈s1, s2, . . .〉. The deter-
minism rule is then simple: stage fa, operating on element si, must
be independent of stage fb, operating on element sj , if and only if
a + i = b + j. In the 3-stage pipeline illustrated in Listing 2, all
tasks in a given cycle (vertical slice of the figure) must be mutually
independent.

DPR provides pipelines as a built-in class. A new (and empty)
pipeline can be created by calling Pipeline.new, or by chaining
together a series of lambda expressions:

p = ->{|x| op0 } >> ->{|x| op1 } >> ...

To avoid run-time type errors, each stage should output values
of the type expected as input by the subsequent stage. Initial input
and final output streams should be attached to a pipeline p using the
p.setInStream and p.setOutStream methods. When running,
the pipeline will then call the getAndMove method of the input
stream and the setAndMove method of the output stream.

Stages may be executed in parallel during each cycle of the
pipeline, with a barrier at the end of each cycle. The pipeline
infrastructure moves the result of each stage to the next stage, feeds
the first stage with the next value in the input stream, and stores the
result to the output stream. To start the pipeline, a thread calls its
run method. This method is blocking, and will execute until all
items in the input stream have reached the output stream. Code for
the pipeline of Figure 1 appears in Listing 2.

3. TARDIS Design
Our DPR run-time system, TARDIS, serves to verify adherence to
the language rules that ensure determinism. The heart of TARDIS
is a log-based data-race detector (described in Sec. 3.1) and a set
of extensions (described in Sec. 3.2) to accommodate higher-level
operations like reductions, AC ops, isolated futures, and pipelines.

We have prototyped DPR on top of the JRuby [17] virtual ma-
chine. The codebase is written in Java, and is compatible with Ruby
1.8. Within the virtual machine, TARDIS implements a Cilk-like
work-stealing scheduler for lightweight tasks [2]. Though not ex-
tensively optimized, the scheduler introduces only minor overhead
relative to standard Ruby threads.

For the constructs provided by DPR, the determinism checking
of TARDIS is both sound and complete, provided that reductions
are correctly implemented and that commutativity relationships for
AC ops are correctly specified. That is, for any given input, the
program will be reported to be deterministic if and only if all
possible executions will have identical externally visible behavior.
(Behavior observable with a debugger will also be identical if no
use is made of reductions or AC ops.)

3.1 Log-based Data-race Detection
TARDIS logs reads and writes (access sets) in each task to identify
conflicting accesses, which might lead to nondeterminism among
supposedly independent concurrent tasks. At a task merge point,
access sets from concurrent tasks are intersected to find conflict-
ing accesses, and then union-ed and retained for subsequent com-
parison to other tasks from the same or surrounding concurrent
constructs. More specifically, each task T maintains the following
fields:

• local set: an access set containing the union of the access sets
of completed child tasks of T

• current set: an access set containing all the accesses performed
so far by T itself

• parent: a reference to T’s parent task

Each reference, as shown in Algorithm 1, is represented by a
read /write bit, an object id, and a field number (while the Ruby
garbage collector may move objects, an object’s id and field num-
bers remain constant throughout its lifetime).

Algorithm 1 On read/write
Require: object id, field field no, operation type t (read/write),

task T
1: T.current set.add(〈id, field no〉, t)

When task Tp spawns n child tasks, as shown in Algorithm 2,
two new access sets (Ti.current set and Ti.local set) are created
for each child Ti. At the same time, Ti.parent is set to Tp so that
Ti can find its merge-back point at the end of its execution.

Algorithm 2 On task split
Require: parent task Tp, number of child tasks n

1: for i = 1 . . . n do
2: Ti ← new task
3: Ti.current set← ∅
4: Ti.local set← ∅
5: Ti.parent← Tp

After the split operation, Tp waits for all child tasks to terminate.
Algorithm 3 shows the work performed by TARDIS when each
child Ti reaches its merge point. Since children may run in parallel,
we must synchronize on Tp (Line 2). As an optimization, tasks
executed by a single worker thread may first be merged locally,
without synchronization, and then synchronously merged into Tp.

In Algorithm 3, we use u to represent “intersection” of access
sets (really more of a join): S1 u S2 ≡ {〈o, f〉 | ∃ 〈〈o, f〉, t1〉 ∈
S1, 〈〈o, f〉, t2〉 ∈ S2 : t1 = write ∨ t2 = write}. We use
Tp.local set to store all accesses of all the concurrent siblings

<id1, 1>
<id1, 2>
<id1, 1>
<id2, 10>
…

<id1, 1>
<id1, 2>
<id3, 4>
<id2, 8>
…

id1

id2

id3 Keys

Hash

function

Buckets

Bitmap C0000000 C0000000 00000000 00000000 …

Read list Write list

Hexadecimal

Rd-bit:0-31 Wrt-bit:0-31 Rd-bit:32-63 Wrt-bit:32-63

List representation Hash table and bitmap representation

Figure 2. TARDIS’s hybrid representation of access sets. An access
set is started with list representation (left) and may convert to hash
table representation (right). The lower part of the figure shows an
example of the bitmap that represents object fields.

that merged before the current task Tc. Consequently, intersection
is only performed between Tc.current set and Tp.local set. After
that, Tc.current set is merged into Tp.local set so that following
tasks can be processed in a similar fashion. At the end of Algo-
rithm 3, Tp.local set is merged into Tp.current set if Tc is the last
child task merging back. Tp.local set is also cleared so that it can
be reused at the next merge point.

Algorithm 3 On task merge
Require: child task Tc

1: Tp ← Tc.parent
2: sync on Tp

3: if Tp.local set u Tc.current set 6= ∅ then
4: report a data race
5: Tp.local set← Tp.local set ∪ Tc.current set
6: if Tc is the last task to join then
7: Tp.current set← Tp.current set ∪ Tp.local set
8: Tp.local set← ∅

Data Structure for Access Sets Because the number of memory
operations issued by tasks varies dramatically, we use an adaptive,
hybrid implementation of access sets to balance performance and
memory consumption. As illustrated in Figure 2, when a task starts,
two fixed-sized lists are allocated for its current set, one to store
reads, the other writes. Accesses are recorded sequentially into the
two lists. If a task executes “too many” accesses, the lists may over-
flow, at which point we convert them to a hash table. The table im-
plements a mapping from object ids to bitmaps containing a read
bit and a write bit for each field. Generally speaking, sequential
lists require less work on each access—a simple list append. Once
we switch to the hash table, each access requires us to compute
the hash function, search for the matching bucket, and index into
the bitmap. Hash tables are more space efficient, however, because
they eliminate duplicate entries.

The local set for each task is always allocated as a hash table.
As a result, each intersection / merge in the algorithm is performed
either over a hash table and a list, or over two hash tables. TARDIS
iterates over the list or the smaller of the hash tables, searching for
or inserting each entry in(to) the other set.

Per-object bitmaps provide a compact representation of field ac-
cess information, and facilitate fast intersection and union opera-
tions. For simple objects, a single 64-bit word can cover reads and
writes for 32 fields. Arrays use expandable bitmaps with an op-
tional non-zero base offset. Tasks that access a dense subset of an
array will capture their accesses succinctly.

Some systems (e.g. SigRace [24]) have used Bloom filter “sig-
natures” to capture access sets, but these sacrifice precision. We
considered using them as an initial heuristic, allowing us to avoid
intersecting full access sets when their signatures intersected with-
out conflict. Experiments indicated, however, that the heuristic was
almost never useful: signature creation increases per-access instru-
mentation costs, since full access sets are needed as a backup (to
rule out false positives). Moreover, signature intersections are sig-
nificantly cheaper than full set intersections only when the access
sets are large. But large access sets are precisely the case in which
signatures saturate, and require the backup intersection anyway.

Advantages and Limitations Data race detection in TARDIS is
sound (no false positives) and complete (no false negatives) be-
cause DPR tasks are always properly nested, access sets are main-
tained for the entirety of each parallel construct, and the sets of
tasks Ti and Tj are intersected if and only if Ti and Tj are identi-
fied as independent in the source code.

As noted in Section 1, the principal alternative to log-based race
detection is per-location metadata, also known as shadow memory.
Like TARDIS, a shadow-memory–based race detector instruments
each shared memory read and write (or at least each one that cannot
be statically proven to be redundant). Rather than logging the
access, however, it checks metadata associated with the accessed
location to determine, on the fly, whether the current access is
logically concurrent with any conflicting access that has already
occurred in real time. It may also update the metadata so that
any logically concurrent access that occurs later in real time can
tell whether it conflicts with the current access. Details of the
metadata organization, and the costs of the run-time checks, vary
from system to system.

Like TARDIS, a shadow-memory based detector can be both
sound and complete. There is reason, however, to hope that a log-
based detector may be faster, at least for properly nested tasks. If we
consider the average time to access and update shadow memory to
be Csm, a program with N accesses will incur checker overhead of
NCsm. TARDIS performs a smaller amount of (entirely local) work
on each memory access or annotated method call, and postpones
the detection of conflicts to the end of the current task. It merges
accesses to the same memory location (and, in Sec. 3.2, calls to
the same annotated method) on a task-by-task basis. End-of-task
work is thus proportional to the footprint of the task, rather than the
number of its dynamic accesses. If the total number of elements
(fields and methods) accessed by a task is K, there will be K
entries in its task history. Suppose the average time to insert an
item in a task history is Cth, and the time to check an element for
conflicts is Cck. Then the total task-history–based checker overhead
will be NCth + KCck. In general, it seems reasonable to expect
N >> K and Cth < Csm, which suggests that task-history–
based checking may be significantly faster than shadow-memory–
based checking. Worst case, if there are T tasks and M accessed
elements in the program, and K ≈M , total space for task-history–
based determinism checking will be O(TM), versus O(M) for
shadow-memory–based checking. In practice, however, it again
seems reasonable to expect that a set of concurrent tasks will,
among them, touch much less than all of memory, so TK<M—
maybe even TK << M — in which case task-history–based de-
tection may be more space efficient than shadow memory as well.

For practical implementations, another potential advantage of
log-based checking is the separation of logging and history analy-
sis. In a correct program, history analysis (correctness verification)
is independent of normal execution, and can be off-loaded to a de-
coupled checker task. For workloads that may periodically under-
utilize a parallel system, TARDIS has an “out-of-band” mode that
performs history analysis in separate, dedicated threads. By run-
ning these threads on cores that would otherwise be underutilized,

the overhead of analysis can be taken off the program’s critical path.
One of the benchmarks discussed in Section 4 (blackscholes) has
a periodic utilization pattern that lends itself to such out-of-band
analysis. In the others, additional cores are usually more profitably
used for extra application threads.

The most significant potential disadvantage of log-based deter-
minism checking is that it can only report when operations that
cause nondeterminism have already happened. In a buggy pro-
gram, TARDIS may not announce a conflict until after side effects
induced by the bug have already been seen. These are “legitimate”
side effects, in the sense that they stem from the bug, not from any
artifact of the checker itself, but they have the potential to be con-
fusing to the programmer. To mitigate their impact, we rely on the
natural “sandboxing” of the virtual machine to ensure that a bug
never compromises the integrity of the checker itself—and in par-
ticular never prevents it from reporting the original race. Reporting
multiple conflicts that happened concurrently may also be a chal-
lenge, especially if erroneous behavior leads to cascading conflicts.

For the sake of efficiency, TARDIS by default reports only the
non-array variable name and data address (object id and offset)
of a conflict. To assist in debugging, TARDIS can also be run in
an optional (slower) detail mode that provides full source-level
conflict information. Further discussion appears in Section 3.3.

3.2 Extensions for Higher-level Operations
Reductions In a properly implemented reduction object, push
calls can occur concurrently with one another (and are internally
synchronized if necessary), but initialization and get calls cannot
be concurrent with each other or with push. These rules closely
mirror those for reads and writes, allowing us to reuse the basic
TARDIS infrastructure: A push is treated as a pseudo-read on the
reduction object; initialization or get is treated as a pseudo-write.

Atomic Commutative Operations Ordering requirements among
higher-level methods, as declared by the programmer, are stored in
per-class commutativity tables (cTables). Like virtual method ta-
bles, cTables are linked into an inheritance chain. Sub-classes in-
herit commutative relationships by pointing to their parent classes,
and the relationship between any two given methods can be deter-
mined by following the inheritance chain.

In order to check determinism for programs with AC ops, the
concept of access sets is extended to task histories. TARDIS repre-
sents task T ’s history as an atomic set of reads and writes in T that
are performed by AC ops, a “normal set” of reads and writes in T
that are not performed by AC ops, and a commutative method list
(cml) of the AC ops themselves.

For each task T , current set and local set are extended to be
task histories (curr hist and local hist). All operations on the sets
in Section 3.1 are directed to the corresponding normal set fields.
Both normal set and atomic set use the same data structure de-
scribed in Section 3.1. Each cml is a map from receiver objects
to the set of AC ops that were called.

On each AC op call, as shown in Algorithm 4, TARDIS records
the receiver object and the method in the current task’s cml. On
each read and write, TARDIS then records access information in
either normal set or atomic set, as indicated by the thread-indexed
Boolean array in AC op. (For simplicity, we currently assume that
AC ops do not nest.)

Algorithm 5 shows the revised task merging and conflict detec-
tion algorithm. Line 4 reports conflicts between two normal con-
current memory accesses. Lines 6 and 8 report conflicts between
normal accesses and those performed inside an AC op. Even with
correctly implemented AC ops, these may be caused by, for exam-
ple, an access in another thread to an argument passed to an AC op.
Line 10 reports conflicts among higher-level operations, as detected

Algorithm 4 On method call
Require: receiver object o of class C, task T , called method m,

thread id th
1: if m is an annotated method of C then
2: in AC op[th]← true
3: T.curr hist.cml[o].add(m)
4: // call m
5: in AC op[th]← false

Algorithm 5 On task merge
Require: child task Tc

1: Tp ← Tc.parent
2: sync on Tp

3: if Tp.local hist.normal set u Tc.curr hist.normal set 6= ∅
then

4: report a normal R/W conflict
5: if Tp.local hist.atomic set u Tc.curr hist.normal set 6= ∅

then
6: report an AC-op vs. non-AC op conflict
7: if Tp.local hist.normal set u Tc.curr hist.atomic set 6= ∅

then
8: report an AC-op vs. non-AC-op conflict
9: if !verify(Tp.local hist.cml, Tc.curr hist.cml) then

10: report a commutativity conflict
11: Tp.local hist← Tp.local hist d Tc.curr hist
12: if Tc is the last task to join then
13: Tp.curr hist← Tp.curr hist d Tp.local hist
14: Tp.local hist← ∅

Algorithm 6 verify function for commutativity checking
Require: commutative method lists La, Lb

1: for each object o in La do
2: if o ∈ Lb then
3: for each method ma in La[o] do
4: for each method mb in Lb[o] do
5: if ma does not commute with mb then
6: return false
7: return true

Algorithm 7 Task history merge (Ha dHb)
Require: task histories Ha, Hb

1: H.normal set← Ha.normal set ∪Hb.normal set
2: H.atomic set← Ha.atomic set ∪Hb.atomic set
3: return H

by the verify function, shown in Algorithm 6. The d operation of
Lines 11 and 13 is presented as Algorithm 7.

Isolated Futures DPR requires the operation performed in an iso-
lated future to be pure. To verify pureness, TARDIS uses dynamic
extent (scope) information maintained by the language virtual ma-
chine. In an isolated future, TARDIS checks the depth of scope for
each access. Any attempt to access an object shallower than the
starting scope of the future constitutes a pureness violation, as does
I/O or any other operation that alters the state of the virtual ma-
chine. Since arguments are passed by deep copy, no conflicts can
occur on these.

A future called within the dynamic extent of a concurrent task
(e.g., a branch of a co-begin) is exempted from the usual read-write

conflict checking. Concurrent tasks nested within a future, however,
must be checked.

Pipelines As discussed in Section 2.1, pipeline objects in DPR
introduce a different task execution pattern to accommodate loop-
carried dependencies. Conflict detection, however, is not signifi-
cantly altered. Given an n-stage pipeline, tasks issued in the same
pipeline cycle will be treated as n concurrent tasks issued by a co-
begin construct.

3.3 Engineering Issues
Memory location identification Everything in Ruby is an object—
even built-in scalars like integers and floats. In TARDIS, each mem-
ory location is identified as 〈id, field no〉 and IDs are required for
most objects for determinism checking.

JRuby internally assigns 64-bit IDs to objects lazily, on demand.
A CAS operation is performed for each ID allocation to avoid a
data race. We optimized this mechanism to reduce contention and
avoid the CAS operation by allocating a block of IDs to each newly
created thread. Each thread can then assign IDs to created objects
as a purely local operation. Stack frames are treated as objects of
which each local variable is a field.

Ruby permits new fields to be assigned to an object or class at
run time, but these introduce no significant complications: each is
assigned a new, unique (for its class) field number.

Integration with the virtual machine TARDIS needs to work with
JRuby’s built-in types. Objects of primitive types (e.g., scalars) are
read-only, and require no instrumentation. Assignment to a local
integer variable, for example, is logged as a change to a field of
the stack frame, which contains a reference to an (immutable)
integer. Because Ruby arrays are resizable vectors, the determinism
checker has to accommodate dynamic changes in length, without
announcing conflicts on the length field. The possibility of resizing
also leads to high overhead in our reference implementation of
shadow-memory–based race detection, as the checker needs to
automatically extend the shadow memory as well, with attendant
synchronization. For some other built-in collection data types, such
as sets and hash maps, we provide standard annotations of method
commutativity.

For performance reasons, JRuby code may either be directly in-
terpreted or translated into Java bytecode before (ahead of time
compilation) or during (just-in-time compilation) program execu-
tion. TARDIS instrumentation is performed at a relatively low level
to make sure that method invocations and all shared reads and
writes are logged in both interpretation and translation modes.

Recording and reporting conflict details Ideally, on detection of
nondeterminism, TARDIS would report as much descriptive infor-
mation as possible to the user. In practice, such reporting would
require that we log information not strictly required for conflict
detection. To minimize the cost of checking in the common (deter-
ministic) case, TARDIS provides two modes of operation. In default
mode, it reports the object id, field number, and non-array variable
name involved in a conflict. In detail mode, it reports the symbolic
name of the object and the source file and line number of the con-
flicting accesses. In practice, we would expect programmers to rely
on default mode unless and until a conflict was reported, at which
point they would re-run in detail mode. Note that on a given input
a program is, by definition, deterministic up to the beginning of the
first parallel construct in which a conflict arises. If a default-mode
run elicits a conflict message, a subsequent detail-mode run on the
same input can be expected (a bit more slowly) to report the same
conflict, with more descriptive information. (Sometimes, especially
when the input is associated with asynchronous events, exactly “the
same input” may be hard to replay.)

Reducing detection overhead In practice, most reads and writes
are performed to task-local variables (fields of the current task’s
stack frames). TARDIS refrains from logging these, since they can-
not ever be shared.

In the pseudocode of Algorithms 3 and 5, the access sets of
children are “pushed back” (merged in) to those of their parents.
Once all children have completed, the merged set is needed only
if the parent is itself a child in some other parallel construct. To
economize on memory, TARDIS discards sets that have been pushed
back into a sequential context (or an isolated future), once all the
children have completed.

4. Performance Evaluation
Our evaluation aims to quantify the following:

• Scalability for DPR, both with and without dynamic determin-
ism checking, on a parallel system

• Overhead for TARDIS to verify determinism dynamically
• Comparative cost of dynamic race detection for TARDIS and a

state-of-the-art shadow-memory–based detector
• Extra cost for TARDIS to verify determinism on AC ops, and to

provide detailed conflict information

4.1 Evaluation Setup
We evaluate DPR using 13 applications, from a variety of sources.
Most were originally written in some other parallel language,
which we hand-translated into DPR. During the translation, we
used TARDIS to assist us in verifying determinism. Despite our
familiarity with both parallel programming in general and DPR in
particular, TARDIS still identified 5 nondeterminism conflicts.

Eight of our applications are from standard parallel benchmark
suites: PARSEC [1], the Java Grande Forum (JGF) [34] and the
Problem Based Benchmark Suite (PBBS) [33]. These are listed in
Table 1. The other 5 are as follows:

Delaunay. A triangulation program working on a set of points
in the plane. Originally written for a local class assignment, the
code is a straightforward divide-and-conquer version of Dwyer’s
classic algorithm [9]. Our runs triangulate a field of 16,384 ran-
domly chosen points. Tasks at each level are created with co-begin,
and may add edges to, or remove them from, a concurrent list with
annotated AC ops.

Chunky-png. A popular Ruby “gem” to convert between
bitmap and PNG image formats, obtained from rubygems.org/
gems/chunky png. We parallelized the gem with DPR, and use it
for bitmap encoding of the provided benchmark image. Our code
uses a concurrent hash table with annotated AC ops to store encod-
ing constraints.

WordWeight. This locally constructed program was inspired
by the RemoveDup benchmark from PBBS. The original program
used a hash table to remove duplicate keys given a user-defined
total order on all values. Our DPR version works on articles. It
takes a plain text file, assigns a “weight” to each word in the file,
and then uses a concurrent hash table to find the maximum weight
for each word.

GA. A genetic algorithm for use in a decompiler, this locally-
constructed benchmark transforms irreducible regions in a control
flow graph into high-level program constructs with a minimum
number of goto statements. A gene representation of a candidate
solution is an array of bits, where each bit represents whether a
specific edge will be removed in the restructuring process. For each
generation, a parallel iterator computes the fitness of all genes;
each such calculation is time consuming. The evaluation function
is annotated as an AC op.

Benchmark Source AC ops Input set
Blackscholes PARSEC No simlarge

Swaptions PARSEC No simsmall
Streamcluster PARSEC No simsmall

Series JGF No A (small)
Crypt JGF No A (small)

SparseMatMult JGF No A (small)
SOR JGF No A (small)
BFS PBBS Yes rMat, n = 100,000

Table 1. Workloads from benchmark suites.

GA-Java. A variant of GA in which the fitness function is
implemented as an external Java kernel. Each kernel is sequential,
but calls from different DPR threads can execute in parallel.

The DPR virtual machine runs on a 64-bit OpenJDK at version
1.8.8. Our experiments were conducted on an Intel Xeon E5649
system with 2 processors, 6 cores per processor, 2 threads per core
(i.e., 12 cores and 24 threads total), and 12 GB of memory, running
Linux 2.6.34. The JRuby virtual machine will by default compile a
function to Java byte code after 50 invocations (just-in-time). The
Java VM then typically JITs the byte code. We kept this default
behavior in our evaluation.

4.2 Determinism Checking for Benchmarks Without AC Ops
Seven of our benchmarks employ no AC ops, and can be checked
for determinism with a conventional data race detector. For these
we compare TARDIS, in both default and detail mode, to best-
effort reimplementations of the Cilk Nondeterminator [11] and
SPD3 [27] race detectors. Both prior systems are shadow-memory
based, and do not record source-code–level information. To support
reductions, pipelines and futures, we extended these systems with
mechanisms similar to those discussed in Section 3. In our reimple-
mentation of SPD3, the shadow area of each object is protected by
a sequence lock to accommodate concurrent access and potential
resizing.3

Results appear in Figure 3. We tested all workloads with 1, 2,
4, 8 and 16 threads. All data were collected with a maximum JVM
heap size of 4 GB. 1024 slots were allocated for both reads and
writes in the list-based representation of access sets. The baseline
for speed measurement is the DPR version of each benchmark,
running on a single thread with instrumentation turned off. Each
data point represents the average of 5 runs. Since Nondeterminator
is a sequential detector, it is reported at 1 thread only. Our results for
SPD3 and Nondeterminator do not include the time spent allocating
shadow memory for objects created in the initialization phase of the
benchmarks.

For applications other than Streamcluster, in which most par-
allelism is very fine-grained, DPR achieves speedups of 4–6× on
16 threads. TARDIS outperforms SPD3 by substantial margins in
three applications, and by modest amounts in another. It is slightly
slower in the other three. The large wins in Blackscholes, Crypt,
and SparseMatMult stem from tasks with large numbers of repeat
accesses to the same locations. SPD3 allocates 3 nodes for each
task in its Dynamic Program Structure Tree (DPST), and performs
relatively more expensive tree operations for most of the memory
accesses. TARDIS reduces the instrumentation overhead on each
access, and detects conflicts using a subsequent per-location pass.

In Series and Swaptions, TARDIS is slightly slower than SPD3.
Profiling reveals a very small number of memory accesses per task
in Series and a very large number of unrepeated, or rarely repeated,

3 The newer, commutative-operation version of SPD3 [35] was not available
in time to incorporate in our experiments.

http://rubygems.org/gems/chunky_png
http://rubygems.org/gems/chunky_png

1 1 1 1 1 1 12 2 2 2 2 2 24 4 4 4 4 4 48 8 8 8 8 8 816 16 16 16 16 16 16
0

1

2

3

4

5

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

Blackscholes Swaptions Streamcluster Series Crypt SOR SparseMatMult

Cilk Nondeterminator SPD3 TARDIS TARDIS Detail Uninstrumented

Figure 3. Normalized execution time (lower is better) of Nondeterminator, SPD3, TARDIS and uninstrumented DPR. Each workload is
tested with 1, 2, 4, 8 and 16 threads. All speed results are normalized to the 1-thread uninstrumented case, which is also represented by the
dashed line in the figure. Performance information for Nondeterminator is reported only at 1 thread, since it is a sequential algorithm.

1 1 1 1 12 2 2 2 24 4 4 4 48 8 8 8 816 16 16 16 16
0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

BFS Delaunay WordWeight chunky-png GA

TARDIS

TARDIS Detail

TARDIS NC

Uninstrumented

Figure 4. Normalized execution time of TARDIS (default mode), together with its detail mode, a mode with no AC operation checking
(shown as “TARDIS NC”), and uninstrumented DPR. Each workload is tested with 1, 2, 4, 8 and 16 threads. All speed results are normalized
to the 1-thread uninstrumented case, which is also represented by the dashed line in the figure.

memory locations per task in Swaptions, neither of which offers
an opportunity to optimize repeated access. In both applications
the time spent initializing and managing access sets dominates
instrumentation. Nondeterminator outperforms TARDIS and SPD3
at one thread in 6 out of 7 benchmarks, but is unable to scale up.

The detail mode of TARDIS is the slowest in all groups. Because
of the extra information it must save, the working set of detail mode
is substantially larger than that of default mode. In SparseMatMult,
the blow-up is 23×. Cache misses caused by the large working set
slow down the execution with 8 and 16 threads.

4.3 Determinism Checking for Benchmarks with AC ops
Our 5 remaining benchmarks (BFS, Delaunay, GA, WordWeight
and Chunky-png) employ atomic commutative operations. For
these, TARDIS is the only available precise determinism checker
for DPR. To assess the cost of AC op checking, we run our bench-
marks with TARDIS on and off, and also in an (incorrect) mode in
which we fail to distinguish the AC ops. Loads and stores in those
ops are then logged like any other accesses, leading to false reports
of conflicts, but allowing us to measure the marginal overhead of
AC op handling. Results appear in Figure 4.

Uninstrumented code (TARDIS off) achieves speedups of 0.5–
4× across our benchmark set. With TARDIS enabled, WordWeight,
chunky-png, and GA continue to achieve at least some speedup. In
BFS and Delaunay, the extra space required by logs leads to signif-
icant cache pressure, with slowdowns of roughly 2–4× compared
to the 1-thread uninstrumented case; in detail mode, this expands
to 4–7×.

In comparison to no-AC mode, the checking of AC ops in
BFS introduces about 40% overhead; for all other benchmarks
the overhead is less than 10%. Profiling indicates that in BFS the
access sets for AC ops and for normal accesses are almost equal
in size, yielding an almost worst-case scenario for Algorithm 5,
which implements set intersection by performing a lookup in the
hash table of the larger set for each element of the smaller set.
TARDIS actually outperforms its no-AC mode in some cases on
Delaunay: moving some accesses to an AC set can reduce the cost
of intersections, if it shrinks the smaller of an intersecting pair.

4.4 Scripting with an Accelerated Kernel
Scripting languages are typically chosen for their ease of use, rather
than performance. After a DPR program has been built, it may be
possible to accelerate it by replacing the most computationally in-

Figure 5. Normalized execution time of uninstrumented GA and
GA-Java. Execution time is normalized with respect to the one
thread execution time of GA-Java.

tensive parts with an external kernel, written in some performance-
oriented language. In this case, it may still be attractive for the par-
allelism to be managed on the scripting side, with the external ker-
nel kept sequential.

As an example of this style of programming, we created a
version of the GA benchmark, GA-Java, that uses a pre-compiled
Java kernel (easily called in JRuby) to perform the (sequential)
evaluation function. As shown in Figure 5, GA-Java runs about 8
times as fast as the pure DPR version. It should be noted, of course,
that TARDIS cannot verify determinism for external kernels, whose
accesses are uninstrumented. Anecdotally, we found it easier and
safer to translate an already-verified, sequential and independent
kernel from DPR to Java than to develop a race-free Java kernel
from scratch.

5. Conclusions and Future Work
In this paper, we discussed language design and run-time mecha-
nisms for deterministic execution in a parallel scripting language.
Specifically, we presented DPR, a parallel dialect of Ruby, and
TARDIS, a dynamic determinism checker for our language. DPR’s
parallel constructs are useful tools in building or translating paral-
lel workloads. In our JRuby-based implementation, DPR is able to
achieve significant speedups on multicore machines for a variety of
sample applications.

Tailored to DPR, TARDIS provides precise detection of races
among both low-level reads and writes and high-level non-commu-
tative operations. In comparable cases, TARDIS often outper-
forms existing state-of-the-art detectors—notably the SPD3 tool
for Habañero Java. Relative to uninstrumented execution, TARDIS
introduces (in default mode) a typical slowdown of approximately
2× and a maximum of less than 4×. While this is probably still too
slow to enable in production runs, it is eminently reasonable during
testing and debugging. TARDIS also has a detail mode that helps
programmers attribute detected conflicts to specific source-code
constructs.

Topics for future work include:

Parallel scripting performance. Although DPR does display
significant parallel speedup, it is neither as scalable nor (anywhere
close to) as fast as a typical performance-oriented language. The
raw speed of both sequential and parallel scripting can be expected
to improve over time, though it is unlikely to ever rival that of
compiled languages with static typing. Further study is needed to
identify barriers to scaling in dynamic languages, and to determine
which barriers may be addressable and which more fundamental.

Additional language constructs. As noted in Section 1, we
are exploring such “structured” nondeterministic mechanisms as
arbitrary choice and atomic asynchronous events. One could also
consider additional deterministic constructs, or more refined def-
initions of commutativity. It is not yet clear at what point the set
of parallel constructs would become “too messy” to fit well in a
language that stresses convenience.

Commutativity checking. DPR currently treats commutativ-
ity annotations as axioms, so incorrect annotations can be a source
of undetected errors. Though commutativity is undecidable in the
general case, heuristic tools to test it could be very helpful.

Static analysis. Though many things cannot be checked until
run time in a dynamic language, there are still opportunities for
static optimization. We already identify a significant number of ac-
cesses that are guaranteed to be task-local, and need not be instru-
mented. Additional analysis could, for example, identify accesses
whose instrumentation is provably redundant, and thus elidable.

Out-of-band processing of logs. Delayed, log-based detection
of races raises the possibility that logs might be processed off the
application’s critical path. In our current implementation, this strat-
egy is profitable only during I/O waits. With additional develop-
ment, it might be possible on extra cores (for applications with poor
scaling), or even in special hardware.

Acknowledgments
We thank Xi Wang, Lingxiang Xiang, Yang Tang and the anony-
mous reviewers for their feedback and suggestions on this work.

This work was conducted while Weixing Ji was a visiting
scholar at the University of Rochester, supported by the Chinese
Scholarship Council (award no. 2011603518). Li Lu and Michael
Scott were supported in part by the U.S. National Science Foun-
dation under grants CCR-0963759, CCF-1116055, CNS-1116109,
CNS-1319417, and CCF-1337224. Weixing Ji was also supported
in part by the National Science Foundation of China, grant no.
61300010.

References
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark

suite: Characterization and architectural implications. In Intl. Conf.
on Parallel Architectures and Compilation Techniques (PACT),
Toronto, ON, Canada, Oct. 2008.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime
system. J. of Parallel and Distributed Computing, 37(1):55–69, 1996.

[3] R. Bocchino Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel
programming must be deterministic by default. In First Usenix
Workshop on Hot Topics in Parallelism, Berkeley, CA, Mar. 2009.

[4] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for deterministic parallel Java. In
Object-Oriented Programming Systems, Langauges, and Applications
(OOPSLA), Orlando, FL, Oct. 2009.

[5] C.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F.
Stark. Detecting data races in Cilk programs that use locks. In Symp.
on Parallel Algorithms and Architectures (SPAA), Puerto Vallarta,
Mexico, June–July 1998.

[6] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 2002.

[7] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and
S. Qadeer. RADISH: Always-on sound and complete race detection
in software and hardware. In Intl. Symp. on Computer Architecture
(ISCA), Portland, OR, June 2012.

[8] C. Ding, B. Gernhart, P. Li, and M. Hertz. Safe parallel programming
in an interpreted language. Technical Report #991, Computer Science
Dept., Univ. of Rochester, Apr. 2014.

[9] R. A. Dwyer. A faster divide and conquer algorithm for constructing
Delaunay triangulation. Algorithmica, 2, 1987.

[10] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm.
IFRit: Interference-free regions for dynamic data-race detection. In
Object-Oriented Programming Systems, Langauges, and Applications
(OOPSLA), Tucson, AZ, Oct. 2012.

[11] M. Feng and C. E. Leiserson. Efficient detection of determinacy races
in Cilk programs. In Symp. on Parallel Algorithms and Architectures
(SPAA), Newport, RI, June 1997.

[12] C. Flanagan and S. N. Freund. FastTrack: Efficient and precise
dynamic race detection. In SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), Dublin, Ireland, June
2009.

[13] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River Trail:
A path to parallelism in JavaScript. In Object-Oriented Programming
Systems, Langauges, and Applications (OOPSLA), Indianapolis, IN,
Oct. 2013.

[14] M. Herlihy and E. Koskinen. Transactional boosting: A methodology
for highly-concurrent transactional objects. In ACM Symp. on
Principles and Practice of Parallel Programming (PPoPP), Salt Lake
City, UT, Feb. 2008.

[15] S. T. Heumann, V. S. Adve, and S. Wang. The tasks with effects
model for safe concurrency. In ACM Symp. on Principles and
Practice of Parallel Programming (PPoPP), Shenzhen, China, Feb.
2013.

[16] W. Ji, L. Lu, and M. L. Scott. TARDIS: Task-level access race
detection by intersecting sets. In Workshop on Determinism and
Correctness in Parallel Programming (WoDet), Houston, TX, Mar.
2013.

[17] JRuby: The Ruby programming language on the JVM. jruby.org/.

[18] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowdsourced data
race detection. In ACM Symp. on Operating Systems Principles
(SOSP), Farminton, PA, Nov. 2013.

[19] D. Kim and M. C. Rinard. Verification of semantic commutativity
conditions and inverse operations on linked data structures. In 32nd
SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), San Jose, CA, June 2011.

[20] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali.
Exploiting the commutativity lattice. In 32nd SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), San
Jose, CA, June 2011.

[21] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew. Optimistic parallelism requires abstractions. In
SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), San Diego, CA, June 2007.

[22] L. Lu and M. L. Scott. Toward a formal semantic framework for
deterministic parallel programming. In Intl. Symp. on Distributed
Computing (DISC), Rome, Italy, Sept. 2011.

[23] J. Mellor-Crummey. On-the-fly detection of data races for programs
with nested fork-join parallelism. In Supercomputing Conf.,
Albuquerque, NM, Nov. 1991.

[24] A. Muzahid, D. S. Gracia, S. Qi, and J. Torrellas. SigRace:
Signature-based data race detection. In Intl. Symp. on Computer
Architecture (ISCA), Austin, TX, June 2009.

[25] A. Nistor, D. Marinov, and J. Torrellas. Light64: Lightweight
hardware support for data race detection during systematic testing of
parallel programs. In Intl. Symp. on Microarchitecture (MICRO),
New York, NY, Dec. 2009.

[26] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection.
In ACM Symp. on Principles and Practice of Parallel Programming
(PPoPP), San Diego, CA, June 2003.

[27] R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and E. Yahav. Scalable
and precise dynamic datarace detection for structured parallelism. In

SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), Beijing, China, June 2012.

[28] M. C. Rinard and P. C. Diniz. Commutativity analysis: A new
analysis technique for parallelizing compilers. ACM Trans. on
Programming Languages and Systems, 19(6):942–991, Nov. 1997.

[29] M. Ronsse and K. De Bosschere. JiTI: Tracing memory references
for data race detection. In Intl. Parallel Computing Conf. (PARCO),
Bonn, Germany, Sept. 1997.

[30] M. Ronsse, B. Stougie, J. Maebe, F. Cornelis, and K. D. Bosschere.
An efficient data race detector backend for DIOTA. In Intl. Parallel
Computing Conf. (PARCO), Dresden, Germany, 2003.

[31] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. on Computer Systems, 15(4):391–411, Nov. 1997.

[32] E. Schonberg. On-the-fly detection of access anomalies. In SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI), Portland, OR, June 1989. Retrospective appears in ACM
SIGPLAN Notices 39:4 (Apr. 2004), pp. 313-314.

[33] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola,
H. V. Simhadri, and K. Tangwongsan. Brief announcement: The
problem based benchmark suite. In ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), Pittsburgh, PA, June 2012.

[34] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel Java Grande
benchmark suite. In Supercomputing Conf., Denver, CO, Nov. 2001.

[35] E. Westbrook, R. Raman, J. Zhao, Z. Budimlić, and V. Sarkar.
Dynamic determinism checking for structured parallelism. In
Workshop on Determinism and Correctness in Parallel Programming
(WoDet), Salt Lake City, UT, Mar. 2014.

[36] X. Xie and J. Xue. Acculock: Accurate and efficient detection of data
races. In Intl. Symp. on Code Generation and Optimization (CGO),
Seattle, WA, Mar. 2011.

[37] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient detection of
data race conditions via adaptive tracking. In ACM Symp. on
Operating Systems Principles (SOSP), Brighton, United Kingdom,
Oct. 2005.

[38] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-assisted
lockset-based race detection. In Intl. Symp. on High Performance
Computer Architecture (HPCA), Phoenix, AZ, Feb. 2007.

jruby.org/

	Introduction
	Log-Based Data Race Detection
	Higher-Level Operations

	Deterministic Parallel Ruby
	Parallel Constructs

	TARDIS Design
	Log-based Data-race Detection
	Extensions for Higher-level Operations
	Engineering Issues

	Performance Evaluation
	Evaluation Setup
	Determinism Checking for Benchmarks Without AC Ops
	Determinism Checking for Benchmarks with AC ops
	Scripting with an Accelerated Kernel

	Conclusions and Future Work

