
Conflict Reduction in Hardware Transactions
Using Advisory Locks∗

Lingxiang Xiang and Michael L. Scott
Computer Science Department, University of Rochester

{lxiang, scott}@cs.rochester.edu

ABSTRACT
Preliminary experience with hardware transactional mem-
ory suggests that aborts due to data conflicts are one of
the principal obstacles to scale-up. To reduce the incidence
of conflict, we propose an automatic, high-level mechanism
that uses advisory locks to serialize (just) the portions of the
transactions in which conflicting accesses occur. We demon-
strate the feasibility of this mechanism, which we refer to
as staggered transactions, with fully developed compiler and
runtime support, running on simulated hardware.

Our compiler identifies and instruments a small subset of
the accesses in each transaction, which it determines, stati-
cally, are likely to constitute initial accesses to shared loca-
tions. At run time, the instrumentation acquires an advisory
lock on the accessed datum, if (and only if) prior execu-
tion history suggests that the datum—or locations “down-
stream”of it—are indeed a likely source of conflict. Policy to
drive the decision requires one hardware feature not gener-
ally found in current commercial offerings: nontransactional
loads and stores within transactions. It can also benefit
from a mechanism to record the program counter at which
a cache line was first accessed in a transaction. Simulation
results show that staggered transactions can significantly re-
duce the frequency of conflict aborts and increase program
performance.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; D.3.4 [Programming Lan-
guages]: Processors—Code generation

General Terms
Algorithms, Design, Performance

∗This work was supported in part by grants from the National
Science Foundation (CCF-0963759, CCF-1116055, CNS-1116109,
CNS-1319417, CCF-1337224, and CCF-1422649) and by the IBM
Canada Centres for Advanced Studies (CAS).

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright 2015 ACM 978-1-4503-3588-1/15/06
DOI: http://dx.doi.org/10.1145/2755573.2755577 ...$15.00.

Benchmark S %I W/U Contention Source LA LP
list-hi 1.0 27% 4.92 linked-list N Y
tsp 3.6 10% 1.53 priority queue Y Y
memcached 2.6 25% 3.11 statistics information Y Y
intruder 3.2 32% 4.02 task queue Y Y
kmeans 4.6 35% 3.57 arrays N Y

vacation 9.7 1% 0.34 red-black trees N Y

Table 1: HTM contention in representative benchmarks.
S: speedup with 16 threads over sequential run. %I: % of
txns forced into irrevocable mode. W/U: ratio of wasted
to useful cycles in transactions. LA: locality of contention
addresses. LP: locality of contention PCs.

Keywords
Hardware Transactional Memory, Advisory Lock

1. INTRODUCTION
Transactional Memory combines the convenience of atomic

blocks as a programming idiom with the potential perfor-
mance gains of speculation as an implementation. With the
recent deployment of hardware support (HTM) on Intel’s
Haswell [33], IBM’s zEC12 [13] and IBM’s Power 8 [4], we
anticipate a “virtuous cycle” in which more and more multi-
threaded programs employ TM, and the performance of the
hardware becomes increasingly important.

Preliminary experience with HTM suggests that the raw
performance, scalability, and energy consumption of trans-
actional programs—especially those with medium- or large-
scale transactions—are all limited by the hardware transac-
tion abort rate [33]. Aborts happen for two main reasons:
hardware overflow and conflicts with other transactions. We
have addressed the overflow case in prior work [31]; we focus
here on conflicts.

Conflicts among transactions lead to poor scalability and
energy waste. Table 1 shows several representative TM pro-
grams running on a typical 16-core eager HTM system (the
experimental methodology is described in Section 6). Re-
peated aborts limit speedup (column “S”) and force many
transactions to acquire a global lock and revert to irrevoca-
ble mode (column “%I”) in order to make forward progress.
A high ratio of cycles spent in aborted transactions rela-
tive to committed transactions (“W/U” column) correlates
strongly with energy waste. As shown in the final, vacation
row, wasted work can still be significant even in programs
with reasonable speedup.

Several previous projects have proposed hardware mech-
anisms to reduce the incidence of conflict aborts. Examples
include DATM [21], RETCON [3], Wait-n-GoTM [14], and

OmniOrder [20]. While these proposals achieve nontrivial
improvements in abort rates and system throughput, they
suffer from several limitations. First, most entail significant
new hardware complexity—e.g., for the transactional-cycle
detector of Wait-n-GoTM or the 8 new coherence protocol
states of DATM. Second, they tend to target specific pat-
terns of contention—e.g., the simple conflicting code slices of
RETCON or the circular dependences of DATM and Wait-
n-GOTM; they may miss other opportunities. Third, they
are often specific to particular styles of HTM—e.g., lazy for
RETCON, eager for others—and may not apply across the
rest of the HTM design spectrum.

As an alternative to all-hardware mechanisms, we intro-
duce the notion of Staggered Transactions, an automatic
technique to reduce the frequency of aborts. Staggered Trans-
actions serialize the execution of conflict-heavy portions of
transactions by means of advisory (optional) locks, imple-
mented using nontransactional loads and stores. Noncon-
flicting code continues to execute speculatively in paral-
lel, thereby maintaining scalability. Because correctness re-
mains the responsibility of the underlying TM system, Stag-
gered Transactions function correctly even if some transac-
tions neglect to obey the locking protocol. Moreover, the
contention reduction achieved is largely independent of other
HTM implementation details; in particular, it should be
compatible with most conflict resolution techniques.

Effective implementation of Staggered Transactions re-
quires a combination of compile-time and run-time mech-
anisms to choose whether to acquire a lock and, if so, which
lock to acquire and where to acquire it. In our (fully au-
tomated) system, the compiler uses Data Structure Anal-
ysis [15] to identify and instrument a small subset of the
accesses in each transaction, which it determines, statically,
are likely to constitute initial accesses to shared locations.
These accesses constitute advisory locking points. At run
time, a locking policy decides which of these locking points
to activate, and which lock to acquire at each, based on prior
execution history. As we will shown in Section 6, a careful
fusion of compile-time and run-time information allows us to
avoid not only simple, repetitive contention but also more
complex cyclic dependences, in which each transaction in
the cycle accesses a (typically dynamically chosen) location
on which the next transaction has already performed a con-
flicting access.

To escape isolation when acquiring locks, Staggered Trans-
actions require nontransactional loads and stores within trans-
actions. They also benefit from a hardware mechanism to
identify the PC at which a conflicting location was first ac-
cessed. Neither of these features is common on existing ma-
chines, but both appear orthogonal to most other HTM fea-
tures, and neither seems prohibitively difficult to add.

Our principal contributions, discussed in the following sec-
tions, include

• A hybrid optimistic / pessimistic execution model for hard-
ware transactions, in which the most commonly conflict-
ing portions of transactions are serialized by advisory
locks, built with nontransactional loads and stores.

• Compiler techniques to insert required instrumentation
with negligible impact on run-time overhead.

• Run-time techniques to detect contention and enable ad-
visory locks that avoid it, using high-level program knowl-
edge learned by the compiler.

t1 t2 t3

(a)

t1 t2 t3

(b)

t1 t2 t3

(c)

tim
e

xbegin

commit

abort

restart

advisory lock
points

non-contention

contention

delay

Figure 1: Execution of 3 transactions (t1–t3) (a) on an
eager HTM, (b) on a lazy HTM, and (c) with Staggered
Transactions optimization.

2. OVERVIEW
Unlike conventional TM, Staggered Transactions force por-

tions of transactions to serialize; the remaining portions run
concurrently. Specifically, when conflicts tend to arise in
the middle of a given atomic block, our compiler and run-
time arrange to acquire an advisory lock at the end of the
contention-free prefix, and to hold it until commit time.

Figure 1 illustrates the execution of three transactions
with mutually conflicting accesses, shown with a diamond
symbol. On a typical eager (Figure 1a) or lazy (Figure 1b)
HTM system, only one of the transactions will be able to
commit if all three execute concurrently. In a Staggered
Transactions system (Figure 1c), execution of the portion of
a transaction beginning with the conflicting access is pre-
ceded by an advisory locking point (ALP). In the diagram,
t1, t2, and t3 all attempt to acquire the same advisory lock.
Transaction t1 acquires it first; the others wait their turn,
and all are able to commit. We say that the conflicting por-
tions of the transactions have been staggered. While a trans-
action could, in principle, acquire multiple advisory locks,
we acquire only one per transaction in this paper.

Accurate identification of all and only the contention-
prone portions of transactions requires careful coordination
of compile-time and run-time techniques. Figure 2 illus-
trates how the pieces fit together in our system.

The main goal of the compile-time steps (1©– 3©) is to
statically insert ALPs in the source code, so that once a
frequently conflicting access is found during execution, the
runtime can activate the nearest ALP ahead of that access,
preventing concurrent accesses to the same object in other
transactions. A dedicated compiler pass inspects the IR (in-
termediate representation) of all atomic blocks (1©) and con-
siders load and store instructions as anchors—accesses in
front of which to insert an ALP (2©). To minimize the num-
ber of ALPs (and thus the run-time overhead of instrumen-
tation), the compiler uses Data Structure Analysis [15] to
select as anchors only those instructions that are likely to be
initial accesses to shared objects (data structure nodes) in-
side a transaction. To help the runtime locate ALPs quickly,
the compiler builds an anchor table that maps PC ranges to
the closest prior ALP in each atomic block (3©).

The run-time steps (4©– 8©) focus on two decisions con-
cerning advisory locks: (1) whether the runtime should ac-
quire an advisory lock for the current transaction, and if so,

(2) which advisory lock to acquire, at which ALP. The first
decision is made by tracking abort history for every atomic
block. When an atomic block runs on HTM (4©) and a con-
tention abort occurs (5©), the hardware-triggered handler
receives an indication of the conflicting address and (ideally)
the program counter at which that address was first accessed
(6©). The runtime appends this information to a per-thread
abort history table for the current atomic block. Based on
the frequency of contention aborts, a software locking policy
makes decision (1).

Decision (2) is harder. As shown in Table 1 (“LA” and
“LP” columns), the program counters associated with initial
accesses to conflicting locations are often the same across
dynamic transactions, but the accessed data locations often
differ: sometimes a common datum is responsible for most
aborts; other times, it differs from one transaction instance
to another.

The locking policy augments its understanding of the con-
flict pattern each time a contention abort occurs (7©). Once
a pattern is found, the runtime consults the anchor table
to identify an ALP and activate it for future instances of
the transaction (8©). For simplicity, we currently allow only
one active ALP for a given atomic block. We also employ a
fairly simple policy (more complex possibilities are a subject
of future work). Specifically, we activate an ALP only if it
corresponds to a PC that has frequently performed the ini-
tial access to data that subsequently proved to be the source
of conflict. If the addresses of the data in these conflicts were
usually the same, the ALP is activated in precise mode: it
acquires a lock only if the data address in the current trans-
action instance matches the address of past conflicts. If data
addresses have varied in past conflicts, the ALP is activated
in coarse-grain mode: it acquires a lock regardless of the
current data address. In either case, the choice of which
lock to acquire is based on the current data address: this
will always be the same in precise mode; it may vary in
coarse-grain mode.

If conflicts continue to be common despite the activation
of a coarse-grain ALP, the runtime uses information gath-
ered by the compiler to activate the parent of the ALP in-
stead. The notion of parents again leverages Data Structure
Analysis. In a linked data structure, if node B is reached
via a pointer from node A, we say that the ALP associated
with the initial access to A is the parent of the ALP asso-
ciated with the initial access to B. In code that traverses a
linked list, for example, each node other than the first is ac-
cessed through its predecessor; the first is accessed through
the head node. In typical traversal code, nodes within the
list will share an ALP (embedded in a loop). The parent
of that ALP will be the ALP of the head node. Interested
readers may consult Lattner’s thesis for details [15].

As a simple example, suppose in Figure 2 that q→head
is a frequent source of conflicts. After a few aborts, the
locking policy will realize that most conflicts happen on the
data address q→head, whose initial access in the transaction
is usually at the same instruction address, say Addr. The
policy categorizes the conflict pattern as precise and the
runtime activates the ALP right before Addr.

Like the advisory locks of database and file systems, Stag-
gered Transaction advisory locks are purely a performance
optimization. Correctness is ensured by the underlying TM
system. If the runtime fails to instrument a transaction that
participates in a conflict, the only consequence is continued

...
q=p→queue;
...
q→head=v;
...

prog.c

...
call ALPoint
mov (...), %rbx
...

call ALPoint
mov ..., (%rbx)
...

prog.bin

HTM

Anchor Table
Compiler

Pass

Locking
Policy

conf. addr

conf. PC

Abort Info.

Abort History

1
2

3
7

7

6

5
4

8

Compile Time Run Time

Figure 2: An overview of Staggered Transactions, includ-
ing compile-time steps 1©– 3© and run-time steps 4©– 8©.

aborts. Likewise, when a transaction does attempt to ac-
quire a lock, it need not wait forever—to avoid blocking on
a very long transaction (or, on hardware that supports it, a
transaction that has been preempted), an ALP can specify a
timeout for its acquire operation, and simply proceed when
the timeout expires.

3. COMPILER SUPPORT
Our Staggered Transactions system uses a compiler pass

for static insertion of advisory locking points (ALPs). Us-
ing Data Structure Analysis [15], the compiler identifies and
instruments only those loads and stores (anchors) that are
likely to constitute initial accesses to shared locations. It
also generates an anchor table for each atomic block to de-
scribe the anchors and non-anchors (uninstrumented loads
and stores) and the relationships among them. Anchor ta-
bles are subsequently consulted by the runtime to make lock-
ing decisions and to locate desired advisory locking points.

Compared to naive instrumentation of every load and
store, our technique significantly reduces the number of ALPs,
thereby minimizing execution overhead. Moreover, by cap-
turing information about the hierarchical structure of pro-
gram data, the generated anchor tables allow the runtime to
make better locking decisions.

3.1 A Data Structure Approach
We consider program-level objects (data structure nodes)

to be an appropriate granularity for the insertion of advi-
sory locking points, based on two observations: First, fields
of the same object frequently fit together in just a few cache
lines. Since HTM systems typically detect conflict at cache-
line granularity, if there is contention on the object, the
contended code region will usually start at the first instruc-
tion that accesses the data structure node. Second, assum-
ing modular program structure, instructions that access the
same object are often concentrated in a short code segment.
This implies that the initial access to an object in a given
function or a method is likely to be a good anchor candi-
date. Once these candidates are instrumented, we can skip
a number of following loads and stores that access the same
objects, without losing the ability to trace back from an
abort to an appropriate ALP.

A field-sensitive Data Structure Analysis can be used to
identify the objects associated with loads and stores and
their alias relationships. We base our compiler pass on
Lattner’s DSA [15], which we use essentially as a black
box. DSA distinguishes pointer-to sets according to the data

structure type and field to which they point. It has previ-
ously been used for improved heap allocation [16] and type
safety checking. A complete DSA pass has three stages:
(1) A local stage creates a data structure node (DSNode)
for each unique pointer target in a function, and links each
pointer access to a DSNode. All pointers linked to the same
DSNode may point to the same instance of a data structure.
If a pointer field in a data structure points to another data
structure (or itself), there will be an outgoing edge from this
DSNode to the target DSNode. All DSNodes of a function
are organized together as a data structure graph (DSGraph).
(2) A bottom-up stage merges callees’ local DSGraphs into
those of their callers. (3) A top-down stage merges callers’
DSGraphs into those of their callees. We utilize only the re-
sult from stage 2, which is more context sensitive than that
of stage 3 (to get more accurate alias results, which we do
not need, the latter may collapse too many DSNodes).

Given DSA results, our algorithm works in three stages of
its own, which we describe in Sections 3.2–3.4.

3.2 Building Local Anchor Tables
A local anchor table keeps information for all loads and

stores of a function directly or indirectly called in an atomic
block (static transaction). Each load/store is described by a
table entry, ATEntry, a 4-field tuple: (instr, isAnchor, parent,
pioneer). Field instr indicates the location of the load/store
instruction. Field isAnchor is a Boolean flag. We call a load-
/store an anchor if it is the initial access to a DSNode in a
possible execution path. (ALPs are placed before anchors in
a later stage.) Field parent points to another anchor though
which a pointer to the current node was loaded. For exam-
ple, in the code sequence {B = A→child; ... = B→size;}, if
the loads of A→child and B→size are anchors, then the first
one is the second one’s parent. For a non-anchor access, field
pioneer points to the anchor that accesses the same DSNode.
For example, in {n = queuePtr→head; ...; queuePtr→tail =
m;}, the pioneer of the store to queuePtr→tail is the load of
queuePtr→head (assuming that load is an anchor).

Algorithm 1 shows how the compiler constructs an anchor
table for a given function. The first stage (lines 3–14) cate-
gorizes load and store instructions as anchors or non-anchors
through a depth-first traversal of the function’s dominator
tree. The second stage (lines 15–19) sets up the parent re-
lationship among anchors, using the result of DSA’s field-
sensitive analysis.

3.3 Building Unified Anchor Tables
Walking from callers to callees, a top-down stage creates

one unified anchor table for each atomic block. This stage
doesn’t change the local tables. Instead, it clones and merges
them, taking account of the DSNode mapping from caller to
callee at function call sites. Missing parent information for
certain anchors, if passed via function arguments, is filled
in at this stage. From the construction procedure, we can
see that unified anchor tables are context-sensitive: anchors
originating from the same instruction may have different
parents in different unified anchor tables.

3.4 Instrumentation
Once per-function local anchor tables and per-atomic-block

unified anchor tables are available, the insertion of advisory
locking points is straightforward: the compiler iterates over
all local tables and inserts calls to ALPoint right before each

Algorithm 1: BuildLocalAnchorTable(func)

Input: a function func
Output: a local anchor table aTable

1 aTable ← ∅;
2 domTree ← GetDominateTree (func);
3 foreach BasicBlock b in DepthFirstVisit (domTree) do
4 foreach LoadStoreInst inst in b do
5 dsNode ← GetDSNode (inst.pointerOperand);
6 entry ← new ATEntry;
7 entry.inst ← inst ;
8 if ∃ m ∈ aTable[dsNode]: m.inst dominates inst

then
9 entry.isAnchor ← false;

10 entry.pioneer ← m.inst;

11 else
12 entry.isAnchor ← true;
13 entry.parent ← nil;

14 aTable[dsNode].push (entry);
15 foreach DSNode n in aTable do
16 foreach Edge e in n.edges do
17 foreach ATEntry m in aTable[e.toNode] do
18 if m.isAnchor then
19 m.parent ← n;

TM BEGIN(); // genome/sequencer.c:292
...
for (ii = i; ii < ii stop; ii++) {
void* segment = vector at(segmentsContentsPtr, ii);
TMhashtable insert(uniqueSegmentsPtr, segment, segment);
}
TM END();

void* vector at (vector t* vectorPtr, long i){ //lib/vector.c:164
if ((i < 0) || (i ≥vectorPtr→size)) I A 51: Parent 0
return NULL;

return (vectorPtr→elements[i]); I 53: Pioneer 51

// lib/hashtable.c:171
bool t TMhashtable insert (hashtable t* hashtablePtr, ...) {
long numBucket = hashtablePtr→numBucket; I A 42: Parent 0
...
... = TMlist find(hashtablePtr→buckets[i],

&findPair); I 46: Pioneer 42

void* TMlist find (list t* listPtr, ...) { // lib/list.c:588
list node t* nodePtr;
list node t* prevPtr = &(listPtr→head);
for (nodePtr=(list node t*)prevPtr→nextPtr; I A 35: Parent 42

nodePtr != NULL;
nodePtr = (list node t*)nodePtr→nextPtr) I 38: Pioneer 35

Figure 3: An atomic block in genome. I marks an entry
with its ID and parent/pioneer field in the unified anchor
table.

anchor. Every ALP is assigned a unique ID so that the
run-time locking policy can locate and activate it. After the
binary code has been generated, the compiler knows the real
PC of each instruction. It makes the unified anchor tables
indexable by PC address, and then emits all unified tables.

3.5 Example
Figure 3 presents a portion of the generated anchor ta-

ble for an atomic block in the STAMP genome benchmark.
The compiler pass first runs DSA for functions called inside
the atomic block (vector at, TMhashtable insert, and TM-
list find). Function TMlist find, for example, contains a sin-
gle DSNode (for nodePtr and prevPtr) with two loads on it.
The first load is marked as an anchor (A 35), according to

Algorithm 1; the second is a non-anchor (38) whose pioneer
is A 35. A 35’s parent field is not filled in until the unified
anchor table is constructed.

As we can see, the parent chain between anchors (from
hashtablePtr to listPtr) is preserved in the unified anchor
table, through which the runtime can make advanced locking
decisions. For this code snippet, the compiler will finally
instrument three loads (vectorPtr→size, hashtablePtr→num-
Bucket, and prePtr→nextPtr) as advisory locking points.

4. HARDWARE REQUIREMENTS
Staggered Transactions require — or can benefit from —

several hardware features. First, they must be able to ac-
quire an advisory lock from within an active hardware trans-
action. This operation violates the usual isolation require-
ment, but is compatible with several real and proposed HTM
architectures. Second, they must be able to identify the data
address that has been the source of a conflict leading to
abort. This capability is supported by all current HTM de-
signs. Third, they can benefit from a mechanism to identify
the address of the instruction that first accessed an address
that was the source of a data conflict. While no such mech-
anism is available on current hardware, it seems relatively
straightforward to provide. Moreover, unlike the hardware
features required by systems like DATM [21] and Wait-n-
GoTM [14], both intra-transaction lock acquisition and ini-
tial access recording appear to be independent of other de-
tails of HTM design.

Advisory lock acquisition is most easily performed using
nontransactional loads and (immediate) stores. Nontrans-
actional loads have appeared in Sun’s Rock processor [6]
and AMD’s ASF proposal [8]. They allow a transaction
to see writes that have been performed (by other threads)
since the beginning of the current transaction. They do not
modify the transaction’s speculative state: that is, a store
by another thread to a nontransactionally-read location will
not cause the transaction to abort (unless the location has
also been accessed transactionally). Nontransactional stores
similarly allow a transaction to update locations even in the
event of an abort, and (in the absence of transactional loads
or stores to the same location) will not lead to aborts due
to conflicting accesses in other threads. To be of use in ac-
quiring an advisory lock, a nontransactional store must (as
in ASF) take place immediately; it cannot (as in Rock or
IBM’s z series machines [13]) be delayed until the end of the
transaction.

On ASF, Rock, and z, nontransactional accesses are per-
formed by special load and store instructions. On IBM’s
Power 8 [4], a transaction can suspend and resume execu-
tion. While suspended, its loads and stores are nontransac-
tional, and its stores immediately visible. Significantly, non-
transactional accesses have a variety of other uses, including
hybrid TM [9, 25]; debugging, diagnostics, and statistics
gathering [11]; and ordered speculation (e.g., for speculative
parallelization of loops).

Conflict information of some sort is provided on abort
by all current HTM designs. All, in particular, provide the
address of the location (or cache line) on which a conflict
has occurred. For Staggered Transactions, a machine would
also, ideally, provide the address of the instruction at which
the conflicting datum was initially accessed in the transac-
tion. We call this address the conflicting PC . Note that it

struct ABContext { // per thread, per atomic block
int activeAnchor; // ID of the currently active anchor
int blockAddress; // probable conflicting memory address
AbortInfo abtHistory[NUM HISTORY]; // abort history
const AnchorTable *anchorTable; // pointer to anchor table
};

Figure 4: ABContext structure.

is generally not the current PC at the time the conflict is
discovered.

In an HTM system implemented in the L1 cache, conflict-
ing PC information could be maintained by adding a PC
tag to each cache line, in addition to transaction status bits.
This tag would be set whenever a line transitions into specu-
lative mode. Because the tag is inspected only when the line
is the source of a data conflict, it need not ever be cleared.
As we shall see in Section 6, one can in fact get by with just
a subset of the PC (e.g., the 12 low-order bits). This suffices
to keep the space overhead under 2.4%.

Software Alternatives to Conflicting PC.
While commercial HTMs have begun to support nontrans-

actional loads and stores, hardware recording of the con-
flicting PC is still a missing feature. Without it, we need
a software alternative to map a conflicting data address to
the appropriate anchor in instruction space. A relatively
cheap solution is to keep a map M for each thread, indexed
by cache line address. At every ALP (with anchor ID I,
preceding a load/store of some data address A), the run-
time can use nontransactional loads and stores to set M(A)
to I, if A was previously absent. If a conflict subsequently
occurs on address A, M(A) can be used to identify the ALP
that should, perhaps, be activated. While the overhead of
this method is nontrivial, it can sometimes be acceptable.
Section 6.2 compares this method with hardware-supported
conflicting PC tracking.

5. RUNTIME SUPPORT
Our compiler assigns a unique ID to each source code

atomic block. For each of these, the runtime maintains an
ABContext data structure, as shown in Figure 4, for each
executing thread. A pointer to the ABContext for the current
atomic block and thread is loaded into a local variable at the
beginning of each transaction, and accessed at each ALP. If
the transaction aborts, the ABContext may also be accessed
by the policy for ALP activation.

5.1 Instrumentation
In our current implementation, each ALP comprises a call

to the ALPoint function, shown in Figure 5. The function
takes three arguments—a pointer to the appropriate ABCon-
text, the ID of the anchor, and the data address accessed in
the following load or store instruction.

The ALPoint function acquires an advisory lock if the cur-
rent anchor is active (line 2) and either the cache line of
the data address matches that of the address in the AB-
Context, or the ALP is in coarse-grain mode (indicated by
c→blockAddress == 0). This disjunction is checked by func-
tion IsAddressMatched (line 3). When a lock is acquired,
c→activeAnchor is cleared to avoid additional locking at-
tempts within the current transaction (line 4). The advisory
lock is released when the transaction commits or aborts. The
activeAnchor field is restored the next time the thread begins
a transaction for the same atomic block.

1 void ALPoint (ABContext *c, int myID, void* addr) {
2 if (c→activeAnchor == myID &&
3 IsAddressMatched(c→blockAddress, addr) {
4 c→activeAnchor = 0;
5 AcquireLockFor(addr);
6 }
7 }

Figure 5: ALPoint instrumentation function.

The actual blocking/waiting is performed in function Ac-
quireLockFor. In our implementation, this function uses a
hash of the data address to choose one of a static set of
pre-allocated locks, which it then accesses using nontransac-
tional loads and stores. In a system that allows a transaction
to remain active when its thread is preempted or blocked, it
is important not to force all other transactions to wait if the
stalled one holds a lock. With appropriate OS support, the
runtime could register the location of any advisory lock it
acquires, and the kernel could free this lock when deschedul-
ing the thread. Alternatively, a transaction that waits “too
long” for an advisory lock could simply time out and proceed
without it.

5.2 Locking Policy
The locking policy serves to predict, based on past be-

havior, which instructions are likely to constitute the first
access within a transaction to a location that is likely to
be the source of a conflict. Based on this prediction, the
runtime activates an appropriate ALP. Many policies are
possible. We describe our current choice, which is simple
and seems to perform well in practice.

Table 1 suggests that the conflicting data address alone
may not be a predictor of contention, due to its poor lo-
cality in certain access patterns. Likewise, PC alone is an
overpredictor: while the same instruction is very often the
initial access to a conflicting location, there are often cases
in which that instruction accesses a location that is not a
source of conflict. These observations suggest that the com-
bination of PC and data address might make an effective
predictor. A policy based on this idea appears in Figure 6.
The policy works on a per-thread, per-atomic block basis.
Function ActivateALPoint is called on an abort. Depend-
ing on the frequency with which the current conflicting data
address (line 6) and initially-accessing PC (line 7) have ap-
peared in the recent past, the policy chooses one of four
behaviors:

Precise Mode. Both the conflicting PC and the data ad-
dress appear multiple times in the history. This is typical of
statistics and bookkeeping information, or of cyclic depen-
dences. In this mode, the appropriate anchor is activated
(line 9) with the conflicting address as the target (line 10).

Coarse-grain Mode. In this case the conflicting PC is
recurrent, but the data address keeps changing. This is
typical of pointer-based structures like lists (Figure 3) and
trees, whose nodes are scattered across cache lines. In this
mode we activate the anchor with a “wild card” data address
(line 14). In the next instance of the transaction, the first
accessed DSNode of the structure (usually the root or head
node—i.e., the whole data structure) will be locked.

Locking Promotion. If contention persists in coarse-grain
mode, the lock is promoted to the parent anchor (line 16) in
the hope of avoiding contention there.

1 void ActivateALPoint(ABContext *c, AbortInfo *abt) {
2 AEntry *en=SearchByPC(c→anchorTable, abt→confPC);
3 if (!en→isAnchor) // always begin with an anchor
4 en = en→pioneer;
5 AbortInfo *history = c→abtHistory;
6 bool a=CountAddr(history,abt→confAddr)>ADDR THR;
7 bool p = CountPC(history, en→PC) > PC THR;
8 if (p && a) { I case 1: precise mode
9 c→activeAnchor = en→ID;

10 c→blockAddress = abt→confAddr;
11 } else if (p && !a) {
12 if (retries < PROM THR) { I case 2: coarse grain
13 c→activeID = en→ID;
14 c→blockAddr = 0;
15 } else { I case 3: locking promotion
16 c→activeID = en→parent;
17 c→blockAddr = 0;
18 }
19 } else { // !p I case 4: training mode
20 c→activeID = 0;
21 c→blockAddr = 0;
22 }
23 AppendToHistory(history, en→PC, abt→confAddr);
24 }

Figure 6: Pseudocode of a simple locking policy.

Training Mode. When no pattern has (yet) emerged, the
policy simply continues to gather statistics.

When a transaction commits while holding an advisory
lock, but there was no contention on that lock, an empty
entry can be appended to the abort history to shift out the
previous records, avoiding over-locking in the case of low
contention.

Coarse-grain locking and locking promotion serve to break
cycles of conflict among transactions that occur on separate
locations. In pointer-based data structures in particular,
conflicting addresses may vary across both time and threads.
Location-based hardware techniques for conflict avoidance
(e.g., Wait-n-GoTM [14]) are generally unable to avoid such
conflicts. With the advantage of information from the com-
piler’s Data Structure Analysis, Staggered Transactions han-
dle these conflicts by acquiring locks at a coarser granular-
ity or a higher (more abstract) level of the data structure.
Consider, for example, the transaction in Figure 3, which
consumes significant time in genome. The transaction in-
serts segments into several lists in a shared table. A cycle
of conflict may easily arise among threads—thread 1 inserts
segments to lists A, B, and D; thread 2 to D and C; thread
3 to C and A. With a frequently conflicting PC (Anchor
35) and unstable conflicting addresses, the locking policy
will eventually reach the advisory lock for the whole table
(Anchor 42), breaking the conflict cycle.

6. EXPERIMENTAL RESULTS
Hardware. Since no existing HTM provides all the hard-
ware features required by Staggered Transactions, we con-
ducted our experiments on MARSSx86 [19], a full-system
cycle-accurate x86 simulator with high fidelity HTM support
[7]. The HTM simulation is based on a variant of AMD’s
Advanced Synchronization Facility (ASF) proposal [7, 10].
The ISA uses speculate/commit instructions to mark a trans-
action region. Read and write sets are maintained in the L1
cache by adding two bits (tx read and tx write) to each
cache line. An eager requester-wins conflict resolution pol-
icy is implemented on top of a modified MOESI coherence

CPU cores 2.5GHz, 4-wide out-of-order issue/commit
L1 cache private, 64K D + 64K I, 8-way, write-

back, 64-byte line, 2-cycle
L2 cache private, 1M, 8-way, write-back, 10-cycle
L3 cache shared, 8M, 8-way, write-back, 30-cycle
Coherence MOESI
Memory 4 GB, 50ns, 2 memory channels

HTM
2-bit (r/w) per L1 cache line
eager requester-wins policy

Stag. Trans. 12-bit PC tag per L1 cache line

Table 2: Configuration of the HTM simulator.

protocol. This HTM, designed to “incur the fewest modi-
fications to the existing cache coherence and core designs”
[33], is similar to those employed in Intel’s Haswell [33] and
IBM’s zEC12 [13], with the notable addition of nontransac-
tional loads and stores within transactions. We made the
following modifications to the simulator:

• The original ASF proposal treated only annotated load/
store instructions (lock mov) as transactional operations,
and normal load/store as nontransactional. In keeping
with later changes in the proposal, we reversed this be-
havior to match that of other HTM systems.

• As described in Section 4, we added a 12-bit PC tag to
every L1 cache line to record bits of the conflicting PC.
The space overhead in the L1 cache is less than 2.4%.

• On a contention abort, the hardware places the low 12 bits
of the conflicting PC and the low 52 bits of the conflicting
data address into the %rbx register.

We model a 16-core machine with the configuration shown
in Table 2.

Compiler and HTM Runtime. Our compiler support
is realized in LLVM 3.4 as an optimization pass, using an
existing DSA implementation.

The locking policy keeps 8 recent abort records in each
ABContext, with PC THR=2 and ADDR THR=2. The HTM
runtime tries each hardware transaction up to 10 times; it
then enters irrevocable mode by acquiring a global lock.
Hardware transactions add the global lock to their read set
immediately before attempting to commit. Prior to a retry,
the runtime spins for an amount of time whose mean value
is proportional to the number of retires (as in the “Polite”
policy of Scherer & Scott [26]).

Benchmarks. We use the STAMP suite [18] and three
other representative TM programs as benchmarks, as sum-

Program Source Description and input ABs %TM S Abts/C Contention
genome

STAMP

-g1024 -s16 -n16384 5 61% 6.0 0.25 low
intruder -a10 -l4 -n2038 -s1 3 98% 3.2 5.28 high
kmeans -m15 -n15 -t0.05 -i random-n2048-d16-c16 3 42% 4.6 4.74 high
labyrinth -i random-x16-y16-z3-n64, w/ early release 3 91% 1.9 3.47 high
ssca2 -s13 -i1.0 -u1.0 -l3 -p3 10 16% 4.8 0.02 low
vacation -n4 -q40 -u90 -r16387 -t4096 3 87% 9.7 0.49 med
list-lo

IntSet[22]
64 nodes, 90%/5%/5% lookup/insert/delete 4 86% 3.6 1.11 med

list-hi 64 nodes, 60%/20%/20% lookup/insert/delete 4 83% 1.0 4.05 high
tsp [1] travel salesman problem solver, 17 cities 3 90% 3.6 1.74 med
memcached [17] in-memory key-value storage 17 85% 2.6 4.77 high

Table 4: Benchmark characteristics. ABs: number of atomic blocks in the source code. %TM: percentage of execution
time spent in transactional mode. S: speedup with 16 threads over sequential run on the baseline HTM. Abts/C: aborts per
commit on the baseline with 16 threads.

Program
Static Stats Dynamic Stats (1 thread) Accuracy

(16 thds)ld/st
instrs

anchs
u-ops

per txn
anchs

per txn
exec.

time inc
genome 82 19 957 17.6 <1% 100%
intruder 410 56 351 8.5 <1% 97.2%
kmeans 13 6 261 4.5 1.6% 99.1%
labyrinth 418 18 16968 89.4 <1% 100%
ssca2 33 7 86 3.1 <1% 97.9%
vacation 442 76 4621 63.9 <1% 95.3%
list-hi 43 5 391 32.9 5.1% 98.7%
tsp 737 75 2348 9.7 <1% 97.0%
memcached 405 54 2520 80.9 <1% 98.3%

Table 3: Static and dynamic statistics of instrumentation.

marized in Table 4. STAMP’s yada and bayes are excluded
because yada has overflow issues and bayes has unstable ex-
ecution time. The list-hi microbenchmark is drawn from
the RSTM test suite [22]. It comprises a set of threads
that search and update a single shared, sorted list. The tsp
benchmark is our own C++ implementation of a branch-
and-bound TSP solver. All candidate tasks are kept in a
B+ tree-based [1] priority queue, which supports O(1) pop
and O(n logn) push operations. We eliminated the tree’s size
field, which tends to be highly contended. The memcached
benchmark is a modified version of memcached 1.4.9. The
network code is elided in order to speed up simulation and
to increase the number of working threads. We obtain the
input data from memslap and inject them directly into the
application’s command processing functions.

All binaries were compiled with -O2 optimizations, run-
ning on Debian 7.0 with a Linux 3.2 kernel. To avoid the
potential contention bottleneck in the default glibc mem-
ory allocator, we use the Lockless Memory Allocator [12]
instead. To reduce the impact of the OS scheduler, we pin
every worker thread to a specific CPU core during program
initialization. Each run was repeated 5 times; the average
number is reported.

6.1 Instrumentation Overhead and Accuracy
The “Static Stats” section of Table 3 shows the number of

loads and stores analyzed by the compiler and the number of
these that were instrumented as anchors (“anchs”) at compile
time. On average, 13% of loads and stores are instrumented.

The “Dynamic Stats” section reflects the behavior of in-
strumented code in single-threaded runs. Since the number
of anchors executed in each transaction is small compared
to the total number of µ-ops, and an inactive ALP is simply
a test and a non-taken branch, the execution time change
is negligible in most benchmarks. The principal exception

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

genome intruder kmeans labyrinth ssca2 vacation list-lo list-hi tsp memcached

Pe
rf

or
m

an
ce

N
or

m
al

iz
ed

to
E

ag
er

H
T

M
HTM

AddrOnly
Staggered+SW

Staggered

Figure 7: Performance comparison with 16 threads.

is the list microbenchmark, in which the anchors appear in
tight loops. Further optimization of such loops may be a
fruitful direction for future work.

For comparison, we also constructed a naive implementa-
tion in which every load and store was instrumented. This
lead to slowdowns in excess of 10% for six of the benchmark
programs (labyrinth, kmeans, vacation, list, tsp, and mem-
cached).

The “Accuracy” section of the table shows the percentage
of dynamic aborts for which our runtime was able to cor-
rectly identify the anchor associated with the initial access
of the contended datum. All are above 95%; six out of nine
are above 98%.

6.2 Parallel Performance
In the“S”column of Table 4, we list the speedup of bench-

marks running on the baseline eager HTM at 16 threads.
These benchmarks show low to high contention, as indicated
in the final column. The worst is list-hi, which stops scaling
after 4 threads.

Comparative performance on 16 threads appears in Fig-
ure 7, which plots speedup relative to the baseline (“HTM”)
for “StaggeredTM” (with hardware Conflict PC support)
and “StaggerTM w/o CPC” (with software-based anchor
tracking, as described in Section 4). Also plotted is a much
simpler scheme, “AddrOnly,” which places one fixed ALP at
the beginning of each atomic block and uses only precise
mode to trigger lock acquisition.

Result 1: Staggered Transactions improve the performance
of high-contention applications without slowing down appli-
cation with low contention.

We see substantial performance improvement (>30%) in
intruder, kmeans, list-hi, tsp, and memcached. The improve-
ment in intruder comes from serializing the modifications to
a global queue, especially an enqueue that occurs near the
end of a long transaction (TMdecoder process). In kmeans,
most conflicts take place when updating an array of point-
ers representing the centers of data clusters. Due to the
good locality of conflicting PC and data addresses, Stag-
gered Transactions are able to acquire advisory locks on
a per-cluster basis (close to what fine-grain locking could
achieve). In list-hi, Staggered Transactions avoid repetitive
aborts among several conflicting transactions by locking the
entire list (case 2 in Figure 6). Note that locking is triggered
only when contention actually arises, and transactions that

do not contribute to that contention are not blocked. In tsp,
Staggered Transactions successfully discover that the head
of the priority queue (left-most node of the tree) is the most
contended object. Transactions that perform insertions on
the same leaf node are also serialized if they repeatedly abort
each other. Most conflicts in memcached are due to access
to global shared statistics, accessed in the middle of trans-
actions. Staggered Transactions introduce significant serial-
ization, but still allow more concurrency than the baseline
with fallback to a global lock.

Moderate performance improvements (6–24%) are obtained
in genome, list-lo, and labyrinth. In genome, the most time-
consuming transaction inserts a few elements into a fixed-
sized hash table, which ends up overloaded and prone to
contention, particularly when a conflict chain is established
among several transactions. Although the conflicting PC is
associated with the list-traversal code used to access buckets
of the table, the Staggered Transactions policy can serialize
at the level of the table as a whole via locking promotion
(Section 5.2), thereby avoiding aborts even in the presence
of conflict chains. Two benchmarks (ssca2 and vacation)
see no significant improvement in execution time. Even in
these, however, Staggered Transactions reduce the frequency
of aborts, as shown in Section 6.3.

The harmonic mean of performance improvements across
all benchmarks is 24%.

Result 2: Staggered Transactions benefit from both partial
overlap and a flexible blocking policy.

In intruder, tsp, and memcached, conflicting data addresses
are stable across transaction instances. Here the perfor-
mance improvements stem simply from serializing the con-
flicting portions of those transactions, and allowing the re-
mainder to execute in parallel. In the other benchmarks,
conflicting data addresses vary greatly; for these, coarse-
grain locking and locking promotion are essential to conflict
reduction.

6.3 Reduced Aborts and Wasted Cycles

Result 3: Staggered Transactions reduce contention and
wasted CPU cycles for most applications.

For each of our benchmark applications, we compare Stag-
gered Transactions to the baseline HTM with regard to (1)
the ratio of aborted to committed transactions and (2) the
ratio of wasted to committed work (cycles) (Figure 8). Stag-

0

1

2

3

4

5

6

genome
intruder

kmeans
labyrinth

ssca2 vacation
list-lo

list-hi
tsp memcached

(a)HTM
(a)StaggeredTM

(b)HTM
(b)StaggeredTM

Figure 8: (a) aborts per commit and (b) ratio of wasted
CPU cycles over useful cycles with 16 threads.

gered Transactions eliminate up to 89% of the aborts (in
intruder) and an average of 64% across the benchmark set
(excluding ssca2, which has too few aborts for the numbers
to be meaningful). This results in an average savings of 43%
of the wasted CPU cycles (a lower number than the savings
in abort rate, because aborted transactions typically stop
when only part-way through). Assuming that cycles that
would have been wasted on aborted transactions are instead
devoted either to useful work or to waiting (at relatively low
power consumption) for advisory locks, it seems reasonable
to expect Staggered Transactions to achieve a significant re-
duction in energy as well.

7. RELATED WORK
HTM systems can be broadly categorized as eager or lazy,

depending on whether conflicts are discovered “as they oc-
cur”or only at commit time. A few systems, such as FlexTM
[28] and EazyHTM [30], support mixed policies. Most cur-
rent commercial systems employ a “requester wins” policy
in order to avoid changes to the coherence protocol (IBM’s
z series machines leverage existing NAK messages to delay
aborts, in an attempt to give the victim a chance to com-
mit [13]). A few designs are more sophisticated: LogTM-SE
[32], for example, will stall some transactions on conflict; po-
tential deadlock is detected using timestamps in coherence
messages. Even a simple conflict manager, however, intro-
duces significant implementation challenges because of the
necessary protocol extensions and validation cost [27].

Nonetheless, several ambitious solutions have been pro-
posed for eager HTM. In the dependence-aware transac-
tions (DATM) of Ramadan et al. [21], speculative data may
be forwarded from transaction A to transaction B if prior
accesses have already dictated that A must commit before
B, and B attempts to read something A has written. In the
Wait-n-GoTM of Jafri et al. [14], hardware may generate an
exception that prompts the runtime to delay a transaction,
if prior experience indicates that upcoming instructions are
likely to introduce a circular dependence with some other ac-
tive transaction. Most recently, Qian et al. proposed Omni-
Order [20] to support cycle detection and conflict serializa-
tion in a directory-based coherence protocol. RETCON [3],
which targets lazy HTMs, tries to “rescue” conflicting trans-
actions by re-executing the conflicting code slice at commit
time.

While these hardware proposals may achieve significant
reductions in conflict rate, most are specific to a particular
class of HTM (e.g., eager or lazy), or are applicable only to
certain conflict patterns. FlexTM and DATM, for example,

require changes to the cache coherence protocol. RETCON
can resolve only simple conflicts such as counter increment.
Wait-n-GoTM requires the underlying TM to be version-
based, and the centralized predictor tends to be a bottleneck.

Staggered Transactions share the “stall before encounter-
ing contention” philosophy of systems like LogTM-SE and
Wait-n-GoTM. Because Staggered Transactions are imple-
mented principally in software, however, they are not bound
to any particular style of HTM or conflict resolution strat-
egy. The required support, we believe, could be added easily
to existing hardware. More significantly, Staggered Trans-
actions’ use of high-level program knowledge allows them
to resolve contention patterns that are unlikely to be cap-
tured by a pure hardware solution (e.g., conflicts in a data
structure with no stable set of conflicting data addresses).

Contention management has also been a subject of active
research in STM systems, where the flexibility of software
and the high baseline overhead of instrumentation can jus-
tify even very complex policies. While much early work
(including our own [26, 29]) served mainly to recover from
contention once it happened, several projects have aimed to
avoid contention proactively. Multi-version STM, pioneered
by Riegel et al. [23], significantly reduces contention by al-
lowing a transaction to “commit in the past” if it has not
written any location that was read by a subsequent trans-
action. Later work by the same authors [24] uses Data
Structure Analysis [16] to partition shared data and choose
a potentially different STM algorithm or locking policy for
each partition. Chakrabarti et al. [5] use a profiling-based
abort information graph to identify data dependences and
optimize STM policy. Given their reliance on software in-
strumentation, none of these techniques are compatible with
existing HTM, and all would be difficult to integrate into fu-
ture hardware designs.

In a manner less dependent on TM system details, con-
tention can sometimes be avoided by carefully scheduling the
threads that run conflicting transactions. Proactive Trans-
action Scheduling [2] learns from repeated aborts and pre-
dicts future contention. The scheduler uses the prediction
to serialize entire transactions when they are likely to con-
flict with one another. In comparison to such techniques,
Staggered Transactions avoid the overhead of scheduling de-
cisions, thereby avoiding any negative impact on the perfor-
mance of short transactions. Also, by serializing only the
conflicting portions of transactions, Staggered Transactions
can achieve more parallelism.

8. CONCLUSIONS
We have presented an automatic mechanism, Staggered

Transactions, to serialize the conflicting portions of hard-
ware transactions, thereby reducing aborts. Our technique
employs compile-time Data Structure Analysis to under-
stand program data, allowing us to accommodate a wide
variety of conflict patterns. While the choice of which lock
to acquire is always based on the address of the data being
accessed, the decision as to whether to acquire a lock, and
at what instruction address, is made adaptively at run time.

From the hardware, Staggered Transactions require the
ability to acquire an advisory lock from within an active
transaction; they also benefit from a mechanism to recall
the program counter of the initial speculative access to a
given conflicting location. Experiments on the MARSSx86
ASF simulator demonstrate speedups averaging 24% on a

collection of 9 TM applications. In future work we hope to
experiment with a wider range of run-time policies and with
compatible physical hardware (e.g., the Power 8). We also
plan to extend our simulations to lazy TM protocols.

References
[1] T. Bingmann. STX B+ Tree C++ Template Classes. URL

http://panthema.net/2007/stx-btree.

[2] G. Blake, R. G. Dreslinski, and T. Mudge. Proactive
transaction scheduling for contention management. In 42nd
IEEE/ACM Intl. Symp. on Microarchitecture, MICRO 42,
New York, NY, 2009.

[3] C. Blundell, A. Raghavan, and M. M. Martin. RETCON:
Transactional repair without replay. In 37th Intl. Symp. on
Computer Architecture, ISCA ’10, Saint-Malo, France, 2010.

[4] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams,
and H. Le. Robust architectural support for transactional
memory in the Power architecture. In 40th Intl. Symp. on
Computer Architecture, ISCA ’13, Tel-Aviv, Israel, 2013.

[5] D. R. Chakrabarti, P. Banerjee, H.-J. Boehm, P. G. Joisha,
and R. S. Schreiber. The runtime abort graph and its
application to software transactional memory optimization.
In 9th IEEE/ACM Intl. Symp. on Code Generation and
Optimization, CGO ’11, 2011.

[6] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson,
A. Landin, and S. Yip. Rock: A high-performance Sparc
CMT processor. IEEE Micro, 29(2):6–16, Mar.–Apr. 2009.

[7] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth,
M. Pohlack, C. Fetzer, M. Nowack, T. Riegel, P. Felber,
P. Marlier, and E. Rivière. Evaluation of AMD’s Advanced
Synchronization Facility within a complete transactional
memory stack. In 5th European Conf. on Computer
Systems, EuroSys ’10, 2010.

[8] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack,
M. Hohmuth, D. Christie, and D. Grossman. ASF: AMD64
extension for lock-free data structures and transactional
memory. In 2010 43rd IEEE/ACM Intl. Symp. on
Microarchitecture, MICRO 43, 2010.

[9] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir,
M. L. Scott, and M. F. Spear. Hybrid NOrec: A case study
in the effectiveness of best effort hardware transactional
memory. In 16th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’11, Newport Beach, CA, 2011.

[10] S. Diestelhorst. Marss86-ASF, 2013. URL
http://bitbucket.org/stephand/marss86-asf.

[11] V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal,
E. Ayguade, T. Harris, and M. Valero. QuakeTM:
Parallelizing a complex sequential application using
transactional memory. In 23rd Intl. Conf. on
Supercomputing, ICS ’09, 2009.

[12] L. Inc. The Lockless Memory Allocator. URL
http://locklessinc.com.

[13] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory
architecture and implementation for IBM System z. In
2012 45th IEEE/ACM Intl. Symp. on Microarchitecture,
MICRO ’12, Vancouver, B.C., Canada, 2012.

[14] S. A. R. Jafri, G. Voskuilen, and T. N. Vijaykumar.
Wait-n-GoTM: Improving HTM performance by serializing
cyclic dependencies. In 18th Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’13, Houston, Texas, 2013.

[15] C. Lattner. Macroscopic Data Structure Analysis and
Optimization. PhD thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, May 2005.

[16] C. Lattner and V. Adve. Automatic pool allocation:
Improving performance by controlling data structure layout
in the heap. In 2005 ACM SIGPLAN Conf. on

Programming Language Design and Implementation,
PLDI ’05, Chicago, IL, 2005.

[17] Memcached. URL http://memcached.org.

[18] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for
multi-processing. In IEEE Intl. Symp. on Workload
Characterization, 2008., IISWC ’08, 2008.

[19] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSSx86: A
Full System Simulator for x86 CPUs. In Design
Automation Conf. 2011 (DAC’11), 2011.

[20] X. Qian, B. Sahelices, and J. Torrellas. Omniorder:
Directory-based conflict serialization of transactions. In
41st Intl. Symp. on Computer Architecture, ISCA ’14, June
2014.

[21] H. E. Ramadan, C. J. Rossbach, and E. Witchel.
Dependence-aware transactional memory for increased
concurrency. In 41st IEEE/ACM Intl. Symp. on
Microarchitecture, MICRO 41, Como, Italy, 2008.

[22] Reconfigurable Software Transactional Memory Runtime.
URL http://code.google.com/p/rstm.

[23] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot
algorithm with eager validation. In 20th Intl. Symp. on
Distributed Computing, DISC ’06, Stockholm, Sweden,
Sept. 2006.

[24] T. Riegel, C. Fetzer, and P. Felber. Automatic data
partitioning in software transactional memories. In 20th
Symp. on Parallelism in Algorithms and Architectures,
SPAA ’08, Munich, Germany, 2008.

[25] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer.
Optimizing hybrid transactional memory: The importance
of nonspeculative operations. In 23rd ACM Symp. on
Parallelism in Algorithms and Architectures, SPAA ’11,
2011.

[26] W. N. Scherer, III and M. L. Scott. Advanced contention
management for dynamic software transactional memory.
In 24th ACM Symp. on Principles of Distributed
Computing, PODC ’05, Las Vegas, NV, 2005.

[27] A. Shriraman and S. Dwarkadas. Refereeing conflicts in
hardware transactional memory. In 23rd Intl. Conf. on
Supercomputing, ICS ’09, Yorktown Heights, NY, 2009.

[28] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible
decoupled transactional memory support. In 35th Intl.
Symp. on Computer Architecture, ISCA ’08, Beijing, China,
2008.

[29] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L.
Scott. A comprehensive strategy for contention
management in software transactional memory. In 14th
ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming, PPoPP ’09, Raleigh, NC, 2009.

[30] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach,
A. Cristal, O. Unsal, T. Harris, and M. Valero. EazyHTM:
Eager-lazy hardware transactional memory. In 42nd
IEEE/ACM Intl. Symp. on Microarchitecture, MICRO 42,
New York, NY, 2009.

[31] L. Xiang and M. L. Scott. Software partitioning of
hardware transactions. In 20th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming (PPoPP),
San Francisco, CA, Feb. 2015.

[32] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos,
M. D. Hill, M. M. Swift, and D. A. Wood. LogTM-SE:
Decoupling hardware transactional memory from caches. In
2007 IEEE 13th Intl. Symp. on High Performance
Computer Architecture, HPCA ’07, Phoenix, AZ, 2007.

[33] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar.
Performance evaluation of Intel transactional
synchronization extensions for high-performance
computing. In Intl. Conf. for High Performance
Computing, Networking, Storage and Analysis, SC ’13,
Denver, CO, 2013.

