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It was an honor and a privilege to be asked to participate in the celebration, at PODC 2014,
of Maurice Herlihy’s many contributions to the field of distributed computing—and specifically, to
address the topic of transactional memory, which has been a key component of my own research
for the past decade or so.

When introducing transactional memory (“TM”) to people outside the field, I describe it as a
sort of magical merger of two essential ideas, at di↵erent levels of abstraction. First, at the language
level, TM allows the programmer to specify that certain blocks of code should be atomic without
saying how to make them atomic. Second, at the implementation level, TM uses speculation
(much of the time, at least) to execute atomic blocks in parallel whenever possible. Each dynamic
execution of an atomic block is known as a transaction. The implementation guesses that concurrent
transactions will be mutually independent. It then monitors their execution, backing out and
retrying if (and hopefully only if) they are discovered to conflict with one another.

The second of these ideas—the speculative implementation—was the focus of the original TM
paper, co-authored by Maurice with Eliot Moss [22]. The first idea—the simplified model of
language-level atomicity—is also due largely to Maurice, but was a somewhat later development.

1 Motivation

To understand the original motivation for transactional memory, consider the typical method of a
nonblocking concurrent data structure. The code is likely to begin with a “planning phase” that
peruses the current state of the structure, figuring out the operation it wants to perform, and
initializing data—some thread-private, some visible to other threads—to describe that operation.
At some point, a critical linearizing instruction transitions the operation from “desired” to “per-
formed.” In some cases, the identity of the linearizing instruction is obvious in the source code; in
others it can be determined only by reasoning in hindsight over the history of the structure. Finally,
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the method performs whatever “cleanup” is required to maintain long-term structural invariants.
Nonblocking progress is guaranteed because the planning phase has no e↵ect on the logical state
of the structure, the linearizing instruction is atomic, and the cleanup phase can be performed by
any thread—not just the one that called the original operation.

Two issues make methods of this sort very di�cult to devise. The first is the need to e↵ect the
transition from “desired” to “performed” with a single atomic instruction. The second is the need
to plan correctly in the face of concurrent changes by other threads. By contrast, an algorithm that
uses a coarse-grained lock faces neither of these issues: writes by other threads will never occur in
the middle of its reads; reads by other threads will never occur in the middle of its writes.

2 The Original Paper

While Maurice is largely celebrated for his theoretical contributions, the original TM paper was
published at ISCA, the leading architecture conference, and was very much a hardware proposal.
We can see this in the subtitle—“Architectural Support for Lock-Free Data Structures”—and the
abstract: “[TM is] . . . intended to make lock-free synchronization as e�cient (and easy to use) as
conventional techniques based on mutual exclusion.”

The core idea is simple: a transaction runs almost the same code as a coarse-grain critical
section, but with special load and store instructions, and without the actual lock. The special
instructions allow the hardware to track conflicts between concurrent transactions. A special end-
of-transaction commit instruction will succeed (and make transactionally written values visible to
other threads) only if no concurrent conflicting transaction has committed. Here “conflict” means
that one transaction writes a cache line that another reads or writes. Within a transaction, a special
validate instruction allows code to determine whether it still has a chance to commit successfully—
and in particular, whether the loads it has performed to date remain mutually consistent. In
response to a failed validate or commit, the typical transaction will loop back (in software) and
start over.

Looking back with the perspective of more than 20 years, the original TM paper appears
remarkably prescient. Elision of coarse-grain locks remains the principal use case for TM today,
though the resulting algorithms are “lock-free” only in the informal sense of “no application-level
locks,” not in the sense of livelock-free. Like almost all contemporary TM hardware, Herlihy & Moss
(H&M) TM was also a “best-e↵ort-only” proposal: a transaction could fail due not only to conflict
or to overflow of hardware bu↵ers, but to a variety of other conditions—notably external interrupts
or the end of a scheduling quantum. Software must be prepared to fall back to a coarse-grain lock
(or some other hybrid method) in the event of repeated failures.

Speculative state (the record of special loads and stores) in the H&M proposal was kept in
a special “transactional cache” alongside the “regular” cache (in 1993, processors generally did
not have multiple cache layers). This scheme is still considered viable today, though commercial
o↵erings vary: the Intel Haswell processor leverages the regular L1 data cache [40]; Sun’s unreleased
Rock machine used the processor store bu↵er [10]; IBM’s zEC12 uses per-core private L2s [25].

In contrast with current commercial implementations, H&M proposed a “responder wins” co-
herence strategy: if transaction A requested a cache line that had already been speculatively read
or written by concurrent transaction B, B would “win” and A would be forced to abort. Current
machines generally do the opposite: “responder loses”—kill B and let A continue. Responder-loses
has the advantage of compatibility with existing coherence protocols, but responder-wins turns out

ACM SIGACT News 20 June 2015 Vol. 46, No. 2



to be considerably less vulnerable to livelock. Nested transactions were not considered by H&M,
but current commercial o↵erings address them only by counting, and subsuming the inner transac-
tions in the outer: there is no way to abort and retry an inner transaction while keeping the outer
one live.

Perhaps the most obvious di↵erence between H&M and current TM is that the latter uses
“modal” execution, rather than special loads and stores: in the wake of a special tm-start instruction,
all ordinary memory accesses are considered speculative. In keeping with the technology of the day,
H&M also assumed sequential consistency; modern machines must generally arrange for tm-start

and commit instructions to incorporate memory barriers.
While designers of modern systems—both hardware and software—think of speculation as a

fundamental design principle—comparable to caching in its degree of generality—this principle was
nowhere near as widely recognized in 1993. In hindsight, the H&M paper (which doesn’t even
mention the term) can be seen not only as the seminal work on TM, but also as a seminal work in
the history of speculation.

3 Subsequent Development

Within the architecture community, H&M TM was generally considered too ambitious for the
hardware of the day, and was largely ignored for a decade. There was substantial uptake in the
theory community, however, where TM-like semantics were incorporated into the notion of universal
constructions [3, 5, 24, 28, 35]. In 1997, Shavit and Touitou coined the term “Software Transactional
Memory,” in a paper that shared with H&M the 2012 Dijkstra Prize [33].

And then came multicore. With the end of uniprocessor performance scaling, the di�culty
of multithreaded programming became a sudden and pressing concern for researchers throughout
academia and industry. And with advances in processor technology and transistor budgets, TM
no longer looked so di�cult to implement. Near-simultaneous breakthroughs in both software and
hardware TM were announced by several groups in the early years of the 21st century.

Now, another decade on, perhaps a thousand TM papers have been published (including roughly
a third of my own professional output). Plans are underway for the 10th annual ACM TRANSACT
workshop. Hardware TM has been incorporated into multiple “real world” processors, including
the Azul Vega 2 and 3 [7]; Sun Rock [10]; IBM Blue Gene/Q [36], zEnterprise EC12 [25], and
Power8 [6]; and Intel Haswell [40]. Work on software TM has proven even more fruitful, at least
from a publications perspective: there are many more viable implementation alternatives—and
many more semantic subtleties—than anyone would have anticipated back in 2003. TM language
extensions have become the synchronization mechanism of choice in the Haskell community [16],
o�cial extensions for C++ are currently in the works (a preliminary version [1] already ships in
gcc), and research-quality extensions have been developed for a wide range of other languages.

4 Maurice’s Contributions

Throughout the history of TM, Maurice has remained a major contributor. The paragraphs here
touch on only a few of his many contributions. With colleagues at Sun, Maurice co-designed
the DSTM system [18], one of the first software TMs with semantics rich enough—and overheads
low enough—to be potentially acceptable in practice. Among its several contributions, DSTM
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introduced the notion of out-of-band contention management, a subject on which Maurice also col-
laborated with colleagues at EPFL [13, 14]. By separating safety and liveness, contention managers
simplify both STM implementation and correctness proofs.

In 2005, Maurice collaborated with colleagues at Intel on mechanisms to virtualize hardware
transactions, allowing them to survive both bu↵er overflows and context switches [30]. He also
began a series of papers, with colleagues at Brown and Swarthmore, on transactions for energy
e�ciency [12]. With student Eric Koskinen, he introduced transactional boosting [20], which refines
the notion of conflict to encompass the possibility that concurrent operations on abstract data types,
performed within a transaction, may commute with one another at an abstract level—and thus be
considered non-conflicting—even when they would appear to conflict at the level of loads and stores.
With student Yossi Lev he explored support for debugging of transactional programs [21]. More
recently, again with the team at Sun, he has explored the use of TM for memory management [11].

Perhaps most important, Maurice became a champion of the promise of transactions to simplify
parallel programming—a promise he dubbed the “transactional manifesto” [19]. During a sabbatical
at Microsoft Research in Cambridge, England, he collaborated with the Haskell team on their
landmark exploration of composability [16]. Unlike locks, which require global reasoning to avoid
or recover from deadlock, transactions can easily be combined to create larger atomic operations
from smaller atomic pieces. While the benefits can certainly be oversold (and have been—though
not by Maurice), composability represents a fundamental breakthrough in the creation of concurrent
abstractions. Prudently employed, transactions can o↵er (most of) the performance of fine-grain
locks with (most of) the convenience of coarse-grain locks.

5 Status and Challenges

Today hardware TM appears to have become a permanent addition to processor instruction sets.
Run-time systems that use this hardware typically fall back to a global lock in the face of repeated
conflict or overflow aborts. For the overflow case, hybrid systems that fall back to software TM may
ultimately prove to be more appropriate. STM will also be required for TM programs on legacy
hardware. The fastest STM implementations currently slow down critical sections (though not
whole applications!) by factors of 3–5, and that number is unlikely to improve. With this present
status as background, the future holds a host of open questions.

5.1 Usage Patterns

TM is not yet widely used. Most extant applications are actually written in Haskell, where the
semantics are unusually rich but the implementation unusually slow. The most popular languages
for research have been C and C++, but progress has been impeded, at least in part, by the lack of
high quality benchmarks.

The biggest unknown remains the breadth of TM applicability. Transactions are clearly useful—
from both a semantic and a performance perspective—for small operations on concurrent data
structures. They are much less likely to be useful—at least from a performance perspective—for
very large operations, which may overflow bu↵er limits in HTM, run slowly in STM, and experience
high conflict rates in either case. No one is likely to write a web server that devotes a single large
transaction to each incoming page request. Only experience will tell how large transactions can
become and still run mostly in parallel.
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When transactions are too big, and frequently conflict, programmers will need tools to help them
identify the o↵ending instructions and restructure their code for better performance. They will also
need advances, in both theory and software engineering, to integrate transactions successfully into
pre-existing lock-based applications.

5.2 Theory and Semantics

Beyond just atomicity, transactions need some form of condition synchronization, for operations
that must wait for preconditions [16, 37]. There also appear to be cases in which a transaction
needs some sort of “escape action” [29], to generate e↵ects (or perhaps to observe outside state) in
a way that is not fully isolated from action in other threads. In some cases, the application-level
logic of a transaction may decide it needs to abort. If the transaction does not restart, but switches
to some other code path, then information (the fact of the abort, at least) has “leaked” from code
that “did not happen” [16]. Orthogonally, if large transactions prove useful in some applications, it
may be desirable to parallelize them internally, and let the sub-threads share speculative state [4].
All these possibilities will require formalization.

A more fundamental question concerns the basic model of synchronization. While it is possible
to define the behavior of transactions in terms of locks [27], with an explicit notion of abort and
rollback, such an approach seems contrary to the claim that transactions are simpler than locks.
An alternative is to make atomicity itself the fundamental concept [8], at which point the question
arises: are aborts a part of the language-level semantics? It’s appealing to leave them out, at least
in the absence of a program-level abort operation, but it’s not clear how such an approach would
interact with operational semantics or with the definition of a data race.

For run-time–level semantics, it has been conventional to require that every transaction—even
one that aborts—see a single, consistent memory state [15]. This requirement, unfortunately, is
incompatible with implementations that “sandbox” transactions instead of continually checking for
consistency, allowing doomed transactions to execute—at least for a little while—down logically
impossible code paths. More flexible semantics might permit such “transactional zombies” while
still ensuring forward progress [32].

5.3 Language and System Integration

For anyone building a TM language or system, the theory and semantic issues of the previous
section are of course of central importance, but there are other issues as well. What should be
the syntax of atomic blocks? Should there be atomic expressions? How should they interact with
existing mechanisms like try blocks and exceptions? With locks?

What operations can be performed inside a transaction? Which of the standard library routines
are on the list? If routines must be labeled as “transaction safe,” does this become a “viral”
annotation that propagates throughout a code base? How much of a large application must eschew
transaction-unsafe operations?

In a similar vein, given the need to instrument loads and stores inside (but not outside) transac-
tions, which subroutines must be “cloned”? How does the choice interact with separate compilation?
How do we cope with the resulting “code bloat”?

Finally, what should be done about repeated aborts? Is fallback to a global lock acceptable,
or do we need a hybrid HTM/STM system? Does the implementation need to adapt to observed
abort patterns, avoiding fruitless speculation? What factors should influence adaptation? Should
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it be static or dynamic? Does it need to incorporate feedback from prior executions? How does it
interact with scheduling?

5.4 Building and Using TM Hardware

With the spread of TM hardware, it will be increasingly important to use that hardware well. In
addition to tuning and adapting, we may wish to restructure transactions that frequently overflow
bu↵ers. We might, for example—by hand or automatically—reduce a transaction’s memory foot-
print by converting a read-only preamble into explicit (nontransactional) speculation [2, 39]. One
of my students has recently suggested using advisory locks (acquired using nontransactional loads
and stores) to serialize only the portions of transactions that actually conflict [38].

Much will depend on the evolution of hardware TM capabilities. Nontransactional (but immedi-
ate) loads and stores are currently available only on IBM Power machines, and there at heavy cost.
Lightweight implementations would enable not only partial serialization but also ordered transac-
tions (i.e., speculative parallelization of ordered iteration) and more e↵ective hardware/software
hybrids [9, 26]. As noted above, there have been suggestions for “responder-wins” coherence, virtu-
alization, nesting, and condition synchronization. With richer semantics, it may also be desirable
to “deconstruct” the hardware interface, so that features are available individually, and can be used
for additional purposes [23, 34].

6 Concluding Thoughts

While the discussion above spans much of the history of transactional memory, and mentions many
open questions, the coverage has of necessity been spotty, and the choice of citations idiosyncratic.
Many, many important topics and papers have been left out. For a much more comprehensive
overview of the field, interested readers should consult the book-length treatise of Harris, Larus, and
Rajwar [17]. A briefer overview can be found in chapter 9 of my synchronization monograph [31].

My sincere thanks to Hagit Attiya, Shlomi Dolev, Rachid Guerraoui, and Nir Shavit for orga-
nizing the celebration of Maurice’s 60th birthday, and for giving me the opportunity to participate.
My thanks, as well, to Panagiota Fatourou and Jennifer Welch for arranging the subsequent write-
ups for BEATCS and SIGACT News. Most of all, my thanks and admiration to Maurice Herlihy
for his seminal contributions, not only to transactional memory, but to nonblocking algorithms,
topological analysis, and so many other aspects of parallel and distributed computing.
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